A hybrid Gaussian mutation PSO with search space reduction and its application to intelligent selection of piston seal grooves for homemade pneumatic cylinders
To make the motion tracking control of the homemade pneumatic cylinder as accurate as possible, it is necessary to properly match the seal groove and seal ring on the piston to generate the appropriate friction. However, since the relationship between friction and motion control accuracy is not yet...
        Saved in:
      
    
          | Published in | Engineering applications of artificial intelligence Vol. 122; p. 106156 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.06.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0952-1976 1873-6769  | 
| DOI | 10.1016/j.engappai.2023.106156 | 
Cover
| Abstract | To make the motion tracking control of the homemade pneumatic cylinder as accurate as possible, it is necessary to properly match the seal groove and seal ring on the piston to generate the appropriate friction. However, since the relationship between friction and motion control accuracy is not yet clear, and the friction affected by many factors cannot be accurately modeled, it is impossible to design the optimal seal groove with the highest possible motion control accuracy for pneumatic cylinder through theoretical calculation or simulation optimization. For this reason, an experimental optimization method is considered to select the optimal one from the six empirically designed seal grooves through a particle swarm optimization (PSO) algorithm. To cope with the shortcomings of slow convergence rate and the tendency to fall into local optimum of the basic PSO algorithm (BPSO), three improved PSO algorithms (HGMPSO-0, HGMPSO and HGMPSO-SSR) are successively proposed in this study. The first two improved algorithms are compared with other PSO variants on 23 benchmark functions tested, and the results show that HGMPSO has better overall performance. To significantly improve the search space search efficiency and make the algorithm converge faster, the search space contraction mechanism is introduced into the HGMPSO algorithm to form the HGMPSO-SSR algorithm. The experimental results show that the HGMPSO-SSR algorithm significantly outperforms other PSO variants used for comparison and successfully achieves intelligent selection of piston seal grooves for the designed homemade pneumatic cylinder.
•An intelligent selection method for the cylinder piston seal groove is proposed.•The novel improved position updating formula for PSO improves the efficiency.•The proposed method successfully achieves the optimal selection of seal grooves. | 
    
|---|---|
| AbstractList | To make the motion tracking control of the homemade pneumatic cylinder as accurate as possible, it is necessary to properly match the seal groove and seal ring on the piston to generate the appropriate friction. However, since the relationship between friction and motion control accuracy is not yet clear, and the friction affected by many factors cannot be accurately modeled, it is impossible to design the optimal seal groove with the highest possible motion control accuracy for pneumatic cylinder through theoretical calculation or simulation optimization. For this reason, an experimental optimization method is considered to select the optimal one from the six empirically designed seal grooves through a particle swarm optimization (PSO) algorithm. To cope with the shortcomings of slow convergence rate and the tendency to fall into local optimum of the basic PSO algorithm (BPSO), three improved PSO algorithms (HGMPSO-0, HGMPSO and HGMPSO-SSR) are successively proposed in this study. The first two improved algorithms are compared with other PSO variants on 23 benchmark functions tested, and the results show that HGMPSO has better overall performance. To significantly improve the search space search efficiency and make the algorithm converge faster, the search space contraction mechanism is introduced into the HGMPSO algorithm to form the HGMPSO-SSR algorithm. The experimental results show that the HGMPSO-SSR algorithm significantly outperforms other PSO variants used for comparison and successfully achieves intelligent selection of piston seal grooves for the designed homemade pneumatic cylinder.
•An intelligent selection method for the cylinder piston seal groove is proposed.•The novel improved position updating formula for PSO improves the efficiency.•The proposed method successfully achieves the optimal selection of seal grooves. | 
    
| ArticleNumber | 106156 | 
    
| Author | Lv, Pansong Meng, Deyuan Qian, Pengfei Páez, Luis Miguel Ruiz Pu, Chenwei Luo, Hui Liu, Lei  | 
    
| Author_xml | – sequence: 1 givenname: Pengfei orcidid: 0000-0001-7320-5777 surname: Qian fullname: Qian, Pengfei email: pengfeiqian@zju.edu.cn organization: School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 2 givenname: Hui surname: Luo fullname: Luo, Hui organization: School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 3 givenname: Lei surname: Liu fullname: Liu, Lei organization: School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 4 givenname: Pansong surname: Lv fullname: Lv, Pansong organization: School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 5 givenname: Chenwei surname: Pu fullname: Pu, Chenwei organization: School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 6 givenname: Deyuan surname: Meng fullname: Meng, Deyuan email: tinydreams@126.com organization: School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China – sequence: 7 givenname: Luis Miguel Ruiz orcidid: 0000-0001-8060-9307 surname: Páez fullname: Páez, Luis Miguel Ruiz organization: School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China  | 
    
| BookMark | eNqFkMFq3DAQhkVJoZu0r1D0At5Ktle2IYeEkKaFQAJtz2IsjXdnsSUjaRP2afKq0dbtJZecfiHp-4f5ztmZ8w4Z-yrFWgqpvu3X6LYwz0DrUpRVvlRyoz6wlWybqlCN6s7YSnSbspBdoz6x8xj3QoiqrdWKvVzz3bEPZPkdHGIkcHw6JEjkHX_89cCfKe14RAgmxwwGeUB7MH_fwVlOKfI8eySzMMlzcgnHkbboUiZHXD77gc8UUz7ltpFvg_dPGPngA9_5CSewyGeHhyn3GG6OIzmLIX5mHwcYI375lxfsz_fb3zc_ivuHu5831_eFqWSZiqbqTW9UJ2xdW2lqkOXQVhvVwWAFILbQg5Ci63GoG4RB1KZrRQctirbsN6q6YJdLrwk-xoCDNrRoSAFo1FLok2y91_9l65NsvcjOuHqDz4EmCMf3wasFxLzcE2HQ0RA6g5ZCNqetp_cqXgFEjqT3 | 
    
| CitedBy_id | crossref_primary_10_1016_j_sna_2023_114674 crossref_primary_10_3390_act13070271 crossref_primary_10_1016_j_aej_2023_09_042 crossref_primary_10_1016_j_camwa_2023_12_011 crossref_primary_10_3390_jmse11081609 crossref_primary_10_1016_j_isatra_2024_06_024 crossref_primary_10_3390_jmse11071273 crossref_primary_10_1007_s40430_024_04918_7 crossref_primary_10_1080_17499518_2024_2395553 crossref_primary_10_1038_s41598_024_56264_2 crossref_primary_10_1080_21642583_2023_2249021 crossref_primary_10_1016_j_engappai_2024_109223 crossref_primary_10_1016_j_mechatronics_2023_103089 crossref_primary_10_1177_09544062241300810 crossref_primary_10_1109_ACCESS_2023_3302347  | 
    
| Cites_doi | 10.1109/TIE.2017.2782198 10.1016/j.eswa.2021.116158 10.1016/j.isatra.2019.08.018 10.1504/IJHM.2021.116948 10.1016/j.cma.2022.114570 10.1109/CEC.2000.870279 10.1016/j.autcon.2021.103722 10.1007/s00521-022-07530-9 10.1504/IJHM.2019.102893 10.1016/j.asoc.2011.01.037 10.1016/j.asoc.2018.09.019 10.1007/s11721-007-0002-0 10.1016/j.advengsoft.2013.12.007 10.1016/j.swevo.2018.02.011 10.1016/j.engappai.2013.11.007 10.1109/TEVC.2005.857610 10.1016/j.asoc.2021.107302 10.1162/EVCO_r_00180 10.1007/BFb0040810 10.1007/s12555-017-0670-5 10.1177/0954407014565406 10.1109/TEVC.2004.826071 10.4028/www.scientific.net/AMM.130-134.775 10.1016/j.asoc.2019.105822 10.1016/j.isatra.2020.12.033 10.1109/ACCESS.2022.3142859 10.1016/j.knosys.2015.12.022 10.1007/s11465-021-0657-z 10.3724/SP.J.1016.2011.00115 10.1007/s11269-017-1569-x 10.1007/s11431-021-1932-1 10.1007/s11771-013-1642-4 10.1504/IJHM.2022.125088 10.1016/j.cie.2021.107250 10.1016/j.isatra.2020.12.019 10.1016/j.sna.2022.113731 10.1109/TEVC.2012.2189404 10.1186/s10033-021-00619-7 10.1109/TIE.2018.2870412 10.1016/j.asoc.2007.01.010 10.1088/1361-6501/ac51a6 10.1016/j.isatra.2021.03.021 10.1109/MCI.2006.329691 10.1109/SIS.2007.368046 10.1016/j.cnsns.2010.01.005 10.1016/j.engappai.2010.02.002 10.1007/s40430-022-03676-8 10.1109/CEC.2001.934376 10.1109/ICNN.1995.488968 10.1142/S0219622019500147 10.1007/s11431-021-1904-7 10.1109/TEC.2003.821821 10.1016/j.cma.2020.113609 10.1016/j.ins.2013.08.015 10.1109/NABIC.2009.5393690 10.1109/4235.771163 10.1631/jzus.C1400003  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2023 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.engappai.2023.106156 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Computer Science  | 
    
| EISSN | 1873-6769 | 
    
| ExternalDocumentID | 10_1016_j_engappai_2023_106156 S0952197623003408  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c312t-73bcbc690d44d1c4a12f83569afd0aee8aba0109bef47eaf04c9809a8e082b563 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0952-1976 | 
    
| IngestDate | Sat Oct 25 05:04:29 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Fri Feb 23 02:36:10 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Search space reduction Homemade pneumatic cylinder Intelligent selection Particle swarm optimization Piston seal groove  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c312t-73bcbc690d44d1c4a12f83569afd0aee8aba0109bef47eaf04c9809a8e082b563 | 
    
| ORCID | 0000-0001-7320-5777 0000-0001-8060-9307  | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2023_106156 crossref_primary_10_1016_j_engappai_2023_106156 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106156  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | June 2023 2023-06-00  | 
    
| PublicationDateYYYYMMDD | 2023-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Engineering applications of artificial intelligence | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Bonyadi, Michalewicz (b9) 2017; 25 Wu, Liu, Zhang (b61) 2022; 5 Shao, Peng, He (b56) 2020; 97 Abualigah, Diabat, Mirjalili (b1) 2021; 376 Eberhart, R.C., Shi, Y., 2001. Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation. pp. 94–100. Kashyap, Parhi (b27) 2021; 114 Agushaka, Ezugwu, Abualigah (b4) 2022; 391 Qian, Ren, Tao (b49) 2016; 37 Marinakis, Marinaki, Dounias (b35) 2010; 23 Shami, El-Saleh, Alswaitti (b55) 2022; 10 Qian, Tao, Liu (b51) 2015; 229 Echevarría, Santiago, Fajardo (b19) 2014; 28 Zhang, Li, Xu (b67) 2021; 34 Dorigo, Birattari, Stutzle (b15) 2006; 1 Qian, Luo, Shan (b44) 2022; 56 Gaing (b22) 2004; 19 Mirjalili (b38) 2016; 96 Qian, Pu, Liu (b47) 2022; 344 Chao, Zhang, Xu (b12) 2022; 17 Molga, M., Smutnicki, C., 2005. Test functions for optimization needs, test functions for optimization needs. 101, 48. Li, Zong, Lu (b33) 2022; 120 Li, Meng, Tang (b31) 2021; 112 Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. pp. 1942–1948. Agushaka, Ezugwu, Abualigah (b5) 2022 Qian, Pu, He (b45) 2022; 44 Ezugwu, Agushaka, Abualigah (b20) 2022; 34 Yang (b62) 2010 Eberhart, R.C., Shi, Y., 2000. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. pp. 84–88. . Zhao, Shi, Wang (b68) 2021; 8 Ren, Fan, Kaynak (b54) 2018; 66 Helwig, S., Wanka, R., 2007. Particle swarm optimization in high-dimensional bounded search spaces. In: 2007 IEEE Swarm Intelligence Symposium. pp. 198–205. Meng, Tao, Ban (b36) 2013; 20 Yang, Sun, Xia (b65) 2017; 65 Bejarbaneh, Bagheri, Bejarbaneh (b8) 2019; 85 Chegini, Bagheri, Najafi (b13) 2018; 73 Helwig, Branke, Mostaghim (b25) 2013; 17 Feng, Ma, Yin (b21) 2021; 127 Abualigah, Elaziz, Sumari (b2) 2022; 191 Yang, Li (b64) 2004; 6 Liang, Qin, Suganthan (b34) 2006; 10 Nickabadi, Ebadzadeh, Safabakhsh (b42) 2011; 11 Qian, Pu, Liu (b46) 2022; 33 Gu, Böhle, Schimpf (b24) 2021; 39 Poli, Kennedy, Blackwell (b43) 2007; 1 Kato, Xu, Tanaka (b28) 2021; 4 Li, Chen, Wang (b30) 2019; 18 Mirjalili, Mirjalili, Lewis (b39) 2014; 69 Arumugam, Rao (b6) 2008; 8 Ratnaweera, Halgamuge, Watson (b53) 2004; 8 Chi, Sun, Wang (b14) 2011; 34 Chang, Shih (b10) 2010; 15 Du, Xiong, Jiang (b16) 2019; 17 Gao, Fei, Xu (b23) 2012; 219 Beheshti, Shamsuddin (b7) 2014; 258 Yang, X., Deb, S., 2009. Cuckoo Search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing. pp. 210–214. Li, Xue, Zhang (b32) 2021; 106 Wang, Xu, Xie (b59) 2022; 65 Yao, Liu, Lin (b66) 1999; 3 Qian, Tao, Chen (b50) 2011; 130–134 Qian, Tao, Meng (b52) 2014; 15 Chao, Gao, Tao (b11) 2022; 65 Nenavath, Jatoth, Das (b41) 2018; 43 Wang, Yu, Wang (b60) 2019; 2 Qian, Pu, Liu (b48) 2022; 56 Shi, Eberhart (b57) 1998 Shi, Y., Eberhart, R.C., 1998b. Parameter selection in particle swarm optimization. In: International Conference on Evolutionary Programming. pp. 591–600. Abualigah, Yousri, Elaziz (b3) 2021; 157 Ming, Liu, Bai (b37) 2017; 31 Li (10.1016/j.engappai.2023.106156_b31) 2021; 112 Qian (10.1016/j.engappai.2023.106156_b44) 2022; 56 Mirjalili (10.1016/j.engappai.2023.106156_b38) 2016; 96 Gao (10.1016/j.engappai.2023.106156_b23) 2012; 219 Du (10.1016/j.engappai.2023.106156_b16) 2019; 17 Qian (10.1016/j.engappai.2023.106156_b46) 2022; 33 Qian (10.1016/j.engappai.2023.106156_b52) 2014; 15 Li (10.1016/j.engappai.2023.106156_b30) 2019; 18 Ren (10.1016/j.engappai.2023.106156_b54) 2018; 66 Yang (10.1016/j.engappai.2023.106156_b64) 2004; 6 Bejarbaneh (10.1016/j.engappai.2023.106156_b8) 2019; 85 10.1016/j.engappai.2023.106156_b40 Gaing (10.1016/j.engappai.2023.106156_b22) 2004; 19 Dorigo (10.1016/j.engappai.2023.106156_b15) 2006; 1 Zhang (10.1016/j.engappai.2023.106156_b67) 2021; 34 Kato (10.1016/j.engappai.2023.106156_b28) 2021; 4 Mirjalili (10.1016/j.engappai.2023.106156_b39) 2014; 69 10.1016/j.engappai.2023.106156_b17 Nenavath (10.1016/j.engappai.2023.106156_b41) 2018; 43 Chegini (10.1016/j.engappai.2023.106156_b13) 2018; 73 10.1016/j.engappai.2023.106156_b18 Meng (10.1016/j.engappai.2023.106156_b36) 2013; 20 Nickabadi (10.1016/j.engappai.2023.106156_b42) 2011; 11 Qian (10.1016/j.engappai.2023.106156_b50) 2011; 130–134 Beheshti (10.1016/j.engappai.2023.106156_b7) 2014; 258 Li (10.1016/j.engappai.2023.106156_b32) 2021; 106 Arumugam (10.1016/j.engappai.2023.106156_b6) 2008; 8 Shi (10.1016/j.engappai.2023.106156_b57) 1998 Kashyap (10.1016/j.engappai.2023.106156_b27) 2021; 114 Qian (10.1016/j.engappai.2023.106156_b49) 2016; 37 Abualigah (10.1016/j.engappai.2023.106156_b3) 2021; 157 Yao (10.1016/j.engappai.2023.106156_b66) 1999; 3 Yang (10.1016/j.engappai.2023.106156_b62) 2010 Helwig (10.1016/j.engappai.2023.106156_b25) 2013; 17 Shami (10.1016/j.engappai.2023.106156_b55) 2022; 10 10.1016/j.engappai.2023.106156_b58 Wang (10.1016/j.engappai.2023.106156_b60) 2019; 2 10.1016/j.engappai.2023.106156_b29 Gu (10.1016/j.engappai.2023.106156_b24) 2021; 39 Ming (10.1016/j.engappai.2023.106156_b37) 2017; 31 Qian (10.1016/j.engappai.2023.106156_b45) 2022; 44 Chang (10.1016/j.engappai.2023.106156_b10) 2010; 15 Bonyadi (10.1016/j.engappai.2023.106156_b9) 2017; 25 Wu (10.1016/j.engappai.2023.106156_b61) 2022; 5 Zhao (10.1016/j.engappai.2023.106156_b68) 2021; 8 Wang (10.1016/j.engappai.2023.106156_b59) 2022; 65 Poli (10.1016/j.engappai.2023.106156_b43) 2007; 1 Yang (10.1016/j.engappai.2023.106156_b65) 2017; 65 Agushaka (10.1016/j.engappai.2023.106156_b4) 2022; 391 Agushaka (10.1016/j.engappai.2023.106156_b5) 2022 Abualigah (10.1016/j.engappai.2023.106156_b1) 2021; 376 10.1016/j.engappai.2023.106156_b63 Echevarría (10.1016/j.engappai.2023.106156_b19) 2014; 28 Chao (10.1016/j.engappai.2023.106156_b12) 2022; 17 10.1016/j.engappai.2023.106156_b26 Shao (10.1016/j.engappai.2023.106156_b56) 2020; 97 Ezugwu (10.1016/j.engappai.2023.106156_b20) 2022; 34 Feng (10.1016/j.engappai.2023.106156_b21) 2021; 127 Ratnaweera (10.1016/j.engappai.2023.106156_b53) 2004; 8 Li (10.1016/j.engappai.2023.106156_b33) 2022; 120 Marinakis (10.1016/j.engappai.2023.106156_b35) 2010; 23 Chao (10.1016/j.engappai.2023.106156_b11) 2022; 65 Liang (10.1016/j.engappai.2023.106156_b34) 2006; 10 Chi (10.1016/j.engappai.2023.106156_b14) 2011; 34 Qian (10.1016/j.engappai.2023.106156_b51) 2015; 229 Qian (10.1016/j.engappai.2023.106156_b48) 2022; 56 Qian (10.1016/j.engappai.2023.106156_b47) 2022; 344 Abualigah (10.1016/j.engappai.2023.106156_b2) 2022; 191  | 
    
| References_xml | – reference: Helwig, S., Wanka, R., 2007. Particle swarm optimization in high-dimensional bounded search spaces. In: 2007 IEEE Swarm Intelligence Symposium. pp. 198–205. – volume: 34 start-page: 107 year: 2021 ident: b67 article-title: Medical grabbing servo system with friction compensation based on the differential evolution algorithm publication-title: Chin. J. Mech. Eng. – reference: Eberhart, R.C., Shi, Y., 2000. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. pp. 84–88. – volume: 219 start-page: 552 year: 2012 end-page: 568 ident: b23 article-title: A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems publication-title: Appl. Math. Comput. – volume: 112 start-page: 337 year: 2021 end-page: 349 ident: b31 article-title: Adaptive robust precision motion control of single PAM actuated servo systems with non-local memory hysteresis force compensation publication-title: ISA Trans. – volume: 37 start-page: 515 year: 2016 end-page: 524 ident: b49 article-title: Compound sliding mode motion trajectory tracking control of an electro-pneumatic clutch actuator while maximizing its stiffness publication-title: J. Chin. Soc. Mech. Eng. – volume: 114 start-page: 306 year: 2021 end-page: 330 ident: b27 article-title: Particle swarm optimization aided PID gait controller design for a humanoid robot publication-title: ISA Trans. – start-page: 69 year: 1998 end-page: 73 ident: b57 article-title: A modified particle swarm optimizer publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: b34 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. – volume: 344 year: 2022 ident: b47 article-title: A novel pneumatic actuator based on high-frequency longitudinal vibration friction reduction publication-title: Sensors Actuators A – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: b66 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. – volume: 73 start-page: 697 year: 2018 end-page: 726 ident: b13 article-title: PSOSCALF: A new hybrid PSO based on Sine cosine algorithm and levy flight for solving optimization problems publication-title: Appl. Soft Comput. – volume: 39 start-page: 818 year: 2021 end-page: 825 ident: b24 article-title: Aerostatic bearing with porous restrictor: research status and future perspectives publication-title: J. Drainage Irrigation Mach. Eng. – volume: 23 start-page: 463 year: 2010 end-page: 472 ident: b35 article-title: A hybrid particle swarm optimization algorithm for the vehicle routing problem publication-title: Eng. Appl. Artif. Intell. – volume: 85 year: 2019 ident: b8 article-title: A new adjusting technique for PID type fuzzy logic controller using PSOSCALF optimization algorithm publication-title: Appl. Soft Comput. – volume: 2 start-page: 189 year: 2019 end-page: 202 ident: b60 article-title: Study on the dynamic and static characteristics of gas static thrust bearing with micro-hole restrictors publication-title: Int. J. Hydromech. – volume: 33 year: 2022 ident: b46 article-title: Development of a new high-precision friction test platform and experimental study of friction characteristics for pneumatic cylinders publication-title: Meas. Sci. Technol. – reference: Shi, Y., Eberhart, R.C., 1998b. Parameter selection in particle swarm optimization. In: International Conference on Evolutionary Programming. pp. 591–600. – volume: 25 start-page: 1 year: 2017 end-page: 54 ident: b9 article-title: Particle swarm optimization for single objective continuous space problems: a review publication-title: Evol. Comput. – volume: 56 start-page: 12 year: 2022 end-page: 21 ident: b44 article-title: Optimal design and working condition analysis of a novel double-acting air-floating pneumatic cylinder publication-title: J. Xi’An Jiaotong Univ. – volume: 97 start-page: 415 year: 2020 end-page: 430 ident: b56 article-title: Efficient path planning for UAV formation via comprehensively improved particle swarm optimization publication-title: ISA Trans. – volume: 130–134 start-page: 775 year: 2011 end-page: 780 ident: b50 article-title: Modeling and simulation of stick–slip motion for pneumatic cylinder based on meter-in circuit publication-title: Appl. Mech. Mater. – volume: 18 start-page: 833 year: 2019 end-page: 866 ident: b30 article-title: An improved particle swarm optimization algorithm with adaptive inertia weights publication-title: Int. J. Inf. Technol. Decis. Mak. – reference: Molga, M., Smutnicki, C., 2005. Test functions for optimization needs, test functions for optimization needs. 101, 48. – volume: 8 start-page: 240 year: 2004 end-page: 255 ident: b53 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. – volume: 157 year: 2021 ident: b3 article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. – volume: 10 start-page: 10031 year: 2022 end-page: 10061 ident: b55 article-title: Particle swarm optimization: A comprehensive survey publication-title: IEEE Access – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b38 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 391 year: 2022 ident: b4 article-title: Dwarf mongoose optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 5 start-page: 226 year: 2022 end-page: 242 ident: b61 article-title: Study on high frequency response characteristics of a moving-coil-type linear actuator using the coils combinations publication-title: Int. J. Hydromech. – volume: 28 start-page: 36 year: 2014 end-page: 51 ident: b19 article-title: A variant of the particle swarm optimization for the improvement of fault diagnosis in industrial systems via faults estimation publication-title: Eng. Appl. Artif. Intell. – volume: 31 start-page: 1173 year: 2017 end-page: 1190 ident: b37 article-title: Improving optimization efficiency for reservoir operation using a search space reduction method publication-title: Water Resour. Manage. – volume: 44 start-page: 376 year: 2022 ident: b45 article-title: A method to improve the motion trajectory tracking accuracy of pneumatic servo system-by exciting longitudinal resonance publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 65 start-page: 470 year: 2022 end-page: 480 ident: b11 article-title: Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals publication-title: Sci. China Technol. Sci. – volume: 11 start-page: 3658 year: 2011 end-page: 3670 ident: b42 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl. Soft Comput. – volume: 56 start-page: 22 year: 2022 end-page: 30 ident: b48 article-title: Sliding mode motion trajectory tracking control of a novel high-frequency longitudinal vibration friction-reducing pneumatic cylinder publication-title: J. Xi’An Jiaotong Univ. – volume: 4 start-page: 185 year: 2021 end-page: 201 ident: b28 article-title: Force control for ultraprecision hybrid electric-pneumatic vertical-positioning device publication-title: Int. J. Hydromech. – volume: 15 start-page: 878 year: 2014 end-page: 891 ident: b52 article-title: A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system publication-title: J. Zhejiang Univ.-SCI. C (Comput. Electron.) – reference: Eberhart, R.C., Shi, Y., 2001. Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation. pp. 94–100. – volume: 191 year: 2022 ident: b2 article-title: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. – volume: 19 start-page: 384 year: 2004 end-page: 391 ident: b22 article-title: A particle swarm optimization approach for optimum design of PID controller in AVR system publication-title: IEEE Trans. Energy Convers. – volume: 65 start-page: 956 year: 2022 end-page: 965 ident: b59 article-title: Research on the dynamic characteristics of pneumatic proportional regulator in pneumatic-loading system and design of fuzzy adaptive controller publication-title: Sci. China Technol. Sci. – volume: 8 start-page: 324 year: 2008 end-page: 336 ident: b6 article-title: On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems publication-title: Appl. Soft Comput. – volume: 43 start-page: 1 year: 2018 end-page: 30 ident: b41 article-title: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking publication-title: Swarm Evol. Comput. – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b15 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. – volume: 258 start-page: 54 year: 2014 end-page: 79 ident: b7 article-title: CAPSO: Centripetal accelerated particle swarm optimization publication-title: Inform. Sci. – year: 2022 ident: b5 article-title: Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer publication-title: Neural Comput. Appl. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b39 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 34 start-page: 115 year: 2011 end-page: 130 ident: b14 article-title: An improved particle swarm optimization algorithm with search space zoomed factor and attractor publication-title: Chinese J. Comput. – volume: 34 start-page: 20017 year: 2022 end-page: 20065 ident: b20 article-title: Prairie dog optimization algorithm publication-title: Neural Comput. Appl. – reference: Yang, X., Deb, S., 2009. Cuckoo Search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing. pp. 210–214. – reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. pp. 1942–1948. – volume: 120 start-page: 89 year: 2022 end-page: 98 ident: b33 article-title: Parameter identification of Hammerstein-Wiener nonlinear systems with unknown time delay based on the linear variable weight particle swarm optimization publication-title: ISA Trans. – volume: 17 start-page: 1 year: 2022 ident: b12 article-title: Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps publication-title: Front. Mech. Eng. – volume: 6 start-page: 87 year: 2004 end-page: 94 ident: b64 article-title: Survey on particle swarm optimization algorithm publication-title: Eng. Sci. – volume: 376 year: 2021 ident: b1 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 20 start-page: 1510 year: 2013 end-page: 1518 ident: b36 article-title: Adaptive robust output force tracking control of pneumatic cylinder while maximizing/minimizing its stiffness publication-title: J. Cent. South Univ. – year: 2010 ident: b62 article-title: Test problems in optimization – volume: 8 start-page: 1204 year: 2021 end-page: 1233 ident: b68 article-title: An adaptive hybrid atom search optimization with particle swarm optimization and its application to optimal no-load PID design of hydro-turbine governor publication-title: J. Comput. Des. Eng. – volume: 229 start-page: 1483 year: 2015 end-page: 1493 ident: b51 article-title: Globally stable pressure-observer-based servo control of an electro-pneumatic clutch actuator publication-title: Proc. Inst. Mech. Eng. D – volume: 65 start-page: 5806 year: 2017 end-page: 5815 ident: b65 article-title: Position control for magnetic rodless cylinders with strong static friction publication-title: IEEE Trans. Ind. Electron. – reference: . – volume: 17 start-page: 259 year: 2013 end-page: 271 ident: b25 article-title: Experimental analysis of bound handling techniques in particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – volume: 66 start-page: 6220 year: 2018 end-page: 6229 ident: b54 article-title: Optimal design of a fractional-order proportional-integer-differential controller for a pneumatic position servo system publication-title: IEEE Trans. Ind. Electron. – volume: 106 year: 2021 ident: b32 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Appl. Soft Comput. – volume: 15 start-page: 3632 year: 2010 end-page: 3639 ident: b10 article-title: PID controller design of nonlinear systems using an improved particle swarm optimization approach publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 1 start-page: 33 year: 2007 end-page: 57 ident: b43 article-title: Particle swarm optimization publication-title: Swarm Intell. – volume: 17 start-page: 145 year: 2019 end-page: 154 ident: b16 article-title: Friction characteristics of a cylinder based on a bridge-type pneumatic energy-saving circuit publication-title: Int. J. Control Autom. Syst. – volume: 127 year: 2021 ident: b21 article-title: Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller publication-title: Autom. Constr. – volume: 65 start-page: 5806 issue: 7 year: 2017 ident: 10.1016/j.engappai.2023.106156_b65 article-title: Position control for magnetic rodless cylinders with strong static friction publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2782198 – volume: 191 year: 2022 ident: 10.1016/j.engappai.2023.106156_b2 article-title: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 97 start-page: 415 year: 2020 ident: 10.1016/j.engappai.2023.106156_b56 article-title: Efficient path planning for UAV formation via comprehensively improved particle swarm optimization publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.08.018 – volume: 6 start-page: 87 issue: 5 year: 2004 ident: 10.1016/j.engappai.2023.106156_b64 article-title: Survey on particle swarm optimization algorithm publication-title: Eng. Sci. – volume: 4 start-page: 185 issue: 2 year: 2021 ident: 10.1016/j.engappai.2023.106156_b28 article-title: Force control for ultraprecision hybrid electric-pneumatic vertical-positioning device publication-title: Int. J. Hydromech. doi: 10.1504/IJHM.2021.116948 – volume: 37 start-page: 515 issue: 6 year: 2016 ident: 10.1016/j.engappai.2023.106156_b49 article-title: Compound sliding mode motion trajectory tracking control of an electro-pneumatic clutch actuator while maximizing its stiffness publication-title: J. Chin. Soc. Mech. Eng. – volume: 391 year: 2022 ident: 10.1016/j.engappai.2023.106156_b4 article-title: Dwarf mongoose optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.114570 – ident: 10.1016/j.engappai.2023.106156_b17 doi: 10.1109/CEC.2000.870279 – volume: 127 year: 2021 ident: 10.1016/j.engappai.2023.106156_b21 article-title: Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103722 – volume: 34 start-page: 20017 year: 2022 ident: 10.1016/j.engappai.2023.106156_b20 article-title: Prairie dog optimization algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07530-9 – volume: 2 start-page: 189 issue: 3 year: 2019 ident: 10.1016/j.engappai.2023.106156_b60 article-title: Study on the dynamic and static characteristics of gas static thrust bearing with micro-hole restrictors publication-title: Int. J. Hydromech. doi: 10.1504/IJHM.2019.102893 – volume: 11 start-page: 3658 issue: 4 year: 2011 ident: 10.1016/j.engappai.2023.106156_b42 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.01.037 – volume: 73 start-page: 697 year: 2018 ident: 10.1016/j.engappai.2023.106156_b13 article-title: PSOSCALF: A new hybrid PSO based on Sine cosine algorithm and levy flight for solving optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.019 – volume: 1 start-page: 33 year: 2007 ident: 10.1016/j.engappai.2023.106156_b43 article-title: Particle swarm optimization publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.engappai.2023.106156_b39 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – year: 2022 ident: 10.1016/j.engappai.2023.106156_b5 article-title: Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer publication-title: Neural Comput. Appl. – volume: 43 start-page: 1 year: 2018 ident: 10.1016/j.engappai.2023.106156_b41 article-title: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.011 – volume: 56 start-page: 12 issue: 3 year: 2022 ident: 10.1016/j.engappai.2023.106156_b44 article-title: Optimal design and working condition analysis of a novel double-acting air-floating pneumatic cylinder publication-title: J. Xi’An Jiaotong Univ. – volume: 28 start-page: 36 year: 2014 ident: 10.1016/j.engappai.2023.106156_b19 article-title: A variant of the particle swarm optimization for the improvement of fault diagnosis in industrial systems via faults estimation publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.11.007 – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 10.1016/j.engappai.2023.106156_b34 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857610 – volume: 106 year: 2021 ident: 10.1016/j.engappai.2023.106156_b32 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107302 – volume: 25 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.engappai.2023.106156_b9 article-title: Particle swarm optimization for single objective continuous space problems: a review publication-title: Evol. Comput. doi: 10.1162/EVCO_r_00180 – ident: 10.1016/j.engappai.2023.106156_b58 doi: 10.1007/BFb0040810 – volume: 17 start-page: 145 year: 2019 ident: 10.1016/j.engappai.2023.106156_b16 article-title: Friction characteristics of a cylinder based on a bridge-type pneumatic energy-saving circuit publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-017-0670-5 – volume: 229 start-page: 1483 issue: 11 year: 2015 ident: 10.1016/j.engappai.2023.106156_b51 article-title: Globally stable pressure-observer-based servo control of an electro-pneumatic clutch actuator publication-title: Proc. Inst. Mech. Eng. D doi: 10.1177/0954407014565406 – volume: 8 start-page: 240 issue: 3 year: 2004 ident: 10.1016/j.engappai.2023.106156_b53 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826071 – volume: 130–134 start-page: 775 year: 2011 ident: 10.1016/j.engappai.2023.106156_b50 article-title: Modeling and simulation of stick–slip motion for pneumatic cylinder based on meter-in circuit publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.130-134.775 – volume: 85 year: 2019 ident: 10.1016/j.engappai.2023.106156_b8 article-title: A new adjusting technique for PID type fuzzy logic controller using PSOSCALF optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105822 – volume: 114 start-page: 306 year: 2021 ident: 10.1016/j.engappai.2023.106156_b27 article-title: Particle swarm optimization aided PID gait controller design for a humanoid robot publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.12.033 – volume: 10 start-page: 10031 year: 2022 ident: 10.1016/j.engappai.2023.106156_b55 article-title: Particle swarm optimization: A comprehensive survey publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3142859 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.engappai.2023.106156_b38 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 17 start-page: 1 year: 2022 ident: 10.1016/j.engappai.2023.106156_b12 article-title: Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps publication-title: Front. Mech. Eng. doi: 10.1007/s11465-021-0657-z – volume: 34 start-page: 115 issue: 1 year: 2011 ident: 10.1016/j.engappai.2023.106156_b14 article-title: An improved particle swarm optimization algorithm with search space zoomed factor and attractor publication-title: Chinese J. Comput. doi: 10.3724/SP.J.1016.2011.00115 – year: 2010 ident: 10.1016/j.engappai.2023.106156_b62 – volume: 31 start-page: 1173 issue: 4 year: 2017 ident: 10.1016/j.engappai.2023.106156_b37 article-title: Improving optimization efficiency for reservoir operation using a search space reduction method publication-title: Water Resour. Manage. doi: 10.1007/s11269-017-1569-x – volume: 8 start-page: 1204 issue: 5 year: 2021 ident: 10.1016/j.engappai.2023.106156_b68 article-title: An adaptive hybrid atom search optimization with particle swarm optimization and its application to optimal no-load PID design of hydro-turbine governor publication-title: J. Comput. Des. Eng. – volume: 219 start-page: 552 issue: 2 year: 2012 ident: 10.1016/j.engappai.2023.106156_b23 article-title: A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems publication-title: Appl. Math. Comput. – volume: 65 start-page: 956 issue: 4 year: 2022 ident: 10.1016/j.engappai.2023.106156_b59 article-title: Research on the dynamic characteristics of pneumatic proportional regulator in pneumatic-loading system and design of fuzzy adaptive controller publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-021-1932-1 – volume: 20 start-page: 1510 year: 2013 ident: 10.1016/j.engappai.2023.106156_b36 article-title: Adaptive robust output force tracking control of pneumatic cylinder while maximizing/minimizing its stiffness publication-title: J. Cent. South Univ. doi: 10.1007/s11771-013-1642-4 – volume: 5 start-page: 226 issue: 3 year: 2022 ident: 10.1016/j.engappai.2023.106156_b61 article-title: Study on high frequency response characteristics of a moving-coil-type linear actuator using the coils combinations publication-title: Int. J. Hydromech. doi: 10.1504/IJHM.2022.125088 – volume: 157 year: 2021 ident: 10.1016/j.engappai.2023.106156_b3 article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 39 start-page: 818 issue: 8 year: 2021 ident: 10.1016/j.engappai.2023.106156_b24 article-title: Aerostatic bearing with porous restrictor: research status and future perspectives publication-title: J. Drainage Irrigation Mach. Eng. – volume: 112 start-page: 337 year: 2021 ident: 10.1016/j.engappai.2023.106156_b31 article-title: Adaptive robust precision motion control of single PAM actuated servo systems with non-local memory hysteresis force compensation publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.12.019 – volume: 344 year: 2022 ident: 10.1016/j.engappai.2023.106156_b47 article-title: A novel pneumatic actuator based on high-frequency longitudinal vibration friction reduction publication-title: Sensors Actuators A doi: 10.1016/j.sna.2022.113731 – volume: 17 start-page: 259 issue: 2 year: 2013 ident: 10.1016/j.engappai.2023.106156_b25 article-title: Experimental analysis of bound handling techniques in particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2189404 – volume: 34 start-page: 107 year: 2021 ident: 10.1016/j.engappai.2023.106156_b67 article-title: Medical grabbing servo system with friction compensation based on the differential evolution algorithm publication-title: Chin. J. Mech. Eng. doi: 10.1186/s10033-021-00619-7 – volume: 66 start-page: 6220 issue: 8 year: 2018 ident: 10.1016/j.engappai.2023.106156_b54 article-title: Optimal design of a fractional-order proportional-integer-differential controller for a pneumatic position servo system publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2870412 – volume: 8 start-page: 324 issue: 1 year: 2008 ident: 10.1016/j.engappai.2023.106156_b6 article-title: On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.01.010 – volume: 33 issue: 6 year: 2022 ident: 10.1016/j.engappai.2023.106156_b46 article-title: Development of a new high-precision friction test platform and experimental study of friction characteristics for pneumatic cylinders publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac51a6 – volume: 120 start-page: 89 year: 2022 ident: 10.1016/j.engappai.2023.106156_b33 article-title: Parameter identification of Hammerstein-Wiener nonlinear systems with unknown time delay based on the linear variable weight particle swarm optimization publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.03.021 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.engappai.2023.106156_b15 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – ident: 10.1016/j.engappai.2023.106156_b26 doi: 10.1109/SIS.2007.368046 – volume: 15 start-page: 3632 issue: 11 year: 2010 ident: 10.1016/j.engappai.2023.106156_b10 article-title: PID controller design of nonlinear systems using an improved particle swarm optimization approach publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.01.005 – volume: 56 start-page: 22 issue: 10 year: 2022 ident: 10.1016/j.engappai.2023.106156_b48 article-title: Sliding mode motion trajectory tracking control of a novel high-frequency longitudinal vibration friction-reducing pneumatic cylinder publication-title: J. Xi’An Jiaotong Univ. – volume: 23 start-page: 463 issue: 4 year: 2010 ident: 10.1016/j.engappai.2023.106156_b35 article-title: A hybrid particle swarm optimization algorithm for the vehicle routing problem publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.02.002 – volume: 44 start-page: 376 year: 2022 ident: 10.1016/j.engappai.2023.106156_b45 article-title: A method to improve the motion trajectory tracking accuracy of pneumatic servo system-by exciting longitudinal resonance publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-022-03676-8 – ident: 10.1016/j.engappai.2023.106156_b18 doi: 10.1109/CEC.2001.934376 – ident: 10.1016/j.engappai.2023.106156_b29 doi: 10.1109/ICNN.1995.488968 – volume: 18 start-page: 833 issue: 3 year: 2019 ident: 10.1016/j.engappai.2023.106156_b30 article-title: An improved particle swarm optimization algorithm with adaptive inertia weights publication-title: Int. J. Inf. Technol. Decis. Mak. doi: 10.1142/S0219622019500147 – volume: 65 start-page: 470 year: 2022 ident: 10.1016/j.engappai.2023.106156_b11 article-title: Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-021-1904-7 – start-page: 69 year: 1998 ident: 10.1016/j.engappai.2023.106156_b57 article-title: A modified particle swarm optimizer – volume: 19 start-page: 384 issue: 2 year: 2004 ident: 10.1016/j.engappai.2023.106156_b22 article-title: A particle swarm optimization approach for optimum design of PID controller in AVR system publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2003.821821 – volume: 376 year: 2021 ident: 10.1016/j.engappai.2023.106156_b1 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113609 – volume: 258 start-page: 54 year: 2014 ident: 10.1016/j.engappai.2023.106156_b7 article-title: CAPSO: Centripetal accelerated particle swarm optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.08.015 – ident: 10.1016/j.engappai.2023.106156_b63 doi: 10.1109/NABIC.2009.5393690 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 10.1016/j.engappai.2023.106156_b66 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – ident: 10.1016/j.engappai.2023.106156_b40 – volume: 15 start-page: 878 issue: 10 year: 2014 ident: 10.1016/j.engappai.2023.106156_b52 article-title: A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system publication-title: J. Zhejiang Univ.-SCI. C (Comput. Electron.) doi: 10.1631/jzus.C1400003  | 
    
| SSID | ssj0003846 | 
    
| Score | 2.4897919 | 
    
| Snippet | To make the motion tracking control of the homemade pneumatic cylinder as accurate as possible, it is necessary to properly match the seal groove and seal ring... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 106156 | 
    
| SubjectTerms | Homemade pneumatic cylinder Intelligent selection Particle swarm optimization Piston seal groove Search space reduction  | 
    
| Title | A hybrid Gaussian mutation PSO with search space reduction and its application to intelligent selection of piston seal grooves for homemade pneumatic cylinders | 
    
| URI | https://dx.doi.org/10.1016/j.engappai.2023.106156 | 
    
| Volume | 122 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQuXBhR-yaA9d0i-MmxwpRChWLWAS3yHYmJVWbRiRF6oVf4VfxZIEiIXHgFMX2RFHGy3M88x5jJ0IL6XlOaAkllcXbyC3V5sIKPGH2W1phM6dSuroW_Ud--ew8L7HTKheGwirLub-Y0_PZuixplF-zkURR496AAzPczGC2iWQlT_jlvEMqBvX37zAP2y2SdUxji1ovZAmP6hgPZZLIqE4i4nXaHZGQ9W8L1MKi01tnqyVahG7xQhtsCeNNtlYiRyjHZWqKKnGGqmyLfXThZU7pWHAuZymlSsJkVpy7w-39DdAPWCj6OZhZRSO8EotrXi_jAKIshYXTbcimEH3Rd2aQ5vo5VDENISF-gpieNoahgeJvmIIBw_AyneBEBghJjLOcGxb0fBzl-TTb7LF39nDat0o1BkvbrXZmdWyllTab6YDzoKW5bLVDA9-EJ8OgKRFdqSSdsykMeQdl2OTac5uedNGgDOUIe4fV4mmMuwykow0qIHlQGXJXC5fb6NpooFXYsl3s7DGncoGvS6pyUswY-1VM2sivXOeT6_zCdXus8WWXFGQdf1p4lYf9H93ONyvKH7b7_7A9YCt0V8ScHbJa9jrDI4NuMnWcd99jtty9GPSv6Tq4exp8AiKo_6k | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHODCG_HGB67do02z9ogQMF4DCZC4VUnqsk5bV9EOiQt_hb9K3AcMCWkHrklcVXXifK7tz4wdCy2k77uRJZRUFreRW8rmwgp9YfwtrbBVUCnd9kT3iV89u89z7LSuhaG0ysr2lza9sNbVSLP6ms00jpsPBhyY42YOs0MkK1Twu8Bdu0MeWOPjJ8_D8cpqHbPaouVTZcKDBiYvMk1l3KAu4g1yj6iT9V831NStc77Kliu4CCflG62xOUzW2UoFHaE6mJkZqrsz1GMb7PME-u9UjwUXcpJRrSSMJmXgHe4f7oD-wEK50cGYFY3wSjSuxbxMQojzDKbC25CPIf7m78whKxro0MQ4gpQIChJ62hBeDBZ_wwwMGob-eIQjGSKkCU4KcljQ78O4KKjZZE_nZ4-nXatqx2Bpp23nVsdRWmnjTYech23NZduODH4TvozClkT0pJIUaFMY8Q7KqMW177V86aGBGcoVzhabT8YJbjOQrjawgPqDyoh7WnjcQc9Bg62ituNhZ4e5tQoCXXGVU8uMYVAnpQ2CWnUBqS4oVbfDmt9yacnWMVPCrzUc_Np3gblSZsju_kP2iC12H29vgpvL3vUeW6KZMgFtn83nrxM8MFAnV4fFVv4C_yj_mw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+Gaussian+mutation+PSO+with+search+space+reduction+and+its+application+to+intelligent+selection+of+piston+seal+grooves+for+homemade+pneumatic+cylinders&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Qian%2C+Pengfei&rft.au=Luo%2C+Hui&rft.au=Liu%2C+Lei&rft.au=Lv%2C+Pansong&rft.date=2023-06-01&rft.issn=0952-1976&rft.volume=122&rft.spage=106156&rft_id=info:doi/10.1016%2Fj.engappai.2023.106156&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_106156 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |