A novel data clustering algorithm based on modified gravitational search algorithm

Data clustering is a popular analysis tool for data statistics in many fields such as pattern recognition, data mining, machine learning, image analysis, and bioinformatics. The aim of data clustering is to represent large datasets by a fewer number of prototypes or clusters, which brings simplicity...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 61; pp. 1 - 7
Main Authors Han, XiaoHong, Quan, Long, Xiong, XiaoYan, Almeter, Matt, Xiang, Jie, Lan, Yuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2017
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2016.11.003

Cover

Abstract Data clustering is a popular analysis tool for data statistics in many fields such as pattern recognition, data mining, machine learning, image analysis, and bioinformatics. The aim of data clustering is to represent large datasets by a fewer number of prototypes or clusters, which brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. In this paper, a novel data clustering algorithm based on modified Gravitational Search Algorithm is proposed, which is called Bird Flock Gravitational Search Algorithm (BFGSA). The BFGSA introduces a new mechanism into GSA to add diversity, a mechanism which is inspired by the collective response behavior of birds. This mechanism performs its diversity enhancement through three main steps including initialization, identification of the nearest neighbors, and orientation change. The initialization is to generate candidate populations for the second steps and the orientation change updates the position of objects based on the nearest neighbors. Due to the collective response mechanism, the BFGSA explores a wider range of the search space and thus escapes suboptimal solutions. The performance of the proposed algorithm is evaluated through 13 real benchmark datasets from the well-known UCI Machine Learning Repository. Its performance is compared with the standard GSA, the Artificial Bee Colony (ABC), the Particle Swarm Optimization (PSO), the Firefly Algorithm (FA), K-means, and other four clustering algorithms from the literature. The simulation results indicate that the BFGSA can effectively be used for data clustering.
AbstractList Data clustering is a popular analysis tool for data statistics in many fields such as pattern recognition, data mining, machine learning, image analysis, and bioinformatics. The aim of data clustering is to represent large datasets by a fewer number of prototypes or clusters, which brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. In this paper, a novel data clustering algorithm based on modified Gravitational Search Algorithm is proposed, which is called Bird Flock Gravitational Search Algorithm (BFGSA). The BFGSA introduces a new mechanism into GSA to add diversity, a mechanism which is inspired by the collective response behavior of birds. This mechanism performs its diversity enhancement through three main steps including initialization, identification of the nearest neighbors, and orientation change. The initialization is to generate candidate populations for the second steps and the orientation change updates the position of objects based on the nearest neighbors. Due to the collective response mechanism, the BFGSA explores a wider range of the search space and thus escapes suboptimal solutions. The performance of the proposed algorithm is evaluated through 13 real benchmark datasets from the well-known UCI Machine Learning Repository. Its performance is compared with the standard GSA, the Artificial Bee Colony (ABC), the Particle Swarm Optimization (PSO), the Firefly Algorithm (FA), K-means, and other four clustering algorithms from the literature. The simulation results indicate that the BFGSA can effectively be used for data clustering.
Author Almeter, Matt
Xiong, XiaoYan
Lan, Yuan
Han, XiaoHong
Quan, Long
Xiang, Jie
Author_xml – sequence: 1
  givenname: XiaoHong
  surname: Han
  fullname: Han, XiaoHong
  email: jmqchs@sohu.com
– sequence: 2
  givenname: Long
  surname: Quan
  fullname: Quan, Long
– sequence: 3
  givenname: XiaoYan
  surname: Xiong
  fullname: Xiong, XiaoYan
– sequence: 4
  givenname: Matt
  surname: Almeter
  fullname: Almeter, Matt
– sequence: 5
  givenname: Jie
  surname: Xiang
  fullname: Xiang, Jie
– sequence: 6
  givenname: Yuan
  surname: Lan
  fullname: Lan, Yuan
BookMark eNqFkF9LwzAUxYNMcJt-BekXaE3aJmnBB8fwHwwE0edw86_L6NKRxIHf3o5NBF_2dO-F8zvcc2Zo4gdvELoluCCYsLtNYXwHux24ohzvgpAC4-oCTUnDq5xx1k7QFLe0zEnL2RWaxbjBo6Kp2RS9LzI_7E2faUiQqf4rJhOc7zLouyG4tN5mEqLR2eCz7aCddePeBdi7BMkNHvosGghq_Qdco0sLfTQ3pzlHn0-PH8uXfPX2_LpcrHJVkTLljeZS1lJSwmugmEktbW1xCRobWxquQFNrLaUNxYAV5ZJBQ2BkeMMobqs5uj_6qjDEGIwV6vRUCuB6QbA49CM24rcfcehHECLG9CPO_uG74LYQvs-DD0fQjOH2zgQRlTNeGe2CUUnowZ2z-AHt-oiH
CitedBy_id crossref_primary_10_1016_j_jnca_2018_02_017
crossref_primary_10_1109_TSMC_2018_2883329
crossref_primary_10_1007_s42979_024_02883_5
crossref_primary_10_1016_j_knosys_2019_105404
crossref_primary_10_17150_2713_1734_2023_5_4__379_391
crossref_primary_10_1007_s11227_023_05540_5
crossref_primary_10_1016_j_apm_2020_11_013
crossref_primary_10_3390_rs11050546
crossref_primary_10_1016_j_asoc_2023_110236
crossref_primary_10_1016_j_eswa_2023_119954
crossref_primary_10_1007_s00366_021_01345_3
crossref_primary_10_1109_TCYB_2018_2833805
crossref_primary_10_1007_s10044_021_01052_1
crossref_primary_10_1016_j_aej_2017_04_013
crossref_primary_10_1515_jisys_2018_0338
crossref_primary_10_3390_a15020043
crossref_primary_10_53070_bbd_1421527
crossref_primary_10_1007_s11277_022_09801_z
crossref_primary_10_1007_s10776_018_0388_1
crossref_primary_10_1111_exsy_12657
crossref_primary_10_17694_bajece_904882
crossref_primary_10_1002_dac_4434
crossref_primary_10_1109_ACCESS_2019_2923979
crossref_primary_10_3233_ICA_220678
crossref_primary_10_1007_s10288_019_00402_4
crossref_primary_10_1007_s11227_020_03597_0
crossref_primary_10_1007_s12652_021_03600_3
crossref_primary_10_1007_s42979_024_03048_0
crossref_primary_10_1016_j_swevo_2018_02_018
crossref_primary_10_1016_j_asoc_2019_105763
crossref_primary_10_7717_peerj_cs_201
crossref_primary_10_1007_s10462_018_09676_2
crossref_primary_10_1007_s10044_021_00964_2
crossref_primary_10_1515_jisys_2022_0230
crossref_primary_10_1016_j_engappai_2021_104202
crossref_primary_10_1016_j_kijoms_2018_09_001
crossref_primary_10_1007_s11042_022_13453_3
crossref_primary_10_3390_s21124086
crossref_primary_10_1016_j_knosys_2018_08_012
crossref_primary_10_1007_s11042_020_10304_x
crossref_primary_10_1007_s10586_022_03553_y
crossref_primary_10_1080_23311916_2023_2278259
crossref_primary_10_1016_j_future_2019_07_026
crossref_primary_10_1016_j_asr_2020_07_028
crossref_primary_10_1007_s10489_018_1198_y
crossref_primary_10_1007_s10479_021_04496_0
crossref_primary_10_1088_1742_6596_1978_1_012029
crossref_primary_10_1371_journal_pone_0216906
crossref_primary_10_1016_j_eswa_2018_07_008
crossref_primary_10_1162_neco_a_01081
crossref_primary_10_1007_s12065_020_00562_x
crossref_primary_10_1155_2022_1900509
crossref_primary_10_1049_ipr2_12122
crossref_primary_10_1016_j_engappai_2023_106635
crossref_primary_10_1007_s40747_024_01420_4
crossref_primary_10_1007_s12065_019_00254_1
crossref_primary_10_1007_s10462_024_10920_1
crossref_primary_10_4018_IJAMC_2022010108
crossref_primary_10_1007_s11063_022_10876_9
crossref_primary_10_1007_s12065_019_00313_7
crossref_primary_10_4018_IJAMC_292497
crossref_primary_10_1007_s12065_021_00578_x
crossref_primary_10_3390_su14106159
crossref_primary_10_1109_ACCESS_2021_3136239
crossref_primary_10_1007_s00607_020_00828_3
crossref_primary_10_1007_s12065_018_0192_y
crossref_primary_10_1142_S021848852340007X
crossref_primary_10_1007_s10489_021_02934_x
crossref_primary_10_1007_s10462_020_09840_7
crossref_primary_10_1016_j_swevo_2018_12_005
Cites_doi 10.1016/j.patrec.2013.11.012
10.1016/0031-3203(91)90097-O
10.1016/j.energy.2014.07.037
10.1109/TSMC.1978.4309979
10.1007/s00521-014-1757-z
10.1016/j.patcog.2008.03.007
10.1093/comjnl/7.4.308
10.1080/0305215041000168521
10.1016/j.knosys.2012.10.004
10.1016/S0305-0548(97)00031-2
10.1016/0167-6377(89)90002-3
10.1016/j.eswa.2007.01.028
10.1145/304182.304187
10.1016/j.engappai.2014.07.016
10.1016/j.asoc.2005.09.004
10.1016/j.cie.2016.04.002
10.1109/TCBB.2004.2
10.1109/TNN.2005.845141
10.1016/0031-3203(95)00022-R
10.1016/S0031-3203(99)00137-5
10.1016/j.swevo.2013.11.003
10.1016/j.ijepes.2013.10.006
10.1016/j.asoc.2011.10.008
10.1016/j.ins.2014.05.030
10.1109/TFUZZ.2011.2173693
10.1016/j.aca.2003.12.032
10.1016/j.asoc.2009.12.025
10.1016/j.ins.2009.03.004
10.1016/j.patcog.2008.11.006
10.1016/j.asoc.2015.06.052
10.1016/j.patrec.2009.09.011
10.1016/j.eswa.2011.05.027
10.1109/NaBIC.2011.6089411
10.1016/j.swevo.2011.02.002
10.1016/j.ijepes.2014.07.041
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2016.11.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 7
ExternalDocumentID 10_1016_j_engappai_2016_11_003
S0952197616302068
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-8d7bb4bb5174a506bdbf4f02ad0ef2e7cad5fff55850a0c57b6a81abb47865093
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Wed Oct 01 01:51:02 EDT 2025
Thu Apr 24 22:59:26 EDT 2025
Fri Feb 23 02:28:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gravitational search algorithm
Collective behavior
Nature-inspired algorithm
Clustering Validation
Learning algorithm
Data clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-8d7bb4bb5174a506bdbf4f02ad0ef2e7cad5fff55850a0c57b6a81abb47865093
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2016_11_003
crossref_primary_10_1016_j_engappai_2016_11_003
elsevier_sciencedirect_doi_10_1016_j_engappai_2016_11_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2017
2017-05-00
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chuang, Hsiao, Yang (bib11) 2011; 38
Nanda, Panda (bib39) 2014; 16
Derrac, Garcia, Molina, Herrera (bib13) 2011; 1
Xu, Wunsch (bib50) 2005; 16
Dehuri, Ghosh, Mall (bib12) 2006; 4
Jiang, Ji, Shen (bib29) 2014; 55
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2007. Allocation of static var compensator using gravitational search algorithm. Proceedings of the First Joint Conference on Fuzzy and Intelligent Systems. Mashhad, Iran.
Jain (bib28) 2010; 31
Rashedi, Nezamabadi-pour, Saryazdi (bib42) 2009; 179
Li, Zhou, Fu (bib34) 2012; 20
Karaboga, Ozturk (bib31) 2011; 11
Rashedi (bib43) 2007
Shelokar, Jayaraman, Kulkarni (bib47) 2004; 509
Berikov (bib5) 2014; 38
Netjinda, Achalakul, Sirinaovakul (bib41) 2015; 35
Shuaib, Kalavathi, Rajan (bib48) 2015; 64
Zhang, Niu, Li (bib51) 2013; 39
Nelder, Mead (bib40) 1965; 7
Kao, Zahara, Kao (bib30) 2008; 34
Chen, C.-Y., Ye, F., 2004. Particle swarm optimization algorithm and its application to clustering analysis," in Networking, Sensing and Control, 2004 IEEE International Conference on, 2004, pp. 789-794.
Selim, Alsultan (bib45) 1991; 24
.
Barbakh, Wu, Fyfe (bib4) 2009
Al-Sultan (bib1) 1995; 28
Maulik, Bandyopadhyay (bib37) 2000; 33
Hong, Kwong, Chang, Ren (bib26) 2008; 41
Lu, Fu (bib35) 1978; 8
Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases
Bishop (bib6) 2006
Karaboga, Ozturk (bib32) 2011; 11
Everitt, Landau, Leese, Stahl (bib18) 2011; 5
Madeira, Oliveira (bib36) 2004; 1
Mladenovic, Hansen (bib38) 1997; 24
De Falco, Della Cioppa, Tarantino (bib15) 2007; 7
Falkenauer (bib20) 1998
Bahrololoum, Nezamabadi-pour, Bahrololoum, Saeed (bib3) 2012; 12
Fan, Liang, Zahara (bib21) 2004; 36
Han, Chang, Quan (bib24) 2014; 281
Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J., 1999. OPTICS: ordering points to identify the clustering structure. In: Proceedings of the International Conference on Management Data, pp. 49–60.
Everitt, Landau, Leese (bib19) 2001
Chang, Zhang, Zheng (bib8) 2009; 42
Stutzle (bib49) 1999
Hereford, J., Blum, C., 2011. Flock Opt: a new swarm optimization algorithm based on collective behavior of starling birds, in: 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC).
Feo, Resende (bib22) 1989; 8
Ester, M., Kriegel, H.P., Sander, J., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231.
Senthilnath, Omkar, Mani (bib46) 2011; 1
Li, An, Li (bib33) 2015; 26
De, Mamanduru, Gunasekaran, Subramanian, Tiwari (bib14) 2016; 96
Hruschka, Campello, Freitas, De Carvalho (bib27) 2009; 39
Chatterjee, Roy, Chatterjee (bib9) 2014; 74
Dowlatshahi, Nezamabadi-pour (bib16) 2014; 36
Glover, Laguna (bib23) 1997
Netjinda (10.1016/j.engappai.2016.11.003_bib41) 2015; 35
Bishop (10.1016/j.engappai.2016.11.003_bib6) 2006
Dowlatshahi (10.1016/j.engappai.2016.11.003_bib16) 2014; 36
Fan (10.1016/j.engappai.2016.11.003_bib21) 2004; 36
Dehuri (10.1016/j.engappai.2016.11.003_bib12) 2006; 4
Han (10.1016/j.engappai.2016.11.003_bib24) 2014; 281
Li (10.1016/j.engappai.2016.11.003_bib34) 2012; 20
De Falco (10.1016/j.engappai.2016.11.003_bib15) 2007; 7
Karaboga (10.1016/j.engappai.2016.11.003_bib31) 2011; 11
Madeira (10.1016/j.engappai.2016.11.003_bib36) 2004; 1
Shuaib (10.1016/j.engappai.2016.11.003_bib48) 2015; 64
Lu (10.1016/j.engappai.2016.11.003_bib35) 1978; 8
Barbakh (10.1016/j.engappai.2016.11.003_bib4) 2009
Glover (10.1016/j.engappai.2016.11.003_bib23) 1997
Chatterjee (10.1016/j.engappai.2016.11.003_bib9) 2014; 74
10.1016/j.engappai.2016.11.003_bib44
Chuang (10.1016/j.engappai.2016.11.003_bib11) 2011; 38
Senthilnath (10.1016/j.engappai.2016.11.003_bib46) 2011; 1
Al-Sultan (10.1016/j.engappai.2016.11.003_bib1) 1995; 28
Jain (10.1016/j.engappai.2016.11.003_bib28) 2010; 31
Zhang (10.1016/j.engappai.2016.11.003_bib51) 2013; 39
Falkenauer (10.1016/j.engappai.2016.11.003_bib20) 1998
10.1016/j.engappai.2016.11.003_bib2
10.1016/j.engappai.2016.11.003_bib7
Selim (10.1016/j.engappai.2016.11.003_bib45) 1991; 24
Xu (10.1016/j.engappai.2016.11.003_bib50) 2005; 16
10.1016/j.engappai.2016.11.003_bib10
Rashedi (10.1016/j.engappai.2016.11.003_bib43) 2007
Bahrololoum (10.1016/j.engappai.2016.11.003_bib3) 2012; 12
De (10.1016/j.engappai.2016.11.003_bib14) 2016; 96
10.1016/j.engappai.2016.11.003_bib17
Everitt (10.1016/j.engappai.2016.11.003_bib18) 2011; 5
Hong (10.1016/j.engappai.2016.11.003_bib26) 2008; 41
Chang (10.1016/j.engappai.2016.11.003_bib8) 2009; 42
Nanda (10.1016/j.engappai.2016.11.003_bib39) 2014; 16
Stutzle (10.1016/j.engappai.2016.11.003_bib49) 1999
Rashedi (10.1016/j.engappai.2016.11.003_bib42) 2009; 179
Feo (10.1016/j.engappai.2016.11.003_bib22) 1989; 8
Mladenovic (10.1016/j.engappai.2016.11.003_bib38) 1997; 24
Nelder (10.1016/j.engappai.2016.11.003_bib40) 1965; 7
Karaboga (10.1016/j.engappai.2016.11.003_bib32) 2011; 11
Jiang (10.1016/j.engappai.2016.11.003_bib29) 2014; 55
Maulik (10.1016/j.engappai.2016.11.003_bib37) 2000; 33
10.1016/j.engappai.2016.11.003_bib25
Berikov (10.1016/j.engappai.2016.11.003_bib5) 2014; 38
Li (10.1016/j.engappai.2016.11.003_bib33) 2015; 26
Hruschka (10.1016/j.engappai.2016.11.003_bib27) 2009; 39
Shelokar (10.1016/j.engappai.2016.11.003_bib47) 2004; 509
Derrac (10.1016/j.engappai.2016.11.003_bib13) 2011; 1
Kao (10.1016/j.engappai.2016.11.003_bib30) 2008; 34
Everitt (10.1016/j.engappai.2016.11.003_bib19) 2001
References_xml – volume: 38
  start-page: 14555
  year: 2011
  end-page: 14563
  ident: bib11
  article-title: Chaotic particle swarm optimization for data clustering
  publication-title: Expert Syst. Appl.
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib28
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
– volume: 39
  start-page: 34
  year: 2013
  end-page: 44
  ident: bib51
  article-title: Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm
  publication-title: Knowl. Based Syst.
– volume: 36
  start-page: 401
  year: 2004
  end-page: 418
  ident: bib21
  article-title: Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions
  publication-title: Eng. Optim.
– volume: 36
  start-page: 114
  year: 2014
  end-page: 121
  ident: bib16
  article-title: GGSA: a Grouping Gravitational Search Algorithm for data clustering
  publication-title: Eng. Appl. Artif. Intell.
– volume: 16
  start-page: 1
  year: 2014
  end-page: 18
  ident: bib39
  article-title: A survey on nature inspired meta-heuristic algorithms for partitional clustering
  publication-title: Swarm Evolut. Comput.
– volume: 28
  start-page: 1443
  year: 1995
  end-page: 1451
  ident: bib1
  article-title: A tabu search approach to the clustering problem
  publication-title: Pattern Recognit.
– volume: 1
  start-page: 164
  year: 2011
  end-page: 171
  ident: bib46
  article-title: Clustering using firefly algorithm: performance study
  publication-title: SwarmEvolut. Comput.
– volume: 12
  start-page: 819
  year: 2012
  end-page: 825
  ident: bib3
  article-title: A prototype classifier based on gravitational search algorithm
  publication-title: Appl. Soft Comput.
– reference: Ester, M., Kriegel, H.P., Sander, J., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231.
– volume: 35
  start-page: 411
  year: 2015
  end-page: 422
  ident: bib41
  article-title: Particle Swarm Optimization inspired by starling flock behavior
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 1003
  year: 1991
  end-page: 1008
  ident: bib45
  article-title: A simulated annealing algorithm for the clustering problem
  publication-title: Pattern Recognit.
– volume: 8
  start-page: 67
  year: 1989
  end-page: 71
  ident: bib22
  article-title: A probabilistic heuristic for a computationally difficult set covering problem
  publication-title: Oper. Res. Lett.
– volume: 34
  start-page: 1754
  year: 2008
  end-page: 1762
  ident: bib30
  article-title: A hybridized approach to data clustering
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 1097
  year: 1997
  end-page: 1100
  ident: bib38
  article-title: Variable neighborhood search
  publication-title: Comput. Oper. Res.
– year: 2006
  ident: bib6
  article-title: Pattern recognition and machine learning vol. 4
– volume: 64
  start-page: 384
  year: 2015
  end-page: 397
  ident: bib48
  article-title: Optimal capacitor placement in radial distribution system using gravitational search algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 1998
  ident: bib20
  article-title: Genetic Algorithms and Grouping Problems
– reference: Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2007. Allocation of static var compensator using gravitational search algorithm. Proceedings of the First Joint Conference on Fuzzy and Intelligent Systems. Mashhad, Iran.
– volume: 42
  start-page: 1210
  year: 2009
  end-page: 1222
  ident: bib8
  article-title: A genetic algorithm with gene rearrangement for K-means clustering
  publication-title: Pattern Recognit.
– volume: 7
  start-page: 652
  year: 2007
  end-page: 658
  ident: bib15
  article-title: Facing classification problems with particle swarm optimization
  publication-title: Appl. Soft Comput.
– year: 1999
  ident: bib49
  article-title: Local Search Algorithms for Combinatorial Problems: Analysis, Algorithms and New Applications
– reference: Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J., 1999. OPTICS: ordering points to identify the clustering structure. In: Proceedings of the International Conference on Management Data, pp. 49–60.
– volume: 11
  start-page: 652
  year: 2011
  end-page: 657
  ident: bib32
  article-title: A novel cluster approach: artificial bee colony(ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib42
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 5
  year: 2011
  ident: bib18
  publication-title: cluster analysis
– volume: 4
  start-page: 143
  year: 2006
  end-page: 154
  ident: bib12
  article-title: Genetic algorithms for multi-criterion classification and clustering in data mining
  publication-title: Int. J. Comput. Inf. Syst.
– year: 2007
  ident: bib43
  article-title: Gravitational search algorithm
– volume: 8
  start-page: 381
  year: 1978
  end-page: 389
  ident: bib35
  article-title: A sentence-to-sentence clustering procedure for pattern analysis
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 55
  start-page: 628
  year: 2014
  end-page: 644
  ident: bib29
  article-title: A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints
  publication-title: Int. J. Electr. Power Energy Syst.
– reference: Hereford, J., Blum, C., 2011. Flock Opt: a new swarm optimization algorithm based on collective behavior of starling birds, in: 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC).
– volume: 26
  start-page: 713
  year: 2015
  end-page: 721
  ident: bib33
  article-title: A chaos embedded GSA-SVM hybrid system for classification
  publication-title: Neural Comput. Appl.
– volume: 20
  start-page: 305
  year: 2012
  end-page: 317
  ident: bib34
  article-title: T–S fuzzy model identification with gravitational search based hyper-plane clustering algorithm
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 41
  start-page: 2742
  year: 2008
  end-page: 2756
  ident: bib26
  article-title: Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm
  publication-title: Pattern Recognit.
– volume: 96
  start-page: 201
  year: 2016
  end-page: 215
  ident: bib14
  article-title: Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization
  publication-title: Comput. Ind. Eng.
– year: 2001
  ident: bib19
  article-title: Cluster Analysis
– volume: 39
  start-page: 133
  year: 2009
  end-page: 155
  ident: bib27
  article-title: A survey of evolutionary algorithms for clustering, systems, man, and Cybernetics, Part C: applications and Reviews
  publication-title: IEEE Trans. on
– volume: 33
  start-page: 1455
  year: 2000
  end-page: 1465
  ident: bib37
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recognit.
– volume: 281
  start-page: 128
  year: 2014
  end-page: 146
  ident: bib24
  article-title: Feature subset selection by gravitational search algorithm optimization
  publication-title: Inf. Sci.
– volume: 1
  start-page: 24
  year: 2004
  end-page: 45
  ident: bib36
  article-title: Biclustering algorithms for biological data analysis:asurvey
  publication-title: IEEETrans. Comput. Bioinf.
– volume: 38
  start-page: 99
  year: 2014
  end-page: 106
  ident: bib5
  article-title: Weighted ensemble of algorithms for complex data clustering
  publication-title: Pattern Recognit. Lett.
– volume: 11
  start-page: 652
  year: 2011
  end-page: 657
  ident: bib31
  article-title: A novel clustering approach: artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: bib40
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– reference: .
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib50
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
– start-page: 7
  year: 2009
  end-page: 28
  ident: bib4
  article-title: Review of clustering algorithms. In: Non-Standard Parameter Adaptation for Exploratory Data Analysis
– reference: Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases
– volume: 74
  start-page: 707
  year: 2014
  end-page: 718
  ident: bib9
  article-title: A gravitational search algorithm (GSA) based photo-voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator
  publication-title: Energy
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib13
  article-title: A practical tutorial on the use of non parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evolut. Comput.
– volume: 509
  start-page: 187
  year: 2004
  end-page: 195
  ident: bib47
  article-title: An ant colony approach for clustering
  publication-title: Anal. Chim. Acta
– year: 1997
  ident: bib23
  article-title: Tabu Search
– reference: Chen, C.-Y., Ye, F., 2004. Particle swarm optimization algorithm and its application to clustering analysis," in Networking, Sensing and Control, 2004 IEEE International Conference on, 2004, pp. 789-794.
– volume: 38
  start-page: 99
  year: 2014
  ident: 10.1016/j.engappai.2016.11.003_bib5
  article-title: Weighted ensemble of algorithms for complex data clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.11.012
– volume: 24
  start-page: 1003
  year: 1991
  ident: 10.1016/j.engappai.2016.11.003_bib45
  article-title: A simulated annealing algorithm for the clustering problem
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(91)90097-O
– year: 2007
  ident: 10.1016/j.engappai.2016.11.003_bib43
– volume: 74
  start-page: 707
  issue: 1
  year: 2014
  ident: 10.1016/j.engappai.2016.11.003_bib9
  article-title: A gravitational search algorithm (GSA) based photo-voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.037
– year: 2001
  ident: 10.1016/j.engappai.2016.11.003_bib19
– year: 1998
  ident: 10.1016/j.engappai.2016.11.003_bib20
– volume: 8
  start-page: 381
  year: 1978
  ident: 10.1016/j.engappai.2016.11.003_bib35
  article-title: A sentence-to-sentence clustering procedure for pattern analysis
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1978.4309979
– ident: 10.1016/j.engappai.2016.11.003_bib17
– volume: 26
  start-page: 713
  issue: 3
  year: 2015
  ident: 10.1016/j.engappai.2016.11.003_bib33
  article-title: A chaos embedded GSA-SVM hybrid system for classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1757-z
– ident: 10.1016/j.engappai.2016.11.003_bib10
– year: 2006
  ident: 10.1016/j.engappai.2016.11.003_bib6
– volume: 41
  start-page: 2742
  year: 2008
  ident: 10.1016/j.engappai.2016.11.003_bib26
  article-title: Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.03.007
– volume: 7
  start-page: 308
  year: 1965
  ident: 10.1016/j.engappai.2016.11.003_bib40
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 36
  start-page: 401
  year: 2004
  ident: 10.1016/j.engappai.2016.11.003_bib21
  article-title: Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions
  publication-title: Eng. Optim.
  doi: 10.1080/0305215041000168521
– volume: 5
  year: 2011
  ident: 10.1016/j.engappai.2016.11.003_bib18
– volume: 39
  start-page: 34
  year: 2013
  ident: 10.1016/j.engappai.2016.11.003_bib51
  article-title: Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2012.10.004
– start-page: 7
  year: 2009
  ident: 10.1016/j.engappai.2016.11.003_bib4
– volume: 24
  start-page: 1097
  year: 1997
  ident: 10.1016/j.engappai.2016.11.003_bib38
  article-title: Variable neighborhood search
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(97)00031-2
– volume: 8
  start-page: 67
  year: 1989
  ident: 10.1016/j.engappai.2016.11.003_bib22
  article-title: A probabilistic heuristic for a computationally difficult set covering problem
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(89)90002-3
– volume: 34
  start-page: 1754
  year: 2008
  ident: 10.1016/j.engappai.2016.11.003_bib30
  article-title: A hybridized approach to data clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.01.028
– ident: 10.1016/j.engappai.2016.11.003_bib2
  doi: 10.1145/304182.304187
– volume: 39
  start-page: 133
  year: 2009
  ident: 10.1016/j.engappai.2016.11.003_bib27
  article-title: A survey of evolutionary algorithms for clustering, systems, man, and Cybernetics, Part C: applications and Reviews
  publication-title: IEEE Trans. on
– volume: 4
  start-page: 143
  issue: 3
  year: 2006
  ident: 10.1016/j.engappai.2016.11.003_bib12
  article-title: Genetic algorithms for multi-criterion classification and clustering in data mining
  publication-title: Int. J. Comput. Inf. Syst.
– volume: 36
  start-page: 114
  year: 2014
  ident: 10.1016/j.engappai.2016.11.003_bib16
  article-title: GGSA: a Grouping Gravitational Search Algorithm for data clustering
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.07.016
– volume: 7
  start-page: 652
  issue: 3
  year: 2007
  ident: 10.1016/j.engappai.2016.11.003_bib15
  article-title: Facing classification problems with particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2005.09.004
– volume: 96
  start-page: 201
  year: 2016
  ident: 10.1016/j.engappai.2016.11.003_bib14
  article-title: Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.04.002
– year: 1997
  ident: 10.1016/j.engappai.2016.11.003_bib23
– volume: 1
  start-page: 24
  issue: 1
  year: 2004
  ident: 10.1016/j.engappai.2016.11.003_bib36
  article-title: Biclustering algorithms for biological data analysis:asurvey
  publication-title: IEEETrans. Comput. Bioinf.
  doi: 10.1109/TCBB.2004.2
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.engappai.2016.11.003_bib50
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 28
  start-page: 1443
  year: 1995
  ident: 10.1016/j.engappai.2016.11.003_bib1
  article-title: A tabu search approach to the clustering problem
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(95)00022-R
– volume: 33
  start-page: 1455
  year: 2000
  ident: 10.1016/j.engappai.2016.11.003_bib37
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00137-5
– volume: 16
  start-page: 1
  year: 2014
  ident: 10.1016/j.engappai.2016.11.003_bib39
  article-title: A survey on nature inspired meta-heuristic algorithms for partitional clustering
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2013.11.003
– volume: 55
  start-page: 628
  year: 2014
  ident: 10.1016/j.engappai.2016.11.003_bib29
  article-title: A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.10.006
– volume: 12
  start-page: 819
  year: 2012
  ident: 10.1016/j.engappai.2016.11.003_bib3
  article-title: A prototype classifier based on gravitational search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.10.008
– volume: 281
  start-page: 128
  year: 2014
  ident: 10.1016/j.engappai.2016.11.003_bib24
  article-title: Feature subset selection by gravitational search algorithm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.05.030
– volume: 20
  start-page: 305
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2016.11.003_bib34
  article-title: T–S fuzzy model identification with gravitational search based hyper-plane clustering algorithm
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2173693
– volume: 509
  start-page: 187
  year: 2004
  ident: 10.1016/j.engappai.2016.11.003_bib47
  article-title: An ant colony approach for clustering
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2003.12.032
– ident: 10.1016/j.engappai.2016.11.003_bib7
– year: 1999
  ident: 10.1016/j.engappai.2016.11.003_bib49
– volume: 11
  start-page: 652
  year: 2011
  ident: 10.1016/j.engappai.2016.11.003_bib32
  article-title: A novel cluster approach: artificial bee colony(ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.12.025
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.engappai.2016.11.003_bib42
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 11
  start-page: 652
  year: 2011
  ident: 10.1016/j.engappai.2016.11.003_bib31
  article-title: A novel clustering approach: artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.12.025
– volume: 42
  start-page: 1210
  year: 2009
  ident: 10.1016/j.engappai.2016.11.003_bib8
  article-title: A genetic algorithm with gene rearrangement for K-means clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.11.006
– volume: 35
  start-page: 411
  year: 2015
  ident: 10.1016/j.engappai.2016.11.003_bib41
  article-title: Particle Swarm Optimization inspired by starling flock behavior
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.052
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.engappai.2016.11.003_bib28
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 38
  start-page: 14555
  issue: 12
  year: 2011
  ident: 10.1016/j.engappai.2016.11.003_bib11
  article-title: Chaotic particle swarm optimization for data clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.05.027
– volume: 1
  start-page: 164
  year: 2011
  ident: 10.1016/j.engappai.2016.11.003_bib46
  article-title: Clustering using firefly algorithm: performance study
  publication-title: SwarmEvolut. Comput.
– ident: 10.1016/j.engappai.2016.11.003_bib25
  doi: 10.1109/NaBIC.2011.6089411
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.engappai.2016.11.003_bib13
  article-title: A practical tutorial on the use of non parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– ident: 10.1016/j.engappai.2016.11.003_bib44
– volume: 64
  start-page: 384
  year: 2015
  ident: 10.1016/j.engappai.2016.11.003_bib48
  article-title: Optimal capacitor placement in radial distribution system using gravitational search algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.07.041
SSID ssj0003846
Score 2.48442
Snippet Data clustering is a popular analysis tool for data statistics in many fields such as pattern recognition, data mining, machine learning, image analysis, and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Clustering Validation
Collective behavior
Data clustering
Gravitational search algorithm
Learning algorithm
Nature-inspired algorithm
Title A novel data clustering algorithm based on modified gravitational search algorithm
URI https://dx.doi.org/10.1016/j.engappai.2016.11.003
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXbr0XZU-kIeuIS87CSNCRbSoDLSobJHt2DQIEkShY397fYlTaBeGTpEsX2Jd7Pvu5LvvELoXAffacGfoU-5bhBXFyklkCeImQnESSga1w8_DoD8mTxM6qaFuVQsDaZXG9pc2vbDWZsQ22rSXaWq_aOdAHzcdhge-9nkCKPglJIQuBq2vbZqHH5XFOnqyBbN3qoRnLZlN2XLJUkjxClrA5lk1z_oLUDug0ztBR8ZbxJ1yQaeoJrMzdGw8R2zO5YceqpozVGPnaNTBWf4p5xhyQLGYb4ARQeMUZvNpvkrX7wsMCJbgPMOLPEkVvBGaERnSbv3Z8hRsBS7QuPfw2u1bpoGCJXzXW1tREnJOOAc2akadgCdcEeV4LHGk8mQoWEKVUlSHDA5zBA15wCKXaZkwAmY9_xLVszyTVwhz2ZaMU0GJiDSoi7ZLXCICR2nAB3xrIFppLRZmodDkYh5XaWSzuNJ2DNrWoQfwkjaQ_SO3LPk19kq0q58S_9opsQaBPbLX_5C9QYceQHqR7HiL6uvVRt5ph2TNm8WOa6KDzuOgP4TnYPQ2-Aahl-Ou
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU8IwEM4gHvTi2xGfOXgt9JG05cgwMqjAQWGGWydJEy1TWgbBo7_dLE0FvXDwmsm2mW12v93p7rcI3Qufu034Z-hR7lmErZqV49ASxImF4iSQDHqH-wO_OyJPYzquoHbZCwNllcb3Fz595a3NSsNoszFLksarDg60uek03Pd0zOOHO2iXUDeADKz-ta7z8MKiW0fvtmD7RpvwpC6zNzabsQRqvPw60HmW07P-ItQG6nSO0IEJF3GrONExqsjsBB2a0BEbw_zQS-V0hnLtFL20cJZ_yhRDESgW6RIoETRQYZa-5fNk8T7FAGExzjM8zeNEwRNhGpFh7davLcxgLXCGRp2HYbtrmQkKlvAcd2GFccA54RzoqBm1fR5zRZTtstiWypWBYDFVSlGdM9jMFjTgPgsdpmWCEKj1vHNUzfJMXiDMZVMyTgUlItSoLpoOcYjwbaURHwCuhmiptUiYg8KUizQq68gmUantCLStcw8gJq2hxo_crCDY2CrRLD9K9OuqRBoFtshe_kP2Du11h_1e1HscPF-hfRfwfVX5eI2qi_lS3ujoZMFvV7fvG9zy46A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+data+clustering+algorithm+based+on+modified+gravitational+search+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Han%2C+XiaoHong&rft.au=Quan%2C+Long&rft.au=Xiong%2C+XiaoYan&rft.au=Almeter%2C+Matt&rft.date=2017-05-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=61&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1016%2Fj.engappai.2016.11.003&rft.externalDocID=S0952197616302068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon