A novel data clustering algorithm based on modified gravitational search algorithm
Data clustering is a popular analysis tool for data statistics in many fields such as pattern recognition, data mining, machine learning, image analysis, and bioinformatics. The aim of data clustering is to represent large datasets by a fewer number of prototypes or clusters, which brings simplicity...
        Saved in:
      
    
          | Published in | Engineering applications of artificial intelligence Vol. 61; pp. 1 - 7 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.05.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0952-1976 1873-6769  | 
| DOI | 10.1016/j.engappai.2016.11.003 | 
Cover
| Abstract | Data clustering is a popular analysis tool for data statistics in many fields such as pattern recognition, data mining, machine learning, image analysis, and bioinformatics. The aim of data clustering is to represent large datasets by a fewer number of prototypes or clusters, which brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. In this paper, a novel data clustering algorithm based on modified Gravitational Search Algorithm is proposed, which is called Bird Flock Gravitational Search Algorithm (BFGSA). The BFGSA introduces a new mechanism into GSA to add diversity, a mechanism which is inspired by the collective response behavior of birds. This mechanism performs its diversity enhancement through three main steps including initialization, identification of the nearest neighbors, and orientation change. The initialization is to generate candidate populations for the second steps and the orientation change updates the position of objects based on the nearest neighbors. Due to the collective response mechanism, the BFGSA explores a wider range of the search space and thus escapes suboptimal solutions. The performance of the proposed algorithm is evaluated through 13 real benchmark datasets from the well-known UCI Machine Learning Repository. Its performance is compared with the standard GSA, the Artificial Bee Colony (ABC), the Particle Swarm Optimization (PSO), the Firefly Algorithm (FA), K-means, and other four clustering algorithms from the literature. The simulation results indicate that the BFGSA can effectively be used for data clustering. | 
    
|---|---|
| AbstractList | Data clustering is a popular analysis tool for data statistics in many fields such as pattern recognition, data mining, machine learning, image analysis, and bioinformatics. The aim of data clustering is to represent large datasets by a fewer number of prototypes or clusters, which brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. In this paper, a novel data clustering algorithm based on modified Gravitational Search Algorithm is proposed, which is called Bird Flock Gravitational Search Algorithm (BFGSA). The BFGSA introduces a new mechanism into GSA to add diversity, a mechanism which is inspired by the collective response behavior of birds. This mechanism performs its diversity enhancement through three main steps including initialization, identification of the nearest neighbors, and orientation change. The initialization is to generate candidate populations for the second steps and the orientation change updates the position of objects based on the nearest neighbors. Due to the collective response mechanism, the BFGSA explores a wider range of the search space and thus escapes suboptimal solutions. The performance of the proposed algorithm is evaluated through 13 real benchmark datasets from the well-known UCI Machine Learning Repository. Its performance is compared with the standard GSA, the Artificial Bee Colony (ABC), the Particle Swarm Optimization (PSO), the Firefly Algorithm (FA), K-means, and other four clustering algorithms from the literature. The simulation results indicate that the BFGSA can effectively be used for data clustering. | 
    
| Author | Almeter, Matt Xiong, XiaoYan Lan, Yuan Han, XiaoHong Quan, Long Xiang, Jie  | 
    
| Author_xml | – sequence: 1 givenname: XiaoHong surname: Han fullname: Han, XiaoHong email: jmqchs@sohu.com – sequence: 2 givenname: Long surname: Quan fullname: Quan, Long – sequence: 3 givenname: XiaoYan surname: Xiong fullname: Xiong, XiaoYan – sequence: 4 givenname: Matt surname: Almeter fullname: Almeter, Matt – sequence: 5 givenname: Jie surname: Xiang fullname: Xiang, Jie – sequence: 6 givenname: Yuan surname: Lan fullname: Lan, Yuan  | 
    
| BookMark | eNqFkF9LwzAUxYNMcJt-BekXaE3aJmnBB8fwHwwE0edw86_L6NKRxIHf3o5NBF_2dO-F8zvcc2Zo4gdvELoluCCYsLtNYXwHux24ohzvgpAC4-oCTUnDq5xx1k7QFLe0zEnL2RWaxbjBo6Kp2RS9LzI_7E2faUiQqf4rJhOc7zLouyG4tN5mEqLR2eCz7aCddePeBdi7BMkNHvosGghq_Qdco0sLfTQ3pzlHn0-PH8uXfPX2_LpcrHJVkTLljeZS1lJSwmugmEktbW1xCRobWxquQFNrLaUNxYAV5ZJBQ2BkeMMobqs5uj_6qjDEGIwV6vRUCuB6QbA49CM24rcfcehHECLG9CPO_uG74LYQvs-DD0fQjOH2zgQRlTNeGe2CUUnowZ2z-AHt-oiH | 
    
| CitedBy_id | crossref_primary_10_1016_j_jnca_2018_02_017 crossref_primary_10_1109_TSMC_2018_2883329 crossref_primary_10_1007_s42979_024_02883_5 crossref_primary_10_1016_j_knosys_2019_105404 crossref_primary_10_17150_2713_1734_2023_5_4__379_391 crossref_primary_10_1007_s11227_023_05540_5 crossref_primary_10_1016_j_apm_2020_11_013 crossref_primary_10_3390_rs11050546 crossref_primary_10_1016_j_asoc_2023_110236 crossref_primary_10_1016_j_eswa_2023_119954 crossref_primary_10_1007_s00366_021_01345_3 crossref_primary_10_1109_TCYB_2018_2833805 crossref_primary_10_1007_s10044_021_01052_1 crossref_primary_10_1016_j_aej_2017_04_013 crossref_primary_10_1515_jisys_2018_0338 crossref_primary_10_3390_a15020043 crossref_primary_10_53070_bbd_1421527 crossref_primary_10_1007_s11277_022_09801_z crossref_primary_10_1007_s10776_018_0388_1 crossref_primary_10_1111_exsy_12657 crossref_primary_10_17694_bajece_904882 crossref_primary_10_1002_dac_4434 crossref_primary_10_1109_ACCESS_2019_2923979 crossref_primary_10_3233_ICA_220678 crossref_primary_10_1007_s10288_019_00402_4 crossref_primary_10_1007_s11227_020_03597_0 crossref_primary_10_1007_s12652_021_03600_3 crossref_primary_10_1007_s42979_024_03048_0 crossref_primary_10_1016_j_swevo_2018_02_018 crossref_primary_10_1016_j_asoc_2019_105763 crossref_primary_10_7717_peerj_cs_201 crossref_primary_10_1007_s10462_018_09676_2 crossref_primary_10_1007_s10044_021_00964_2 crossref_primary_10_1515_jisys_2022_0230 crossref_primary_10_1016_j_engappai_2021_104202 crossref_primary_10_1016_j_kijoms_2018_09_001 crossref_primary_10_1007_s11042_022_13453_3 crossref_primary_10_3390_s21124086 crossref_primary_10_1016_j_knosys_2018_08_012 crossref_primary_10_1007_s11042_020_10304_x crossref_primary_10_1007_s10586_022_03553_y crossref_primary_10_1080_23311916_2023_2278259 crossref_primary_10_1016_j_future_2019_07_026 crossref_primary_10_1016_j_asr_2020_07_028 crossref_primary_10_1007_s10489_018_1198_y crossref_primary_10_1007_s10479_021_04496_0 crossref_primary_10_1088_1742_6596_1978_1_012029 crossref_primary_10_1371_journal_pone_0216906 crossref_primary_10_1016_j_eswa_2018_07_008 crossref_primary_10_1162_neco_a_01081 crossref_primary_10_1007_s12065_020_00562_x crossref_primary_10_1155_2022_1900509 crossref_primary_10_1049_ipr2_12122 crossref_primary_10_1016_j_engappai_2023_106635 crossref_primary_10_1007_s40747_024_01420_4 crossref_primary_10_1007_s12065_019_00254_1 crossref_primary_10_1007_s10462_024_10920_1 crossref_primary_10_4018_IJAMC_2022010108 crossref_primary_10_1007_s11063_022_10876_9 crossref_primary_10_1007_s12065_019_00313_7 crossref_primary_10_4018_IJAMC_292497 crossref_primary_10_1007_s12065_021_00578_x crossref_primary_10_3390_su14106159 crossref_primary_10_1109_ACCESS_2021_3136239 crossref_primary_10_1007_s00607_020_00828_3 crossref_primary_10_1007_s12065_018_0192_y crossref_primary_10_1142_S021848852340007X crossref_primary_10_1007_s10489_021_02934_x crossref_primary_10_1007_s10462_020_09840_7 crossref_primary_10_1016_j_swevo_2018_12_005  | 
    
| Cites_doi | 10.1016/j.patrec.2013.11.012 10.1016/0031-3203(91)90097-O 10.1016/j.energy.2014.07.037 10.1109/TSMC.1978.4309979 10.1007/s00521-014-1757-z 10.1016/j.patcog.2008.03.007 10.1093/comjnl/7.4.308 10.1080/0305215041000168521 10.1016/j.knosys.2012.10.004 10.1016/S0305-0548(97)00031-2 10.1016/0167-6377(89)90002-3 10.1016/j.eswa.2007.01.028 10.1145/304182.304187 10.1016/j.engappai.2014.07.016 10.1016/j.asoc.2005.09.004 10.1016/j.cie.2016.04.002 10.1109/TCBB.2004.2 10.1109/TNN.2005.845141 10.1016/0031-3203(95)00022-R 10.1016/S0031-3203(99)00137-5 10.1016/j.swevo.2013.11.003 10.1016/j.ijepes.2013.10.006 10.1016/j.asoc.2011.10.008 10.1016/j.ins.2014.05.030 10.1109/TFUZZ.2011.2173693 10.1016/j.aca.2003.12.032 10.1016/j.asoc.2009.12.025 10.1016/j.ins.2009.03.004 10.1016/j.patcog.2008.11.006 10.1016/j.asoc.2015.06.052 10.1016/j.patrec.2009.09.011 10.1016/j.eswa.2011.05.027 10.1109/NaBIC.2011.6089411 10.1016/j.swevo.2011.02.002 10.1016/j.ijepes.2014.07.041  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 | 
    
| Copyright_xml | – notice: 2017 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.engappai.2016.11.003 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Computer Science  | 
    
| EISSN | 1873-6769 | 
    
| EndPage | 7 | 
    
| ExternalDocumentID | 10_1016_j_engappai_2016_11_003 S0952197616302068  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c312t-8d7bb4bb5174a506bdbf4f02ad0ef2e7cad5fff55850a0c57b6a81abb47865093 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0952-1976 | 
    
| IngestDate | Wed Oct 01 01:51:02 EDT 2025 Thu Apr 24 22:59:26 EDT 2025 Fri Feb 23 02:28:53 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Gravitational search algorithm Collective behavior Nature-inspired algorithm Clustering Validation Learning algorithm Data clustering  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c312t-8d7bb4bb5174a506bdbf4f02ad0ef2e7cad5fff55850a0c57b6a81abb47865093 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2016_11_003 crossref_primary_10_1016_j_engappai_2016_11_003 elsevier_sciencedirect_doi_10_1016_j_engappai_2016_11_003  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May 2017 2017-05-00  | 
    
| PublicationDateYYYYMMDD | 2017-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2017 text: May 2017  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Engineering applications of artificial intelligence | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Chuang, Hsiao, Yang (bib11) 2011; 38 Nanda, Panda (bib39) 2014; 16 Derrac, Garcia, Molina, Herrera (bib13) 2011; 1 Xu, Wunsch (bib50) 2005; 16 Dehuri, Ghosh, Mall (bib12) 2006; 4 Jiang, Ji, Shen (bib29) 2014; 55 Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2007. Allocation of static var compensator using gravitational search algorithm. Proceedings of the First Joint Conference on Fuzzy and Intelligent Systems. Mashhad, Iran. Jain (bib28) 2010; 31 Rashedi, Nezamabadi-pour, Saryazdi (bib42) 2009; 179 Li, Zhou, Fu (bib34) 2012; 20 Karaboga, Ozturk (bib31) 2011; 11 Rashedi (bib43) 2007 Shelokar, Jayaraman, Kulkarni (bib47) 2004; 509 Berikov (bib5) 2014; 38 Netjinda, Achalakul, Sirinaovakul (bib41) 2015; 35 Shuaib, Kalavathi, Rajan (bib48) 2015; 64 Zhang, Niu, Li (bib51) 2013; 39 Nelder, Mead (bib40) 1965; 7 Kao, Zahara, Kao (bib30) 2008; 34 Chen, C.-Y., Ye, F., 2004. Particle swarm optimization algorithm and its application to clustering analysis," in Networking, Sensing and Control, 2004 IEEE International Conference on, 2004, pp. 789-794. Selim, Alsultan (bib45) 1991; 24 . Barbakh, Wu, Fyfe (bib4) 2009 Al-Sultan (bib1) 1995; 28 Maulik, Bandyopadhyay (bib37) 2000; 33 Hong, Kwong, Chang, Ren (bib26) 2008; 41 Lu, Fu (bib35) 1978; 8 Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases Bishop (bib6) 2006 Karaboga, Ozturk (bib32) 2011; 11 Everitt, Landau, Leese, Stahl (bib18) 2011; 5 Madeira, Oliveira (bib36) 2004; 1 Mladenovic, Hansen (bib38) 1997; 24 De Falco, Della Cioppa, Tarantino (bib15) 2007; 7 Falkenauer (bib20) 1998 Bahrololoum, Nezamabadi-pour, Bahrololoum, Saeed (bib3) 2012; 12 Fan, Liang, Zahara (bib21) 2004; 36 Han, Chang, Quan (bib24) 2014; 281 Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J., 1999. OPTICS: ordering points to identify the clustering structure. In: Proceedings of the International Conference on Management Data, pp. 49–60. Everitt, Landau, Leese (bib19) 2001 Chang, Zhang, Zheng (bib8) 2009; 42 Stutzle (bib49) 1999 Hereford, J., Blum, C., 2011. Flock Opt: a new swarm optimization algorithm based on collective behavior of starling birds, in: 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC). Feo, Resende (bib22) 1989; 8 Ester, M., Kriegel, H.P., Sander, J., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231. Senthilnath, Omkar, Mani (bib46) 2011; 1 Li, An, Li (bib33) 2015; 26 De, Mamanduru, Gunasekaran, Subramanian, Tiwari (bib14) 2016; 96 Hruschka, Campello, Freitas, De Carvalho (bib27) 2009; 39 Chatterjee, Roy, Chatterjee (bib9) 2014; 74 Dowlatshahi, Nezamabadi-pour (bib16) 2014; 36 Glover, Laguna (bib23) 1997 Netjinda (10.1016/j.engappai.2016.11.003_bib41) 2015; 35 Bishop (10.1016/j.engappai.2016.11.003_bib6) 2006 Dowlatshahi (10.1016/j.engappai.2016.11.003_bib16) 2014; 36 Fan (10.1016/j.engappai.2016.11.003_bib21) 2004; 36 Dehuri (10.1016/j.engappai.2016.11.003_bib12) 2006; 4 Han (10.1016/j.engappai.2016.11.003_bib24) 2014; 281 Li (10.1016/j.engappai.2016.11.003_bib34) 2012; 20 De Falco (10.1016/j.engappai.2016.11.003_bib15) 2007; 7 Karaboga (10.1016/j.engappai.2016.11.003_bib31) 2011; 11 Madeira (10.1016/j.engappai.2016.11.003_bib36) 2004; 1 Shuaib (10.1016/j.engappai.2016.11.003_bib48) 2015; 64 Lu (10.1016/j.engappai.2016.11.003_bib35) 1978; 8 Barbakh (10.1016/j.engappai.2016.11.003_bib4) 2009 Glover (10.1016/j.engappai.2016.11.003_bib23) 1997 Chatterjee (10.1016/j.engappai.2016.11.003_bib9) 2014; 74 10.1016/j.engappai.2016.11.003_bib44 Chuang (10.1016/j.engappai.2016.11.003_bib11) 2011; 38 Senthilnath (10.1016/j.engappai.2016.11.003_bib46) 2011; 1 Al-Sultan (10.1016/j.engappai.2016.11.003_bib1) 1995; 28 Jain (10.1016/j.engappai.2016.11.003_bib28) 2010; 31 Zhang (10.1016/j.engappai.2016.11.003_bib51) 2013; 39 Falkenauer (10.1016/j.engappai.2016.11.003_bib20) 1998 10.1016/j.engappai.2016.11.003_bib2 10.1016/j.engappai.2016.11.003_bib7 Selim (10.1016/j.engappai.2016.11.003_bib45) 1991; 24 Xu (10.1016/j.engappai.2016.11.003_bib50) 2005; 16 10.1016/j.engappai.2016.11.003_bib10 Rashedi (10.1016/j.engappai.2016.11.003_bib43) 2007 Bahrololoum (10.1016/j.engappai.2016.11.003_bib3) 2012; 12 De (10.1016/j.engappai.2016.11.003_bib14) 2016; 96 10.1016/j.engappai.2016.11.003_bib17 Everitt (10.1016/j.engappai.2016.11.003_bib18) 2011; 5 Hong (10.1016/j.engappai.2016.11.003_bib26) 2008; 41 Chang (10.1016/j.engappai.2016.11.003_bib8) 2009; 42 Nanda (10.1016/j.engappai.2016.11.003_bib39) 2014; 16 Stutzle (10.1016/j.engappai.2016.11.003_bib49) 1999 Rashedi (10.1016/j.engappai.2016.11.003_bib42) 2009; 179 Feo (10.1016/j.engappai.2016.11.003_bib22) 1989; 8 Mladenovic (10.1016/j.engappai.2016.11.003_bib38) 1997; 24 Nelder (10.1016/j.engappai.2016.11.003_bib40) 1965; 7 Karaboga (10.1016/j.engappai.2016.11.003_bib32) 2011; 11 Jiang (10.1016/j.engappai.2016.11.003_bib29) 2014; 55 Maulik (10.1016/j.engappai.2016.11.003_bib37) 2000; 33 10.1016/j.engappai.2016.11.003_bib25 Berikov (10.1016/j.engappai.2016.11.003_bib5) 2014; 38 Li (10.1016/j.engappai.2016.11.003_bib33) 2015; 26 Hruschka (10.1016/j.engappai.2016.11.003_bib27) 2009; 39 Shelokar (10.1016/j.engappai.2016.11.003_bib47) 2004; 509 Derrac (10.1016/j.engappai.2016.11.003_bib13) 2011; 1 Kao (10.1016/j.engappai.2016.11.003_bib30) 2008; 34 Everitt (10.1016/j.engappai.2016.11.003_bib19) 2001  | 
    
| References_xml | – volume: 38 start-page: 14555 year: 2011 end-page: 14563 ident: bib11 article-title: Chaotic particle swarm optimization for data clustering publication-title: Expert Syst. Appl. – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: bib28 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. – volume: 39 start-page: 34 year: 2013 end-page: 44 ident: bib51 article-title: Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm publication-title: Knowl. Based Syst. – volume: 36 start-page: 401 year: 2004 end-page: 418 ident: bib21 article-title: Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions publication-title: Eng. Optim. – volume: 36 start-page: 114 year: 2014 end-page: 121 ident: bib16 article-title: GGSA: a Grouping Gravitational Search Algorithm for data clustering publication-title: Eng. Appl. Artif. Intell. – volume: 16 start-page: 1 year: 2014 end-page: 18 ident: bib39 article-title: A survey on nature inspired meta-heuristic algorithms for partitional clustering publication-title: Swarm Evolut. Comput. – volume: 28 start-page: 1443 year: 1995 end-page: 1451 ident: bib1 article-title: A tabu search approach to the clustering problem publication-title: Pattern Recognit. – volume: 1 start-page: 164 year: 2011 end-page: 171 ident: bib46 article-title: Clustering using firefly algorithm: performance study publication-title: SwarmEvolut. Comput. – volume: 12 start-page: 819 year: 2012 end-page: 825 ident: bib3 article-title: A prototype classifier based on gravitational search algorithm publication-title: Appl. Soft Comput. – reference: Ester, M., Kriegel, H.P., Sander, J., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231. – volume: 35 start-page: 411 year: 2015 end-page: 422 ident: bib41 article-title: Particle Swarm Optimization inspired by starling flock behavior publication-title: Appl. Soft Comput. – volume: 24 start-page: 1003 year: 1991 end-page: 1008 ident: bib45 article-title: A simulated annealing algorithm for the clustering problem publication-title: Pattern Recognit. – volume: 8 start-page: 67 year: 1989 end-page: 71 ident: bib22 article-title: A probabilistic heuristic for a computationally difficult set covering problem publication-title: Oper. Res. Lett. – volume: 34 start-page: 1754 year: 2008 end-page: 1762 ident: bib30 article-title: A hybridized approach to data clustering publication-title: Expert Syst. Appl. – volume: 24 start-page: 1097 year: 1997 end-page: 1100 ident: bib38 article-title: Variable neighborhood search publication-title: Comput. Oper. Res. – year: 2006 ident: bib6 article-title: Pattern recognition and machine learning vol. 4 – volume: 64 start-page: 384 year: 2015 end-page: 397 ident: bib48 article-title: Optimal capacitor placement in radial distribution system using gravitational search algorithm publication-title: Int. J. Electr. Power Energy Syst. – year: 1998 ident: bib20 article-title: Genetic Algorithms and Grouping Problems – reference: Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2007. Allocation of static var compensator using gravitational search algorithm. Proceedings of the First Joint Conference on Fuzzy and Intelligent Systems. Mashhad, Iran. – volume: 42 start-page: 1210 year: 2009 end-page: 1222 ident: bib8 article-title: A genetic algorithm with gene rearrangement for K-means clustering publication-title: Pattern Recognit. – volume: 7 start-page: 652 year: 2007 end-page: 658 ident: bib15 article-title: Facing classification problems with particle swarm optimization publication-title: Appl. Soft Comput. – year: 1999 ident: bib49 article-title: Local Search Algorithms for Combinatorial Problems: Analysis, Algorithms and New Applications – reference: Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J., 1999. OPTICS: ordering points to identify the clustering structure. In: Proceedings of the International Conference on Management Data, pp. 49–60. – volume: 11 start-page: 652 year: 2011 end-page: 657 ident: bib32 article-title: A novel cluster approach: artificial bee colony(ABC) algorithm publication-title: Appl. Soft Comput. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: bib42 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. – volume: 5 year: 2011 ident: bib18 publication-title: cluster analysis – volume: 4 start-page: 143 year: 2006 end-page: 154 ident: bib12 article-title: Genetic algorithms for multi-criterion classification and clustering in data mining publication-title: Int. J. Comput. Inf. Syst. – year: 2007 ident: bib43 article-title: Gravitational search algorithm – volume: 8 start-page: 381 year: 1978 end-page: 389 ident: bib35 article-title: A sentence-to-sentence clustering procedure for pattern analysis publication-title: IEEE Trans. Syst. Man Cybern. – volume: 55 start-page: 628 year: 2014 end-page: 644 ident: bib29 article-title: A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints publication-title: Int. J. Electr. Power Energy Syst. – reference: Hereford, J., Blum, C., 2011. Flock Opt: a new swarm optimization algorithm based on collective behavior of starling birds, in: 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC). – volume: 26 start-page: 713 year: 2015 end-page: 721 ident: bib33 article-title: A chaos embedded GSA-SVM hybrid system for classification publication-title: Neural Comput. Appl. – volume: 20 start-page: 305 year: 2012 end-page: 317 ident: bib34 article-title: T–S fuzzy model identification with gravitational search based hyper-plane clustering algorithm publication-title: IEEE Trans. Fuzzy Syst. – volume: 41 start-page: 2742 year: 2008 end-page: 2756 ident: bib26 article-title: Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm publication-title: Pattern Recognit. – volume: 96 start-page: 201 year: 2016 end-page: 215 ident: bib14 article-title: Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization publication-title: Comput. Ind. Eng. – year: 2001 ident: bib19 article-title: Cluster Analysis – volume: 39 start-page: 133 year: 2009 end-page: 155 ident: bib27 article-title: A survey of evolutionary algorithms for clustering, systems, man, and Cybernetics, Part C: applications and Reviews publication-title: IEEE Trans. on – volume: 33 start-page: 1455 year: 2000 end-page: 1465 ident: bib37 article-title: Genetic algorithm-based clustering technique publication-title: Pattern Recognit. – volume: 281 start-page: 128 year: 2014 end-page: 146 ident: bib24 article-title: Feature subset selection by gravitational search algorithm optimization publication-title: Inf. Sci. – volume: 1 start-page: 24 year: 2004 end-page: 45 ident: bib36 article-title: Biclustering algorithms for biological data analysis:asurvey publication-title: IEEETrans. Comput. Bioinf. – volume: 38 start-page: 99 year: 2014 end-page: 106 ident: bib5 article-title: Weighted ensemble of algorithms for complex data clustering publication-title: Pattern Recognit. Lett. – volume: 11 start-page: 652 year: 2011 end-page: 657 ident: bib31 article-title: A novel clustering approach: artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: bib40 article-title: A simplex method for function minimization publication-title: Comput. J. – reference: . – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: bib50 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. – start-page: 7 year: 2009 end-page: 28 ident: bib4 article-title: Review of clustering algorithms. In: Non-Standard Parameter Adaptation for Exploratory Data Analysis – reference: Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases – volume: 74 start-page: 707 year: 2014 end-page: 718 ident: bib9 article-title: A gravitational search algorithm (GSA) based photo-voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator publication-title: Energy – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib13 article-title: A practical tutorial on the use of non parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evolut. Comput. – volume: 509 start-page: 187 year: 2004 end-page: 195 ident: bib47 article-title: An ant colony approach for clustering publication-title: Anal. Chim. Acta – year: 1997 ident: bib23 article-title: Tabu Search – reference: Chen, C.-Y., Ye, F., 2004. Particle swarm optimization algorithm and its application to clustering analysis," in Networking, Sensing and Control, 2004 IEEE International Conference on, 2004, pp. 789-794. – volume: 38 start-page: 99 year: 2014 ident: 10.1016/j.engappai.2016.11.003_bib5 article-title: Weighted ensemble of algorithms for complex data clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.11.012 – volume: 24 start-page: 1003 year: 1991 ident: 10.1016/j.engappai.2016.11.003_bib45 article-title: A simulated annealing algorithm for the clustering problem publication-title: Pattern Recognit. doi: 10.1016/0031-3203(91)90097-O – year: 2007 ident: 10.1016/j.engappai.2016.11.003_bib43 – volume: 74 start-page: 707 issue: 1 year: 2014 ident: 10.1016/j.engappai.2016.11.003_bib9 article-title: A gravitational search algorithm (GSA) based photo-voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator publication-title: Energy doi: 10.1016/j.energy.2014.07.037 – year: 2001 ident: 10.1016/j.engappai.2016.11.003_bib19 – year: 1998 ident: 10.1016/j.engappai.2016.11.003_bib20 – volume: 8 start-page: 381 year: 1978 ident: 10.1016/j.engappai.2016.11.003_bib35 article-title: A sentence-to-sentence clustering procedure for pattern analysis publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1978.4309979 – ident: 10.1016/j.engappai.2016.11.003_bib17 – volume: 26 start-page: 713 issue: 3 year: 2015 ident: 10.1016/j.engappai.2016.11.003_bib33 article-title: A chaos embedded GSA-SVM hybrid system for classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1757-z – ident: 10.1016/j.engappai.2016.11.003_bib10 – year: 2006 ident: 10.1016/j.engappai.2016.11.003_bib6 – volume: 41 start-page: 2742 year: 2008 ident: 10.1016/j.engappai.2016.11.003_bib26 article-title: Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.03.007 – volume: 7 start-page: 308 year: 1965 ident: 10.1016/j.engappai.2016.11.003_bib40 article-title: A simplex method for function minimization publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 36 start-page: 401 year: 2004 ident: 10.1016/j.engappai.2016.11.003_bib21 article-title: Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions publication-title: Eng. Optim. doi: 10.1080/0305215041000168521 – volume: 5 year: 2011 ident: 10.1016/j.engappai.2016.11.003_bib18 – volume: 39 start-page: 34 year: 2013 ident: 10.1016/j.engappai.2016.11.003_bib51 article-title: Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2012.10.004 – start-page: 7 year: 2009 ident: 10.1016/j.engappai.2016.11.003_bib4 – volume: 24 start-page: 1097 year: 1997 ident: 10.1016/j.engappai.2016.11.003_bib38 article-title: Variable neighborhood search publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(97)00031-2 – volume: 8 start-page: 67 year: 1989 ident: 10.1016/j.engappai.2016.11.003_bib22 article-title: A probabilistic heuristic for a computationally difficult set covering problem publication-title: Oper. Res. Lett. doi: 10.1016/0167-6377(89)90002-3 – volume: 34 start-page: 1754 year: 2008 ident: 10.1016/j.engappai.2016.11.003_bib30 article-title: A hybridized approach to data clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.01.028 – ident: 10.1016/j.engappai.2016.11.003_bib2 doi: 10.1145/304182.304187 – volume: 39 start-page: 133 year: 2009 ident: 10.1016/j.engappai.2016.11.003_bib27 article-title: A survey of evolutionary algorithms for clustering, systems, man, and Cybernetics, Part C: applications and Reviews publication-title: IEEE Trans. on – volume: 4 start-page: 143 issue: 3 year: 2006 ident: 10.1016/j.engappai.2016.11.003_bib12 article-title: Genetic algorithms for multi-criterion classification and clustering in data mining publication-title: Int. J. Comput. Inf. Syst. – volume: 36 start-page: 114 year: 2014 ident: 10.1016/j.engappai.2016.11.003_bib16 article-title: GGSA: a Grouping Gravitational Search Algorithm for data clustering publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.07.016 – volume: 7 start-page: 652 issue: 3 year: 2007 ident: 10.1016/j.engappai.2016.11.003_bib15 article-title: Facing classification problems with particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2005.09.004 – volume: 96 start-page: 201 year: 2016 ident: 10.1016/j.engappai.2016.11.003_bib14 article-title: Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.04.002 – year: 1997 ident: 10.1016/j.engappai.2016.11.003_bib23 – volume: 1 start-page: 24 issue: 1 year: 2004 ident: 10.1016/j.engappai.2016.11.003_bib36 article-title: Biclustering algorithms for biological data analysis:asurvey publication-title: IEEETrans. Comput. Bioinf. doi: 10.1109/TCBB.2004.2 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 10.1016/j.engappai.2016.11.003_bib50 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 28 start-page: 1443 year: 1995 ident: 10.1016/j.engappai.2016.11.003_bib1 article-title: A tabu search approach to the clustering problem publication-title: Pattern Recognit. doi: 10.1016/0031-3203(95)00022-R – volume: 33 start-page: 1455 year: 2000 ident: 10.1016/j.engappai.2016.11.003_bib37 article-title: Genetic algorithm-based clustering technique publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00137-5 – volume: 16 start-page: 1 year: 2014 ident: 10.1016/j.engappai.2016.11.003_bib39 article-title: A survey on nature inspired meta-heuristic algorithms for partitional clustering publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2013.11.003 – volume: 55 start-page: 628 year: 2014 ident: 10.1016/j.engappai.2016.11.003_bib29 article-title: A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.10.006 – volume: 12 start-page: 819 year: 2012 ident: 10.1016/j.engappai.2016.11.003_bib3 article-title: A prototype classifier based on gravitational search algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.10.008 – volume: 281 start-page: 128 year: 2014 ident: 10.1016/j.engappai.2016.11.003_bib24 article-title: Feature subset selection by gravitational search algorithm optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.05.030 – volume: 20 start-page: 305 issue: 2 year: 2012 ident: 10.1016/j.engappai.2016.11.003_bib34 article-title: T–S fuzzy model identification with gravitational search based hyper-plane clustering algorithm publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2011.2173693 – volume: 509 start-page: 187 year: 2004 ident: 10.1016/j.engappai.2016.11.003_bib47 article-title: An ant colony approach for clustering publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2003.12.032 – ident: 10.1016/j.engappai.2016.11.003_bib7 – year: 1999 ident: 10.1016/j.engappai.2016.11.003_bib49 – volume: 11 start-page: 652 year: 2011 ident: 10.1016/j.engappai.2016.11.003_bib32 article-title: A novel cluster approach: artificial bee colony(ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.12.025 – volume: 179 start-page: 2232 year: 2009 ident: 10.1016/j.engappai.2016.11.003_bib42 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 11 start-page: 652 year: 2011 ident: 10.1016/j.engappai.2016.11.003_bib31 article-title: A novel clustering approach: artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.12.025 – volume: 42 start-page: 1210 year: 2009 ident: 10.1016/j.engappai.2016.11.003_bib8 article-title: A genetic algorithm with gene rearrangement for K-means clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.11.006 – volume: 35 start-page: 411 year: 2015 ident: 10.1016/j.engappai.2016.11.003_bib41 article-title: Particle Swarm Optimization inspired by starling flock behavior publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.052 – volume: 31 start-page: 651 year: 2010 ident: 10.1016/j.engappai.2016.11.003_bib28 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – volume: 38 start-page: 14555 issue: 12 year: 2011 ident: 10.1016/j.engappai.2016.11.003_bib11 article-title: Chaotic particle swarm optimization for data clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.05.027 – volume: 1 start-page: 164 year: 2011 ident: 10.1016/j.engappai.2016.11.003_bib46 article-title: Clustering using firefly algorithm: performance study publication-title: SwarmEvolut. Comput. – ident: 10.1016/j.engappai.2016.11.003_bib25 doi: 10.1109/NaBIC.2011.6089411 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.engappai.2016.11.003_bib13 article-title: A practical tutorial on the use of non parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2011.02.002 – ident: 10.1016/j.engappai.2016.11.003_bib44 – volume: 64 start-page: 384 year: 2015 ident: 10.1016/j.engappai.2016.11.003_bib48 article-title: Optimal capacitor placement in radial distribution system using gravitational search algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.07.041  | 
    
| SSID | ssj0003846 | 
    
| Score | 2.48442 | 
    
| Snippet | Data clustering is a popular analysis tool for data statistics in many fields such as pattern recognition, data mining, machine learning, image analysis, and... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Clustering Validation Collective behavior Data clustering Gravitational search algorithm Learning algorithm Nature-inspired algorithm  | 
    
| Title | A novel data clustering algorithm based on modified gravitational search algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.engappai.2016.11.003 | 
    
| Volume | 61 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQXbr0XZU-kIeuIS87CSNCRbSoDLSobJHt2DQIEkShY397fYlTaBeGTpEsX2Jd7Pvu5LvvELoXAffacGfoU-5bhBXFyklkCeImQnESSga1w8_DoD8mTxM6qaFuVQsDaZXG9pc2vbDWZsQ22rSXaWq_aOdAHzcdhge-9nkCKPglJIQuBq2vbZqHH5XFOnqyBbN3qoRnLZlN2XLJUkjxClrA5lk1z_oLUDug0ztBR8ZbxJ1yQaeoJrMzdGw8R2zO5YceqpozVGPnaNTBWf4p5xhyQLGYb4ARQeMUZvNpvkrX7wsMCJbgPMOLPEkVvBGaERnSbv3Z8hRsBS7QuPfw2u1bpoGCJXzXW1tREnJOOAc2akadgCdcEeV4LHGk8mQoWEKVUlSHDA5zBA15wCKXaZkwAmY9_xLVszyTVwhz2ZaMU0GJiDSoi7ZLXCICR2nAB3xrIFppLRZmodDkYh5XaWSzuNJ2DNrWoQfwkjaQ_SO3LPk19kq0q58S_9opsQaBPbLX_5C9QYceQHqR7HiL6uvVRt5ph2TNm8WOa6KDzuOgP4TnYPQ2-Aahl-Ou | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU8IwEM4gHvTi2xGfOXgt9JG05cgwMqjAQWGGWydJEy1TWgbBo7_dLE0FvXDwmsm2mW12v93p7rcI3Qufu034Z-hR7lmErZqV49ASxImF4iSQDHqH-wO_OyJPYzquoHbZCwNllcb3Fz595a3NSsNoszFLksarDg60uek03Pd0zOOHO2iXUDeADKz-ta7z8MKiW0fvtmD7RpvwpC6zNzabsQRqvPw60HmW07P-ItQG6nSO0IEJF3GrONExqsjsBB2a0BEbw_zQS-V0hnLtFL20cJZ_yhRDESgW6RIoETRQYZa-5fNk8T7FAGExzjM8zeNEwRNhGpFh7davLcxgLXCGRp2HYbtrmQkKlvAcd2GFccA54RzoqBm1fR5zRZTtstiWypWBYDFVSlGdM9jMFjTgPgsdpmWCEKj1vHNUzfJMXiDMZVMyTgUlItSoLpoOcYjwbaURHwCuhmiptUiYg8KUizQq68gmUantCLStcw8gJq2hxo_crCDY2CrRLD9K9OuqRBoFtshe_kP2Du11h_1e1HscPF-hfRfwfVX5eI2qi_lS3ujoZMFvV7fvG9zy46A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+data+clustering+algorithm+based+on+modified+gravitational+search+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Han%2C+XiaoHong&rft.au=Quan%2C+Long&rft.au=Xiong%2C+XiaoYan&rft.au=Almeter%2C+Matt&rft.date=2017-05-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=61&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1016%2Fj.engappai.2016.11.003&rft.externalDocID=S0952197616302068 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |