A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model
Population-based optimization algorithms have been successfully applied to hydrological forecasting recently owing to their powerful ability of global optimization. This paper investigates three algorithms, i.e. differential evolution (DE), artificial bee colony (ABC) and ant colony optimization (AC...
Saved in:
| Published in | Engineering applications of artificial intelligence Vol. 46; pp. 258 - 268 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.11.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-1976 1873-6769 |
| DOI | 10.1016/j.engappai.2015.09.010 |
Cover
| Abstract | Population-based optimization algorithms have been successfully applied to hydrological forecasting recently owing to their powerful ability of global optimization. This paper investigates three algorithms, i.e. differential evolution (DE), artificial bee colony (ABC) and ant colony optimization (ACO), to determine the optimal one for forecasting downstream river flow. A hybrid neural network (HNN) model, which incorporates fuzzy pattern-recognition and a continuity equation into the artificial neural network, is proposed to forecast downstream river flow based on upstream river flows and areal precipitation. The optimization algorithm is employed to determine the premise parameters of the HNN model. Daily data from the Altamaha River basin of Georgia is applied in the forecasting analysis. Discussions on the forecasting performances, convergence speed and stability of various algorithms are presented. For completeness׳ sake, particle swarm optimization (PSO) is included as a benchmark case for the comparison of forecasting performances. Results show that the DE algorithm attains the best performance in generalization and forecasting. The forecasting accuracy of the DE algorithm is comparable to that of the PSO, and yet presents weak superiority over the ABC and ACO. The Diebold–Mariano (DM) test indicates that each pair of algorithms has no difference under the null hypothesis of equal forecasting accuracy. The DE and ACO algorithms are both favorable for searching parameters of the HNN model, including the recession coefficient and initial storage. Further analysis reveals the drawback of slow convergence and time-consumption of the ABC algorithm. The three algorithms present stability and reliability with respect to their control parameters on the whole. It can be concluded that the DE and ACO algorithms are considerably more adaptive in optimizing the forecasting problem for the HNN model.
•Comparison of performances of population-based optimization algorithms in forecasting downstream river flow.•Differential evolution (DE), artificial bee colony and ant colony optimization (ACO).•Particle swarm optimization is included as a benchmark comparison for forecasting performances.•Hybrid neural network (HNN) model incorporating fuzzy pattern-recognition and continuity equation.•DE and ACO algorithms are considerably more adaptive in optimizing the forecasting problem for the HNN model. |
|---|---|
| AbstractList | Population-based optimization algorithms have been successfully applied to hydrological forecasting recently owing to their powerful ability of global optimization. This paper investigates three algorithms, i.e. differential evolution (DE), artificial bee colony (ABC) and ant colony optimization (ACO), to determine the optimal one for forecasting downstream river flow. A hybrid neural network (HNN) model, which incorporates fuzzy pattern-recognition and a continuity equation into the artificial neural network, is proposed to forecast downstream river flow based on upstream river flows and areal precipitation. The optimization algorithm is employed to determine the premise parameters of the HNN model. Daily data from the Altamaha River basin of Georgia is applied in the forecasting analysis. Discussions on the forecasting performances, convergence speed and stability of various algorithms are presented. For completeness׳ sake, particle swarm optimization (PSO) is included as a benchmark case for the comparison of forecasting performances. Results show that the DE algorithm attains the best performance in generalization and forecasting. The forecasting accuracy of the DE algorithm is comparable to that of the PSO, and yet presents weak superiority over the ABC and ACO. The Diebold–Mariano (DM) test indicates that each pair of algorithms has no difference under the null hypothesis of equal forecasting accuracy. The DE and ACO algorithms are both favorable for searching parameters of the HNN model, including the recession coefficient and initial storage. Further analysis reveals the drawback of slow convergence and time-consumption of the ABC algorithm. The three algorithms present stability and reliability with respect to their control parameters on the whole. It can be concluded that the DE and ACO algorithms are considerably more adaptive in optimizing the forecasting problem for the HNN model.
•Comparison of performances of population-based optimization algorithms in forecasting downstream river flow.•Differential evolution (DE), artificial bee colony and ant colony optimization (ACO).•Particle swarm optimization is included as a benchmark comparison for forecasting performances.•Hybrid neural network (HNN) model incorporating fuzzy pattern-recognition and continuity equation.•DE and ACO algorithms are considerably more adaptive in optimizing the forecasting problem for the HNN model. |
| Author | Busari, A.O. Chau, K.W. Chen, X.Y. |
| Author_xml | – sequence: 1 givenname: X.Y. surname: Chen fullname: Chen, X.Y. – sequence: 2 givenname: K.W. orcidid: 0000-0001-6457-161X surname: Chau fullname: Chau, K.W. email: cekwchau@polyu.edu.hk – sequence: 3 givenname: A.O. surname: Busari fullname: Busari, A.O. |
| BookMark | eNqFkM1KAzEUhYMoWKuvIHmBGW86nXQCLhTxDwpudB1uJzdt6sxkSFJLfQCf26k_GzeuDpzLd-B-J-yw8x0xdi4gFyDkxTqnbol9jy6fgChzUDkIOGAjUc2KTM6kOmQjUOUkE2omj9lJjGsAKKqpHLGPa177tseAyb0Rj2ljdtxb3vt-0wyd77IFRjLc98m17v2r4tgsfXBp1UZufeDGb7uYAmHLw7ASuG38dn-hGmNy3ZIvdhz5arcIzvCONgGbIdLWh1feekPNKTuy2EQ6-8kxe7m7fb55yOZP94831_OsLsQkZVVVlVhTUeAMrRIW1MQCKDJTJaVRlS2ULa20ciFLW05BWsCpISGMkjC4KcZMfu_WwccYyOo-uBbDTgvQe5t6rX9t6r1NDUoPNgfw8g9Yu_QlIwV0zf_41TdOw3NvjoKOtaOuJuMGSUkb7_6b-AQKBJvS |
| CitedBy_id | crossref_primary_10_1016_j_enconman_2017_06_019 crossref_primary_10_1007_s00704_019_02833_9 crossref_primary_10_3390_su8060555 crossref_primary_10_1016_j_asoc_2020_106734 crossref_primary_10_1016_j_jhydrol_2019_124425 crossref_primary_10_1016_j_jhydrol_2018_06_049 crossref_primary_10_1016_j_asoc_2019_02_030 crossref_primary_10_1007_s12205_019_1070_6 crossref_primary_10_1007_s41742_022_00475_w crossref_primary_10_1061__ASCE_EE_1943_7870_0001414 crossref_primary_10_1186_s40562_018_0111_1 crossref_primary_10_1016_j_jclepro_2019_119035 crossref_primary_10_1016_j_jenvman_2019_01_023 crossref_primary_10_1016_j_jhydrol_2019_02_038 crossref_primary_10_3390_w11040709 crossref_primary_10_3390_w7126652 crossref_primary_10_1016_j_jhydrol_2018_07_004 crossref_primary_10_1007_s12145_021_00599_1 crossref_primary_10_1080_02626667_2017_1373778 crossref_primary_10_1007_s11629_017_4684_5 crossref_primary_10_1016_j_engappai_2019_08_014 crossref_primary_10_1061__ASCE_HE_1943_5584_0001542 crossref_primary_10_1007_s12205_019_1292_7 crossref_primary_10_1007_s11269_016_1564_7 crossref_primary_10_2166_ws_2021_289 crossref_primary_10_1007_s13762_017_1307_1 crossref_primary_10_2166_hydro_2024_056 crossref_primary_10_3390_w8010020 crossref_primary_10_5194_npg_25_291_2018 crossref_primary_10_1016_j_scitotenv_2020_144459 crossref_primary_10_2166_wcc_2018_261 crossref_primary_10_3390_w12020510 crossref_primary_10_1007_s40996_020_00526_2 crossref_primary_10_1080_19942060_2018_1526119 crossref_primary_10_1016_j_envsoft_2018_02_017 crossref_primary_10_1061__ASCE_HE_1943_5584_0001538 crossref_primary_10_1175_JHM_D_16_0109_1 crossref_primary_10_1016_j_oceaneng_2024_119849 crossref_primary_10_2166_hydro_2017_224 crossref_primary_10_2166_wcc_2017_076 crossref_primary_10_1007_s11269_017_1780_9 crossref_primary_10_3390_rs12172695 crossref_primary_10_1016_j_cageo_2018_08_003 crossref_primary_10_1016_j_jhydrol_2016_11_053 crossref_primary_10_3390_w10010015 crossref_primary_10_3390_ijerph13030345 crossref_primary_10_1016_j_jhydrol_2020_125477 crossref_primary_10_1061__ASCE_HE_1943_5584_0001547 crossref_primary_10_2166_aqua_2018_130 crossref_primary_10_2166_nh_2016_264 crossref_primary_10_1007_s11269_016_1281_2 crossref_primary_10_1016_j_ecolind_2016_05_006 crossref_primary_10_1007_s10661_019_7446_8 crossref_primary_10_1007_s13369_018_3092_7 crossref_primary_10_3390_w12051484 crossref_primary_10_33411_IJIST_2021030507 crossref_primary_10_3390_w9030186 crossref_primary_10_3390_cli5030048 crossref_primary_10_2166_hydro_2020_016 crossref_primary_10_1007_s12665_018_7940_2 crossref_primary_10_1007_s41403_017_0025_9 crossref_primary_10_1140_epjp_i2018_11948_5 crossref_primary_10_1016_j_cam_2018_03_045 crossref_primary_10_1016_j_jhydrol_2019_02_027 crossref_primary_10_1007_s11269_017_1701_y crossref_primary_10_3389_fmars_2021_658434 crossref_primary_10_3390_w10010004 crossref_primary_10_1007_s11356_017_0405_4 crossref_primary_10_1016_j_energy_2018_04_075 crossref_primary_10_1016_j_ijepes_2017_07_015 crossref_primary_10_1061__ASCE_HE_1943_5584_0001554 crossref_primary_10_1016_j_jastp_2016_12_002 crossref_primary_10_1061__ASCE_HE_1943_5584_0001575 crossref_primary_10_1061__ASCE_HE_1943_5584_0001695 crossref_primary_10_1016_j_jhydrol_2017_03_032 crossref_primary_10_1016_j_jhydrol_2019_124225 crossref_primary_10_3390_su151310543 crossref_primary_10_1007_s00703_017_0518_9 crossref_primary_10_1007_s11269_016_1532_2 crossref_primary_10_1007_s11063_017_9686_3 crossref_primary_10_32604_iasc_2021_016246 crossref_primary_10_1038_s41598_024_55266_4 crossref_primary_10_1155_2018_3942723 crossref_primary_10_1080_02626667_2018_1447112 crossref_primary_10_1016_j_jhydrol_2016_12_001 crossref_primary_10_1016_j_engappai_2016_10_009 crossref_primary_10_1016_j_amc_2016_07_014 crossref_primary_10_1016_j_scitotenv_2018_01_266 crossref_primary_10_1080_19942060_2018_1517052 crossref_primary_10_1080_19942060_2018_1482476 crossref_primary_10_1007_s12665_018_7349_y crossref_primary_10_1016_j_jhydrol_2017_08_015 crossref_primary_10_1016_j_jhydrol_2020_125223 crossref_primary_10_3390_cli5020033 crossref_primary_10_3390_w10030290 crossref_primary_10_3390_su9010111 crossref_primary_10_1080_15715124_2016_1203331 crossref_primary_10_1016_j_jhydrol_2021_126815 crossref_primary_10_3390_hydrology3020015 crossref_primary_10_1016_j_geoderma_2018_05_030 crossref_primary_10_1061__ASCE_HE_1943_5584_0001591 crossref_primary_10_1016_j_engappai_2019_06_010 crossref_primary_10_1007_s11269_018_1997_2 crossref_primary_10_1140_epjp_i2018_11968_1 crossref_primary_10_1007_s11831_023_09942_9 crossref_primary_10_1007_s12205_019_5989_4 crossref_primary_10_1007_s11269_016_1507_3 crossref_primary_10_1080_02626667_2021_1985123 crossref_primary_10_1016_j_ecoinf_2018_01_005 crossref_primary_10_1080_2150704X_2017_1418992 crossref_primary_10_3390_ijerph15040775 crossref_primary_10_3390_w10030301 crossref_primary_10_1186_s40703_020_00110_7 crossref_primary_10_1061__ASCE_HE_1943_5584_0001625 crossref_primary_10_1061__ASCE_HE_1943_5584_0001902 crossref_primary_10_1007_s11269_018_2000_y crossref_primary_10_1007_s11831_023_10017_y crossref_primary_10_1016_j_ecolind_2016_03_050 crossref_primary_10_1016_j_jhydrol_2020_124627 crossref_primary_10_1088_1755_1315_961_1_012058 crossref_primary_10_1061__ASCE_HE_1943_5584_0001760 crossref_primary_10_3390_w9110880 crossref_primary_10_1007_s00500_020_05457_8 crossref_primary_10_1007_s11269_017_1623_8 crossref_primary_10_1016_j_jhydrol_2021_126433 crossref_primary_10_1007_s11269_017_1858_4 crossref_primary_10_1007_s12145_022_00896_3 crossref_primary_10_1007_s40996_019_00272_0 crossref_primary_10_1007_s00477_017_1400_5 crossref_primary_10_3390_w10020110 crossref_primary_10_1007_s11069_021_04796_5 crossref_primary_10_1016_j_asoc_2019_04_026 crossref_primary_10_1061__ASCE_EE_1943_7870_0001397 crossref_primary_10_1016_j_jhydrol_2016_11_025 crossref_primary_10_3390_w8090367 crossref_primary_10_1007_s12555_019_0984_6 crossref_primary_10_1080_19942060_2018_1463871 crossref_primary_10_1111_itor_12908 crossref_primary_10_2166_wcc_2018_120 crossref_primary_10_4236_cweee_2017_61009 crossref_primary_10_1016_j_jclepro_2019_119724 crossref_primary_10_1016_j_asoc_2019_105589 crossref_primary_10_2166_nh_2018_049 crossref_primary_10_3390_w10010040 |
| Cites_doi | 10.1109/3477.484436 10.1007/s00500-012-0944-z 10.1016/j.engappai.2014.12.014 10.1109/IITA.2008.556 10.1016/j.geomorph.2006.03.015 10.1016/j.eneco.2013.07.028 10.1080/15715124.2013.798329 10.1145/937503.937505 10.1061/(ASCE)0733-9496(2003)129:3(200) 10.1007/s11269-005-9012-0 10.1016/j.compbiolchem.2014.11.004 10.1007/s11269-009-9436-z 10.1016/j.jhydrol.2012.01.026 10.1016/j.jhydrol.2012.04.007 10.1007/s00267-002-2862-9 10.1016/j.energy.2015.03.054 10.1007/s00521-007-0084-z 10.1016/j.jhydrol.2014.06.021 10.1016/j.jappgeo.2014.07.014 10.1016/j.eswa.2012.01.039 10.1080/10789669.2013.803915 10.1007/s13762-013-0209-0 10.1016/j.neucom.2013.09.010 10.1109/TCYB.2013.2265084 10.1016/j.amc.2006.09.098 10.1080/07350015.1995.10524599 10.1016/j.ins.2015.01.029 10.1016/S0169-2070(96)00719-4 10.1007/s00521-013-1443-6 10.1109/MAP.2011.5773566 10.1016/j.amc.2009.03.090 10.1061/(ASCE)0733-9496(2010)136:2(279) 10.5194/hess-11-483-2007 10.1061/(ASCE)1084-0699(1998)3:1(69) |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2015.09.010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| EndPage | 268 |
| ExternalDocumentID | 10_1016_j_engappai_2015_09_010 S0952197615002109 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-8885ace33a7af91f092f009ed4966d98f39f5f6f6b65f5406f0a4de11d9600153 |
| IEDL.DBID | .~1 |
| ISSN | 0952-1976 |
| IngestDate | Wed Oct 01 01:51:01 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Fri Feb 23 02:28:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Differential evolution Ant colony optimization Artificial bee colony Downstream river flow forecasting Hybrid neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-8885ace33a7af91f092f009ed4966d98f39f5f6f6b65f5406f0a4de11d9600153 |
| ORCID | 0000-0001-6457-161X |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2015_09_010 crossref_citationtrail_10_1016_j_engappai_2015_09_010 elsevier_sciencedirect_doi_10_1016_j_engappai_2015_09_010 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2015 2015-11-00 |
| PublicationDateYYYYMMDD | 2015-11-01 |
| PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
| PublicationDecade | 2010 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bao, Xiong, Hu (bib2) 2014; 129 Li, Chiong, Lin (bib22) 2015; 54 Xiong, Bao, Hu (bib45) 2013; 40 Jiang, Su, Hartmann (bib16) 2007; 85 Karaboga, Akay (bib18) 2009; 214 K. Wang X.D. Wang J.S. Wang M.L. Jiang G.Y. Lv G.L. Feng X.L. Xu Solving parameter identification problem of nonlinear systems using differential evolution algorithm. In: Proceedings of the Second International Symposium on IEEE Intelligent Information Technology Application, 2008, IITA׳08. pp. 687–691 Qiu, Chen, Nie (bib30) 1998; 9 Hossain, El-shafie (bib11) 2013; 423 Vasan, Simonovic (bib43) 2010; 136 Jalali, Afshar, Marino (bib14) 2006; 30 Song, Li, Zhang, Huang, Shi, Jin, Bai (bib39) 2014; 109 Rech, G., 2002. Forecasting with artificial network models: SSE/EFI Working Paper Series in Economics and Finance 491. Diebold, Mariano (bib8) 1995; 13 Storn, Price (bib40) 1995 Rocca, Oliveri, Massa (bib35) 2011; 53 Kisi, Ozkan, Akay (bib20) 2012; 428 Li, Chen (bib24) 2010; 2010 Karaboga (bib17) 2005 Li, Liu, Yin (bib25) 2013; 27 Xiong, Bao, Hu, Chiong (bib46) 2015; 305 Zhao, Chen (bib49) 2008 Yang, Ding, Liu (bib47) 1998; 8 Tabari, Kisi, Ezani, Talaee (bib41) 2012; 444 J.B. Li Y.K. Chung A novel back-propagation neural network training algorithm designed by an ant colony optimization. In: Proceedings of Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES. IEEE pp. 1–5 Babu, B.V., Angira, R., 2003. Optimization of water pumping system using differential evolution strategies. In: Proceedings of the Second International Conference on Computational Intelligence, Robotics, and Autonomous Systems. Citeseer. Bao, Xiong, Hu (bib3) 2014; 44 Maier, Simpson, Zecchin, Foong, Phang, Seah, Tan (bib28) 2003; 129 Zhang, Fong, Yuen (bib48) 2013; 19 Blum, Roli (bib6) 2003; 35 Harvey, Leybourne, Newbold (bib10) 1997; 13 Hu, Bao, Chiong, Xiong (bib12) 2015 Karaboga, Akay, Ozturk (bib19) 2007 Liu, Pender (bib27) 2013; 17 Kumar, Reddy (bib21) 2006; 20 Hu, Bao, Xiong, Chiong (bib13) 2015; 40 Li, Gu (bib26) 2003; 31 Shelokar, Siarry, Jayaraman, Kulkarni (bib37) 2007; 188 Dorigo, Maniezzo, Colorni (bib9) 1996; 26 Rezaeianzadeh, Tabari, Yazdi, Isik, Kalin (bib34) 2014; 25 Bhadra, Bandyopadhyay, Singh, Raghuwanshi (bib4) 2010; 24 Socha, Blum (bib38) 2007; 16 Taieb, Bontempi, Atiya, Sorjamaa (bib42) 2012; 39 Rath, Nayak, Chatterjee (bib31) 2013; 11 Moore (bib29) 2007; 11 Jena, Chatterjee, Pradhan, Mishra (bib15) 2014; 517 Chiong, Weise, Michalewicz (bib7) 2012 Sen (bib36) 1998; 3 Blum, Chiong, Clerc, De Jong, Michalewicz, Neri, Weise (bib5) 2012; 2012 Rezaeianzadeh, Stein, Tabari, Abghari, Jalalkamali, Hosseinipour, Singh (bib33) 2013; 10 Vasan (10.1016/j.engappai.2015.09.010_bib43) 2010; 136 Storn (10.1016/j.engappai.2015.09.010_bib40) 1995 Rocca (10.1016/j.engappai.2015.09.010_bib35) 2011; 53 10.1016/j.engappai.2015.09.010_bib44 Kisi (10.1016/j.engappai.2015.09.010_bib20) 2012; 428 Li (10.1016/j.engappai.2015.09.010_bib22) 2015; 54 Diebold (10.1016/j.engappai.2015.09.010_bib8) 1995; 13 Socha (10.1016/j.engappai.2015.09.010_bib38) 2007; 16 Rezaeianzadeh (10.1016/j.engappai.2015.09.010_bib33) 2013; 10 Shelokar (10.1016/j.engappai.2015.09.010_bib37) 2007; 188 Bao (10.1016/j.engappai.2015.09.010_bib3) 2014; 44 Li (10.1016/j.engappai.2015.09.010_bib24) 2010; 2010 Jalali (10.1016/j.engappai.2015.09.010_bib14) 2006; 30 Harvey (10.1016/j.engappai.2015.09.010_bib10) 1997; 13 Karaboga (10.1016/j.engappai.2015.09.010_bib17) 2005 Jiang (10.1016/j.engappai.2015.09.010_bib16) 2007; 85 Maier (10.1016/j.engappai.2015.09.010_bib28) 2003; 129 Rezaeianzadeh (10.1016/j.engappai.2015.09.010_bib34) 2014; 25 Karaboga (10.1016/j.engappai.2015.09.010_bib19) 2007 Bhadra (10.1016/j.engappai.2015.09.010_bib4) 2010; 24 Xiong (10.1016/j.engappai.2015.09.010_bib45) 2013; 40 Zhao (10.1016/j.engappai.2015.09.010_bib49) 2008 Blum (10.1016/j.engappai.2015.09.010_bib6) 2003; 35 Jena (10.1016/j.engappai.2015.09.010_bib15) 2014; 517 Bao (10.1016/j.engappai.2015.09.010_bib2) 2014; 129 Song (10.1016/j.engappai.2015.09.010_bib39) 2014; 109 Yang (10.1016/j.engappai.2015.09.010_bib47) 1998; 8 Blum (10.1016/j.engappai.2015.09.010_bib5) 2012; 2012 10.1016/j.engappai.2015.09.010_bib23 Rath (10.1016/j.engappai.2015.09.010_bib31) 2013; 11 Sen (10.1016/j.engappai.2015.09.010_bib36) 1998; 3 Dorigo (10.1016/j.engappai.2015.09.010_bib9) 1996; 26 Hu (10.1016/j.engappai.2015.09.010_bib12) 2015 Hossain (10.1016/j.engappai.2015.09.010_bib11) 2013; 423 Hu (10.1016/j.engappai.2015.09.010_bib13) 2015; 40 Liu (10.1016/j.engappai.2015.09.010_bib27) 2013; 17 Taieb (10.1016/j.engappai.2015.09.010_bib42) 2012; 39 Kumar (10.1016/j.engappai.2015.09.010_bib21) 2006; 20 Moore (10.1016/j.engappai.2015.09.010_bib29) 2007; 11 Li (10.1016/j.engappai.2015.09.010_bib25) 2013; 27 10.1016/j.engappai.2015.09.010_bib32 Karaboga (10.1016/j.engappai.2015.09.010_bib18) 2009; 214 Xiong (10.1016/j.engappai.2015.09.010_bib46) 2015; 305 Chiong (10.1016/j.engappai.2015.09.010_bib7) 2012 Li (10.1016/j.engappai.2015.09.010_bib26) 2003; 31 Qiu (10.1016/j.engappai.2015.09.010_bib30) 1998; 9 Zhang (10.1016/j.engappai.2015.09.010_bib48) 2013; 19 10.1016/j.engappai.2015.09.010_bib1 Tabari (10.1016/j.engappai.2015.09.010_bib41) 2012; 444 |
| References_xml | – volume: 25 start-page: 25 year: 2014 end-page: 37 ident: bib34 article-title: Flood flow forecasting using ANN, ANFIS and regression models publication-title: Neural Computing and Applications – start-page: 39 year: 2008 end-page: 48 ident: bib49 article-title: Hydrological sciences for managing water resources in the Asian developing world – start-page: 200 year: 2005 ident: bib17 publication-title: An idea based on honey bee swarm for numerical optimization – volume: 30 start-page: 107 year: 2006 end-page: 117 ident: bib14 article-title: Reservoir operation by ant colony optimization algorithms publication-title: Iranian Journal of Science and Technology, Transaction B: Engineering – reference: Rech, G., 2002. Forecasting with artificial network models: SSE/EFI Working Paper Series in Economics and Finance 491. – volume: 39 start-page: 7067 year: 2012 end-page: 7083 ident: bib42 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Systems with Applications – volume: 40 start-page: 405 year: 2013 end-page: 415 ident: bib45 article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Economics – volume: 2012 start-page: 1 year: 2012 end-page: 29 ident: bib5 article-title: Evolutionary optimization publication-title: Variants of Evolutionary Algorithms for Real-world Applications – volume: 24 start-page: 37 year: 2010 end-page: 62 ident: bib4 article-title: Rainfall-runoff modeling: comparison of two approaches with different data requirements publication-title: Water Resources Management – volume: 129 start-page: 200 year: 2003 end-page: 209 ident: bib28 article-title: Ant colony optimization for design of water distribution systems publication-title: Journal of Water Resources Planning and Management – year: 2012 ident: bib7 article-title: Variants of evolutionary algorithms for real-world applications publication-title: 2012 – volume: 31 start-page: 122 year: 2003 end-page: 134 ident: bib26 article-title: Modeling flow and sediment transport in a river system using an artificial neural network publication-title: Environmental Management – volume: 517 start-page: 847 year: 2014 end-page: 862 ident: bib15 article-title: Are recent frequent high floods in Mahanadi basin in eastern India due to increase in extreme rainfalls? publication-title: Journal of Hydrology – volume: 35 start-page: 268 year: 2003 end-page: 308 ident: bib6 article-title: Metaheuristics in combinatorial optimization: overview and conceptual comparison publication-title: ACM Computing Surveys – volume: 3 start-page: 69 year: 1998 end-page: 72 ident: bib36 article-title: Average areal precipitation by percentage weighted polygon method publication-title: Journal of Hydrologic Engineering – volume: 13 start-page: 281 year: 1997 end-page: 291 ident: bib10 article-title: Testing the equality of prediction mean squared errors publication-title: International Journal of Forecasting – volume: 136 start-page: 279 year: 2010 end-page: 287 ident: bib43 article-title: Optimization of water distribution network design using differential evolution publication-title: Journal of Water Resources Planning and Management – reference: J.B. Li Y.K. Chung A novel back-propagation neural network training algorithm designed by an ant colony optimization. In: Proceedings of Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES. IEEE pp. 1–5 – volume: 188 start-page: 129 year: 2007 end-page: 142 ident: bib37 article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization publication-title: Applied Mathematics and Computation – volume: 8 start-page: 23 year: 1998 end-page: 27 ident: bib47 article-title: Preliminary study of hydrology-based artificial neural network publication-title: Journal of Hydraulics – volume: 11 start-page: 483 year: 2007 end-page: 499 ident: bib29 article-title: The PDM rainfall-runoff model publication-title: Hydrology and Earth System Sciences – volume: 428 start-page: 94 year: 2012 end-page: 103 ident: bib20 article-title: Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm publication-title: Journal of Hydrology – start-page: 318 year: 2007 end-page: 329 ident: bib19 article-title: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks publication-title: Modeling Decisions for Artificial Intelligence – volume: 305 start-page: 77 year: 2015 end-page: 92 ident: bib46 article-title: Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms publication-title: Information Sciences – volume: 27 start-page: 5245 year: 2013 end-page: 5260 ident: bib25 article-title: Differential evolution for prediction of longitudinal dispersion coefficients in natural streams publication-title: Water Resources Management – volume: 44 start-page: 655 year: 2014 end-page: 668 ident: bib3 article-title: PSO-MISMO modeling strategy for multistep-ahead time series prediction publication-title: Cybernetics, IEEE Transactions on – year: 1995 ident: bib40 publication-title: Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces – volume: 16 start-page: 235 year: 2007 end-page: 247 ident: bib38 article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training publication-title: Neural Computing and Applications – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: bib9 article-title: Ant system: optimization by a colony of cooperating agents publication-title: Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on – volume: 40 start-page: 17 year: 2015 end-page: 27 ident: bib13 article-title: Hybrid filter-wrapper feature selection for short-term load forecasting publication-title: Engineering Applications of Artificial Intelligence – volume: 53 start-page: 38 year: 2011 end-page: 49 ident: bib35 article-title: Differential evolution as applied to electromagnetics publication-title: Antennas and Propagation Magazine, IEEE – volume: 13 start-page: 253 year: 1995 end-page: 263 ident: bib8 article-title: Comparing predictive accuracy publication-title: Journal of Business & Economic Statistics – volume: 10 start-page: 1181 year: 2013 end-page: 1192 ident: bib33 article-title: Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting publication-title: International Journal of Environmental Science and Technology – volume: 2010 start-page: 627 year: 2010 end-page: 636 ident: bib24 article-title: Fuzzy variable classified method and its application in basin floods publication-title: Fuzzy Information and Engineering – reference: Babu, B.V., Angira, R., 2003. Optimization of water pumping system using differential evolution strategies. In: Proceedings of the Second International Conference on Computational Intelligence, Robotics, and Autonomous Systems. Citeseer. – volume: 423 start-page: 01 2001 year: 2013 ident: bib11 article-title: Application of artificial bee colony (ABC) algorithm in search of optimal release of Aswan High Dam publication-title: Journal of Physics: Conference Series – volume: 444 start-page: 78 year: 2012 end-page: 89 ident: bib41 article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment publication-title: Journal of Hydrology – year: 2015 ident: bib12 article-title: Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection publication-title: Energy – volume: 85 start-page: 143 year: 2007 end-page: 154 ident: bib16 article-title: Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000 publication-title: Geomorphology – volume: 20 start-page: 879 year: 2006 end-page: 898 ident: bib21 article-title: Ant colony optimization for multi-purpose reservoir operation publication-title: Water Resources Management – volume: 9 start-page: 258 year: 1998 end-page: 264 ident: bib30 article-title: A forecast model of fuzzy recognition neural networks and its application publication-title: Advances in Water Science – volume: 17 start-page: 713 year: 2013 end-page: 724 ident: bib27 article-title: Automatic calibration of a rapid flood spreading model using multiobjective optimisations publication-title: Soft Computing – volume: 11 start-page: 253 year: 2013 end-page: 268 ident: bib31 article-title: Hierarchical neurofuzzy model for real-time flood forecasting publication-title: International Journal of River Basin Management – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: bib18 article-title: A comparative study of artificial bee colony algorithm publication-title: Applied Mathematics and Computation – volume: 19 start-page: 715 year: 2013 end-page: 731 ident: bib48 article-title: A novel artificial bee colony algorithm for HVAC optimization problems publication-title: HVAC&R Research – volume: 109 start-page: 47 year: 2014 end-page: 61 ident: bib39 article-title: Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves publication-title: Journal of Applied Geophysics – volume: 129 start-page: 482 year: 2014 end-page: 493 ident: bib2 article-title: Multi-step-ahead time series prediction using multiple-output support vector regression publication-title: Neurocomputing – volume: 54 start-page: 1 year: 2015 end-page: 12 ident: bib22 article-title: A balance-evolution artificial bee colony algorithm for protein structure optimization based on a three-dimensional AB off-lattice model publication-title: Computational Biology and Chemistry – reference: K. Wang X.D. Wang J.S. Wang M.L. Jiang G.Y. Lv G.L. Feng X.L. Xu Solving parameter identification problem of nonlinear systems using differential evolution algorithm. In: Proceedings of the Second International Symposium on IEEE Intelligent Information Technology Application, 2008, IITA׳08. pp. 687–691 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 10.1016/j.engappai.2015.09.010_bib9 article-title: Ant system: optimization by a colony of cooperating agents publication-title: Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on doi: 10.1109/3477.484436 – volume: 17 start-page: 713 issue: 4 year: 2013 ident: 10.1016/j.engappai.2015.09.010_bib27 article-title: Automatic calibration of a rapid flood spreading model using multiobjective optimisations publication-title: Soft Computing doi: 10.1007/s00500-012-0944-z – volume: 40 start-page: 17 year: 2015 ident: 10.1016/j.engappai.2015.09.010_bib13 article-title: Hybrid filter-wrapper feature selection for short-term load forecasting publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2014.12.014 – ident: 10.1016/j.engappai.2015.09.010_bib44 doi: 10.1109/IITA.2008.556 – volume: 85 start-page: 143 issue: 3 year: 2007 ident: 10.1016/j.engappai.2015.09.010_bib16 article-title: Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000 publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.03.015 – volume: 40 start-page: 405 year: 2013 ident: 10.1016/j.engappai.2015.09.010_bib45 article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Economics doi: 10.1016/j.eneco.2013.07.028 – volume: 11 start-page: 253 issue: 3 year: 2013 ident: 10.1016/j.engappai.2015.09.010_bib31 article-title: Hierarchical neurofuzzy model for real-time flood forecasting publication-title: International Journal of River Basin Management doi: 10.1080/15715124.2013.798329 – volume: 35 start-page: 268 issue: 3 year: 2003 ident: 10.1016/j.engappai.2015.09.010_bib6 article-title: Metaheuristics in combinatorial optimization: overview and conceptual comparison publication-title: ACM Computing Surveys doi: 10.1145/937503.937505 – volume: 129 start-page: 200 issue: 3 year: 2003 ident: 10.1016/j.engappai.2015.09.010_bib28 article-title: Ant colony optimization for design of water distribution systems publication-title: Journal of Water Resources Planning and Management doi: 10.1061/(ASCE)0733-9496(2003)129:3(200) – volume: 20 start-page: 879 issue: 6 year: 2006 ident: 10.1016/j.engappai.2015.09.010_bib21 article-title: Ant colony optimization for multi-purpose reservoir operation publication-title: Water Resources Management doi: 10.1007/s11269-005-9012-0 – volume: 54 start-page: 1 year: 2015 ident: 10.1016/j.engappai.2015.09.010_bib22 article-title: A balance-evolution artificial bee colony algorithm for protein structure optimization based on a three-dimensional AB off-lattice model publication-title: Computational Biology and Chemistry doi: 10.1016/j.compbiolchem.2014.11.004 – volume: 24 start-page: 37 issue: 1 year: 2010 ident: 10.1016/j.engappai.2015.09.010_bib4 article-title: Rainfall-runoff modeling: comparison of two approaches with different data requirements publication-title: Water Resources Management doi: 10.1007/s11269-009-9436-z – volume: 428 start-page: 94 year: 2012 ident: 10.1016/j.engappai.2015.09.010_bib20 article-title: Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2012.01.026 – volume: 444 start-page: 78 year: 2012 ident: 10.1016/j.engappai.2015.09.010_bib41 article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2012.04.007 – volume: 30 start-page: 107 issue: B1 year: 2006 ident: 10.1016/j.engappai.2015.09.010_bib14 article-title: Reservoir operation by ant colony optimization algorithms publication-title: Iranian Journal of Science and Technology, Transaction B: Engineering – volume: 2010 start-page: 627 year: 2010 ident: 10.1016/j.engappai.2015.09.010_bib24 article-title: Fuzzy variable classified method and its application in basin floods – volume: 31 start-page: 122 issue: 1 year: 2003 ident: 10.1016/j.engappai.2015.09.010_bib26 article-title: Modeling flow and sediment transport in a river system using an artificial neural network publication-title: Environmental Management doi: 10.1007/s00267-002-2862-9 – year: 2015 ident: 10.1016/j.engappai.2015.09.010_bib12 article-title: Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection publication-title: Energy doi: 10.1016/j.energy.2015.03.054 – volume: 16 start-page: 235 issue: 3 year: 2007 ident: 10.1016/j.engappai.2015.09.010_bib38 article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training publication-title: Neural Computing and Applications doi: 10.1007/s00521-007-0084-z – start-page: 39 year: 2008 ident: 10.1016/j.engappai.2015.09.010_bib49 – volume: 517 start-page: 847 year: 2014 ident: 10.1016/j.engappai.2015.09.010_bib15 article-title: Are recent frequent high floods in Mahanadi basin in eastern India due to increase in extreme rainfalls? publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2014.06.021 – volume: 109 start-page: 47 year: 2014 ident: 10.1016/j.engappai.2015.09.010_bib39 article-title: Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves publication-title: Journal of Applied Geophysics doi: 10.1016/j.jappgeo.2014.07.014 – ident: 10.1016/j.engappai.2015.09.010_bib32 – volume: 39 start-page: 7067 issue: 8 year: 2012 ident: 10.1016/j.engappai.2015.09.010_bib42 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.039 – volume: 8 start-page: 23 year: 1998 ident: 10.1016/j.engappai.2015.09.010_bib47 article-title: Preliminary study of hydrology-based artificial neural network publication-title: Journal of Hydraulics – volume: 19 start-page: 715 issue: 6 year: 2013 ident: 10.1016/j.engappai.2015.09.010_bib48 article-title: A novel artificial bee colony algorithm for HVAC optimization problems publication-title: HVAC&R Research doi: 10.1080/10789669.2013.803915 – start-page: 200 year: 2005 ident: 10.1016/j.engappai.2015.09.010_bib17 – year: 2012 ident: 10.1016/j.engappai.2015.09.010_bib7 article-title: Variants of evolutionary algorithms for real-world applications – volume: 10 start-page: 1181 issue: 6 year: 2013 ident: 10.1016/j.engappai.2015.09.010_bib33 article-title: Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-013-0209-0 – volume: 129 start-page: 482 year: 2014 ident: 10.1016/j.engappai.2015.09.010_bib2 article-title: Multi-step-ahead time series prediction using multiple-output support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.010 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.engappai.2015.09.010_bib5 article-title: Evolutionary optimization – volume: 44 start-page: 655 issue: 5 year: 2014 ident: 10.1016/j.engappai.2015.09.010_bib3 article-title: PSO-MISMO modeling strategy for multistep-ahead time series prediction publication-title: Cybernetics, IEEE Transactions on doi: 10.1109/TCYB.2013.2265084 – volume: 188 start-page: 129 issue: 1 year: 2007 ident: 10.1016/j.engappai.2015.09.010_bib37 article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.09.098 – start-page: 318 year: 2007 ident: 10.1016/j.engappai.2015.09.010_bib19 article-title: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks – volume: 13 start-page: 253 issue: 3 year: 1995 ident: 10.1016/j.engappai.2015.09.010_bib8 article-title: Comparing predictive accuracy publication-title: Journal of Business & Economic Statistics doi: 10.1080/07350015.1995.10524599 – volume: 9 start-page: 258 issue: 3 year: 1998 ident: 10.1016/j.engappai.2015.09.010_bib30 article-title: A forecast model of fuzzy recognition neural networks and its application publication-title: Advances in Water Science – year: 1995 ident: 10.1016/j.engappai.2015.09.010_bib40 – volume: 305 start-page: 77 year: 2015 ident: 10.1016/j.engappai.2015.09.010_bib46 article-title: Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms publication-title: Information Sciences doi: 10.1016/j.ins.2015.01.029 – volume: 13 start-page: 281 issue: 2 year: 1997 ident: 10.1016/j.engappai.2015.09.010_bib10 article-title: Testing the equality of prediction mean squared errors publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(96)00719-4 – volume: 25 start-page: 25 issue: 1 year: 2014 ident: 10.1016/j.engappai.2015.09.010_bib34 article-title: Flood flow forecasting using ANN, ANFIS and regression models publication-title: Neural Computing and Applications doi: 10.1007/s00521-013-1443-6 – volume: 53 start-page: 38 issue: 1 year: 2011 ident: 10.1016/j.engappai.2015.09.010_bib35 article-title: Differential evolution as applied to electromagnetics publication-title: Antennas and Propagation Magazine, IEEE doi: 10.1109/MAP.2011.5773566 – volume: 423 start-page: 01 2001 year: 2013 ident: 10.1016/j.engappai.2015.09.010_bib11 article-title: Application of artificial bee colony (ABC) algorithm in search of optimal release of Aswan High Dam publication-title: Journal of Physics: Conference Series – volume: 214 start-page: 108 issue: 1 year: 2009 ident: 10.1016/j.engappai.2015.09.010_bib18 article-title: A comparative study of artificial bee colony algorithm publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2009.03.090 – volume: 136 start-page: 279 issue: 2 year: 2010 ident: 10.1016/j.engappai.2015.09.010_bib43 article-title: Optimization of water distribution network design using differential evolution publication-title: Journal of Water Resources Planning and Management doi: 10.1061/(ASCE)0733-9496(2010)136:2(279) – ident: 10.1016/j.engappai.2015.09.010_bib23 – volume: 11 start-page: 483 issue: 1 year: 2007 ident: 10.1016/j.engappai.2015.09.010_bib29 article-title: The PDM rainfall-runoff model publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-11-483-2007 – volume: 3 start-page: 69 issue: 1 year: 1998 ident: 10.1016/j.engappai.2015.09.010_bib36 article-title: Average areal precipitation by percentage weighted polygon method publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)1084-0699(1998)3:1(69) – ident: 10.1016/j.engappai.2015.09.010_bib1 – volume: 27 start-page: 5245 issue: 15 year: 2013 ident: 10.1016/j.engappai.2015.09.010_bib25 article-title: Differential evolution for prediction of longitudinal dispersion coefficients in natural streams publication-title: Water Resources Management |
| SSID | ssj0003846 |
| Score | 2.5101466 |
| Snippet | Population-based optimization algorithms have been successfully applied to hydrological forecasting recently owing to their powerful ability of global... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 258 |
| SubjectTerms | Ant colony optimization Artificial bee colony Differential evolution Downstream river flow forecasting Hybrid neural network |
| Title | A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model |
| URI | https://dx.doi.org/10.1016/j.engappai.2015.09.010 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWFh4I966gdVtE8dJPFYIVKjowEOwRc7DUNQmUVuEWBj53dwlDgUJiYEpiuOLLJ99d7a-746xEzfxtYOWn6M7UNzTRnAVqphL39M6kUQKpnvIq6Hfv_MuH-RDi502XBiCVVrbX9v0ylrblo6dzU45GnVuMDjA7RZQRnM6uBCJz_MCqmLQfl_APERYk3WwM6fe31jCz-0sf9RlqUcE8ZJVvlNi0v7moL45nfN1tmqjRejVA9pgrSzfZGs2cgS7L2fY1BRnaNq22EcPkkVmb6jSyEJhoPyq2MXJg6VQoNGYWDYm6PFjMR3NnyYzwGgWUrp7Jiz6BKYE4AAzLl7pS5boGQGmIX4DDU9vxPsCyo2Jo81rZDlURXa22d352e1pn9uiCzwRjjvneCKWOsmE0IE2yjFd5RqMw7LUw4NRqkIjlJHGN37sS4Phnm-62kszx0kVxU5S7LClvMizXQapi39wKcWccT0jnDgQsQy7aSBjNMEq3GOymekosRnJqTDGOGqgZ89Ro6GINBR1VYQa2mOdL7myzsnxp4RqFBn9WF0ROo4_ZPf_IXvAVuit5i4esqX59CU7wiBmHh9Xq_SYLfcuBv0hPQfX94NPm2L14g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELU4Cmi4ETdT0JrdxHESlwiBlrMBJDrLOQyLdpNodxGioeS7mUkcDgmJgtbORJbHnsOa94axAz8NjYeWn6M7UDwwVnAVq4TLMDAmlQQKpnfIq-uwdxec38v7KXbcYmGorNLZ_sam19bajXTcbnaqfr9zg8EBXreIGM0pcVHTbDaQfkQZ2OHbV52HiBu0Dn7N6fNvMOGnw7x4MFVl-lTjJWvCU4LS_uahvnmd0yW24MJFOGpWtMym8mKFLbrQEdzFHONQ252hHVtl70eQflF7Q80jC6WF6rNlFycXlkGJVmPo4JhgBg_lqD95HI4Bw1nI6PGZitGHMKIKDrCD8oVm8tSMqWIaklcw8PhKwC8gckxcbdGUlkPdZWeN3Z2e3B73uOu6wFPh-ROOKbE0aS6EiYxVnu0q32IglmcBZkaZiq1QVtrQhkkoLcZ7oe2aIMs9L1MUPEmxzmaKssg3GGQ-_sEnjjnrB1Z4SSQSGXezSCZog1W8yWS70zp1lOTUGWOg29qzJ91qSJOGdFdp1NAm63zKVQ0px58SqlWk_nG8NHqOP2S3_iG7z-Z6t1eX-vLs-mKbzdNMA2TcYTOT0XO-ixHNJNmrT-wHmNv11A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+population-based+optimization+algorithms+for+downstream+river+flow+forecasting+by+a+hybrid+neural+network+model&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Chen%2C+X.Y.&rft.au=Chau%2C+K.W.&rft.au=Busari%2C+A.O.&rft.date=2015-11-01&rft.issn=0952-1976&rft.volume=46&rft.spage=258&rft.epage=268&rft_id=info:doi/10.1016%2Fj.engappai.2015.09.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2015_09_010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |