Segmenting with big data analytics and Python: A quantitative exploratory analysis of household savings

According to the national balance sheets of the most advanced economies, despite a recent sharp decline in per capita net wealth, Italian private households present a higher rate among the wealthiest and least indebted in Europe. Recently, the COVID-19 outbreak caused a new leap in households'...

Full description

Saved in:
Bibliographic Details
Published inTechnological forecasting & social change Vol. 191; p. 122431
Main Authors Cuomo, Maria Teresa, Tortora, Debora, Colosimo, Ivan, Ricciardi Celsi, Lorenzo, Genovino, Cinzia, Festa, Giuseppe, La Rocca, Michele
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.06.2023
Subjects
Online AccessGet full text
ISSN0040-1625
DOI10.1016/j.techfore.2023.122431

Cover

Abstract According to the national balance sheets of the most advanced economies, despite a recent sharp decline in per capita net wealth, Italian private households present a higher rate among the wealthiest and least indebted in Europe. Recently, the COVID-19 outbreak caused a new leap in households' savings worldwide, particularly in advanced economies and Italy. This study underlines that using advanced analytics tools, household saving behaviour information, and big data analytics may support data-driven decision approaches addressing the management of complex relationships in the financial arena. More specifically, using exploratory and predictive analyses based on big data analytics and machine learning, this study aims to provide extensive customer profiling in the household saving sector in Italy, supporting a data-driven decision-making approach. A profiling of household savings has been defined using the information provided by big data analysis. To proceed in this direction, the hardware and software requirements necessary to perform data processing were considered in the first phase of the study. Data collection was performed according to the so-called extract, transform, load (ETL) process. The contribution of this study lies in the results obtained in terms of data analytics over a dataset that accounts for the purchasing behaviour of almost 20 million postal savers. The clustering algorithm is highly efficient and scales well for large datasets. K-means clustering can be implemented within the MapReduce computational framework. Therefore, the overall procedure proposed here can be easily extended to big data using parallel computing and software implementing MapReduce, such as Hadoop and Spark. •Underlining household saving behaviour with an exploratory analysis•Profiling of household saving on 20 millions of clients in Italy•Creating a novel method to clustering saving market
AbstractList According to the national balance sheets of the most advanced economies, despite a recent sharp decline in per capita net wealth, Italian private households present a higher rate among the wealthiest and least indebted in Europe. Recently, the COVID-19 outbreak caused a new leap in households' savings worldwide, particularly in advanced economies and Italy. This study underlines that using advanced analytics tools, household saving behaviour information, and big data analytics may support data-driven decision approaches addressing the management of complex relationships in the financial arena. More specifically, using exploratory and predictive analyses based on big data analytics and machine learning, this study aims to provide extensive customer profiling in the household saving sector in Italy, supporting a data-driven decision-making approach. A profiling of household savings has been defined using the information provided by big data analysis. To proceed in this direction, the hardware and software requirements necessary to perform data processing were considered in the first phase of the study. Data collection was performed according to the so-called extract, transform, load (ETL) process. The contribution of this study lies in the results obtained in terms of data analytics over a dataset that accounts for the purchasing behaviour of almost 20 million postal savers. The clustering algorithm is highly efficient and scales well for large datasets. K-means clustering can be implemented within the MapReduce computational framework. Therefore, the overall procedure proposed here can be easily extended to big data using parallel computing and software implementing MapReduce, such as Hadoop and Spark. •Underlining household saving behaviour with an exploratory analysis•Profiling of household saving on 20 millions of clients in Italy•Creating a novel method to clustering saving market
ArticleNumber 122431
Author Colosimo, Ivan
Ricciardi Celsi, Lorenzo
Cuomo, Maria Teresa
Genovino, Cinzia
Festa, Giuseppe
La Rocca, Michele
Tortora, Debora
Author_xml – sequence: 1
  givenname: Maria Teresa
  surname: Cuomo
  fullname: Cuomo, Maria Teresa
  email: mcuomo@unisa.it
  organization: Dept. of Economics and Statistics, University of Salerno, Italy
– sequence: 2
  givenname: Debora
  surname: Tortora
  fullname: Tortora, Debora
  organization: Dept. of Business and Law, University of Milan "Bicocca", Italy
– sequence: 3
  givenname: Ivan
  surname: Colosimo
  fullname: Colosimo, Ivan
  organization: Dept. of Economics and Statistics, University of Salerno, Italy
– sequence: 4
  givenname: Lorenzo
  surname: Ricciardi Celsi
  fullname: Ricciardi Celsi, Lorenzo
  organization: ELIS Innovation Hub, Rome, Italy
– sequence: 5
  givenname: Cinzia
  surname: Genovino
  fullname: Genovino, Cinzia
  organization: Dept. of Economics, Giustino Fortunato University, Italy
– sequence: 6
  givenname: Giuseppe
  surname: Festa
  fullname: Festa, Giuseppe
  organization: Dept. of Economics and Statistics, University of Salerno, Italy
– sequence: 7
  givenname: Michele
  surname: La Rocca
  fullname: La Rocca, Michele
  organization: Dept. of Economics, Giustino Fortunato University, Italy
BookMark eNqFkE1OwzAQRr0oEi1wBeQLJNiO4yaIBVXFn1QJJGBtOc4kcZXGxXYLuT0pgQ2brmakmfdp5s3QpLMdIHRJSUwJFVfrOIBuKusgZoQlMWWMJ3SCpoRwElHB0lM0835NCJknmZii-hXqDXTBdDX-NKHBhalxqYLCqlNtH4z2Q1filz40trvGC_yxU8N6UMHsAcPXtrVOBev6EfDGY1vhxu48NLYtsVf7Idufo5NKtR4ufusZer-_e1s-Rqvnh6flYhXphLIQZbpMgfOCF5ngtOJMARGM53nBdc6TMtcqTVPBaJKlec4gJYLoas51KYYhzZMzdDPmame9d1BJ_XOr7YJTppWUyIMouZZ_ouRBlBxFDbj4h2-d2SjXHwdvRxCG5_YGnPTaQKehNA50kKU1xyK-AS1FjKQ
CitedBy_id crossref_primary_10_1080_21681015_2025_2471905
Cites_doi 10.1177/0260107917731034
10.1016/j.ijpe.2014.12.031
10.3897/popecon.4.e53295
10.1016/j.sbspro.2012.09.1025
10.1016/j.dss.2014.03.001
10.1111/jmcb.12659
10.2307/2938366
10.1093/oxrep/17.1.1
10.1146/annurev.ps.41.020190.002221
10.1111/jbl.12010
10.1080/07350015.1990.10509798
10.2307/2224879
10.3390/en5125215
10.1177/002224378302000204
10.1111/j.1559-1816.1985.tb00912.x
10.1002/per.422
10.5861/ijrsc.2012.209
10.1111/j.1745-6606.2006.00073.x
10.1086/260971
10.1111/j.1746-1049.1996.tb00734.x
10.1016/j.jclepro.2018.06.097
10.1086/261412
10.1109/TETC.2014.2330519
10.1177/0972063420940834
10.3389/fpsyg.2021.632175
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.techfore.2023.122431
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_techfore_2023_122431
S0040162523001166
GroupedDBID --K
--M
-~X
.~1
0R~
123
13V
1B1
1OL
1RT
1~.
1~5
29Q
3R3
4.4
457
4G.
53G
5VS
7-5
71M
8P~
96U
9JO
AAAKF
AAAKG
AABNK
AACTN
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
AAYOK
ABEFU
ABEHJ
ABFNM
ABJNI
ABKBG
ABMAC
ABMVD
ABOYX
ABPPZ
ABUCO
ABXDB
ACBMB
ACDAQ
ACGFO
ACGFS
ACHQT
ACHRH
ACIWK
ACNTT
ACRLP
ACXNI
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFAZI
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
F8P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLX
HMY
HVGLF
HZ~
IHE
J1W
KOM
LG8
LPU
LXL
LXN
LY7
M3Y
M41
MO0
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBM
SDF
SDG
SDP
SES
SET
SEW
SPCBC
SSB
SSD
SSL
SSS
SSY
SSZ
T5K
TAE
TN5
U5U
UHS
WH7
WUQ
XJT
XPP
XYO
YK3
ZRQ
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-8cd5e44b4b8641f42ae062499b4c943d9ca555621385992e5060cf74cd63d9193
IEDL.DBID .~1
ISSN 0040-1625
IngestDate Thu Apr 24 23:00:38 EDT 2025
Wed Oct 01 05:14:21 EDT 2025
Tue Dec 03 03:44:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Methodological research
Big data analytics
Saver profiling
Segmentation
Household savings
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-8cd5e44b4b8641f42ae062499b4c943d9ca555621385992e5060cf74cd63d9193
ParticipantIDs crossref_citationtrail_10_1016_j_techfore_2023_122431
crossref_primary_10_1016_j_techfore_2023_122431
elsevier_sciencedirect_doi_10_1016_j_techfore_2023_122431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Technological forecasting & social change
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mehta, Saxena, Purohit (bb0115) 2020; 22
Xiao, Noring (bb1900) 1994; 5
Ando, Modigliani (bb0015) 1963; 53
Digman (bb2100) 1990; 41
Niculescu-Aron, Mihăescu (bb0130) 2012
Nyhus, Webley (bb2200) 2001; 15
Pinjisakikool (bb5000) 2018; 30
Buklemishev (bb0030) 2020; 4
Friedman (bb0060) 1957
Guglielminetti, Rondinelli (bb0080) 2021
DeVaney, Anong, Whirl (bb0035) 2007; 41
Schunk (bb0150) 2009; 229
Fuchs-Schündeln, Masella, Paule-Paludkiewicz (bb0065) 2020; 52
Punj, Stewart (bb0135) 1983; 20
Linciano, Costa, Gentile, Soccorso (bb0100) 2019
Bebczuk, Gasparini, Garbero, Amendolaggine (bb0025) 2015
Shehzad, Xiaoxing, Bilgili, Koçak (bb0155) 2021; 12
Sun, Chen, Xiong, Guo (bb0165) 2017; 2
Thaler, Shefrin (bb1400) 1981; 89
Kimball (bb1700) 1990
Duesenberry (bb1200) 1949
Fahad, Alshatri, Tari, Alamri, Khalil, Zomaya, Bouras (bb2400) 2014; 2
Almeida, Calistru (bb0010) 2013; 2
Galbraith (bb0070) 2014; 3
Ercolani, Guglielminetti, Rondinelli (bb0045) 2021
Kim, Ko, Choi (bb0095) 2011
Muradoglu, Taskın (bb0125) 1996; 34
Grable, Lyons (bb0075) 2018; 72
Dubey, Gunasekaran, Childe, Luo, Wamba, Roubaud, Foropon (bb0040) 2018; 196
Katona (bb1000) 1951
Fisher (bb0050) 1930
Statista (bb0160) 2021
Florea, Diaconita, Bologa (bb0055) 2015; 6
Katona (bb1100) 1975
Furnham (bb1300) 1985; 15
Keynes (bb0090) 1936; 46
Acciari, Morelli (bb0005) 2021; w27899
Linciano, Caivano, Gentile, Soccorso (bb0105) 2020
Reis, Amorim, Melão, Matos (bb0140) 2018
Hernández, Baladrón, Aguiar, Carro, Sánchez-Esguevillas (bb0085) 2012; 5
Wamba, Akter, Edwards, Chopin, Gnanzou (bb0175) 2015; 165
Waller, Fawcett (bb2300) 2013; 34
OECD (bb5500) 2023
Yuan, Yang (bb0180) 2019; 2
Lusardi (bb0110) 2008
Shirkhorshidi, Aghabozorgi, Wah, Herawan (bb2500) 2014
Campbell, Mankiw (bb1500) 1990; 8
Boeree (bb2000) 1998; 2
Venieris, Gupta (bb0170) 1986; 94
Lusardi (bb1800) 1998; 88
Angus (bb1600) 1991; 59
Attanasio, Banks (bb0020) 2001; 17
Romei (bb0145) 2021
Moro, Cortez, Rita (bb0120) 2014; 62
Katona (10.1016/j.techfore.2023.122431_bb1000) 1951
Florea (10.1016/j.techfore.2023.122431_bb0055) 2015; 6
Waller (10.1016/j.techfore.2023.122431_bb2300) 2013; 34
Katona (10.1016/j.techfore.2023.122431_bb1100) 1975
Wamba (10.1016/j.techfore.2023.122431_bb0175) 2015; 165
Angus (10.1016/j.techfore.2023.122431_bb1600) 1991; 59
Fuchs-Schündeln (10.1016/j.techfore.2023.122431_bb0065) 2020; 52
Kimball (10.1016/j.techfore.2023.122431_bb1700) 1990
Lusardi (10.1016/j.techfore.2023.122431_bb1800) 1998; 88
OECD (10.1016/j.techfore.2023.122431_bb5500)
Romei (10.1016/j.techfore.2023.122431_bb0145) 2021
Furnham (10.1016/j.techfore.2023.122431_bb1300) 1985; 15
Buklemishev (10.1016/j.techfore.2023.122431_bb0030) 2020; 4
Bebczuk (10.1016/j.techfore.2023.122431_bb0025) 2015
Boeree (10.1016/j.techfore.2023.122431_bb2000) 1998; 2
Galbraith (10.1016/j.techfore.2023.122431_bb0070) 2014; 3
Niculescu-Aron (10.1016/j.techfore.2023.122431_bb0130) 2012
Keynes (10.1016/j.techfore.2023.122431_bb0090) 1936; 46
Fisher (10.1016/j.techfore.2023.122431_bb0050) 1930
Schunk (10.1016/j.techfore.2023.122431_bb0150) 2009; 229
Shirkhorshidi (10.1016/j.techfore.2023.122431_bb2500) 2014
Reis (10.1016/j.techfore.2023.122431_bb0140) 2018
Nyhus (10.1016/j.techfore.2023.122431_bb2200) 2001; 15
Lusardi (10.1016/j.techfore.2023.122431_bb0110) 2008
Sun (10.1016/j.techfore.2023.122431_bb0165) 2017; 2
Ercolani (10.1016/j.techfore.2023.122431_bb0045) 2021
Muradoglu (10.1016/j.techfore.2023.122431_bb0125) 1996; 34
Linciano (10.1016/j.techfore.2023.122431_bb0100) 2019
Pinjisakikool (10.1016/j.techfore.2023.122431_bb5000) 2018; 30
Statista (10.1016/j.techfore.2023.122431_bb0160)
Campbell (10.1016/j.techfore.2023.122431_bb1500) 1990; 8
Kim (10.1016/j.techfore.2023.122431_bb0095) 2011
Moro (10.1016/j.techfore.2023.122431_bb0120) 2014; 62
Attanasio (10.1016/j.techfore.2023.122431_bb0020) 2001; 17
Dubey (10.1016/j.techfore.2023.122431_bb0040) 2018; 196
Friedman (10.1016/j.techfore.2023.122431_bb0060) 1957
Thaler (10.1016/j.techfore.2023.122431_bb1400) 1981; 89
Acciari (10.1016/j.techfore.2023.122431_bb0005) 2021; w27899
Ando (10.1016/j.techfore.2023.122431_bb0015) 1963; 53
Guglielminetti (10.1016/j.techfore.2023.122431_bb0080) 2021
Shehzad (10.1016/j.techfore.2023.122431_bb0155) 2021; 12
Linciano (10.1016/j.techfore.2023.122431_bb0105) 2020
Hernández (10.1016/j.techfore.2023.122431_bb0085) 2012; 5
DeVaney (10.1016/j.techfore.2023.122431_bb0035) 2007; 41
Digman (10.1016/j.techfore.2023.122431_bb2100) 1990; 41
Xiao (10.1016/j.techfore.2023.122431_bb1900) 1994; 5
Fahad (10.1016/j.techfore.2023.122431_bb2400) 2014; 2
Punj (10.1016/j.techfore.2023.122431_bb0135) 1983; 20
Mehta (10.1016/j.techfore.2023.122431_bb0115) 2020; 22
Venieris (10.1016/j.techfore.2023.122431_bb0170) 1986; 94
Duesenberry (10.1016/j.techfore.2023.122431_bb1200) 1949
Almeida (10.1016/j.techfore.2023.122431_bb0010) 2013; 2
Grable (10.1016/j.techfore.2023.122431_bb0075) 2018; 72
Yuan (10.1016/j.techfore.2023.122431_bb0180) 2019; 2
References_xml – year: 2021
  ident: bb0145
  article-title: Global savers' $5.4tn stockpile offers hope for post-COVID spending
  publication-title: Financial Times
– volume: 12
  start-page: 104
  year: 2021
  ident: bb0155
  article-title: COVID-19 and spillover effect of global economic crisis on the United States' financial stability
  publication-title: Front. Psychol.
– year: 1957
  ident: bb0060
  article-title: A Theory of the Consumption Function
– year: 1990
  ident: bb1700
  article-title: Precautionary Saving and the Marginal Propensity to Consume
– volume: 59
  start-page: 1221
  year: 1991
  ident: bb1600
  article-title: Saving and liquidity constraints
  publication-title: Econometrica
– year: 1951
  ident: bb1000
  article-title: Psychological Analysis of Economic Behavior
– volume: 46
  start-page: 412
  year: 1936
  end-page: 418
  ident: bb0090
  article-title: The supply of gold
  publication-title: Econ. J.
– volume: 53
  start-page: 55
  year: 1963
  end-page: 84
  ident: bb0015
  article-title: The life-cycle hypothesis of saving: aggregate implications and tests
  publication-title: Am. Econ. Rev.
– year: 2019
  ident: bb0100
  article-title: Report on financial investments of Italian households
  publication-title: Behavioural Attitudes and Approaches 2019 Survey
– start-page: 411
  year: 2018
  end-page: 421
  ident: bb0140
  article-title: Digital transformation: a literature review and guidelines for future research
  publication-title: World Conference on Information Systems And Technologies
– volume: 229
  start-page: 467
  year: 2009
  end-page: 491
  ident: bb0150
  article-title: What determines household saving behavior
  publication-title: Jahrb. Natl. Okon. Stat.
– volume: w27899
  start-page: 1
  year: 2021
  end-page: 46
  ident: bb0005
  publication-title: Wealth Transfers And Net Wealth at Death: Evidence From the Italian Inheritance Tax Records 1995–2016 (No. w27899)
– volume: 41
  start-page: 417
  year: 1990
  end-page: 440
  ident: bb2100
  article-title: Personality structure: emergence of the five-factor model
  publication-title: Annu. Rev. Psychol.
– start-page: 1
  year: 2011
  end-page: 6
  ident: bb0095
  article-title: Methods for generating TLPs (typical load profiles) for smart grid-based energy programs
  publication-title: 2011 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)
– year: 2021
  ident: bb0080
  article-title: Consumption and saving patterns in Italy during COVID-19 (June 22, 2021). Bank of Italy Occasional Paper No. 620
– volume: 2
  start-page: 267
  year: 2014
  end-page: 279
  ident: bb2400
  article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis
  publication-title: IEEE Trans. Emerg. Top. Comput.
– year: 2023
  ident: bb5500
  article-title: Household savings (indicator)
– year: 2015
  ident: bb0025
  article-title: Understanding the determinants of household saving: micro evidence for Latin America
  publication-title: Documentos de Trabajo del CEDLAS
– volume: 20
  start-page: 134
  year: 1983
  end-page: 148
  ident: bb0135
  article-title: Cluster analysis in marketing research: review and suggestions for application
  publication-title: J. Mark. Res.
– year: 1930
  ident: bb0050
  article-title: The Theory of Interest
– volume: 34
  start-page: 138
  year: 1996
  end-page: 153
  ident: bb0125
  article-title: Differences in household savings behavior: evidence from industrial and developing countries
  publication-title: Dev. Econ.
– volume: 88
  start-page: 449
  year: 1998
  end-page: 453
  ident: bb1800
  article-title: On the importance of the precautionary saving motive
  publication-title: Am. Econ. Rev.
– year: 1949
  ident: bb1200
  article-title: Income, Saving, and the Theory of Consumer Behavior
– volume: 2
  start-page: 227
  year: 2017
  end-page: 251
  ident: bb0165
  article-title: Cluster analysis in data-driven management and decisions
  publication-title: J.Manag.Sci.Eng.
– volume: 8
  start-page: 265
  year: 1990
  end-page: 279
  ident: bb1500
  article-title: Permanent income, current income, and consumption
  publication-title: J. Bus. Econ. Stat.
– volume: 6
  start-page: 19
  year: 2015
  end-page: 27
  ident: bb0055
  article-title: Data integration approaches using ETL
  publication-title: Database Syst.J.
– volume: 30
  start-page: 32
  year: 2018
  end-page: 54
  ident: bb5000
  article-title: The influence of personality traits on households’ financial risk tolerance and financial behaviour
  publication-title: J. Interdiscip. Econ.
– volume: 165
  start-page: 234
  year: 2015
  end-page: 246
  ident: bb0175
  article-title: How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study
  publication-title: Int. J. Prod. Econ.
– volume: 34
  start-page: 77
  year: 2013
  end-page: 84
  ident: bb2300
  article-title: Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management
  publication-title: J. Bus. Logist.
– start-page: 707
  year: 2014
  end-page: 720
  ident: bb2500
  article-title: Big data clustering: a review
  publication-title: Computational Science and Its Applications–ICCSA 2014: 14th International Conference, Guimarães, Portugal, June 30–July 3, 2014, Proceedings, Part V 14
– volume: 22
  start-page: 291
  year: 2020
  end-page: 301
  ident: bb0115
  article-title: The new consumer behaviour paradigm amid COVID-19: permanent or transient?
  publication-title: J. Health Manag.
– volume: 2
  start-page: 226
  year: 2019
  end-page: 235
  ident: bb0180
  article-title: Research on K-value selection method of K-means clustering algorithm
  publication-title: J.
– volume: 41
  start-page: 174
  year: 2007
  end-page: 186
  ident: bb0035
  article-title: Household savings motives
  publication-title: J. Consum. Aff.
– volume: 94
  start-page: 873
  year: 1986
  end-page: 883
  ident: bb0170
  article-title: Income distribution and sociopolitical instability as determinants of savings: a cross-sectional model
  publication-title: J. Polit. Econ.
– volume: 62
  start-page: 22
  year: 2014
  end-page: 31
  ident: bb0120
  article-title: A data-driven approach to predict the success of bank telemarketing
  publication-title: Decis. Support. Syst.
– volume: 15
  start-page: S85
  year: 2001
  end-page: S103
  ident: bb2200
  article-title: The role of personality in household saving and borrowing behaviour
  publication-title: Eur. J. Personal.
– volume: 5
  start-page: 25
  year: 1994
  end-page: 44
  ident: bb1900
  article-title: Perceived saving motives and hierarchical financial needs
  publication-title: Financ. Couns. Plan.
– year: 2021
  ident: bb0160
  article-title: Saving rate of households in Italy 2016-2022
– volume: 72
  year: 2018
  ident: bb0075
  article-title: An introduction to big data
  publication-title: J.Financ.Serv.Prof.
– volume: 15
  start-page: 354
  year: 1985
  end-page: 373
  ident: bb1300
  article-title: Why do people save? Attitudes to, and habits of saving money in Britain
  publication-title: J. Appl. Soc. Psychol.
– volume: 3
  start-page: 2
  year: 2014
  end-page: 13
  ident: bb0070
  article-title: Organizational design challenges resulting from big data
  publication-title: J.Organ.Des.
– year: 1975
  ident: bb1100
  article-title: Psychological Economics
– year: 2021
  ident: bb0045
  article-title: Fears for the future: saving dynamics after the COVID-19 outbreak
  publication-title: COVID-19 Note
– year: 2020
  ident: bb0105
  article-title: Report on Financial Investments of Italian Households
  publication-title: Behavioural Attitudes And Approaches-2020 Survey
– volume: 52
  start-page: 1035
  year: 2020
  end-page: 1070
  ident: bb0065
  article-title: Cultural determinants of household saving behavior
  publication-title: J. Money Credit Bank.
– volume: 4
  start-page: 13
  year: 2020
  ident: bb0030
  article-title: Coronavirus crisis and its effects on the economy
  publication-title: Popul.Econ.
– volume: 196
  start-page: 1508
  year: 2018
  end-page: 1521
  ident: bb0040
  article-title: Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour
  publication-title: J. Clean. Prod.
– volume: 2
  start-page: 2002
  year: 1998
  ident: bb2000
  article-title: Abraham Maslow and Theories of Personality
– year: 2008
  ident: bb0110
  article-title: Household Saving Behavior: The Role of Financial Literacy, Information, And Financial Education Programs (No. w13824)
– volume: 5
  start-page: 5215
  year: 2012
  end-page: 5228
  ident: bb0085
  article-title: Classification and clustering of electricity demand patterns in industrial parks
  publication-title: Energies
– start-page: 483
  year: 2012
  end-page: 492
  ident: bb0130
  article-title: Determinants of household savings in EU: what policies for increasing savings?
  publication-title: Procedia Soc. Behav. Sci.
– volume: 2
  start-page: 11
  year: 2013
  end-page: 20
  ident: bb0010
  article-title: The main challenges and issues of big data management
  publication-title: Int.J.Res.Stud.Comput.
– volume: 89
  start-page: 392
  year: 1981
  end-page: 406
  ident: bb1400
  article-title: An economic theory of self-control
  publication-title: J. Polit. Econ.
– volume: 17
  start-page: 1
  year: 2001
  end-page: 19
  ident: bb0020
  article-title: The assessment: household saving-issues in theory and policy
  publication-title: Oxf. Rev. Econ. Policy
– volume: 30
  start-page: 32
  issue: 1
  year: 2018
  ident: 10.1016/j.techfore.2023.122431_bb5000
  article-title: The influence of personality traits on households’ financial risk tolerance and financial behaviour
  publication-title: J. Interdiscip. Econ.
  doi: 10.1177/0260107917731034
– volume: 53
  start-page: 55
  issue: 1
  year: 1963
  ident: 10.1016/j.techfore.2023.122431_bb0015
  article-title: The life-cycle hypothesis of saving: aggregate implications and tests
  publication-title: Am. Econ. Rev.
– volume: 72
  issue: 5
  year: 2018
  ident: 10.1016/j.techfore.2023.122431_bb0075
  article-title: An introduction to big data
  publication-title: J.Financ.Serv.Prof.
– year: 2015
  ident: 10.1016/j.techfore.2023.122431_bb0025
  article-title: Understanding the determinants of household saving: micro evidence for Latin America
– volume: 165
  start-page: 234
  year: 2015
  ident: 10.1016/j.techfore.2023.122431_bb0175
  article-title: How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2014.12.031
– volume: 2
  start-page: 227
  issue: 4
  year: 2017
  ident: 10.1016/j.techfore.2023.122431_bb0165
  article-title: Cluster analysis in data-driven management and decisions
  publication-title: J.Manag.Sci.Eng.
– volume: 4
  start-page: 13
  year: 2020
  ident: 10.1016/j.techfore.2023.122431_bb0030
  article-title: Coronavirus crisis and its effects on the economy
  publication-title: Popul.Econ.
  doi: 10.3897/popecon.4.e53295
– start-page: 483
  year: 2012
  ident: 10.1016/j.techfore.2023.122431_bb0130
  article-title: Determinants of household savings in EU: what policies for increasing savings?
  publication-title: Procedia Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2012.09.1025
– year: 2021
  ident: 10.1016/j.techfore.2023.122431_bb0045
  article-title: Fears for the future: saving dynamics after the COVID-19 outbreak
– volume: 62
  start-page: 22
  year: 2014
  ident: 10.1016/j.techfore.2023.122431_bb0120
  article-title: A data-driven approach to predict the success of bank telemarketing
  publication-title: Decis. Support. Syst.
  doi: 10.1016/j.dss.2014.03.001
– year: 1949
  ident: 10.1016/j.techfore.2023.122431_bb1200
– volume: 6
  start-page: 19
  issue: 3
  year: 2015
  ident: 10.1016/j.techfore.2023.122431_bb0055
  article-title: Data integration approaches using ETL
  publication-title: Database Syst.J.
– year: 2021
  ident: 10.1016/j.techfore.2023.122431_bb0145
  article-title: Global savers' $5.4tn stockpile offers hope for post-COVID spending
– volume: 2
  start-page: 2002
  year: 1998
  ident: 10.1016/j.techfore.2023.122431_bb2000
– volume: 52
  start-page: 1035
  issue: 5
  year: 2020
  ident: 10.1016/j.techfore.2023.122431_bb0065
  article-title: Cultural determinants of household saving behavior
  publication-title: J. Money Credit Bank.
  doi: 10.1111/jmcb.12659
– volume: 59
  start-page: 1221
  issue: 5
  year: 1991
  ident: 10.1016/j.techfore.2023.122431_bb1600
  article-title: Saving and liquidity constraints
  publication-title: Econometrica
  doi: 10.2307/2938366
– year: 2021
  ident: 10.1016/j.techfore.2023.122431_bb0080
– volume: 17
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.techfore.2023.122431_bb0020
  article-title: The assessment: household saving-issues in theory and policy
  publication-title: Oxf. Rev. Econ. Policy
  doi: 10.1093/oxrep/17.1.1
– year: 2008
  ident: 10.1016/j.techfore.2023.122431_bb0110
– ident: 10.1016/j.techfore.2023.122431_bb5500
– volume: 41
  start-page: 417
  issue: 1
  year: 1990
  ident: 10.1016/j.techfore.2023.122431_bb2100
  article-title: Personality structure: emergence of the five-factor model
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.ps.41.020190.002221
– volume: 34
  start-page: 77
  issue: 2
  year: 2013
  ident: 10.1016/j.techfore.2023.122431_bb2300
  article-title: Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management
  publication-title: J. Bus. Logist.
  doi: 10.1111/jbl.12010
– volume: 229
  start-page: 467
  issue: 4
  year: 2009
  ident: 10.1016/j.techfore.2023.122431_bb0150
  article-title: What determines household saving behavior
  publication-title: Jahrb. Natl. Okon. Stat.
– volume: 2
  start-page: 226
  year: 2019
  ident: 10.1016/j.techfore.2023.122431_bb0180
  article-title: Research on K-value selection method of K-means clustering algorithm
  publication-title: J.
– volume: 8
  start-page: 265
  issue: 3
  year: 1990
  ident: 10.1016/j.techfore.2023.122431_bb1500
  article-title: Permanent income, current income, and consumption
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.1990.10509798
– volume: 46
  start-page: 412
  issue: 183
  year: 1936
  ident: 10.1016/j.techfore.2023.122431_bb0090
  article-title: The supply of gold
  publication-title: Econ. J.
  doi: 10.2307/2224879
– year: 1930
  ident: 10.1016/j.techfore.2023.122431_bb0050
– volume: 5
  start-page: 5215
  year: 2012
  ident: 10.1016/j.techfore.2023.122431_bb0085
  article-title: Classification and clustering of electricity demand patterns in industrial parks
  publication-title: Energies
  doi: 10.3390/en5125215
– volume: 20
  start-page: 134
  year: 1983
  ident: 10.1016/j.techfore.2023.122431_bb0135
  article-title: Cluster analysis in marketing research: review and suggestions for application
  publication-title: J. Mark. Res.
  doi: 10.1177/002224378302000204
– volume: 15
  start-page: 354
  issue: 5
  year: 1985
  ident: 10.1016/j.techfore.2023.122431_bb1300
  article-title: Why do people save? Attitudes to, and habits of saving money in Britain
  publication-title: J. Appl. Soc. Psychol.
  doi: 10.1111/j.1559-1816.1985.tb00912.x
– year: 1975
  ident: 10.1016/j.techfore.2023.122431_bb1100
– start-page: 1
  year: 2011
  ident: 10.1016/j.techfore.2023.122431_bb0095
  article-title: Methods for generating TLPs (typical load profiles) for smart grid-based energy programs
– volume: 3
  start-page: 2
  issue: 1
  year: 2014
  ident: 10.1016/j.techfore.2023.122431_bb0070
  article-title: Organizational design challenges resulting from big data
  publication-title: J.Organ.Des.
– volume: 15
  start-page: S85
  issue: S1
  year: 2001
  ident: 10.1016/j.techfore.2023.122431_bb2200
  article-title: The role of personality in household saving and borrowing behaviour
  publication-title: Eur. J. Personal.
  doi: 10.1002/per.422
– volume: 2
  start-page: 11
  issue: 1
  year: 2013
  ident: 10.1016/j.techfore.2023.122431_bb0010
  article-title: The main challenges and issues of big data management
  publication-title: Int.J.Res.Stud.Comput.
  doi: 10.5861/ijrsc.2012.209
– volume: 41
  start-page: 174
  issue: 1
  year: 2007
  ident: 10.1016/j.techfore.2023.122431_bb0035
  article-title: Household savings motives
  publication-title: J. Consum. Aff.
  doi: 10.1111/j.1745-6606.2006.00073.x
– volume: 89
  start-page: 392
  issue: 2
  year: 1981
  ident: 10.1016/j.techfore.2023.122431_bb1400
  article-title: An economic theory of self-control
  publication-title: J. Polit. Econ.
  doi: 10.1086/260971
– year: 1951
  ident: 10.1016/j.techfore.2023.122431_bb1000
– year: 1990
  ident: 10.1016/j.techfore.2023.122431_bb1700
– volume: 34
  start-page: 138
  issue: 2
  year: 1996
  ident: 10.1016/j.techfore.2023.122431_bb0125
  article-title: Differences in household savings behavior: evidence from industrial and developing countries
  publication-title: Dev. Econ.
  doi: 10.1111/j.1746-1049.1996.tb00734.x
– volume: 196
  start-page: 1508
  year: 2018
  ident: 10.1016/j.techfore.2023.122431_bb0040
  article-title: Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.06.097
– year: 2019
  ident: 10.1016/j.techfore.2023.122431_bb0100
  article-title: Report on financial investments of Italian households
– volume: 94
  start-page: 873
  issue: 4
  year: 1986
  ident: 10.1016/j.techfore.2023.122431_bb0170
  article-title: Income distribution and sociopolitical instability as determinants of savings: a cross-sectional model
  publication-title: J. Polit. Econ.
  doi: 10.1086/261412
– volume: 2
  start-page: 267
  issue: 3
  year: 2014
  ident: 10.1016/j.techfore.2023.122431_bb2400
  article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2014.2330519
– start-page: 411
  year: 2018
  ident: 10.1016/j.techfore.2023.122431_bb0140
  article-title: Digital transformation: a literature review and guidelines for future research
– year: 2020
  ident: 10.1016/j.techfore.2023.122431_bb0105
  article-title: Report on Financial Investments of Italian Households
– ident: 10.1016/j.techfore.2023.122431_bb0160
– year: 1957
  ident: 10.1016/j.techfore.2023.122431_bb0060
– volume: 22
  start-page: 291
  issue: 2
  year: 2020
  ident: 10.1016/j.techfore.2023.122431_bb0115
  article-title: The new consumer behaviour paradigm amid COVID-19: permanent or transient?
  publication-title: J. Health Manag.
  doi: 10.1177/0972063420940834
– volume: 12
  start-page: 104
  year: 2021
  ident: 10.1016/j.techfore.2023.122431_bb0155
  article-title: COVID-19 and spillover effect of global economic crisis on the United States' financial stability
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2021.632175
– volume: 5
  start-page: 25
  year: 1994
  ident: 10.1016/j.techfore.2023.122431_bb1900
  article-title: Perceived saving motives and hierarchical financial needs
  publication-title: Financ. Couns. Plan.
– start-page: 707
  year: 2014
  ident: 10.1016/j.techfore.2023.122431_bb2500
  article-title: Big data clustering: a review
– volume: w27899
  start-page: 1
  year: 2021
  ident: 10.1016/j.techfore.2023.122431_bb0005
– volume: 88
  start-page: 449
  issue: 2
  year: 1998
  ident: 10.1016/j.techfore.2023.122431_bb1800
  article-title: On the importance of the precautionary saving motive
  publication-title: Am. Econ. Rev.
SSID ssj0007386
Score 2.3875072
Snippet According to the national balance sheets of the most advanced economies, despite a recent sharp decline in per capita net wealth, Italian private households...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122431
SubjectTerms Big data analytics
Household savings
Methodological research
Python
Saver profiling
Segmentation
Title Segmenting with big data analytics and Python: A quantitative exploratory analysis of household savings
URI https://dx.doi.org/10.1016/j.techfore.2023.122431
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0040-1625
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007386
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0040-1625
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007386
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0040-1625
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007386
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0040-1625
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007386
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0040-1625
  databaseCode: AKRWK
  dateStart: 19700101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007386
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD14TZs0u0nWWymWqlgELfQWspvdmCJpa9qDF3-7M3loBaEHb3kNhNlhZnbnm28IuWbKRg4QadlCuxaTYMaQFQdWFHEO5uAwybFR-HHsjSbsfsqnDTKoe2EQVln5_tKnF966etKttNldpCn2-MLeANJ3SKKxmoC024z5OMWg8_kD88ChljVyDr_e6BKedZAn1SBbJA4R72CRyXX-DlAbQWd4QParbJH2yx86JA2dHZG9DQ7BY5I866SA_GQJxUNVKtOEIu6TRsg3gizMcBXTpw9kCbihfbpcR1nRWgaOjuoCg1eU2kuBPM3p3NDX-TrXWJqieYRnDvkJmQxvXwYjq5qeYCnX6a2sQMVcMyZB_x5zDOtF2vZgsyUkU4K5sVCwHJD9OG7AhehpZBpUxmcq9uAl5HWnpJnNM31GqIBdl_GVsTWPma9VpF3pG98EIlCOUqpFeK2yUFXU4jjh4i2sMWSzsFZ1iKoOS1W3SPdbblGSa2yVEPWKhL_MJIQIsEX2_B-yF2QX70qM2CVprt7X-gqykZVsF-bWJjv9u4fR-AvireA0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7GOAAHxFOMZw5cu7Vr0jbcpgk0YJuQ2KTdqiZNSyfUDboduPDbsfuAISHtwK1qaqlyLMeOP38m5JopEzlApGEKbRtMghlDVOwZQcA5mIPFJMdG4cHQ6Y3Zw4RPaqRb9cIgrLL0_YVPz711-aZVarM1TxLs8YXcAMJ3CKKxmuBskE3G2y5mYM3PH5wHTrWsoHP4-Uqb8LSJRKkR0kXiFPEmVpls6-8TauXUudsju2W4SDvFH-2Tmk4PyM4KieAhiZ91nGN-0pjirSqVSUwR-EkDJBxBGmZ4CunTB9IE3NAOfVsGad5bBp6O6hyEl9faC4Esyegsoi-zZaaxNkWzAC8dsiMyvrsddXtGOT7BULbVXhieCrlmTMIGOMyKWDvQpgPZlpBMCWaHQsF-QPhj2R4Xoq2RalBFLlOhA4sQ2B2TejpL9QmhAtKuyFWRqXnIXK0CbUs3ciNPeMpSSjUIr1Tmq5JbHEdcvPoViGzqV6r2UdV-oeoGaX3LzQt2jbUSotoR_5ed-HAErJE9_YfsFdnqjQZ9v38_fDwj27hSAMbOSX3xvtQXEJos5GVuel8rZOHJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmenting+with+big+data+analytics+and+Python%3A+A+quantitative+exploratory+analysis+of+household+savings&rft.jtitle=Technological+forecasting+%26+social+change&rft.au=Cuomo%2C+Maria+Teresa&rft.au=Tortora%2C+Debora&rft.au=Colosimo%2C+Ivan&rft.au=Ricciardi+Celsi%2C+Lorenzo&rft.date=2023-06-01&rft.issn=0040-1625&rft.volume=191&rft.spage=122431&rft_id=info:doi/10.1016%2Fj.techfore.2023.122431&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_techfore_2023_122431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1625&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1625&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1625&client=summon