Low-velocity impact responses and failure of sandwich structure with carbon fiber composite honeycomb cores

•Different damage states of CFRP honeycomb sandwich structure are revealed through low-velocity impact experiments.•A refined finite element model suitable for plain weave CFRP composite is established to accurately predict the impact response of the structure.•The energy absorption mechanism of CFR...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 192; p. 105034
Main Authors Wang, Yan, Wei, Xingyu, Li, Zhibin, Gong, Cheng, Xue, Pengcheng, Xiong, Jian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text
ISSN0734-743X
1879-3509
DOI10.1016/j.ijimpeng.2024.105034

Cover

Abstract •Different damage states of CFRP honeycomb sandwich structure are revealed through low-velocity impact experiments.•A refined finite element model suitable for plain weave CFRP composite is established to accurately predict the impact response of the structure.•The energy absorption mechanism of CFRP honeycomb sandwich structure is investigated.•The impact-induced damage is characterized by industrial tomography technology (CT) without destroying the sandwich structure.•Reducing the cell side length is a better way to improve the impact resistance of CFRP honeycomb sandwich structure. The objective of this study is to examine the response and failure of honeycomb sandwich structures made of carbon fiber reinforced polymer (CFRP) composites under low-velocity impacts. Four impact tests with varying energies are performed to induce four distinct damage states in the sandwich structure: no discernible damage, damage to the top face sheet and a portion of the core, damage to the lower face sheet, and total penetration. The damage characteristics of the sandwich structures is analyzed by using industrial tomography technology (CT) without destroying them. A refined finite element model is established to further explain the deformation behavior and energy absorption mechanism of the structure, clarifying the effects of the honeycomb core's structural parameters, such as wall thickness, cell side length, and core height. To enhance the precision of simulation outcomes, a model for the onset and progression of damage in plain woven composites is incorporated into the user-defined material subroutine. The experiments and simulations demonstrate a high level of consistency in terms of peak loads, failure mode, and energy absorption. [Display omitted]
AbstractList •Different damage states of CFRP honeycomb sandwich structure are revealed through low-velocity impact experiments.•A refined finite element model suitable for plain weave CFRP composite is established to accurately predict the impact response of the structure.•The energy absorption mechanism of CFRP honeycomb sandwich structure is investigated.•The impact-induced damage is characterized by industrial tomography technology (CT) without destroying the sandwich structure.•Reducing the cell side length is a better way to improve the impact resistance of CFRP honeycomb sandwich structure. The objective of this study is to examine the response and failure of honeycomb sandwich structures made of carbon fiber reinforced polymer (CFRP) composites under low-velocity impacts. Four impact tests with varying energies are performed to induce four distinct damage states in the sandwich structure: no discernible damage, damage to the top face sheet and a portion of the core, damage to the lower face sheet, and total penetration. The damage characteristics of the sandwich structures is analyzed by using industrial tomography technology (CT) without destroying them. A refined finite element model is established to further explain the deformation behavior and energy absorption mechanism of the structure, clarifying the effects of the honeycomb core's structural parameters, such as wall thickness, cell side length, and core height. To enhance the precision of simulation outcomes, a model for the onset and progression of damage in plain woven composites is incorporated into the user-defined material subroutine. The experiments and simulations demonstrate a high level of consistency in terms of peak loads, failure mode, and energy absorption. [Display omitted]
ArticleNumber 105034
Author Gong, Cheng
Xiong, Jian
Wei, Xingyu
Li, Zhibin
Wang, Yan
Xue, Pengcheng
Author_xml – sequence: 1
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
– sequence: 2
  givenname: Xingyu
  surname: Wei
  fullname: Wei, Xingyu
  organization: Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
– sequence: 3
  givenname: Zhibin
  surname: Li
  fullname: Li, Zhibin
  organization: Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
– sequence: 4
  givenname: Cheng
  surname: Gong
  fullname: Gong, Cheng
  organization: Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
– sequence: 5
  givenname: Pengcheng
  orcidid: 0000-0002-0916-7996
  surname: Xue
  fullname: Xue, Pengcheng
  organization: Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
– sequence: 6
  givenname: Jian
  orcidid: 0000-0003-1755-1338
  surname: Xiong
  fullname: Xiong, Jian
  email: jx@hit.edu.cn
  organization: Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, PR China
BookMark eNqFkE9LAzEQxYNUsFa_guQLbE02u5steFCK_6DgRcFbyM5ObNZ2syRpS7-9KdWLl56Gecz7Me9dklHveiTkhrMpZ7y67aa2s-sB-69pzvIiiSUTxRkZ81rOMlGy2YiMmRRFJgvxeUEuQ-gY4zKdjcn3wu2yLa4c2LinCaMhUo9hcH3AQHXfUqPtauOROkND2ncWljREv4F4UHc2Lilo37ieGtugp-DWgws2Il2mR_dpbZKWmFfk3OhVwOvfOSEfT4_v85ds8fb8On9YZCB4HrOalVBryY3QHIyRUJW8EUbKCtoKoNWNqQVHZEWjMWeFZHwGomLCmEYzLcSE3B254F0IHo1K4XS0ro8-ZVGcqUNxqlN_xalDcepYXLJX_-yDt2vt96eN90cjpnBbi14FsNgDttYjRNU6ewrxA53LkkM
CitedBy_id crossref_primary_10_1016_j_mtcomm_2025_111991
crossref_primary_10_1016_j_compscitech_2024_111027
crossref_primary_10_1177_10996362241287409
crossref_primary_10_1016_j_ijimpeng_2025_105231
crossref_primary_10_1177_00219983251319085
crossref_primary_10_1080_13588265_2024_2407661
crossref_primary_10_1088_1361_665X_ad852e
Cites_doi 10.1016/j.euromechsol.2021.104415
10.1016/j.matdes.2017.01.010
10.1007/s10443-023-10190-0
10.1016/j.compscitech.2019.107878
10.1016/j.ijimpeng.2023.104507
10.1016/j.compositesa.2022.107075
10.1016/j.compstruct.2020.111882
10.1016/j.compositesb.2021.108881
10.1016/j.engfracmech.2020.107282
10.1016/j.ijimpeng.2020.103508
10.1016/j.tws.2020.107157
10.1016/j.ijimpeng.2011.04.007
10.1016/j.compositesa.2013.04.013
10.1016/j.compstruct.2016.04.012
10.1016/j.ijmecsci.2021.106683
10.1016/j.tws.2021.108389
10.1016/j.compositesb.2017.03.030
10.1016/j.ijimpeng.2021.103817
10.1016/j.ijimpeng.2023.104737
10.1016/j.tws.2019.01.022
10.1016/j.polymertesting.2019.106188
10.1016/j.tws.2021.107598
10.1016/j.compstruct.2013.01.012
10.1016/j.compstruct.2019.111284
10.1016/j.compstruct.2015.08.035
10.1016/j.compstruct.2020.112027
10.1016/j.ijmecsci.2023.108149
10.1016/j.ijimpeng.2011.12.007
10.1016/j.ijimpeng.2017.09.011
10.1016/j.compstruct.2009.11.001
10.1016/j.compstruct.2023.117574
10.1016/j.tws.2018.07.042
10.1016/j.compstruct.2020.112659
10.1016/j.ijimpeng.2019.04.014
10.1016/j.ijimpeng.2022.104430
10.1016/j.carbon.2021.02.066
10.1016/j.compositesb.2018.01.020
10.1016/j.compositesb.2016.06.007
10.1016/j.engfracmech.2022.108554
10.1016/j.ijimpeng.2021.104143
10.1016/j.apacoust.2019.107202
10.1016/j.compstruct.2022.116399
10.1016/j.ijimpeng.2018.07.013
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.ijimpeng.2024.105034
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
ExternalDocumentID 10_1016_j_ijimpeng_2024_105034
S0734743X24001581
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-805c8a71f3a1cff7c651b3f776cd6ccdabf831ee04bae2047019c3603ffba0a33
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Thu Apr 24 22:57:31 EDT 2025
Wed Oct 01 04:32:57 EDT 2025
Sat Jul 13 15:31:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Low-velocity impact
Energy absorption
Composite honeycomb
Sandwich structure
Finite element simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-805c8a71f3a1cff7c651b3f776cd6ccdabf831ee04bae2047019c3603ffba0a33
ORCID 0000-0002-0916-7996
0000-0003-1755-1338
ParticipantIDs crossref_citationtrail_10_1016_j_ijimpeng_2024_105034
crossref_primary_10_1016_j_ijimpeng_2024_105034
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2024_105034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle International journal of impact engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Song, Luong, Whisler, Kim (bib0021) 2021; 150
Wu, Liu, Fu, Li, Hui (bib0018) 2017; 121
Heimbs, Cichosz, Klaus, Kilchert, Johnson (bib0025) 2010; 92
Li, Zhang, Wang, Wang, Wu, Qin (bib0031) 2023; 181
Gupta, Singh, Khan, Mahajan, Prabhakaran, Alagirusamy (bib0042) 2021; 162
Guo, Yuan, Zhang, Ruan (bib0014) 2023
Palomba, Epasto, Crupi, Guglielmino (bib0016) 2018; 121
Tao, Ren, Shi, Zhao, Tang, Ye, Zhang, Cui (bib0004) 2022; 162
Yang, Zhang, Yang, Chen, Schmidt, Schröder, Ma, Wu (bib0026) 2020; 238
Zhu, Zheng, Zhang, Peng, Zhang, Yan (bib0029) 2023; 304
Li, Gao, Xue, Wei, Du, Wang, Xiong (bib0035) 2022; 161
Wei, Li, Xiong (bib0032) 2019; 184
Ivañez, Moure, Garcia-Castillo, Sanchez-Saez (bib0023) 2015; 133
Liu, Liu, Wang (bib0036) 2020; 239
Liu, Liao, Jia, Peng (bib0040) 2016; 149
Zhang, Zong, Liu, Ma, Wu, Li (bib0015) 2017; 117
Zhang, Xu, Zang, Feng (bib0022) 2020; 236
Xie, Yang, Yang, Wang (bib0003) 2020; 162
Chen, Fu, Hou, Han, Ye (bib0024) 2018; 142
Zangana, Epaarachchi, Ferdous, Leng, Schubel (bib0013) 2021; 158
Xiang, Qin, Wang, Yu, Chen, Zhang, Xia, Zhang, Zhao, Wang (bib0007) 2019; 130
Aryal, Morozov, Wang, Shankar, Hazell, Escobedo-Diaz (bib0009) 2019; 226
Li, Sun (bib0010) 2023; 173
Zhu, Sun (bib0039) 2020; 139
Wang, Wang, Liu, Zhang, Lu (bib0044) 2021; 208
Yuan, Shen, Xiong, Yao, He, Wang (bib0020) 2023; 174
Naresh, Shankar, Rao, Velmurugan (bib0043) 2016; 100
Deng, Hu, Niu, Zheng, Wei (bib0030) 2024; 31
Hu, Liu, Zhu, Zhang, Wang, Zheng, Zhou (bib0028) 2020; 251
He, Yao, Meng, Sun, Xie, Liu (bib0017) 2019; 137
Xue, Wei, Li, Xiong (bib0034) 2022; 269
Yen (bib0041) 2012; 46
Huang, Wu, Chen, Zhang, Fang (bib0005) 2021; 177
Zhang, Wang, Ma, Xiong, Wu (bib0011) 2013; 100
Wei, Wu, Gao, Yang, Xiong (bib0033) 2022; 91
He, Liu, Wang, Xie (bib0038) 2018; 131
Yu, Yu, Ao, Mei, Jiang, Liu, Li, Huang (bib0027) 2021; 169
Lv, Shi, Chen, Ma, Sun (bib0037) 2023; 246
Sun, Huo, Wang, Hazell, Li (bib0019) 2021; 216
Russell, Liu, Fleck, Deshpande (bib0008) 2012; 48
Pan, Chen, Deng, Zhao, Jin, Du, Chen, Li, Liu (bib0012) 2023; 324
Fan, Yang, Sun, Fang (bib0001) 2013; 52
Liu, Li, Deng, Liu, Huang (bib0002) 2020; 81
Qin, Zheng, Zhang, Yuan, Wang (bib0006) 2018; 111
Russell (10.1016/j.ijimpeng.2024.105034_bib0008) 2012; 48
Yen (10.1016/j.ijimpeng.2024.105034_bib0041) 2012; 46
Tao (10.1016/j.ijimpeng.2024.105034_bib0004) 2022; 162
Heimbs (10.1016/j.ijimpeng.2024.105034_bib0025) 2010; 92
Zhu (10.1016/j.ijimpeng.2024.105034_bib0029) 2023; 304
Li (10.1016/j.ijimpeng.2024.105034_bib0010) 2023; 173
Fan (10.1016/j.ijimpeng.2024.105034_bib0001) 2013; 52
Xie (10.1016/j.ijimpeng.2024.105034_bib0003) 2020; 162
Zangana (10.1016/j.ijimpeng.2024.105034_bib0013) 2021; 158
Yuan (10.1016/j.ijimpeng.2024.105034_bib0020) 2023; 174
Pan (10.1016/j.ijimpeng.2024.105034_bib0012) 2023; 324
Yang (10.1016/j.ijimpeng.2024.105034_bib0026) 2020; 238
Palomba (10.1016/j.ijimpeng.2024.105034_bib0016) 2018; 121
Zhang (10.1016/j.ijimpeng.2024.105034_bib0015) 2017; 117
Chen (10.1016/j.ijimpeng.2024.105034_bib0024) 2018; 142
Huang (10.1016/j.ijimpeng.2024.105034_bib0005) 2021; 177
Sun (10.1016/j.ijimpeng.2024.105034_bib0019) 2021; 216
Zhang (10.1016/j.ijimpeng.2024.105034_bib0011) 2013; 100
Yu (10.1016/j.ijimpeng.2024.105034_bib0027) 2021; 169
Aryal (10.1016/j.ijimpeng.2024.105034_bib0009) 2019; 226
Zhu (10.1016/j.ijimpeng.2024.105034_bib0039) 2020; 139
Naresh (10.1016/j.ijimpeng.2024.105034_bib0043) 2016; 100
Deng (10.1016/j.ijimpeng.2024.105034_bib0030) 2024; 31
Song (10.1016/j.ijimpeng.2024.105034_bib0021) 2021; 150
Liu (10.1016/j.ijimpeng.2024.105034_bib0002) 2020; 81
Li (10.1016/j.ijimpeng.2024.105034_bib0035) 2022; 161
Liu (10.1016/j.ijimpeng.2024.105034_bib0040) 2016; 149
Wei (10.1016/j.ijimpeng.2024.105034_bib0032) 2019; 184
Xue (10.1016/j.ijimpeng.2024.105034_bib0034) 2022; 269
Wei (10.1016/j.ijimpeng.2024.105034_bib0033) 2022; 91
Xiang (10.1016/j.ijimpeng.2024.105034_bib0007) 2019; 130
He (10.1016/j.ijimpeng.2024.105034_bib0038) 2018; 131
Li (10.1016/j.ijimpeng.2024.105034_bib0031) 2023; 181
Zhang (10.1016/j.ijimpeng.2024.105034_bib0022) 2020; 236
Lv (10.1016/j.ijimpeng.2024.105034_bib0037) 2023; 246
Wang (10.1016/j.ijimpeng.2024.105034_bib0044) 2021; 208
Gupta (10.1016/j.ijimpeng.2024.105034_bib0042) 2021; 162
He (10.1016/j.ijimpeng.2024.105034_bib0017) 2019; 137
Liu (10.1016/j.ijimpeng.2024.105034_bib0036) 2020; 239
Wu (10.1016/j.ijimpeng.2024.105034_bib0018) 2017; 121
Ivañez (10.1016/j.ijimpeng.2024.105034_bib0023) 2015; 133
Qin (10.1016/j.ijimpeng.2024.105034_bib0006) 2018; 111
Guo (10.1016/j.ijimpeng.2024.105034_bib0014) 2023
Hu (10.1016/j.ijimpeng.2024.105034_bib0028) 2020; 251
References_xml – volume: 117
  start-page: 396
  year: 2017
  end-page: 408
  ident: bib0015
  article-title: Static and dynamic crushing responses of CFRP sandwich panels filled with different reinforced materials
  publication-title: Mater Des
– volume: 184
  year: 2019
  ident: bib0032
  article-title: Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach
  publication-title: Compos Sci Technol
– volume: 246
  year: 2023
  ident: bib0037
  article-title: Low-velocity impact response of composite sandwich structure with grid–honeycomb hybrid core
  publication-title: Int J Mech Sci
– volume: 236
  year: 2020
  ident: bib0022
  article-title: Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact
  publication-title: Compos Struct
– volume: 46
  start-page: 11
  year: 2012
  end-page: 22
  ident: bib0041
  article-title: A ballistic material model for continuous-fiber reinforced composites
  publication-title: Int J Impact Eng
– volume: 174
  year: 2023
  ident: bib0020
  article-title: The impact and post-impact flexural behaviors of CFRP/aluminum-honeycomb sandwich
  publication-title: Int J Impact Eng
– volume: 161
  year: 2022
  ident: bib0035
  article-title: Fabrication and failure mechanisms of all-composite honeycomb sandwich cylinder under the axial compression
  publication-title: Compos. Part A
– volume: 177
  start-page: 79
  year: 2021
  end-page: 89
  ident: bib0005
  article-title: Evolutionary optimization design of honeycomb metastructure with effective mechanical resistance and broadband microwave absorption
  publication-title: Carbon
– volume: 121
  start-page: 122
  year: 2017
  end-page: 133
  ident: bib0018
  article-title: Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels
  publication-title: Compos. Part B
– volume: 91
  year: 2022
  ident: bib0033
  article-title: Composite honeycomb sandwich columns under in-plane compression: optimal geometrical design and three-dimensional failure mechanism maps
  publication-title: Eur J Mech A. Solids
– volume: 251
  year: 2020
  ident: bib0028
  article-title: Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores
  publication-title: Compos Struct
– volume: 238
  year: 2020
  ident: bib0026
  article-title: Low velocity impact behavior of carbon fibre composite curved corrugated sandwich shells
  publication-title: Compos Struct
– volume: 149
  start-page: 408
  year: 2016
  end-page: 422
  ident: bib0040
  article-title: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact
  publication-title: Compos Struct
– volume: 208
  year: 2021
  ident: bib0044
  article-title: Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact
  publication-title: Int J Mech Sci
– volume: 100
  start-page: 125
  year: 2016
  end-page: 135
  ident: bib0043
  article-title: Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites
  publication-title: Compos Part B
– volume: 226
  year: 2019
  ident: bib0009
  article-title: Effects of impact energy, velocity, and impactor mass on the damage induced in composite laminates and sandwich panels
  publication-title: Compos Struct
– volume: 324
  year: 2023
  ident: bib0012
  article-title: Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core
  publication-title: Compos Struct
– volume: 304
  year: 2023
  ident: bib0029
  article-title: The behavior of interlocked ortho-grid composite sandwich structure subjected to low-velocity impact
  publication-title: Compos Struct
– volume: 130
  start-page: 172
  year: 2019
  end-page: 183
  ident: bib0007
  article-title: Low-velocity impact response of sandwich beams with a metal foam core: experimental and theoretical investigations
  publication-title: Int J Impact Eng
– volume: 131
  start-page: 718
  year: 2018
  end-page: 735
  ident: bib0038
  article-title: Low-velocity impact behavior of X-Frame core sandwich structures–experimental and numerical investigation
  publication-title: Thin-Walled Struct
– volume: 100
  start-page: 451
  year: 2013
  end-page: 463
  ident: bib0011
  article-title: Response of sandwich structures with pyramidal truss cores under the compression and impact loading
  publication-title: Compos Struct
– volume: 162
  year: 2021
  ident: bib0042
  article-title: An improved orthotropic elasto-plastic damage model for plain woven composites
  publication-title: Thin-Walled Struct
– volume: 162
  year: 2022
  ident: bib0004
  article-title: Energy absorption and impact behavior of composite sandwich panels under high-velocity spherical projectile
  publication-title: Int J Impact Eng
– volume: 269
  year: 2022
  ident: bib0034
  article-title: Face-core interfacial debonding characterization model of an all-composite sandwich beam with a hexagonal honeycomb core
  publication-title: Eng Fract Mech
– volume: 139
  year: 2020
  ident: bib0039
  article-title: Dynamic response of foam core sandwich panel with composite facesheets during low-velocity impact and penetration
  publication-title: Int J Impact Eng
– volume: 92
  start-page: 1485
  year: 2010
  end-page: 1497
  ident: bib0025
  article-title: Sandwich structures with textile-reinforced composite foldcores under impact loads
  publication-title: Compos Struct
– volume: 142
  start-page: 159
  year: 2018
  end-page: 170
  ident: bib0024
  article-title: Multi-objective optimization for designing a composite sandwich structure under normal and 45 impact loadings
  publication-title: Compos Part B
– volume: 111
  start-page: 222
  year: 2018
  end-page: 235
  ident: bib0006
  article-title: Dynamic response of square sandwich plates with a metal foam core subjected to low-velocity impact
  publication-title: Int J Impact Eng
– volume: 158
  year: 2021
  ident: bib0013
  article-title: Behaviour of continuous fibre composite sandwich core under low-velocity impact
  publication-title: Thin-Walled Struct
– volume: 133
  start-page: 1127
  year: 2015
  end-page: 1136
  ident: bib0023
  article-title: The oblique impact response of composite sandwich plates
  publication-title: Compos Struct
– volume: 31
  start-page: 535
  year: 2024
  end-page: 559
  ident: bib0030
  article-title: Experimental and numerical study of composite honeycomb sandwich structures under low-velocity impact[J]
  publication-title: Appl Compos Mater
– volume: 52
  start-page: 118
  year: 2013
  end-page: 125
  ident: bib0001
  article-title: Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites
  publication-title: Compos Part A
– volume: 181
  year: 2023
  ident: bib0031
  article-title: Dynamic response and failure of CFRP Kagome lattice core sandwich panels subjected to low-velocity impact
  publication-title: Int J Impact Eng
– volume: 173
  year: 2023
  ident: bib0010
  article-title: Numerical analysis of low-speed impact response of sandwich panels with bio-inspired diagonal-enhanced square honeycomb core
  publication-title: Int J Impact Eng
– volume: 162
  year: 2020
  ident: bib0003
  article-title: Sound absorption performance of a filled honeycomb composite structure
  publication-title: Appl Acoust
– volume: 239
  year: 2020
  ident: bib0036
  article-title: A damage threshold prediction model of CFRP panel by hail impact based on delamination mechanism
  publication-title: Eng Fract Mech
– volume: 81
  year: 2020
  ident: bib0002
  article-title: The edgewise compressive behavior and failure mechanism of the composite Y-frame core sandwich column
  publication-title: Polym Test
– volume: 169
  year: 2021
  ident: bib0027
  article-title: The impact resistance of composite Y-shaped cores sandwich structure
  publication-title: Thin-Walled Struct
– volume: 48
  start-page: 65
  year: 2012
  end-page: 81
  ident: bib0008
  article-title: The soft impact of composite sandwich beams with a square-honeycomb core
  publication-title: Int J Impact Eng
– volume: 216
  year: 2021
  ident: bib0019
  article-title: On the structural parameters of honeycomb-core sandwich panels against low-velocity impact
  publication-title: Compos. Part B
– volume: 150
  year: 2021
  ident: bib0021
  article-title: Honeycomb core failure mechanism of CFRP/Nomex sandwich panel under multi-angle impact of hail ice
  publication-title: Int J Impact Eng
– volume: 137
  start-page: 411
  year: 2019
  end-page: 432
  ident: bib0017
  article-title: Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets
  publication-title: Thin-Walled Struct
– volume: 121
  start-page: 77
  year: 2018
  end-page: 90
  ident: bib0016
  article-title: Single and double-layer honeycomb sandwich panels under impact loading
  publication-title: Int J Impact Eng
– year: 2023
  ident: bib0014
  article-title: Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis
  publication-title: Thin-Walled Struct
– volume: 91
  year: 2022
  ident: 10.1016/j.ijimpeng.2024.105034_bib0033
  article-title: Composite honeycomb sandwich columns under in-plane compression: optimal geometrical design and three-dimensional failure mechanism maps
  publication-title: Eur J Mech A. Solids
  doi: 10.1016/j.euromechsol.2021.104415
– volume: 117
  start-page: 396
  year: 2017
  ident: 10.1016/j.ijimpeng.2024.105034_bib0015
  article-title: Static and dynamic crushing responses of CFRP sandwich panels filled with different reinforced materials
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.01.010
– volume: 31
  start-page: 535
  year: 2024
  ident: 10.1016/j.ijimpeng.2024.105034_bib0030
  article-title: Experimental and numerical study of composite honeycomb sandwich structures under low-velocity impact[J]
  publication-title: Appl Compos Mater
  doi: 10.1007/s10443-023-10190-0
– volume: 184
  year: 2019
  ident: 10.1016/j.ijimpeng.2024.105034_bib0032
  article-title: Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2019.107878
– year: 2023
  ident: 10.1016/j.ijimpeng.2024.105034_bib0014
  article-title: Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis
  publication-title: Thin-Walled Struct
– volume: 174
  year: 2023
  ident: 10.1016/j.ijimpeng.2024.105034_bib0020
  article-title: The impact and post-impact flexural behaviors of CFRP/aluminum-honeycomb sandwich
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2023.104507
– volume: 161
  year: 2022
  ident: 10.1016/j.ijimpeng.2024.105034_bib0035
  article-title: Fabrication and failure mechanisms of all-composite honeycomb sandwich cylinder under the axial compression
  publication-title: Compos. Part A
  doi: 10.1016/j.compositesa.2022.107075
– volume: 236
  year: 2020
  ident: 10.1016/j.ijimpeng.2024.105034_bib0022
  article-title: Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.111882
– volume: 216
  year: 2021
  ident: 10.1016/j.ijimpeng.2024.105034_bib0019
  article-title: On the structural parameters of honeycomb-core sandwich panels against low-velocity impact
  publication-title: Compos. Part B
  doi: 10.1016/j.compositesb.2021.108881
– volume: 239
  year: 2020
  ident: 10.1016/j.ijimpeng.2024.105034_bib0036
  article-title: A damage threshold prediction model of CFRP panel by hail impact based on delamination mechanism
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2020.107282
– volume: 139
  year: 2020
  ident: 10.1016/j.ijimpeng.2024.105034_bib0039
  article-title: Dynamic response of foam core sandwich panel with composite facesheets during low-velocity impact and penetration
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2020.103508
– volume: 158
  year: 2021
  ident: 10.1016/j.ijimpeng.2024.105034_bib0013
  article-title: Behaviour of continuous fibre composite sandwich core under low-velocity impact
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2020.107157
– volume: 48
  start-page: 65
  year: 2012
  ident: 10.1016/j.ijimpeng.2024.105034_bib0008
  article-title: The soft impact of composite sandwich beams with a square-honeycomb core
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2011.04.007
– volume: 52
  start-page: 118
  year: 2013
  ident: 10.1016/j.ijimpeng.2024.105034_bib0001
  article-title: Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites
  publication-title: Compos Part A
  doi: 10.1016/j.compositesa.2013.04.013
– volume: 149
  start-page: 408
  year: 2016
  ident: 10.1016/j.ijimpeng.2024.105034_bib0040
  article-title: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.04.012
– volume: 208
  year: 2021
  ident: 10.1016/j.ijimpeng.2024.105034_bib0044
  article-title: Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2021.106683
– volume: 169
  year: 2021
  ident: 10.1016/j.ijimpeng.2024.105034_bib0027
  article-title: The impact resistance of composite Y-shaped cores sandwich structure
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2021.108389
– volume: 121
  start-page: 122
  year: 2017
  ident: 10.1016/j.ijimpeng.2024.105034_bib0018
  article-title: Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels
  publication-title: Compos. Part B
  doi: 10.1016/j.compositesb.2017.03.030
– volume: 150
  year: 2021
  ident: 10.1016/j.ijimpeng.2024.105034_bib0021
  article-title: Honeycomb core failure mechanism of CFRP/Nomex sandwich panel under multi-angle impact of hail ice
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2021.103817
– volume: 181
  year: 2023
  ident: 10.1016/j.ijimpeng.2024.105034_bib0031
  article-title: Dynamic response and failure of CFRP Kagome lattice core sandwich panels subjected to low-velocity impact
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2023.104737
– volume: 137
  start-page: 411
  year: 2019
  ident: 10.1016/j.ijimpeng.2024.105034_bib0017
  article-title: Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2019.01.022
– volume: 81
  year: 2020
  ident: 10.1016/j.ijimpeng.2024.105034_bib0002
  article-title: The edgewise compressive behavior and failure mechanism of the composite Y-frame core sandwich column
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2019.106188
– volume: 162
  year: 2021
  ident: 10.1016/j.ijimpeng.2024.105034_bib0042
  article-title: An improved orthotropic elasto-plastic damage model for plain woven composites
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2021.107598
– volume: 100
  start-page: 451
  year: 2013
  ident: 10.1016/j.ijimpeng.2024.105034_bib0011
  article-title: Response of sandwich structures with pyramidal truss cores under the compression and impact loading
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.01.012
– volume: 226
  year: 2019
  ident: 10.1016/j.ijimpeng.2024.105034_bib0009
  article-title: Effects of impact energy, velocity, and impactor mass on the damage induced in composite laminates and sandwich panels
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.111284
– volume: 133
  start-page: 1127
  year: 2015
  ident: 10.1016/j.ijimpeng.2024.105034_bib0023
  article-title: The oblique impact response of composite sandwich plates
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.08.035
– volume: 238
  year: 2020
  ident: 10.1016/j.ijimpeng.2024.105034_bib0026
  article-title: Low velocity impact behavior of carbon fibre composite curved corrugated sandwich shells
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.112027
– volume: 246
  year: 2023
  ident: 10.1016/j.ijimpeng.2024.105034_bib0037
  article-title: Low-velocity impact response of composite sandwich structure with grid–honeycomb hybrid core
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2023.108149
– volume: 46
  start-page: 11
  year: 2012
  ident: 10.1016/j.ijimpeng.2024.105034_bib0041
  article-title: A ballistic material model for continuous-fiber reinforced composites
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2011.12.007
– volume: 111
  start-page: 222
  year: 2018
  ident: 10.1016/j.ijimpeng.2024.105034_bib0006
  article-title: Dynamic response of square sandwich plates with a metal foam core subjected to low-velocity impact
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2017.09.011
– volume: 92
  start-page: 1485
  issue: 6
  year: 2010
  ident: 10.1016/j.ijimpeng.2024.105034_bib0025
  article-title: Sandwich structures with textile-reinforced composite foldcores under impact loads
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2009.11.001
– volume: 324
  year: 2023
  ident: 10.1016/j.ijimpeng.2024.105034_bib0012
  article-title: Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2023.117574
– volume: 131
  start-page: 718
  year: 2018
  ident: 10.1016/j.ijimpeng.2024.105034_bib0038
  article-title: Low-velocity impact behavior of X-Frame core sandwich structures–experimental and numerical investigation
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2018.07.042
– volume: 251
  year: 2020
  ident: 10.1016/j.ijimpeng.2024.105034_bib0028
  article-title: Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.112659
– volume: 130
  start-page: 172
  year: 2019
  ident: 10.1016/j.ijimpeng.2024.105034_bib0007
  article-title: Low-velocity impact response of sandwich beams with a metal foam core: experimental and theoretical investigations
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2019.04.014
– volume: 173
  year: 2023
  ident: 10.1016/j.ijimpeng.2024.105034_bib0010
  article-title: Numerical analysis of low-speed impact response of sandwich panels with bio-inspired diagonal-enhanced square honeycomb core
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2022.104430
– volume: 177
  start-page: 79
  year: 2021
  ident: 10.1016/j.ijimpeng.2024.105034_bib0005
  article-title: Evolutionary optimization design of honeycomb metastructure with effective mechanical resistance and broadband microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.02.066
– volume: 142
  start-page: 159
  year: 2018
  ident: 10.1016/j.ijimpeng.2024.105034_bib0024
  article-title: Multi-objective optimization for designing a composite sandwich structure under normal and 45 impact loadings
  publication-title: Compos Part B
  doi: 10.1016/j.compositesb.2018.01.020
– volume: 100
  start-page: 125
  year: 2016
  ident: 10.1016/j.ijimpeng.2024.105034_bib0043
  article-title: Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites
  publication-title: Compos Part B
  doi: 10.1016/j.compositesb.2016.06.007
– volume: 269
  year: 2022
  ident: 10.1016/j.ijimpeng.2024.105034_bib0034
  article-title: Face-core interfacial debonding characterization model of an all-composite sandwich beam with a hexagonal honeycomb core
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2022.108554
– volume: 162
  year: 2022
  ident: 10.1016/j.ijimpeng.2024.105034_bib0004
  article-title: Energy absorption and impact behavior of composite sandwich panels under high-velocity spherical projectile
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2021.104143
– volume: 162
  year: 2020
  ident: 10.1016/j.ijimpeng.2024.105034_bib0003
  article-title: Sound absorption performance of a filled honeycomb composite structure
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2019.107202
– volume: 304
  year: 2023
  ident: 10.1016/j.ijimpeng.2024.105034_bib0029
  article-title: The behavior of interlocked ortho-grid composite sandwich structure subjected to low-velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.116399
– volume: 121
  start-page: 77
  year: 2018
  ident: 10.1016/j.ijimpeng.2024.105034_bib0016
  article-title: Single and double-layer honeycomb sandwich panels under impact loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2018.07.013
SSID ssj0017050
Score 2.539355
Snippet •Different damage states of CFRP honeycomb sandwich structure are revealed through low-velocity impact experiments.•A refined finite element model suitable for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105034
SubjectTerms Composite honeycomb
Energy absorption
Finite element simulation
Low-velocity impact
Sandwich structure
Title Low-velocity impact responses and failure of sandwich structure with carbon fiber composite honeycomb cores
URI https://dx.doi.org/10.1016/j.ijimpeng.2024.105034
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017050
  issn: 0734-743X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-3509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017050
  issn: 0734-743X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-3509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017050
  issn: 0734-743X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-3509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017050
  issn: 0734-743X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017050
  issn: 0734-743X
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LawIxEA5iL-2h9EntQ3Lodd1Hkl09ilTsAy-t4G1JskldW3ZFBemlv70z-xALBQ89JmRImBkyk_DNN4TcG-5xEybWMUEiHC56wlHwLHAUeAvyvUEIKQCy43A04U9TMW2QQV0Lg7DK6u4v7_Titq5m3Eqb7iJN3VdwTg7xb4ooSF8U5decR9jFoPO9hXkgW0zxzwKLHVy9UyU876TzFJLT7B3eiQHHlrce438HqJ2gMzwhx1W2SPvlgU5Jw2Rn5GiHQ_CcfLzkGweBPxryaVoWPdJliXw1KyqzhFqZIvic5pauYLxJ9YyWvLE4iz-xVMulyjNqET9CEWaOWC5DZ3lmvmCoKLJdri7IZPjwNhg5VQcFRzM_WEP4EborI98y6WtrIx0KXzEbRaFOQq0TqWyX-cZ4XEkTeBy52TULPWatkp5k7JI0M9jpisBRMdfRXHTBjJCmSKNVaHu9JILlUvMWEbXaYl3Ri2OXi8-4xpHN41rdMao7LtXdIu5WblESbOyV6NVWiX-5SgxRYI_s9T9kb8ghjkok3y1pgp3MHWQka9UuXK5NDvqPz6PxD8gl40k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IHtSD8Rnx2YPXZR9td-FoiAQVuQgJt03bbWXRLARIiBd_uzP7IJiYePDYbifbTCfzaL75Ssid4R43YWIdEyTC4aItHAVlgaPAWpDvDUJIDpAdhL0RfxqLcY10ql4YhFWWvr_w6bm3LmfcUpvuPE3dVzBODvFvjChIX2D79Q4XQYQVWPNrg_NAupj8ogVWO7h8q0142kynKWSn2RsUigHHN289xn-PUFtRp3tIDsp0kd4XOzoiNZMdk_0tEsET8t6frR1E_mhIqGnR9UgXBfTVLKnMEmpliuhzOrN0CeN1qie0II7FWbyKpVou1CyjFgEkFHHmCOYydDLLzCcMFUW6y-UpGXUfhp2eUz6h4GjmByuIP0K3ZORbJn1tbaRD4StmoyjUSah1IpVtMd8YjytpAo8jObtmocesVdKTjJ2RegZ_OiewVUx2NBctOEfIU6TRKrTtdhLBcql5g4hKbbEu-cXxmYuPuAKSTeNK3TGqOy7U3SDuRm5eMGz8KdGuTiX-YSsxhIE_ZC_-IXtLdnvDl37cfxw8X5I9_FLA-q5IHc7MXEN6slI3ufl9Ax5r5N4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-velocity+impact+responses+and+failure+of+sandwich+structure+with+carbon+fiber+composite+honeycomb+cores&rft.jtitle=International+journal+of+impact+engineering&rft.au=Wang%2C+Yan&rft.au=Wei%2C+Xingyu&rft.au=Li%2C+Zhibin&rft.au=Gong%2C+Cheng&rft.date=2024-10-01&rft.issn=0734-743X&rft.volume=192&rft.spage=105034&rft_id=info:doi/10.1016%2Fj.ijimpeng.2024.105034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2024_105034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon