A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model

Population-based optimization algorithms have been successfully applied to hydrological forecasting recently owing to their powerful ability of global optimization. This paper investigates three algorithms, i.e. differential evolution (DE), artificial bee colony (ABC) and ant colony optimization (AC...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 46; pp. 258 - 268
Main Authors Chen, X.Y., Chau, K.W., Busari, A.O.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2015
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2015.09.010

Cover

Abstract Population-based optimization algorithms have been successfully applied to hydrological forecasting recently owing to their powerful ability of global optimization. This paper investigates three algorithms, i.e. differential evolution (DE), artificial bee colony (ABC) and ant colony optimization (ACO), to determine the optimal one for forecasting downstream river flow. A hybrid neural network (HNN) model, which incorporates fuzzy pattern-recognition and a continuity equation into the artificial neural network, is proposed to forecast downstream river flow based on upstream river flows and areal precipitation. The optimization algorithm is employed to determine the premise parameters of the HNN model. Daily data from the Altamaha River basin of Georgia is applied in the forecasting analysis. Discussions on the forecasting performances, convergence speed and stability of various algorithms are presented. For completeness׳ sake, particle swarm optimization (PSO) is included as a benchmark case for the comparison of forecasting performances. Results show that the DE algorithm attains the best performance in generalization and forecasting. The forecasting accuracy of the DE algorithm is comparable to that of the PSO, and yet presents weak superiority over the ABC and ACO. The Diebold–Mariano (DM) test indicates that each pair of algorithms has no difference under the null hypothesis of equal forecasting accuracy. The DE and ACO algorithms are both favorable for searching parameters of the HNN model, including the recession coefficient and initial storage. Further analysis reveals the drawback of slow convergence and time-consumption of the ABC algorithm. The three algorithms present stability and reliability with respect to their control parameters on the whole. It can be concluded that the DE and ACO algorithms are considerably more adaptive in optimizing the forecasting problem for the HNN model. •Comparison of performances of population-based optimization algorithms in forecasting downstream river flow.•Differential evolution (DE), artificial bee colony and ant colony optimization (ACO).•Particle swarm optimization is included as a benchmark comparison for forecasting performances.•Hybrid neural network (HNN) model incorporating fuzzy pattern-recognition and continuity equation.•DE and ACO algorithms are considerably more adaptive in optimizing the forecasting problem for the HNN model.
AbstractList Population-based optimization algorithms have been successfully applied to hydrological forecasting recently owing to their powerful ability of global optimization. This paper investigates three algorithms, i.e. differential evolution (DE), artificial bee colony (ABC) and ant colony optimization (ACO), to determine the optimal one for forecasting downstream river flow. A hybrid neural network (HNN) model, which incorporates fuzzy pattern-recognition and a continuity equation into the artificial neural network, is proposed to forecast downstream river flow based on upstream river flows and areal precipitation. The optimization algorithm is employed to determine the premise parameters of the HNN model. Daily data from the Altamaha River basin of Georgia is applied in the forecasting analysis. Discussions on the forecasting performances, convergence speed and stability of various algorithms are presented. For completeness׳ sake, particle swarm optimization (PSO) is included as a benchmark case for the comparison of forecasting performances. Results show that the DE algorithm attains the best performance in generalization and forecasting. The forecasting accuracy of the DE algorithm is comparable to that of the PSO, and yet presents weak superiority over the ABC and ACO. The Diebold–Mariano (DM) test indicates that each pair of algorithms has no difference under the null hypothesis of equal forecasting accuracy. The DE and ACO algorithms are both favorable for searching parameters of the HNN model, including the recession coefficient and initial storage. Further analysis reveals the drawback of slow convergence and time-consumption of the ABC algorithm. The three algorithms present stability and reliability with respect to their control parameters on the whole. It can be concluded that the DE and ACO algorithms are considerably more adaptive in optimizing the forecasting problem for the HNN model. •Comparison of performances of population-based optimization algorithms in forecasting downstream river flow.•Differential evolution (DE), artificial bee colony and ant colony optimization (ACO).•Particle swarm optimization is included as a benchmark comparison for forecasting performances.•Hybrid neural network (HNN) model incorporating fuzzy pattern-recognition and continuity equation.•DE and ACO algorithms are considerably more adaptive in optimizing the forecasting problem for the HNN model.
Author Busari, A.O.
Chau, K.W.
Chen, X.Y.
Author_xml – sequence: 1
  givenname: X.Y.
  surname: Chen
  fullname: Chen, X.Y.
– sequence: 2
  givenname: K.W.
  orcidid: 0000-0001-6457-161X
  surname: Chau
  fullname: Chau, K.W.
  email: cekwchau@polyu.edu.hk
– sequence: 3
  givenname: A.O.
  surname: Busari
  fullname: Busari, A.O.
BookMark eNqFkM1KAzEUhYMoWKuvIHmBGW86nXQCLhTxDwpudB1uJzdt6sxkSFJLfQCf26k_GzeuDpzLd-B-J-yw8x0xdi4gFyDkxTqnbol9jy6fgChzUDkIOGAjUc2KTM6kOmQjUOUkE2omj9lJjGsAKKqpHLGPa177tseAyb0Rj2ljdtxb3vt-0wyd77IFRjLc98m17v2r4tgsfXBp1UZufeDGb7uYAmHLw7ASuG38dn-hGmNy3ZIvdhz5arcIzvCONgGbIdLWh1feekPNKTuy2EQ6-8kxe7m7fb55yOZP94831_OsLsQkZVVVlVhTUeAMrRIW1MQCKDJTJaVRlS2ULa20ciFLW05BWsCpISGMkjC4KcZMfu_WwccYyOo-uBbDTgvQe5t6rX9t6r1NDUoPNgfw8g9Yu_QlIwV0zf_41TdOw3NvjoKOtaOuJuMGSUkb7_6b-AQKBJvS
CitedBy_id crossref_primary_10_1016_j_enconman_2017_06_019
crossref_primary_10_1007_s00704_019_02833_9
crossref_primary_10_3390_su8060555
crossref_primary_10_1016_j_asoc_2020_106734
crossref_primary_10_1016_j_jhydrol_2019_124425
crossref_primary_10_1016_j_jhydrol_2018_06_049
crossref_primary_10_1016_j_asoc_2019_02_030
crossref_primary_10_1007_s12205_019_1070_6
crossref_primary_10_1007_s41742_022_00475_w
crossref_primary_10_1061__ASCE_EE_1943_7870_0001414
crossref_primary_10_1186_s40562_018_0111_1
crossref_primary_10_1016_j_jclepro_2019_119035
crossref_primary_10_1016_j_jenvman_2019_01_023
crossref_primary_10_1016_j_jhydrol_2019_02_038
crossref_primary_10_3390_w11040709
crossref_primary_10_3390_w7126652
crossref_primary_10_1016_j_jhydrol_2018_07_004
crossref_primary_10_1007_s12145_021_00599_1
crossref_primary_10_1080_02626667_2017_1373778
crossref_primary_10_1007_s11629_017_4684_5
crossref_primary_10_1016_j_engappai_2019_08_014
crossref_primary_10_1061__ASCE_HE_1943_5584_0001542
crossref_primary_10_1007_s12205_019_1292_7
crossref_primary_10_1007_s11269_016_1564_7
crossref_primary_10_2166_ws_2021_289
crossref_primary_10_1007_s13762_017_1307_1
crossref_primary_10_2166_hydro_2024_056
crossref_primary_10_3390_w8010020
crossref_primary_10_5194_npg_25_291_2018
crossref_primary_10_1016_j_scitotenv_2020_144459
crossref_primary_10_2166_wcc_2018_261
crossref_primary_10_3390_w12020510
crossref_primary_10_1007_s40996_020_00526_2
crossref_primary_10_1080_19942060_2018_1526119
crossref_primary_10_1016_j_envsoft_2018_02_017
crossref_primary_10_1061__ASCE_HE_1943_5584_0001538
crossref_primary_10_1175_JHM_D_16_0109_1
crossref_primary_10_1016_j_oceaneng_2024_119849
crossref_primary_10_2166_hydro_2017_224
crossref_primary_10_2166_wcc_2017_076
crossref_primary_10_1007_s11269_017_1780_9
crossref_primary_10_3390_rs12172695
crossref_primary_10_1016_j_cageo_2018_08_003
crossref_primary_10_1016_j_jhydrol_2016_11_053
crossref_primary_10_3390_w10010015
crossref_primary_10_3390_ijerph13030345
crossref_primary_10_1016_j_jhydrol_2020_125477
crossref_primary_10_1061__ASCE_HE_1943_5584_0001547
crossref_primary_10_2166_aqua_2018_130
crossref_primary_10_2166_nh_2016_264
crossref_primary_10_1007_s11269_016_1281_2
crossref_primary_10_1016_j_ecolind_2016_05_006
crossref_primary_10_1007_s10661_019_7446_8
crossref_primary_10_1007_s13369_018_3092_7
crossref_primary_10_3390_w12051484
crossref_primary_10_33411_IJIST_2021030507
crossref_primary_10_3390_w9030186
crossref_primary_10_3390_cli5030048
crossref_primary_10_2166_hydro_2020_016
crossref_primary_10_1007_s12665_018_7940_2
crossref_primary_10_1007_s41403_017_0025_9
crossref_primary_10_1140_epjp_i2018_11948_5
crossref_primary_10_1016_j_cam_2018_03_045
crossref_primary_10_1016_j_jhydrol_2019_02_027
crossref_primary_10_1007_s11269_017_1701_y
crossref_primary_10_3389_fmars_2021_658434
crossref_primary_10_3390_w10010004
crossref_primary_10_1007_s11356_017_0405_4
crossref_primary_10_1016_j_energy_2018_04_075
crossref_primary_10_1016_j_ijepes_2017_07_015
crossref_primary_10_1061__ASCE_HE_1943_5584_0001554
crossref_primary_10_1016_j_jastp_2016_12_002
crossref_primary_10_1061__ASCE_HE_1943_5584_0001575
crossref_primary_10_1061__ASCE_HE_1943_5584_0001695
crossref_primary_10_1016_j_jhydrol_2017_03_032
crossref_primary_10_1016_j_jhydrol_2019_124225
crossref_primary_10_3390_su151310543
crossref_primary_10_1007_s00703_017_0518_9
crossref_primary_10_1007_s11269_016_1532_2
crossref_primary_10_1007_s11063_017_9686_3
crossref_primary_10_32604_iasc_2021_016246
crossref_primary_10_1038_s41598_024_55266_4
crossref_primary_10_1155_2018_3942723
crossref_primary_10_1080_02626667_2018_1447112
crossref_primary_10_1016_j_jhydrol_2016_12_001
crossref_primary_10_1016_j_engappai_2016_10_009
crossref_primary_10_1016_j_amc_2016_07_014
crossref_primary_10_1016_j_scitotenv_2018_01_266
crossref_primary_10_1080_19942060_2018_1517052
crossref_primary_10_1080_19942060_2018_1482476
crossref_primary_10_1007_s12665_018_7349_y
crossref_primary_10_1016_j_jhydrol_2017_08_015
crossref_primary_10_1016_j_jhydrol_2020_125223
crossref_primary_10_3390_cli5020033
crossref_primary_10_3390_w10030290
crossref_primary_10_3390_su9010111
crossref_primary_10_1080_15715124_2016_1203331
crossref_primary_10_1016_j_jhydrol_2021_126815
crossref_primary_10_3390_hydrology3020015
crossref_primary_10_1016_j_geoderma_2018_05_030
crossref_primary_10_1061__ASCE_HE_1943_5584_0001591
crossref_primary_10_1016_j_engappai_2019_06_010
crossref_primary_10_1007_s11269_018_1997_2
crossref_primary_10_1140_epjp_i2018_11968_1
crossref_primary_10_1007_s11831_023_09942_9
crossref_primary_10_1007_s12205_019_5989_4
crossref_primary_10_1007_s11269_016_1507_3
crossref_primary_10_1080_02626667_2021_1985123
crossref_primary_10_1016_j_ecoinf_2018_01_005
crossref_primary_10_1080_2150704X_2017_1418992
crossref_primary_10_3390_ijerph15040775
crossref_primary_10_3390_w10030301
crossref_primary_10_1186_s40703_020_00110_7
crossref_primary_10_1061__ASCE_HE_1943_5584_0001625
crossref_primary_10_1061__ASCE_HE_1943_5584_0001902
crossref_primary_10_1007_s11269_018_2000_y
crossref_primary_10_1007_s11831_023_10017_y
crossref_primary_10_1016_j_ecolind_2016_03_050
crossref_primary_10_1016_j_jhydrol_2020_124627
crossref_primary_10_1088_1755_1315_961_1_012058
crossref_primary_10_1061__ASCE_HE_1943_5584_0001760
crossref_primary_10_3390_w9110880
crossref_primary_10_1007_s00500_020_05457_8
crossref_primary_10_1007_s11269_017_1623_8
crossref_primary_10_1016_j_jhydrol_2021_126433
crossref_primary_10_1007_s11269_017_1858_4
crossref_primary_10_1007_s12145_022_00896_3
crossref_primary_10_1007_s40996_019_00272_0
crossref_primary_10_1007_s00477_017_1400_5
crossref_primary_10_3390_w10020110
crossref_primary_10_1007_s11069_021_04796_5
crossref_primary_10_1016_j_asoc_2019_04_026
crossref_primary_10_1061__ASCE_EE_1943_7870_0001397
crossref_primary_10_1016_j_jhydrol_2016_11_025
crossref_primary_10_3390_w8090367
crossref_primary_10_1007_s12555_019_0984_6
crossref_primary_10_1080_19942060_2018_1463871
crossref_primary_10_1111_itor_12908
crossref_primary_10_2166_wcc_2018_120
crossref_primary_10_4236_cweee_2017_61009
crossref_primary_10_1016_j_jclepro_2019_119724
crossref_primary_10_1016_j_asoc_2019_105589
crossref_primary_10_2166_nh_2018_049
crossref_primary_10_3390_w10010040
Cites_doi 10.1109/3477.484436
10.1007/s00500-012-0944-z
10.1016/j.engappai.2014.12.014
10.1109/IITA.2008.556
10.1016/j.geomorph.2006.03.015
10.1016/j.eneco.2013.07.028
10.1080/15715124.2013.798329
10.1145/937503.937505
10.1061/(ASCE)0733-9496(2003)129:3(200)
10.1007/s11269-005-9012-0
10.1016/j.compbiolchem.2014.11.004
10.1007/s11269-009-9436-z
10.1016/j.jhydrol.2012.01.026
10.1016/j.jhydrol.2012.04.007
10.1007/s00267-002-2862-9
10.1016/j.energy.2015.03.054
10.1007/s00521-007-0084-z
10.1016/j.jhydrol.2014.06.021
10.1016/j.jappgeo.2014.07.014
10.1016/j.eswa.2012.01.039
10.1080/10789669.2013.803915
10.1007/s13762-013-0209-0
10.1016/j.neucom.2013.09.010
10.1109/TCYB.2013.2265084
10.1016/j.amc.2006.09.098
10.1080/07350015.1995.10524599
10.1016/j.ins.2015.01.029
10.1016/S0169-2070(96)00719-4
10.1007/s00521-013-1443-6
10.1109/MAP.2011.5773566
10.1016/j.amc.2009.03.090
10.1061/(ASCE)0733-9496(2010)136:2(279)
10.5194/hess-11-483-2007
10.1061/(ASCE)1084-0699(1998)3:1(69)
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2015.09.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 268
ExternalDocumentID 10_1016_j_engappai_2015_09_010
S0952197615002109
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-8885ace33a7af91f092f009ed4966d98f39f5f6f6b65f5406f0a4de11d9600153
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Wed Oct 01 01:51:01 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Fri Feb 23 02:28:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Ant colony optimization
Artificial bee colony
Downstream river flow forecasting
Hybrid neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-8885ace33a7af91f092f009ed4966d98f39f5f6f6b65f5406f0a4de11d9600153
ORCID 0000-0001-6457-161X
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_engappai_2015_09_010
crossref_citationtrail_10_1016_j_engappai_2015_09_010
elsevier_sciencedirect_doi_10_1016_j_engappai_2015_09_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
2015-11-00
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bao, Xiong, Hu (bib2) 2014; 129
Li, Chiong, Lin (bib22) 2015; 54
Xiong, Bao, Hu (bib45) 2013; 40
Jiang, Su, Hartmann (bib16) 2007; 85
Karaboga, Akay (bib18) 2009; 214
K. Wang X.D. Wang J.S. Wang M.L. Jiang G.Y. Lv G.L. Feng X.L. Xu Solving parameter identification problem of nonlinear systems using differential evolution algorithm. In: Proceedings of the Second International Symposium on IEEE Intelligent Information Technology Application, 2008, IITA׳08. pp. 687–691
Qiu, Chen, Nie (bib30) 1998; 9
Hossain, El-shafie (bib11) 2013; 423
Vasan, Simonovic (bib43) 2010; 136
Jalali, Afshar, Marino (bib14) 2006; 30
Song, Li, Zhang, Huang, Shi, Jin, Bai (bib39) 2014; 109
Rech, G., 2002. Forecasting with artificial network models: SSE/EFI Working Paper Series in Economics and Finance 491.
Diebold, Mariano (bib8) 1995; 13
Storn, Price (bib40) 1995
Rocca, Oliveri, Massa (bib35) 2011; 53
Kisi, Ozkan, Akay (bib20) 2012; 428
Li, Chen (bib24) 2010; 2010
Karaboga (bib17) 2005
Li, Liu, Yin (bib25) 2013; 27
Xiong, Bao, Hu, Chiong (bib46) 2015; 305
Zhao, Chen (bib49) 2008
Yang, Ding, Liu (bib47) 1998; 8
Tabari, Kisi, Ezani, Talaee (bib41) 2012; 444
J.B. Li Y.K. Chung A novel back-propagation neural network training algorithm designed by an ant colony optimization. In: Proceedings of Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES. IEEE pp. 1–5
Babu, B.V., Angira, R., 2003. Optimization of water pumping system using differential evolution strategies. In: Proceedings of the Second International Conference on Computational Intelligence, Robotics, and Autonomous Systems. Citeseer.
Bao, Xiong, Hu (bib3) 2014; 44
Maier, Simpson, Zecchin, Foong, Phang, Seah, Tan (bib28) 2003; 129
Zhang, Fong, Yuen (bib48) 2013; 19
Blum, Roli (bib6) 2003; 35
Harvey, Leybourne, Newbold (bib10) 1997; 13
Hu, Bao, Chiong, Xiong (bib12) 2015
Karaboga, Akay, Ozturk (bib19) 2007
Liu, Pender (bib27) 2013; 17
Kumar, Reddy (bib21) 2006; 20
Hu, Bao, Xiong, Chiong (bib13) 2015; 40
Li, Gu (bib26) 2003; 31
Shelokar, Siarry, Jayaraman, Kulkarni (bib37) 2007; 188
Dorigo, Maniezzo, Colorni (bib9) 1996; 26
Rezaeianzadeh, Tabari, Yazdi, Isik, Kalin (bib34) 2014; 25
Bhadra, Bandyopadhyay, Singh, Raghuwanshi (bib4) 2010; 24
Socha, Blum (bib38) 2007; 16
Taieb, Bontempi, Atiya, Sorjamaa (bib42) 2012; 39
Rath, Nayak, Chatterjee (bib31) 2013; 11
Moore (bib29) 2007; 11
Jena, Chatterjee, Pradhan, Mishra (bib15) 2014; 517
Chiong, Weise, Michalewicz (bib7) 2012
Sen (bib36) 1998; 3
Blum, Chiong, Clerc, De Jong, Michalewicz, Neri, Weise (bib5) 2012; 2012
Rezaeianzadeh, Stein, Tabari, Abghari, Jalalkamali, Hosseinipour, Singh (bib33) 2013; 10
Vasan (10.1016/j.engappai.2015.09.010_bib43) 2010; 136
Storn (10.1016/j.engappai.2015.09.010_bib40) 1995
Rocca (10.1016/j.engappai.2015.09.010_bib35) 2011; 53
10.1016/j.engappai.2015.09.010_bib44
Kisi (10.1016/j.engappai.2015.09.010_bib20) 2012; 428
Li (10.1016/j.engappai.2015.09.010_bib22) 2015; 54
Diebold (10.1016/j.engappai.2015.09.010_bib8) 1995; 13
Socha (10.1016/j.engappai.2015.09.010_bib38) 2007; 16
Rezaeianzadeh (10.1016/j.engappai.2015.09.010_bib33) 2013; 10
Shelokar (10.1016/j.engappai.2015.09.010_bib37) 2007; 188
Bao (10.1016/j.engappai.2015.09.010_bib3) 2014; 44
Li (10.1016/j.engappai.2015.09.010_bib24) 2010; 2010
Jalali (10.1016/j.engappai.2015.09.010_bib14) 2006; 30
Harvey (10.1016/j.engappai.2015.09.010_bib10) 1997; 13
Karaboga (10.1016/j.engappai.2015.09.010_bib17) 2005
Jiang (10.1016/j.engappai.2015.09.010_bib16) 2007; 85
Maier (10.1016/j.engappai.2015.09.010_bib28) 2003; 129
Rezaeianzadeh (10.1016/j.engappai.2015.09.010_bib34) 2014; 25
Karaboga (10.1016/j.engappai.2015.09.010_bib19) 2007
Bhadra (10.1016/j.engappai.2015.09.010_bib4) 2010; 24
Xiong (10.1016/j.engappai.2015.09.010_bib45) 2013; 40
Zhao (10.1016/j.engappai.2015.09.010_bib49) 2008
Blum (10.1016/j.engappai.2015.09.010_bib6) 2003; 35
Jena (10.1016/j.engappai.2015.09.010_bib15) 2014; 517
Bao (10.1016/j.engappai.2015.09.010_bib2) 2014; 129
Song (10.1016/j.engappai.2015.09.010_bib39) 2014; 109
Yang (10.1016/j.engappai.2015.09.010_bib47) 1998; 8
Blum (10.1016/j.engappai.2015.09.010_bib5) 2012; 2012
10.1016/j.engappai.2015.09.010_bib23
Rath (10.1016/j.engappai.2015.09.010_bib31) 2013; 11
Sen (10.1016/j.engappai.2015.09.010_bib36) 1998; 3
Dorigo (10.1016/j.engappai.2015.09.010_bib9) 1996; 26
Hu (10.1016/j.engappai.2015.09.010_bib12) 2015
Hossain (10.1016/j.engappai.2015.09.010_bib11) 2013; 423
Hu (10.1016/j.engappai.2015.09.010_bib13) 2015; 40
Liu (10.1016/j.engappai.2015.09.010_bib27) 2013; 17
Taieb (10.1016/j.engappai.2015.09.010_bib42) 2012; 39
Kumar (10.1016/j.engappai.2015.09.010_bib21) 2006; 20
Moore (10.1016/j.engappai.2015.09.010_bib29) 2007; 11
Li (10.1016/j.engappai.2015.09.010_bib25) 2013; 27
10.1016/j.engappai.2015.09.010_bib32
Karaboga (10.1016/j.engappai.2015.09.010_bib18) 2009; 214
Xiong (10.1016/j.engappai.2015.09.010_bib46) 2015; 305
Chiong (10.1016/j.engappai.2015.09.010_bib7) 2012
Li (10.1016/j.engappai.2015.09.010_bib26) 2003; 31
Qiu (10.1016/j.engappai.2015.09.010_bib30) 1998; 9
Zhang (10.1016/j.engappai.2015.09.010_bib48) 2013; 19
10.1016/j.engappai.2015.09.010_bib1
Tabari (10.1016/j.engappai.2015.09.010_bib41) 2012; 444
References_xml – volume: 25
  start-page: 25
  year: 2014
  end-page: 37
  ident: bib34
  article-title: Flood flow forecasting using ANN, ANFIS and regression models
  publication-title: Neural Computing and Applications
– start-page: 39
  year: 2008
  end-page: 48
  ident: bib49
  article-title: Hydrological sciences for managing water resources in the Asian developing world
– start-page: 200
  year: 2005
  ident: bib17
  publication-title: An idea based on honey bee swarm for numerical optimization
– volume: 30
  start-page: 107
  year: 2006
  end-page: 117
  ident: bib14
  article-title: Reservoir operation by ant colony optimization algorithms
  publication-title: Iranian Journal of Science and Technology, Transaction B: Engineering
– reference: Rech, G., 2002. Forecasting with artificial network models: SSE/EFI Working Paper Series in Economics and Finance 491.
– volume: 39
  start-page: 7067
  year: 2012
  end-page: 7083
  ident: bib42
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 405
  year: 2013
  end-page: 415
  ident: bib45
  article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices
  publication-title: Energy Economics
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 29
  ident: bib5
  article-title: Evolutionary optimization
  publication-title: Variants of Evolutionary Algorithms for Real-world Applications
– volume: 24
  start-page: 37
  year: 2010
  end-page: 62
  ident: bib4
  article-title: Rainfall-runoff modeling: comparison of two approaches with different data requirements
  publication-title: Water Resources Management
– volume: 129
  start-page: 200
  year: 2003
  end-page: 209
  ident: bib28
  article-title: Ant colony optimization for design of water distribution systems
  publication-title: Journal of Water Resources Planning and Management
– year: 2012
  ident: bib7
  article-title: Variants of evolutionary algorithms for real-world applications
  publication-title: 2012
– volume: 31
  start-page: 122
  year: 2003
  end-page: 134
  ident: bib26
  article-title: Modeling flow and sediment transport in a river system using an artificial neural network
  publication-title: Environmental Management
– volume: 517
  start-page: 847
  year: 2014
  end-page: 862
  ident: bib15
  article-title: Are recent frequent high floods in Mahanadi basin in eastern India due to increase in extreme rainfalls?
  publication-title: Journal of Hydrology
– volume: 35
  start-page: 268
  year: 2003
  end-page: 308
  ident: bib6
  article-title: Metaheuristics in combinatorial optimization: overview and conceptual comparison
  publication-title: ACM Computing Surveys
– volume: 3
  start-page: 69
  year: 1998
  end-page: 72
  ident: bib36
  article-title: Average areal precipitation by percentage weighted polygon method
  publication-title: Journal of Hydrologic Engineering
– volume: 13
  start-page: 281
  year: 1997
  end-page: 291
  ident: bib10
  article-title: Testing the equality of prediction mean squared errors
  publication-title: International Journal of Forecasting
– volume: 136
  start-page: 279
  year: 2010
  end-page: 287
  ident: bib43
  article-title: Optimization of water distribution network design using differential evolution
  publication-title: Journal of Water Resources Planning and Management
– reference: J.B. Li Y.K. Chung A novel back-propagation neural network training algorithm designed by an ant colony optimization. In: Proceedings of Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES. IEEE pp. 1–5
– volume: 188
  start-page: 129
  year: 2007
  end-page: 142
  ident: bib37
  article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization
  publication-title: Applied Mathematics and Computation
– volume: 8
  start-page: 23
  year: 1998
  end-page: 27
  ident: bib47
  article-title: Preliminary study of hydrology-based artificial neural network
  publication-title: Journal of Hydraulics
– volume: 11
  start-page: 483
  year: 2007
  end-page: 499
  ident: bib29
  article-title: The PDM rainfall-runoff model
  publication-title: Hydrology and Earth System Sciences
– volume: 428
  start-page: 94
  year: 2012
  end-page: 103
  ident: bib20
  article-title: Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm
  publication-title: Journal of Hydrology
– start-page: 318
  year: 2007
  end-page: 329
  ident: bib19
  article-title: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks
  publication-title: Modeling Decisions for Artificial Intelligence
– volume: 305
  start-page: 77
  year: 2015
  end-page: 92
  ident: bib46
  article-title: Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms
  publication-title: Information Sciences
– volume: 27
  start-page: 5245
  year: 2013
  end-page: 5260
  ident: bib25
  article-title: Differential evolution for prediction of longitudinal dispersion coefficients in natural streams
  publication-title: Water Resources Management
– volume: 44
  start-page: 655
  year: 2014
  end-page: 668
  ident: bib3
  article-title: PSO-MISMO modeling strategy for multistep-ahead time series prediction
  publication-title: Cybernetics, IEEE Transactions on
– year: 1995
  ident: bib40
  publication-title: Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces
– volume: 16
  start-page: 235
  year: 2007
  end-page: 247
  ident: bib38
  article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
  publication-title: Neural Computing and Applications
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: bib9
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
– volume: 40
  start-page: 17
  year: 2015
  end-page: 27
  ident: bib13
  article-title: Hybrid filter-wrapper feature selection for short-term load forecasting
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 53
  start-page: 38
  year: 2011
  end-page: 49
  ident: bib35
  article-title: Differential evolution as applied to electromagnetics
  publication-title: Antennas and Propagation Magazine, IEEE
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: bib8
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business & Economic Statistics
– volume: 10
  start-page: 1181
  year: 2013
  end-page: 1192
  ident: bib33
  article-title: Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting
  publication-title: International Journal of Environmental Science and Technology
– volume: 2010
  start-page: 627
  year: 2010
  end-page: 636
  ident: bib24
  article-title: Fuzzy variable classified method and its application in basin floods
  publication-title: Fuzzy Information and Engineering
– reference: Babu, B.V., Angira, R., 2003. Optimization of water pumping system using differential evolution strategies. In: Proceedings of the Second International Conference on Computational Intelligence, Robotics, and Autonomous Systems. Citeseer.
– volume: 423
  start-page: 01 2001
  year: 2013
  ident: bib11
  article-title: Application of artificial bee colony (ABC) algorithm in search of optimal release of Aswan High Dam
  publication-title: Journal of Physics: Conference Series
– volume: 444
  start-page: 78
  year: 2012
  end-page: 89
  ident: bib41
  article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment
  publication-title: Journal of Hydrology
– year: 2015
  ident: bib12
  article-title: Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection
  publication-title: Energy
– volume: 85
  start-page: 143
  year: 2007
  end-page: 154
  ident: bib16
  article-title: Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000
  publication-title: Geomorphology
– volume: 20
  start-page: 879
  year: 2006
  end-page: 898
  ident: bib21
  article-title: Ant colony optimization for multi-purpose reservoir operation
  publication-title: Water Resources Management
– volume: 9
  start-page: 258
  year: 1998
  end-page: 264
  ident: bib30
  article-title: A forecast model of fuzzy recognition neural networks and its application
  publication-title: Advances in Water Science
– volume: 17
  start-page: 713
  year: 2013
  end-page: 724
  ident: bib27
  article-title: Automatic calibration of a rapid flood spreading model using multiobjective optimisations
  publication-title: Soft Computing
– volume: 11
  start-page: 253
  year: 2013
  end-page: 268
  ident: bib31
  article-title: Hierarchical neurofuzzy model for real-time flood forecasting
  publication-title: International Journal of River Basin Management
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: bib18
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Applied Mathematics and Computation
– volume: 19
  start-page: 715
  year: 2013
  end-page: 731
  ident: bib48
  article-title: A novel artificial bee colony algorithm for HVAC optimization problems
  publication-title: HVAC&R Research
– volume: 109
  start-page: 47
  year: 2014
  end-page: 61
  ident: bib39
  article-title: Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves
  publication-title: Journal of Applied Geophysics
– volume: 129
  start-page: 482
  year: 2014
  end-page: 493
  ident: bib2
  article-title: Multi-step-ahead time series prediction using multiple-output support vector regression
  publication-title: Neurocomputing
– volume: 54
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib22
  article-title: A balance-evolution artificial bee colony algorithm for protein structure optimization based on a three-dimensional AB off-lattice model
  publication-title: Computational Biology and Chemistry
– reference: K. Wang X.D. Wang J.S. Wang M.L. Jiang G.Y. Lv G.L. Feng X.L. Xu Solving parameter identification problem of nonlinear systems using differential evolution algorithm. In: Proceedings of the Second International Symposium on IEEE Intelligent Information Technology Application, 2008, IITA׳08. pp. 687–691
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.engappai.2015.09.010_bib9
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
  doi: 10.1109/3477.484436
– volume: 17
  start-page: 713
  issue: 4
  year: 2013
  ident: 10.1016/j.engappai.2015.09.010_bib27
  article-title: Automatic calibration of a rapid flood spreading model using multiobjective optimisations
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0944-z
– volume: 40
  start-page: 17
  year: 2015
  ident: 10.1016/j.engappai.2015.09.010_bib13
  article-title: Hybrid filter-wrapper feature selection for short-term load forecasting
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2014.12.014
– ident: 10.1016/j.engappai.2015.09.010_bib44
  doi: 10.1109/IITA.2008.556
– volume: 85
  start-page: 143
  issue: 3
  year: 2007
  ident: 10.1016/j.engappai.2015.09.010_bib16
  article-title: Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.03.015
– volume: 40
  start-page: 405
  year: 2013
  ident: 10.1016/j.engappai.2015.09.010_bib45
  article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2013.07.028
– volume: 11
  start-page: 253
  issue: 3
  year: 2013
  ident: 10.1016/j.engappai.2015.09.010_bib31
  article-title: Hierarchical neurofuzzy model for real-time flood forecasting
  publication-title: International Journal of River Basin Management
  doi: 10.1080/15715124.2013.798329
– volume: 35
  start-page: 268
  issue: 3
  year: 2003
  ident: 10.1016/j.engappai.2015.09.010_bib6
  article-title: Metaheuristics in combinatorial optimization: overview and conceptual comparison
  publication-title: ACM Computing Surveys
  doi: 10.1145/937503.937505
– volume: 129
  start-page: 200
  issue: 3
  year: 2003
  ident: 10.1016/j.engappai.2015.09.010_bib28
  article-title: Ant colony optimization for design of water distribution systems
  publication-title: Journal of Water Resources Planning and Management
  doi: 10.1061/(ASCE)0733-9496(2003)129:3(200)
– volume: 20
  start-page: 879
  issue: 6
  year: 2006
  ident: 10.1016/j.engappai.2015.09.010_bib21
  article-title: Ant colony optimization for multi-purpose reservoir operation
  publication-title: Water Resources Management
  doi: 10.1007/s11269-005-9012-0
– volume: 54
  start-page: 1
  year: 2015
  ident: 10.1016/j.engappai.2015.09.010_bib22
  article-title: A balance-evolution artificial bee colony algorithm for protein structure optimization based on a three-dimensional AB off-lattice model
  publication-title: Computational Biology and Chemistry
  doi: 10.1016/j.compbiolchem.2014.11.004
– volume: 24
  start-page: 37
  issue: 1
  year: 2010
  ident: 10.1016/j.engappai.2015.09.010_bib4
  article-title: Rainfall-runoff modeling: comparison of two approaches with different data requirements
  publication-title: Water Resources Management
  doi: 10.1007/s11269-009-9436-z
– volume: 428
  start-page: 94
  year: 2012
  ident: 10.1016/j.engappai.2015.09.010_bib20
  article-title: Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2012.01.026
– volume: 444
  start-page: 78
  year: 2012
  ident: 10.1016/j.engappai.2015.09.010_bib41
  article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2012.04.007
– volume: 30
  start-page: 107
  issue: B1
  year: 2006
  ident: 10.1016/j.engappai.2015.09.010_bib14
  article-title: Reservoir operation by ant colony optimization algorithms
  publication-title: Iranian Journal of Science and Technology, Transaction B: Engineering
– volume: 2010
  start-page: 627
  year: 2010
  ident: 10.1016/j.engappai.2015.09.010_bib24
  article-title: Fuzzy variable classified method and its application in basin floods
– volume: 31
  start-page: 122
  issue: 1
  year: 2003
  ident: 10.1016/j.engappai.2015.09.010_bib26
  article-title: Modeling flow and sediment transport in a river system using an artificial neural network
  publication-title: Environmental Management
  doi: 10.1007/s00267-002-2862-9
– year: 2015
  ident: 10.1016/j.engappai.2015.09.010_bib12
  article-title: Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.054
– volume: 16
  start-page: 235
  issue: 3
  year: 2007
  ident: 10.1016/j.engappai.2015.09.010_bib38
  article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-007-0084-z
– start-page: 39
  year: 2008
  ident: 10.1016/j.engappai.2015.09.010_bib49
– volume: 517
  start-page: 847
  year: 2014
  ident: 10.1016/j.engappai.2015.09.010_bib15
  article-title: Are recent frequent high floods in Mahanadi basin in eastern India due to increase in extreme rainfalls?
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2014.06.021
– volume: 109
  start-page: 47
  year: 2014
  ident: 10.1016/j.engappai.2015.09.010_bib39
  article-title: Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2014.07.014
– ident: 10.1016/j.engappai.2015.09.010_bib32
– volume: 39
  start-page: 7067
  issue: 8
  year: 2012
  ident: 10.1016/j.engappai.2015.09.010_bib42
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.039
– volume: 8
  start-page: 23
  year: 1998
  ident: 10.1016/j.engappai.2015.09.010_bib47
  article-title: Preliminary study of hydrology-based artificial neural network
  publication-title: Journal of Hydraulics
– volume: 19
  start-page: 715
  issue: 6
  year: 2013
  ident: 10.1016/j.engappai.2015.09.010_bib48
  article-title: A novel artificial bee colony algorithm for HVAC optimization problems
  publication-title: HVAC&R Research
  doi: 10.1080/10789669.2013.803915
– start-page: 200
  year: 2005
  ident: 10.1016/j.engappai.2015.09.010_bib17
– year: 2012
  ident: 10.1016/j.engappai.2015.09.010_bib7
  article-title: Variants of evolutionary algorithms for real-world applications
– volume: 10
  start-page: 1181
  issue: 6
  year: 2013
  ident: 10.1016/j.engappai.2015.09.010_bib33
  article-title: Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting
  publication-title: International Journal of Environmental Science and Technology
  doi: 10.1007/s13762-013-0209-0
– volume: 129
  start-page: 482
  year: 2014
  ident: 10.1016/j.engappai.2015.09.010_bib2
  article-title: Multi-step-ahead time series prediction using multiple-output support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.010
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.engappai.2015.09.010_bib5
  article-title: Evolutionary optimization
– volume: 44
  start-page: 655
  issue: 5
  year: 2014
  ident: 10.1016/j.engappai.2015.09.010_bib3
  article-title: PSO-MISMO modeling strategy for multistep-ahead time series prediction
  publication-title: Cybernetics, IEEE Transactions on
  doi: 10.1109/TCYB.2013.2265084
– volume: 188
  start-page: 129
  issue: 1
  year: 2007
  ident: 10.1016/j.engappai.2015.09.010_bib37
  article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.09.098
– start-page: 318
  year: 2007
  ident: 10.1016/j.engappai.2015.09.010_bib19
  article-title: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks
– volume: 13
  start-page: 253
  issue: 3
  year: 1995
  ident: 10.1016/j.engappai.2015.09.010_bib8
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.1995.10524599
– volume: 9
  start-page: 258
  issue: 3
  year: 1998
  ident: 10.1016/j.engappai.2015.09.010_bib30
  article-title: A forecast model of fuzzy recognition neural networks and its application
  publication-title: Advances in Water Science
– year: 1995
  ident: 10.1016/j.engappai.2015.09.010_bib40
– volume: 305
  start-page: 77
  year: 2015
  ident: 10.1016/j.engappai.2015.09.010_bib46
  article-title: Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.01.029
– volume: 13
  start-page: 281
  issue: 2
  year: 1997
  ident: 10.1016/j.engappai.2015.09.010_bib10
  article-title: Testing the equality of prediction mean squared errors
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(96)00719-4
– volume: 25
  start-page: 25
  issue: 1
  year: 2014
  ident: 10.1016/j.engappai.2015.09.010_bib34
  article-title: Flood flow forecasting using ANN, ANFIS and regression models
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1443-6
– volume: 53
  start-page: 38
  issue: 1
  year: 2011
  ident: 10.1016/j.engappai.2015.09.010_bib35
  article-title: Differential evolution as applied to electromagnetics
  publication-title: Antennas and Propagation Magazine, IEEE
  doi: 10.1109/MAP.2011.5773566
– volume: 423
  start-page: 01 2001
  year: 2013
  ident: 10.1016/j.engappai.2015.09.010_bib11
  article-title: Application of artificial bee colony (ABC) algorithm in search of optimal release of Aswan High Dam
  publication-title: Journal of Physics: Conference Series
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 10.1016/j.engappai.2015.09.010_bib18
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.03.090
– volume: 136
  start-page: 279
  issue: 2
  year: 2010
  ident: 10.1016/j.engappai.2015.09.010_bib43
  article-title: Optimization of water distribution network design using differential evolution
  publication-title: Journal of Water Resources Planning and Management
  doi: 10.1061/(ASCE)0733-9496(2010)136:2(279)
– ident: 10.1016/j.engappai.2015.09.010_bib23
– volume: 11
  start-page: 483
  issue: 1
  year: 2007
  ident: 10.1016/j.engappai.2015.09.010_bib29
  article-title: The PDM rainfall-runoff model
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-11-483-2007
– volume: 3
  start-page: 69
  issue: 1
  year: 1998
  ident: 10.1016/j.engappai.2015.09.010_bib36
  article-title: Average areal precipitation by percentage weighted polygon method
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)1084-0699(1998)3:1(69)
– ident: 10.1016/j.engappai.2015.09.010_bib1
– volume: 27
  start-page: 5245
  issue: 15
  year: 2013
  ident: 10.1016/j.engappai.2015.09.010_bib25
  article-title: Differential evolution for prediction of longitudinal dispersion coefficients in natural streams
  publication-title: Water Resources Management
SSID ssj0003846
Score 2.5101466
Snippet Population-based optimization algorithms have been successfully applied to hydrological forecasting recently owing to their powerful ability of global...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 258
SubjectTerms Ant colony optimization
Artificial bee colony
Differential evolution
Downstream river flow forecasting
Hybrid neural network
Title A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model
URI https://dx.doi.org/10.1016/j.engappai.2015.09.010
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWFh4I966gdVtE8dJPFYIVKjowEOwRc7DUNQmUVuEWBj53dwlDgUJiYEpiuOLLJ99d7a-746xEzfxtYOWn6M7UNzTRnAVqphL39M6kUQKpnvIq6Hfv_MuH-RDi502XBiCVVrbX9v0ylrblo6dzU45GnVuMDjA7RZQRnM6uBCJz_MCqmLQfl_APERYk3WwM6fe31jCz-0sf9RlqUcE8ZJVvlNi0v7moL45nfN1tmqjRejVA9pgrSzfZGs2cgS7L2fY1BRnaNq22EcPkkVmb6jSyEJhoPyq2MXJg6VQoNGYWDYm6PFjMR3NnyYzwGgWUrp7Jiz6BKYE4AAzLl7pS5boGQGmIX4DDU9vxPsCyo2Jo81rZDlURXa22d352e1pn9uiCzwRjjvneCKWOsmE0IE2yjFd5RqMw7LUw4NRqkIjlJHGN37sS4Phnm-62kszx0kVxU5S7LClvMizXQapi39wKcWccT0jnDgQsQy7aSBjNMEq3GOymekosRnJqTDGOGqgZ89Ro6GINBR1VYQa2mOdL7myzsnxp4RqFBn9WF0ROo4_ZPf_IXvAVuit5i4esqX59CU7wiBmHh9Xq_SYLfcuBv0hPQfX94NPm2L14g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELU4Cmi4ETdT0JrdxHESlwiBlrMBJDrLOQyLdpNodxGioeS7mUkcDgmJgtbORJbHnsOa94axAz8NjYeWn6M7UDwwVnAVq4TLMDAmlQQKpnfIq-uwdxec38v7KXbcYmGorNLZ_sam19bajXTcbnaqfr9zg8EBXreIGM0pcVHTbDaQfkQZ2OHbV52HiBu0Dn7N6fNvMOGnw7x4MFVl-lTjJWvCU4LS_uahvnmd0yW24MJFOGpWtMym8mKFLbrQEdzFHONQ252hHVtl70eQflF7Q80jC6WF6rNlFycXlkGJVmPo4JhgBg_lqD95HI4Bw1nI6PGZitGHMKIKDrCD8oVm8tSMqWIaklcw8PhKwC8gckxcbdGUlkPdZWeN3Z2e3B73uOu6wFPh-ROOKbE0aS6EiYxVnu0q32IglmcBZkaZiq1QVtrQhkkoLcZ7oe2aIMs9L1MUPEmxzmaKssg3GGQ-_sEnjjnrB1Z4SSQSGXezSCZog1W8yWS70zp1lOTUGWOg29qzJ91qSJOGdFdp1NAm63zKVQ0px58SqlWk_nG8NHqOP2S3_iG7z-Z6t1eX-vLs-mKbzdNMA2TcYTOT0XO-ixHNJNmrT-wHmNv11A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+population-based+optimization+algorithms+for+downstream+river+flow+forecasting+by+a+hybrid+neural+network+model&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Chen%2C+X.Y.&rft.au=Chau%2C+K.W.&rft.au=Busari%2C+A.O.&rft.date=2015-11-01&rft.issn=0952-1976&rft.volume=46&rft.spage=258&rft.epage=268&rft_id=info:doi/10.1016%2Fj.engappai.2015.09.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2015_09_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon