Segmenting with big data analytics and Python: A quantitative exploratory analysis of household savings
According to the national balance sheets of the most advanced economies, despite a recent sharp decline in per capita net wealth, Italian private households present a higher rate among the wealthiest and least indebted in Europe. Recently, the COVID-19 outbreak caused a new leap in households'...
Saved in:
| Published in | Technological forecasting & social change Vol. 191; p. 122431 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0040-1625 |
| DOI | 10.1016/j.techfore.2023.122431 |
Cover
| Abstract | According to the national balance sheets of the most advanced economies, despite a recent sharp decline in per capita net wealth, Italian private households present a higher rate among the wealthiest and least indebted in Europe. Recently, the COVID-19 outbreak caused a new leap in households' savings worldwide, particularly in advanced economies and Italy. This study underlines that using advanced analytics tools, household saving behaviour information, and big data analytics may support data-driven decision approaches addressing the management of complex relationships in the financial arena. More specifically, using exploratory and predictive analyses based on big data analytics and machine learning, this study aims to provide extensive customer profiling in the household saving sector in Italy, supporting a data-driven decision-making approach. A profiling of household savings has been defined using the information provided by big data analysis. To proceed in this direction, the hardware and software requirements necessary to perform data processing were considered in the first phase of the study. Data collection was performed according to the so-called extract, transform, load (ETL) process. The contribution of this study lies in the results obtained in terms of data analytics over a dataset that accounts for the purchasing behaviour of almost 20 million postal savers. The clustering algorithm is highly efficient and scales well for large datasets. K-means clustering can be implemented within the MapReduce computational framework. Therefore, the overall procedure proposed here can be easily extended to big data using parallel computing and software implementing MapReduce, such as Hadoop and Spark.
•Underlining household saving behaviour with an exploratory analysis•Profiling of household saving on 20 millions of clients in Italy•Creating a novel method to clustering saving market |
|---|---|
| AbstractList | According to the national balance sheets of the most advanced economies, despite a recent sharp decline in per capita net wealth, Italian private households present a higher rate among the wealthiest and least indebted in Europe. Recently, the COVID-19 outbreak caused a new leap in households' savings worldwide, particularly in advanced economies and Italy. This study underlines that using advanced analytics tools, household saving behaviour information, and big data analytics may support data-driven decision approaches addressing the management of complex relationships in the financial arena. More specifically, using exploratory and predictive analyses based on big data analytics and machine learning, this study aims to provide extensive customer profiling in the household saving sector in Italy, supporting a data-driven decision-making approach. A profiling of household savings has been defined using the information provided by big data analysis. To proceed in this direction, the hardware and software requirements necessary to perform data processing were considered in the first phase of the study. Data collection was performed according to the so-called extract, transform, load (ETL) process. The contribution of this study lies in the results obtained in terms of data analytics over a dataset that accounts for the purchasing behaviour of almost 20 million postal savers. The clustering algorithm is highly efficient and scales well for large datasets. K-means clustering can be implemented within the MapReduce computational framework. Therefore, the overall procedure proposed here can be easily extended to big data using parallel computing and software implementing MapReduce, such as Hadoop and Spark.
•Underlining household saving behaviour with an exploratory analysis•Profiling of household saving on 20 millions of clients in Italy•Creating a novel method to clustering saving market |
| ArticleNumber | 122431 |
| Author | Colosimo, Ivan Ricciardi Celsi, Lorenzo Cuomo, Maria Teresa Genovino, Cinzia Festa, Giuseppe La Rocca, Michele Tortora, Debora |
| Author_xml | – sequence: 1 givenname: Maria Teresa surname: Cuomo fullname: Cuomo, Maria Teresa email: mcuomo@unisa.it organization: Dept. of Economics and Statistics, University of Salerno, Italy – sequence: 2 givenname: Debora surname: Tortora fullname: Tortora, Debora organization: Dept. of Business and Law, University of Milan "Bicocca", Italy – sequence: 3 givenname: Ivan surname: Colosimo fullname: Colosimo, Ivan organization: Dept. of Economics and Statistics, University of Salerno, Italy – sequence: 4 givenname: Lorenzo surname: Ricciardi Celsi fullname: Ricciardi Celsi, Lorenzo organization: ELIS Innovation Hub, Rome, Italy – sequence: 5 givenname: Cinzia surname: Genovino fullname: Genovino, Cinzia organization: Dept. of Economics, Giustino Fortunato University, Italy – sequence: 6 givenname: Giuseppe surname: Festa fullname: Festa, Giuseppe organization: Dept. of Economics and Statistics, University of Salerno, Italy – sequence: 7 givenname: Michele surname: La Rocca fullname: La Rocca, Michele organization: Dept. of Economics, Giustino Fortunato University, Italy |
| BookMark | eNqFkE1OwzAQRr0oEi1wBeQLJNiO4yaIBVXFn1QJJGBtOc4kcZXGxXYLuT0pgQ2brmakmfdp5s3QpLMdIHRJSUwJFVfrOIBuKusgZoQlMWWMJ3SCpoRwElHB0lM0835NCJknmZii-hXqDXTBdDX-NKHBhalxqYLCqlNtH4z2Q1filz40trvGC_yxU8N6UMHsAcPXtrVOBev6EfDGY1vhxu48NLYtsVf7Idufo5NKtR4ufusZer-_e1s-Rqvnh6flYhXphLIQZbpMgfOCF5ngtOJMARGM53nBdc6TMtcqTVPBaJKlec4gJYLoas51KYYhzZMzdDPmame9d1BJ_XOr7YJTppWUyIMouZZ_ouRBlBxFDbj4h2-d2SjXHwdvRxCG5_YGnPTaQKehNA50kKU1xyK-AS1FjKQ |
| CitedBy_id | crossref_primary_10_1080_21681015_2025_2471905 |
| Cites_doi | 10.1177/0260107917731034 10.1016/j.ijpe.2014.12.031 10.3897/popecon.4.e53295 10.1016/j.sbspro.2012.09.1025 10.1016/j.dss.2014.03.001 10.1111/jmcb.12659 10.2307/2938366 10.1093/oxrep/17.1.1 10.1146/annurev.ps.41.020190.002221 10.1111/jbl.12010 10.1080/07350015.1990.10509798 10.2307/2224879 10.3390/en5125215 10.1177/002224378302000204 10.1111/j.1559-1816.1985.tb00912.x 10.1002/per.422 10.5861/ijrsc.2012.209 10.1111/j.1745-6606.2006.00073.x 10.1086/260971 10.1111/j.1746-1049.1996.tb00734.x 10.1016/j.jclepro.2018.06.097 10.1086/261412 10.1109/TETC.2014.2330519 10.1177/0972063420940834 10.3389/fpsyg.2021.632175 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Inc. |
| Copyright_xml | – notice: 2023 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.techfore.2023.122431 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_techfore_2023_122431 S0040162523001166 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 13V 1B1 1OL 1RT 1~. 1~5 29Q 3R3 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 96U 9JO AAAKF AAAKG AABNK AACTN AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO AAYOK ABEFU ABEHJ ABFNM ABJNI ABKBG ABMAC ABMVD ABOYX ABPPZ ABUCO ABXDB ACBMB ACDAQ ACGFO ACGFS ACHQT ACHRH ACIWK ACNTT ACRLP ACXNI ADBBV ADEZE ADMUD AEBSH AEKER AFAZI AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P F8P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLX HMY HVGLF HZ~ IHE J1W KOM LG8 LPU LXL LXN LY7 M3Y M41 MO0 N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBM SDF SDG SDP SES SET SEW SPCBC SSB SSD SSL SSS SSY SSZ T5K TAE TN5 U5U UHS WH7 WUQ XJT XPP XYO YK3 ZRQ ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c312t-8cd5e44b4b8641f42ae062499b4c943d9ca555621385992e5060cf74cd63d9193 |
| IEDL.DBID | .~1 |
| ISSN | 0040-1625 |
| IngestDate | Thu Apr 24 23:00:38 EDT 2025 Wed Oct 01 05:14:21 EDT 2025 Tue Dec 03 03:44:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Methodological research Big data analytics Saver profiling Segmentation Household savings Python |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-8cd5e44b4b8641f42ae062499b4c943d9ca555621385992e5060cf74cd63d9193 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_techfore_2023_122431 crossref_primary_10_1016_j_techfore_2023_122431 elsevier_sciencedirect_doi_10_1016_j_techfore_2023_122431 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Technological forecasting & social change |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Mehta, Saxena, Purohit (bb0115) 2020; 22 Xiao, Noring (bb1900) 1994; 5 Ando, Modigliani (bb0015) 1963; 53 Digman (bb2100) 1990; 41 Niculescu-Aron, Mihăescu (bb0130) 2012 Nyhus, Webley (bb2200) 2001; 15 Pinjisakikool (bb5000) 2018; 30 Buklemishev (bb0030) 2020; 4 Friedman (bb0060) 1957 Guglielminetti, Rondinelli (bb0080) 2021 DeVaney, Anong, Whirl (bb0035) 2007; 41 Schunk (bb0150) 2009; 229 Fuchs-Schündeln, Masella, Paule-Paludkiewicz (bb0065) 2020; 52 Punj, Stewart (bb0135) 1983; 20 Linciano, Costa, Gentile, Soccorso (bb0100) 2019 Bebczuk, Gasparini, Garbero, Amendolaggine (bb0025) 2015 Shehzad, Xiaoxing, Bilgili, Koçak (bb0155) 2021; 12 Sun, Chen, Xiong, Guo (bb0165) 2017; 2 Thaler, Shefrin (bb1400) 1981; 89 Kimball (bb1700) 1990 Duesenberry (bb1200) 1949 Fahad, Alshatri, Tari, Alamri, Khalil, Zomaya, Bouras (bb2400) 2014; 2 Almeida, Calistru (bb0010) 2013; 2 Galbraith (bb0070) 2014; 3 Ercolani, Guglielminetti, Rondinelli (bb0045) 2021 Kim, Ko, Choi (bb0095) 2011 Muradoglu, Taskın (bb0125) 1996; 34 Grable, Lyons (bb0075) 2018; 72 Dubey, Gunasekaran, Childe, Luo, Wamba, Roubaud, Foropon (bb0040) 2018; 196 Katona (bb1000) 1951 Fisher (bb0050) 1930 Statista (bb0160) 2021 Florea, Diaconita, Bologa (bb0055) 2015; 6 Katona (bb1100) 1975 Furnham (bb1300) 1985; 15 Keynes (bb0090) 1936; 46 Acciari, Morelli (bb0005) 2021; w27899 Linciano, Caivano, Gentile, Soccorso (bb0105) 2020 Reis, Amorim, Melão, Matos (bb0140) 2018 Hernández, Baladrón, Aguiar, Carro, Sánchez-Esguevillas (bb0085) 2012; 5 Wamba, Akter, Edwards, Chopin, Gnanzou (bb0175) 2015; 165 Waller, Fawcett (bb2300) 2013; 34 OECD (bb5500) 2023 Yuan, Yang (bb0180) 2019; 2 Lusardi (bb0110) 2008 Shirkhorshidi, Aghabozorgi, Wah, Herawan (bb2500) 2014 Campbell, Mankiw (bb1500) 1990; 8 Boeree (bb2000) 1998; 2 Venieris, Gupta (bb0170) 1986; 94 Lusardi (bb1800) 1998; 88 Angus (bb1600) 1991; 59 Attanasio, Banks (bb0020) 2001; 17 Romei (bb0145) 2021 Moro, Cortez, Rita (bb0120) 2014; 62 Katona (10.1016/j.techfore.2023.122431_bb1000) 1951 Florea (10.1016/j.techfore.2023.122431_bb0055) 2015; 6 Waller (10.1016/j.techfore.2023.122431_bb2300) 2013; 34 Katona (10.1016/j.techfore.2023.122431_bb1100) 1975 Wamba (10.1016/j.techfore.2023.122431_bb0175) 2015; 165 Angus (10.1016/j.techfore.2023.122431_bb1600) 1991; 59 Fuchs-Schündeln (10.1016/j.techfore.2023.122431_bb0065) 2020; 52 Kimball (10.1016/j.techfore.2023.122431_bb1700) 1990 Lusardi (10.1016/j.techfore.2023.122431_bb1800) 1998; 88 OECD (10.1016/j.techfore.2023.122431_bb5500) Romei (10.1016/j.techfore.2023.122431_bb0145) 2021 Furnham (10.1016/j.techfore.2023.122431_bb1300) 1985; 15 Buklemishev (10.1016/j.techfore.2023.122431_bb0030) 2020; 4 Bebczuk (10.1016/j.techfore.2023.122431_bb0025) 2015 Boeree (10.1016/j.techfore.2023.122431_bb2000) 1998; 2 Galbraith (10.1016/j.techfore.2023.122431_bb0070) 2014; 3 Niculescu-Aron (10.1016/j.techfore.2023.122431_bb0130) 2012 Keynes (10.1016/j.techfore.2023.122431_bb0090) 1936; 46 Fisher (10.1016/j.techfore.2023.122431_bb0050) 1930 Schunk (10.1016/j.techfore.2023.122431_bb0150) 2009; 229 Shirkhorshidi (10.1016/j.techfore.2023.122431_bb2500) 2014 Reis (10.1016/j.techfore.2023.122431_bb0140) 2018 Nyhus (10.1016/j.techfore.2023.122431_bb2200) 2001; 15 Lusardi (10.1016/j.techfore.2023.122431_bb0110) 2008 Sun (10.1016/j.techfore.2023.122431_bb0165) 2017; 2 Ercolani (10.1016/j.techfore.2023.122431_bb0045) 2021 Muradoglu (10.1016/j.techfore.2023.122431_bb0125) 1996; 34 Linciano (10.1016/j.techfore.2023.122431_bb0100) 2019 Pinjisakikool (10.1016/j.techfore.2023.122431_bb5000) 2018; 30 Statista (10.1016/j.techfore.2023.122431_bb0160) Campbell (10.1016/j.techfore.2023.122431_bb1500) 1990; 8 Kim (10.1016/j.techfore.2023.122431_bb0095) 2011 Moro (10.1016/j.techfore.2023.122431_bb0120) 2014; 62 Attanasio (10.1016/j.techfore.2023.122431_bb0020) 2001; 17 Dubey (10.1016/j.techfore.2023.122431_bb0040) 2018; 196 Friedman (10.1016/j.techfore.2023.122431_bb0060) 1957 Thaler (10.1016/j.techfore.2023.122431_bb1400) 1981; 89 Acciari (10.1016/j.techfore.2023.122431_bb0005) 2021; w27899 Ando (10.1016/j.techfore.2023.122431_bb0015) 1963; 53 Guglielminetti (10.1016/j.techfore.2023.122431_bb0080) 2021 Shehzad (10.1016/j.techfore.2023.122431_bb0155) 2021; 12 Linciano (10.1016/j.techfore.2023.122431_bb0105) 2020 Hernández (10.1016/j.techfore.2023.122431_bb0085) 2012; 5 DeVaney (10.1016/j.techfore.2023.122431_bb0035) 2007; 41 Digman (10.1016/j.techfore.2023.122431_bb2100) 1990; 41 Xiao (10.1016/j.techfore.2023.122431_bb1900) 1994; 5 Fahad (10.1016/j.techfore.2023.122431_bb2400) 2014; 2 Punj (10.1016/j.techfore.2023.122431_bb0135) 1983; 20 Mehta (10.1016/j.techfore.2023.122431_bb0115) 2020; 22 Venieris (10.1016/j.techfore.2023.122431_bb0170) 1986; 94 Duesenberry (10.1016/j.techfore.2023.122431_bb1200) 1949 Almeida (10.1016/j.techfore.2023.122431_bb0010) 2013; 2 Grable (10.1016/j.techfore.2023.122431_bb0075) 2018; 72 Yuan (10.1016/j.techfore.2023.122431_bb0180) 2019; 2 |
| References_xml | – year: 2021 ident: bb0145 article-title: Global savers' $5.4tn stockpile offers hope for post-COVID spending publication-title: Financial Times – volume: 12 start-page: 104 year: 2021 ident: bb0155 article-title: COVID-19 and spillover effect of global economic crisis on the United States' financial stability publication-title: Front. Psychol. – year: 1957 ident: bb0060 article-title: A Theory of the Consumption Function – year: 1990 ident: bb1700 article-title: Precautionary Saving and the Marginal Propensity to Consume – volume: 59 start-page: 1221 year: 1991 ident: bb1600 article-title: Saving and liquidity constraints publication-title: Econometrica – year: 1951 ident: bb1000 article-title: Psychological Analysis of Economic Behavior – volume: 46 start-page: 412 year: 1936 end-page: 418 ident: bb0090 article-title: The supply of gold publication-title: Econ. J. – volume: 53 start-page: 55 year: 1963 end-page: 84 ident: bb0015 article-title: The life-cycle hypothesis of saving: aggregate implications and tests publication-title: Am. Econ. Rev. – year: 2019 ident: bb0100 article-title: Report on financial investments of Italian households publication-title: Behavioural Attitudes and Approaches 2019 Survey – start-page: 411 year: 2018 end-page: 421 ident: bb0140 article-title: Digital transformation: a literature review and guidelines for future research publication-title: World Conference on Information Systems And Technologies – volume: 229 start-page: 467 year: 2009 end-page: 491 ident: bb0150 article-title: What determines household saving behavior publication-title: Jahrb. Natl. Okon. Stat. – volume: w27899 start-page: 1 year: 2021 end-page: 46 ident: bb0005 publication-title: Wealth Transfers And Net Wealth at Death: Evidence From the Italian Inheritance Tax Records 1995–2016 (No. w27899) – volume: 41 start-page: 417 year: 1990 end-page: 440 ident: bb2100 article-title: Personality structure: emergence of the five-factor model publication-title: Annu. Rev. Psychol. – start-page: 1 year: 2011 end-page: 6 ident: bb0095 article-title: Methods for generating TLPs (typical load profiles) for smart grid-based energy programs publication-title: 2011 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG) – year: 2021 ident: bb0080 article-title: Consumption and saving patterns in Italy during COVID-19 (June 22, 2021). Bank of Italy Occasional Paper No. 620 – volume: 2 start-page: 267 year: 2014 end-page: 279 ident: bb2400 article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis publication-title: IEEE Trans. Emerg. Top. Comput. – year: 2023 ident: bb5500 article-title: Household savings (indicator) – year: 2015 ident: bb0025 article-title: Understanding the determinants of household saving: micro evidence for Latin America publication-title: Documentos de Trabajo del CEDLAS – volume: 20 start-page: 134 year: 1983 end-page: 148 ident: bb0135 article-title: Cluster analysis in marketing research: review and suggestions for application publication-title: J. Mark. Res. – year: 1930 ident: bb0050 article-title: The Theory of Interest – volume: 34 start-page: 138 year: 1996 end-page: 153 ident: bb0125 article-title: Differences in household savings behavior: evidence from industrial and developing countries publication-title: Dev. Econ. – volume: 88 start-page: 449 year: 1998 end-page: 453 ident: bb1800 article-title: On the importance of the precautionary saving motive publication-title: Am. Econ. Rev. – year: 1949 ident: bb1200 article-title: Income, Saving, and the Theory of Consumer Behavior – volume: 2 start-page: 227 year: 2017 end-page: 251 ident: bb0165 article-title: Cluster analysis in data-driven management and decisions publication-title: J.Manag.Sci.Eng. – volume: 8 start-page: 265 year: 1990 end-page: 279 ident: bb1500 article-title: Permanent income, current income, and consumption publication-title: J. Bus. Econ. Stat. – volume: 6 start-page: 19 year: 2015 end-page: 27 ident: bb0055 article-title: Data integration approaches using ETL publication-title: Database Syst.J. – volume: 30 start-page: 32 year: 2018 end-page: 54 ident: bb5000 article-title: The influence of personality traits on households’ financial risk tolerance and financial behaviour publication-title: J. Interdiscip. Econ. – volume: 165 start-page: 234 year: 2015 end-page: 246 ident: bb0175 article-title: How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study publication-title: Int. J. Prod. Econ. – volume: 34 start-page: 77 year: 2013 end-page: 84 ident: bb2300 article-title: Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management publication-title: J. Bus. Logist. – start-page: 707 year: 2014 end-page: 720 ident: bb2500 article-title: Big data clustering: a review publication-title: Computational Science and Its Applications–ICCSA 2014: 14th International Conference, Guimarães, Portugal, June 30–July 3, 2014, Proceedings, Part V 14 – volume: 22 start-page: 291 year: 2020 end-page: 301 ident: bb0115 article-title: The new consumer behaviour paradigm amid COVID-19: permanent or transient? publication-title: J. Health Manag. – volume: 2 start-page: 226 year: 2019 end-page: 235 ident: bb0180 article-title: Research on K-value selection method of K-means clustering algorithm publication-title: J. – volume: 41 start-page: 174 year: 2007 end-page: 186 ident: bb0035 article-title: Household savings motives publication-title: J. Consum. Aff. – volume: 94 start-page: 873 year: 1986 end-page: 883 ident: bb0170 article-title: Income distribution and sociopolitical instability as determinants of savings: a cross-sectional model publication-title: J. Polit. Econ. – volume: 62 start-page: 22 year: 2014 end-page: 31 ident: bb0120 article-title: A data-driven approach to predict the success of bank telemarketing publication-title: Decis. Support. Syst. – volume: 15 start-page: S85 year: 2001 end-page: S103 ident: bb2200 article-title: The role of personality in household saving and borrowing behaviour publication-title: Eur. J. Personal. – volume: 5 start-page: 25 year: 1994 end-page: 44 ident: bb1900 article-title: Perceived saving motives and hierarchical financial needs publication-title: Financ. Couns. Plan. – year: 2021 ident: bb0160 article-title: Saving rate of households in Italy 2016-2022 – volume: 72 year: 2018 ident: bb0075 article-title: An introduction to big data publication-title: J.Financ.Serv.Prof. – volume: 15 start-page: 354 year: 1985 end-page: 373 ident: bb1300 article-title: Why do people save? Attitudes to, and habits of saving money in Britain publication-title: J. Appl. Soc. Psychol. – volume: 3 start-page: 2 year: 2014 end-page: 13 ident: bb0070 article-title: Organizational design challenges resulting from big data publication-title: J.Organ.Des. – year: 1975 ident: bb1100 article-title: Psychological Economics – year: 2021 ident: bb0045 article-title: Fears for the future: saving dynamics after the COVID-19 outbreak publication-title: COVID-19 Note – year: 2020 ident: bb0105 article-title: Report on Financial Investments of Italian Households publication-title: Behavioural Attitudes And Approaches-2020 Survey – volume: 52 start-page: 1035 year: 2020 end-page: 1070 ident: bb0065 article-title: Cultural determinants of household saving behavior publication-title: J. Money Credit Bank. – volume: 4 start-page: 13 year: 2020 ident: bb0030 article-title: Coronavirus crisis and its effects on the economy publication-title: Popul.Econ. – volume: 196 start-page: 1508 year: 2018 end-page: 1521 ident: bb0040 article-title: Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour publication-title: J. Clean. Prod. – volume: 2 start-page: 2002 year: 1998 ident: bb2000 article-title: Abraham Maslow and Theories of Personality – year: 2008 ident: bb0110 article-title: Household Saving Behavior: The Role of Financial Literacy, Information, And Financial Education Programs (No. w13824) – volume: 5 start-page: 5215 year: 2012 end-page: 5228 ident: bb0085 article-title: Classification and clustering of electricity demand patterns in industrial parks publication-title: Energies – start-page: 483 year: 2012 end-page: 492 ident: bb0130 article-title: Determinants of household savings in EU: what policies for increasing savings? publication-title: Procedia Soc. Behav. Sci. – volume: 2 start-page: 11 year: 2013 end-page: 20 ident: bb0010 article-title: The main challenges and issues of big data management publication-title: Int.J.Res.Stud.Comput. – volume: 89 start-page: 392 year: 1981 end-page: 406 ident: bb1400 article-title: An economic theory of self-control publication-title: J. Polit. Econ. – volume: 17 start-page: 1 year: 2001 end-page: 19 ident: bb0020 article-title: The assessment: household saving-issues in theory and policy publication-title: Oxf. Rev. Econ. Policy – volume: 30 start-page: 32 issue: 1 year: 2018 ident: 10.1016/j.techfore.2023.122431_bb5000 article-title: The influence of personality traits on households’ financial risk tolerance and financial behaviour publication-title: J. Interdiscip. Econ. doi: 10.1177/0260107917731034 – volume: 53 start-page: 55 issue: 1 year: 1963 ident: 10.1016/j.techfore.2023.122431_bb0015 article-title: The life-cycle hypothesis of saving: aggregate implications and tests publication-title: Am. Econ. Rev. – volume: 72 issue: 5 year: 2018 ident: 10.1016/j.techfore.2023.122431_bb0075 article-title: An introduction to big data publication-title: J.Financ.Serv.Prof. – year: 2015 ident: 10.1016/j.techfore.2023.122431_bb0025 article-title: Understanding the determinants of household saving: micro evidence for Latin America – volume: 165 start-page: 234 year: 2015 ident: 10.1016/j.techfore.2023.122431_bb0175 article-title: How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2014.12.031 – volume: 2 start-page: 227 issue: 4 year: 2017 ident: 10.1016/j.techfore.2023.122431_bb0165 article-title: Cluster analysis in data-driven management and decisions publication-title: J.Manag.Sci.Eng. – volume: 4 start-page: 13 year: 2020 ident: 10.1016/j.techfore.2023.122431_bb0030 article-title: Coronavirus crisis and its effects on the economy publication-title: Popul.Econ. doi: 10.3897/popecon.4.e53295 – start-page: 483 year: 2012 ident: 10.1016/j.techfore.2023.122431_bb0130 article-title: Determinants of household savings in EU: what policies for increasing savings? publication-title: Procedia Soc. Behav. Sci. doi: 10.1016/j.sbspro.2012.09.1025 – year: 2021 ident: 10.1016/j.techfore.2023.122431_bb0045 article-title: Fears for the future: saving dynamics after the COVID-19 outbreak – volume: 62 start-page: 22 year: 2014 ident: 10.1016/j.techfore.2023.122431_bb0120 article-title: A data-driven approach to predict the success of bank telemarketing publication-title: Decis. Support. Syst. doi: 10.1016/j.dss.2014.03.001 – year: 1949 ident: 10.1016/j.techfore.2023.122431_bb1200 – volume: 6 start-page: 19 issue: 3 year: 2015 ident: 10.1016/j.techfore.2023.122431_bb0055 article-title: Data integration approaches using ETL publication-title: Database Syst.J. – year: 2021 ident: 10.1016/j.techfore.2023.122431_bb0145 article-title: Global savers' $5.4tn stockpile offers hope for post-COVID spending – volume: 2 start-page: 2002 year: 1998 ident: 10.1016/j.techfore.2023.122431_bb2000 – volume: 52 start-page: 1035 issue: 5 year: 2020 ident: 10.1016/j.techfore.2023.122431_bb0065 article-title: Cultural determinants of household saving behavior publication-title: J. Money Credit Bank. doi: 10.1111/jmcb.12659 – volume: 59 start-page: 1221 issue: 5 year: 1991 ident: 10.1016/j.techfore.2023.122431_bb1600 article-title: Saving and liquidity constraints publication-title: Econometrica doi: 10.2307/2938366 – year: 2021 ident: 10.1016/j.techfore.2023.122431_bb0080 – volume: 17 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.techfore.2023.122431_bb0020 article-title: The assessment: household saving-issues in theory and policy publication-title: Oxf. Rev. Econ. Policy doi: 10.1093/oxrep/17.1.1 – year: 2008 ident: 10.1016/j.techfore.2023.122431_bb0110 – ident: 10.1016/j.techfore.2023.122431_bb5500 – volume: 41 start-page: 417 issue: 1 year: 1990 ident: 10.1016/j.techfore.2023.122431_bb2100 article-title: Personality structure: emergence of the five-factor model publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.ps.41.020190.002221 – volume: 34 start-page: 77 issue: 2 year: 2013 ident: 10.1016/j.techfore.2023.122431_bb2300 article-title: Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management publication-title: J. Bus. Logist. doi: 10.1111/jbl.12010 – volume: 229 start-page: 467 issue: 4 year: 2009 ident: 10.1016/j.techfore.2023.122431_bb0150 article-title: What determines household saving behavior publication-title: Jahrb. Natl. Okon. Stat. – volume: 2 start-page: 226 year: 2019 ident: 10.1016/j.techfore.2023.122431_bb0180 article-title: Research on K-value selection method of K-means clustering algorithm publication-title: J. – volume: 8 start-page: 265 issue: 3 year: 1990 ident: 10.1016/j.techfore.2023.122431_bb1500 article-title: Permanent income, current income, and consumption publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.1990.10509798 – volume: 46 start-page: 412 issue: 183 year: 1936 ident: 10.1016/j.techfore.2023.122431_bb0090 article-title: The supply of gold publication-title: Econ. J. doi: 10.2307/2224879 – year: 1930 ident: 10.1016/j.techfore.2023.122431_bb0050 – volume: 5 start-page: 5215 year: 2012 ident: 10.1016/j.techfore.2023.122431_bb0085 article-title: Classification and clustering of electricity demand patterns in industrial parks publication-title: Energies doi: 10.3390/en5125215 – volume: 20 start-page: 134 year: 1983 ident: 10.1016/j.techfore.2023.122431_bb0135 article-title: Cluster analysis in marketing research: review and suggestions for application publication-title: J. Mark. Res. doi: 10.1177/002224378302000204 – volume: 15 start-page: 354 issue: 5 year: 1985 ident: 10.1016/j.techfore.2023.122431_bb1300 article-title: Why do people save? Attitudes to, and habits of saving money in Britain publication-title: J. Appl. Soc. Psychol. doi: 10.1111/j.1559-1816.1985.tb00912.x – year: 1975 ident: 10.1016/j.techfore.2023.122431_bb1100 – start-page: 1 year: 2011 ident: 10.1016/j.techfore.2023.122431_bb0095 article-title: Methods for generating TLPs (typical load profiles) for smart grid-based energy programs – volume: 3 start-page: 2 issue: 1 year: 2014 ident: 10.1016/j.techfore.2023.122431_bb0070 article-title: Organizational design challenges resulting from big data publication-title: J.Organ.Des. – volume: 15 start-page: S85 issue: S1 year: 2001 ident: 10.1016/j.techfore.2023.122431_bb2200 article-title: The role of personality in household saving and borrowing behaviour publication-title: Eur. J. Personal. doi: 10.1002/per.422 – volume: 2 start-page: 11 issue: 1 year: 2013 ident: 10.1016/j.techfore.2023.122431_bb0010 article-title: The main challenges and issues of big data management publication-title: Int.J.Res.Stud.Comput. doi: 10.5861/ijrsc.2012.209 – volume: 41 start-page: 174 issue: 1 year: 2007 ident: 10.1016/j.techfore.2023.122431_bb0035 article-title: Household savings motives publication-title: J. Consum. Aff. doi: 10.1111/j.1745-6606.2006.00073.x – volume: 89 start-page: 392 issue: 2 year: 1981 ident: 10.1016/j.techfore.2023.122431_bb1400 article-title: An economic theory of self-control publication-title: J. Polit. Econ. doi: 10.1086/260971 – year: 1951 ident: 10.1016/j.techfore.2023.122431_bb1000 – year: 1990 ident: 10.1016/j.techfore.2023.122431_bb1700 – volume: 34 start-page: 138 issue: 2 year: 1996 ident: 10.1016/j.techfore.2023.122431_bb0125 article-title: Differences in household savings behavior: evidence from industrial and developing countries publication-title: Dev. Econ. doi: 10.1111/j.1746-1049.1996.tb00734.x – volume: 196 start-page: 1508 year: 2018 ident: 10.1016/j.techfore.2023.122431_bb0040 article-title: Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.06.097 – year: 2019 ident: 10.1016/j.techfore.2023.122431_bb0100 article-title: Report on financial investments of Italian households – volume: 94 start-page: 873 issue: 4 year: 1986 ident: 10.1016/j.techfore.2023.122431_bb0170 article-title: Income distribution and sociopolitical instability as determinants of savings: a cross-sectional model publication-title: J. Polit. Econ. doi: 10.1086/261412 – volume: 2 start-page: 267 issue: 3 year: 2014 ident: 10.1016/j.techfore.2023.122431_bb2400 article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2014.2330519 – start-page: 411 year: 2018 ident: 10.1016/j.techfore.2023.122431_bb0140 article-title: Digital transformation: a literature review and guidelines for future research – year: 2020 ident: 10.1016/j.techfore.2023.122431_bb0105 article-title: Report on Financial Investments of Italian Households – ident: 10.1016/j.techfore.2023.122431_bb0160 – year: 1957 ident: 10.1016/j.techfore.2023.122431_bb0060 – volume: 22 start-page: 291 issue: 2 year: 2020 ident: 10.1016/j.techfore.2023.122431_bb0115 article-title: The new consumer behaviour paradigm amid COVID-19: permanent or transient? publication-title: J. Health Manag. doi: 10.1177/0972063420940834 – volume: 12 start-page: 104 year: 2021 ident: 10.1016/j.techfore.2023.122431_bb0155 article-title: COVID-19 and spillover effect of global economic crisis on the United States' financial stability publication-title: Front. Psychol. doi: 10.3389/fpsyg.2021.632175 – volume: 5 start-page: 25 year: 1994 ident: 10.1016/j.techfore.2023.122431_bb1900 article-title: Perceived saving motives and hierarchical financial needs publication-title: Financ. Couns. Plan. – start-page: 707 year: 2014 ident: 10.1016/j.techfore.2023.122431_bb2500 article-title: Big data clustering: a review – volume: w27899 start-page: 1 year: 2021 ident: 10.1016/j.techfore.2023.122431_bb0005 – volume: 88 start-page: 449 issue: 2 year: 1998 ident: 10.1016/j.techfore.2023.122431_bb1800 article-title: On the importance of the precautionary saving motive publication-title: Am. Econ. Rev. |
| SSID | ssj0007386 |
| Score | 2.3875072 |
| Snippet | According to the national balance sheets of the most advanced economies, despite a recent sharp decline in per capita net wealth, Italian private households... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 122431 |
| SubjectTerms | Big data analytics Household savings Methodological research Python Saver profiling Segmentation |
| Title | Segmenting with big data analytics and Python: A quantitative exploratory analysis of household savings |
| URI | https://dx.doi.org/10.1016/j.techfore.2023.122431 |
| Volume | 191 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0040-1625 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007386 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0040-1625 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007386 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0040-1625 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007386 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 0040-1625 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007386 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0040-1625 databaseCode: AKRWK dateStart: 19700101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007386 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14TZs0u0nWWymWqlgELfQWspvdmCJpa9qDF3-7M3loBaEHb3kNhNlhZnbnm28IuWbKRg4QadlCuxaTYMaQFQdWFHEO5uAwybFR-HHsjSbsfsqnDTKoe2EQVln5_tKnF966etKttNldpCn2-MLeANJ3SKKxmoC024z5OMWg8_kD88ChljVyDr_e6BKedZAn1SBbJA4R72CRyXX-DlAbQWd4QParbJH2yx86JA2dHZG9DQ7BY5I866SA_GQJxUNVKtOEIu6TRsg3gizMcBXTpw9kCbihfbpcR1nRWgaOjuoCg1eU2kuBPM3p3NDX-TrXWJqieYRnDvkJmQxvXwYjq5qeYCnX6a2sQMVcMyZB_x5zDOtF2vZgsyUkU4K5sVCwHJD9OG7AhehpZBpUxmcq9uAl5HWnpJnNM31GqIBdl_GVsTWPma9VpF3pG98EIlCOUqpFeK2yUFXU4jjh4i2sMWSzsFZ1iKoOS1W3SPdbblGSa2yVEPWKhL_MJIQIsEX2_B-yF2QX70qM2CVprt7X-gqykZVsF-bWJjv9u4fR-AvireA0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7GOAAHxFOMZw5cu7Vr0jbcpgk0YJuQ2KTdqiZNSyfUDboduPDbsfuAISHtwK1qaqlyLMeOP38m5JopEzlApGEKbRtMghlDVOwZQcA5mIPFJMdG4cHQ6Y3Zw4RPaqRb9cIgrLL0_YVPz711-aZVarM1TxLs8YXcAMJ3CKKxmuBskE3G2y5mYM3PH5wHTrWsoHP4-Uqb8LSJRKkR0kXiFPEmVpls6-8TauXUudsju2W4SDvFH-2Tmk4PyM4KieAhiZ91nGN-0pjirSqVSUwR-EkDJBxBGmZ4CunTB9IE3NAOfVsGad5bBp6O6hyEl9faC4Esyegsoi-zZaaxNkWzAC8dsiMyvrsddXtGOT7BULbVXhieCrlmTMIGOMyKWDvQpgPZlpBMCWaHQsF-QPhj2R4Xoq2RalBFLlOhA4sQ2B2TejpL9QmhAtKuyFWRqXnIXK0CbUs3ciNPeMpSSjUIr1Tmq5JbHEdcvPoViGzqV6r2UdV-oeoGaX3LzQt2jbUSotoR_5ed-HAErJE9_YfsFdnqjQZ9v38_fDwj27hSAMbOSX3xvtQXEJos5GVuel8rZOHJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmenting+with+big+data+analytics+and+Python%3A+A+quantitative+exploratory+analysis+of+household+savings&rft.jtitle=Technological+forecasting+%26+social+change&rft.au=Cuomo%2C+Maria+Teresa&rft.au=Tortora%2C+Debora&rft.au=Colosimo%2C+Ivan&rft.au=Ricciardi+Celsi%2C+Lorenzo&rft.date=2023-06-01&rft.issn=0040-1625&rft.volume=191&rft.spage=122431&rft_id=info:doi/10.1016%2Fj.techfore.2023.122431&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_techfore_2023_122431 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1625&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1625&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1625&client=summon |