Chemometrics web app's part 2: Dimensionality reduction and exploratory analysis
This work reports the release and the usability of the dimensionality reduction app, an R application developed with the RShiny package to reduce data dimensionality using filters, resolution reduction, and algorithms based on parametric and non-parametric approaches. This application accepts data d...
Saved in:
| Published in | Chemometrics and intelligent laboratory systems Vol. 237; p. 104810 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-7439 1873-3239 |
| DOI | 10.1016/j.chemolab.2023.104810 |
Cover
| Abstract | This work reports the release and the usability of the dimensionality reduction app, an R application developed with the RShiny package to reduce data dimensionality using filters, resolution reduction, and algorithms based on parametric and non-parametric approaches. This application accepts data directly from.txt,.csv,.xlsx file extensions, and R data files directly exported by the data handling app presented in the Chemometrics web app's part 1: Data handling manuscript. The idea is to use the data directly from the instrument or preprocess it with the first app. Therefore, using the application does not require a deep knowledge of R software or matrix manipulation. The dimensionality reduction app allows performing basic Preprocessing such as mean centering and autoscaling, some adequacy testing, some filtering methods to reduce the data dimensionality, cluster analysis, diagnosis of the number of clusters, parametric and non-parametric based algorithms for dimensionality reduction and exploratory analysis, such as PCA and T-SNE respectively. Three datasets will be used for data dimensionality reduction and exploratory analysis. All the figures presented in this manuscript were directly exported from the dimensionality reduction app to highlight its functionalities. The main idea of this application is to allow chemometrics users to perform several strategies for dimensionality reduction and exploratory analysis even with no knowledge of programming language. Besides, the dimensionality reduction app is an open-access code available to be used on RStudio free environment at the software or cloud computing using computers, tablets, smartphones, or similar devices, even without installing anything for usage.
•Open-source web app developed in R for dimensionality reduction and exploratory analysis.•Data adequacy test, variable preprocessing, filtering methods and simple resolution reduction.•Cluster Analysis and diagnosis tools to evaluate the number of clusters.•Parametric methods for dimensionality reduction and exploratory analysis.•Non-Parametric methods for dimensionality reduction and exploratory analysis. |
|---|---|
| AbstractList | This work reports the release and the usability of the dimensionality reduction app, an R application developed with the RShiny package to reduce data dimensionality using filters, resolution reduction, and algorithms based on parametric and non-parametric approaches. This application accepts data directly from.txt,.csv,.xlsx file extensions, and R data files directly exported by the data handling app presented in the Chemometrics web app's part 1: Data handling manuscript. The idea is to use the data directly from the instrument or preprocess it with the first app. Therefore, using the application does not require a deep knowledge of R software or matrix manipulation. The dimensionality reduction app allows performing basic Preprocessing such as mean centering and autoscaling, some adequacy testing, some filtering methods to reduce the data dimensionality, cluster analysis, diagnosis of the number of clusters, parametric and non-parametric based algorithms for dimensionality reduction and exploratory analysis, such as PCA and T-SNE respectively. Three datasets will be used for data dimensionality reduction and exploratory analysis. All the figures presented in this manuscript were directly exported from the dimensionality reduction app to highlight its functionalities. The main idea of this application is to allow chemometrics users to perform several strategies for dimensionality reduction and exploratory analysis even with no knowledge of programming language. Besides, the dimensionality reduction app is an open-access code available to be used on RStudio free environment at the software or cloud computing using computers, tablets, smartphones, or similar devices, even without installing anything for usage.
•Open-source web app developed in R for dimensionality reduction and exploratory analysis.•Data adequacy test, variable preprocessing, filtering methods and simple resolution reduction.•Cluster Analysis and diagnosis tools to evaluate the number of clusters.•Parametric methods for dimensionality reduction and exploratory analysis.•Non-Parametric methods for dimensionality reduction and exploratory analysis. |
| ArticleNumber | 104810 |
| Author | Darzé, Bernardo Cardeal Luna, Aderval S. Pinto, Licarion Lima, Igor C.A. |
| Author_xml | – sequence: 1 givenname: Bernardo Cardeal surname: Darzé fullname: Darzé, Bernardo Cardeal – sequence: 2 givenname: Igor C.A. surname: Lima fullname: Lima, Igor C.A. – sequence: 3 givenname: Aderval S. surname: Luna fullname: Luna, Aderval S. email: asluna@uerj.com.br – sequence: 4 givenname: Licarion orcidid: 0000-0002-8682-6174 surname: Pinto fullname: Pinto, Licarion email: jose.licarion.neto@uerj.com.br |
| BookMark | eNqFkE1LxDAQhoOs4O7qX5DcPHXNR7dtxIOyfsKCHvQcpukUs7RNSeJH_70tqxcvnoZ3mOeFeRZk1rkOCTnlbMUZz853K_OGrWugXAkm5LhMC84OyJwXuUykkGpG5uOhSvJUqiOyCGHHppzyOXneTGyL0VsT6CeWFPr-LNAefKTigt7YFrtgXQeNjQP1WL2bOEYKXUXxq2-ch-j8MGZohmDDMTmsoQl48jOX5PXu9mXzkGyf7h8319vESC5ikgmWcUx5qnKleImVkoXJaoHrtAJUmGMOvCzKtclFJVABFshVXWSGm3VRglySbN9rvAvBY617b1vwg-ZMT170Tv960ZMXvfcygpd_QGMjTD9FD7b5H7_a4zg-92HR62AsdgYr69FEXTn7X8U3pfCGnw |
| CitedBy_id | crossref_primary_10_1016_j_marpolbul_2024_117483 crossref_primary_10_1016_j_conbuildmat_2024_135711 crossref_primary_10_1016_j_microc_2025_112994 crossref_primary_10_1016_j_foodchem_2025_143163 crossref_primary_10_1016_j_foodres_2024_115130 crossref_primary_10_1016_j_chemolab_2023_104933 crossref_primary_10_1134_S1061934824700291 crossref_primary_10_1016_j_forc_2024_100563 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126801 crossref_primary_10_1039_D3AY00683B |
| Cites_doi | 10.1016/j.chemolab.2011.04.004 10.1039/c3ay40582f 10.1007/s10815-020-01896-2 10.12691/ajams-9-1-2 10.1039/C3AY41907J 10.1016/j.asoc.2008.05.006 10.1016/j.patrec.2005.11.017 10.1080/10408340600969403 10.1007/s41664-018-0065-5 10.1038/s41467-019-13055-y 10.1198/004017004000000563 10.1177/0013164416645162 10.1021/acs.jchemed.9b00850 10.1111/j.1469-1809.1936.tb02137.x 10.1016/j.chemolab.2015.10.003 10.1016/j.cosrev.2021.100378 10.1016/j.chemolab.2021.104304 10.1111/1467-9868.00293 10.1016/S0169-7439(98)00080-X 10.1016/j.chemolab.2004.03.004 10.1016/j.trac.2013.03.013 10.1016/S0169-7439(97)00010-5 10.1016/j.chemolab.2009.02.005 10.1016/S0169-7439(01)00188-5 10.1016/j.chemolab.2012.03.018 10.1016/j.envsoft.2020.104797 10.3389/fchem.2018.00503 10.1016/j.ceramint.2015.12.030 10.1214/09-STS301 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chemolab.2023.104810 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3239 |
| ExternalDocumentID | 10_1016_j_chemolab_2023_104810 S0169743923000606 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABAOU ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCH SDF SDG SDP SES SEW SPC SPCBC SSK SSW SSZ T5K UNMZH YK3 ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ R2- SCB WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c312t-62061e41497991bed938c6f2e54dae9e7e7a1b8b5c72d2e9ae8e19f86c1c58ba3 |
| IEDL.DBID | .~1 |
| ISSN | 0169-7439 |
| IngestDate | Thu Apr 24 23:08:10 EDT 2025 Thu Oct 02 04:25:23 EDT 2025 Fri Feb 23 02:39:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data test RShiny Non-parametric Pattern recognition PCA |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-62061e41497991bed938c6f2e54dae9e7e7a1b8b5c72d2e9ae8e19f86c1c58ba3 |
| ORCID | 0000-0002-8682-6174 |
| ParticipantIDs | crossref_primary_10_1016_j_chemolab_2023_104810 crossref_citationtrail_10_1016_j_chemolab_2023_104810 elsevier_sciencedirect_doi_10_1016_j_chemolab_2023_104810 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-15 |
| PublicationDateYYYYMMDD | 2023-06-15 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemometrics and intelligent laboratory systems |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Nanga, Bawah, Acquaye, Billa, Baeta, Odai, Obeng, Nsiah (bib33) 2021; 9 Rutledge (bib37) 2018; 2 Costa, Lourenço, Pereira (bib32) 2011; 107 Rousseeuw, Debruyne, Engelen, Hubert (bib26) 2006; 36 He, Zhang, Zhang (bib21) 2016; 42 Anowar, Sadaoui, Selim (bib15) 2021; 40 Samko, Marshall, Rosin (bib44) 2006; 27 Li (bib12) 2020; 132 Chen, Lin, He, He, Li (bib43) 2016; 6 Hubert, Rousseeuw, Vanden Branden (bib35) 2005; 47 Antonelli, Olivieri (bib11) 2020; 97 Belkina, Ciccolella, Anno, Halpert, Spidlen, Snyder-Cappione (bib42) 2019; 10 Dinh, Fujinami, Huynh (bib30) 2019 Arora, Hu, Kothari (bib40) 2018 Neto, Marques, de Freitas Cavalcanti Filho, Araujo, Lima, Pinto, Silva (bib19) 2020; 37 Olivieri, Wu, Yu (bib4) 2009; 96 (bib8) 2020 Tibshirani, Walther, Hastie (bib31) 2001; 63 Hubert, Rousseeuw, Verboven (bib34) 2002; 60 Thangavel, Pethalakshmi (bib16) 2009; 9 Bro, Smilde (bib13) 2014; 6 Rutledge, Jouan-Rimbaud Bouveresse (bib38) 2013; 50 Wu, Massart, de Jong (bib39) 1997; 36 Rodionova, Kucheryavskiy, Pomerantsev (bib14) 2021; 213 Lima, Santos, Silva, Santos, Silva, Gomes, Oliveira, Alves, Pinto, Oliveira (bib20) 2021; 362 Gupta, Sharma, Akhtar (bib29) 2021 Dinç, Yazan (bib27) 2018; 6 Park, Tauler (bib36) 2020 Ballabio (bib2) 2015; 149 Gastwirth, Gel, Miao (bib23) 2009; 24 Olivieri, Goicoechea, Iñón (bib6) 2004; 73 Wang, Rodríguez de Gil, Chen, Kromrey, Kim, Pham, Nguyen, Romano (bib24) 2017; 77 bib7 Leung, Chau, Gao (bib28) 1998; 43 Rogovschi, Kitazono, Grozavu, Omori, Ozawa (bib41) 2017 bib17 (bib1) 2016 Darzé, Lima, Pinto, Luna (bib10) 2022 Shrestha (bib22) 2021; 9 Olivieri, Wu, Yu (bib5) 2012; 116 Fisher (bib18) 1936; 7 (bib25) 2022 Ballabio, Consonni (bib3) 2013; 5 Ohn, Joseph (bib9) 2022 Olivieri (10.1016/j.chemolab.2023.104810_bib5) 2012; 116 Bro (10.1016/j.chemolab.2023.104810_bib13) 2014; 6 (10.1016/j.chemolab.2023.104810_bib8) 2020 Samko (10.1016/j.chemolab.2023.104810_bib44) 2006; 27 Antonelli (10.1016/j.chemolab.2023.104810_bib11) 2020; 97 Rodionova (10.1016/j.chemolab.2023.104810_bib14) 2021; 213 Anowar (10.1016/j.chemolab.2023.104810_bib15) 2021; 40 Hubert (10.1016/j.chemolab.2023.104810_bib35) 2005; 47 Rogovschi (10.1016/j.chemolab.2023.104810_bib41) 2017 Ballabio (10.1016/j.chemolab.2023.104810_bib3) 2013; 5 Lima (10.1016/j.chemolab.2023.104810_bib20) 2021; 362 Dinh (10.1016/j.chemolab.2023.104810_bib30) 2019 Rousseeuw (10.1016/j.chemolab.2023.104810_bib26) 2006; 36 Wu (10.1016/j.chemolab.2023.104810_bib39) 1997; 36 Arora (10.1016/j.chemolab.2023.104810_bib40) 2018 Shrestha (10.1016/j.chemolab.2023.104810_bib22) 2021; 9 Neto (10.1016/j.chemolab.2023.104810_bib19) 2020; 37 (10.1016/j.chemolab.2023.104810_bib25) 2022 Rutledge (10.1016/j.chemolab.2023.104810_bib37) 2018; 2 Park (10.1016/j.chemolab.2023.104810_bib36) 2020 Tibshirani (10.1016/j.chemolab.2023.104810_bib31) 2001; 63 Nanga (10.1016/j.chemolab.2023.104810_bib33) 2021; 9 Leung (10.1016/j.chemolab.2023.104810_bib28) 1998; 43 Costa (10.1016/j.chemolab.2023.104810_bib32) 2011; 107 Belkina (10.1016/j.chemolab.2023.104810_bib42) 2019; 10 Fisher (10.1016/j.chemolab.2023.104810_bib18) 1936; 7 Darzé (10.1016/j.chemolab.2023.104810_bib10) 2022 Li (10.1016/j.chemolab.2023.104810_bib12) 2020; 132 Ohn (10.1016/j.chemolab.2023.104810_bib9) 2022 Wang (10.1016/j.chemolab.2023.104810_bib24) 2017; 77 Hubert (10.1016/j.chemolab.2023.104810_bib34) 2002; 60 Olivieri (10.1016/j.chemolab.2023.104810_bib4) 2009; 96 Dinç (10.1016/j.chemolab.2023.104810_bib27) 2018; 6 (10.1016/j.chemolab.2023.104810_bib1) 2016 Olivieri (10.1016/j.chemolab.2023.104810_bib6) 2004; 73 Gastwirth (10.1016/j.chemolab.2023.104810_bib23) 2009; 24 Rutledge (10.1016/j.chemolab.2023.104810_bib38) 2013; 50 Thangavel (10.1016/j.chemolab.2023.104810_bib16) 2009; 9 Gupta (10.1016/j.chemolab.2023.104810_bib29) 2021 Ballabio (10.1016/j.chemolab.2023.104810_bib2) 2015; 149 He (10.1016/j.chemolab.2023.104810_bib21) 2016; 42 Chen (10.1016/j.chemolab.2023.104810_bib43) 2016; 6 |
| References_xml | – start-page: 355 year: 2020 end-page: 369 ident: bib36 article-title: Bayesian methods for factor analysis in chemometrics publication-title: Compr. Chemom. – volume: 43 start-page: 165 year: 1998 end-page: 184 ident: bib28 article-title: A review on applications of wavelet transform techniques in chemical analysis: 1989–1997 publication-title: Chemometr. Intell. Lab. Syst. – volume: 107 start-page: 234 year: 2011 end-page: 244 ident: bib32 article-title: Desirability function approach: a review and performance evaluation in adverse conditions publication-title: Chemometr. Intell. Lab. Syst. – volume: 42 start-page: 5123 year: 2016 end-page: 5129 ident: bib21 article-title: Data-driven research on chemical features of Jingdezhen and Longquan celadon by energy dispersive X-ray fluorescence publication-title: Ceram. Int. – volume: 50 start-page: 22 year: 2013 end-page: 32 ident: bib38 article-title: Independent components analysis with the JADE algorithm publication-title: TrAC Trends Anal. Chem. – year: 2022 ident: bib9 article-title: Nonparametric Statistical Methods Using R – volume: 10 start-page: 5415 year: 2019 ident: bib42 article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets publication-title: Nat. Commun. – ident: bib17 article-title: LEAMS-UERJ-Apps – volume: 6 year: 2016 ident: bib43 article-title: Combination of the manifold dimensionality reduction methods with least squares support vector machines for classifying the species of sorghum seeds publication-title: Sci. Rep. – ident: bib7 article-title: Rproject, CRAN – volume: 27 start-page: 968 year: 2006 end-page: 979 ident: bib44 article-title: Selection of the optimal parameter value for the Isomap algorithm publication-title: Pattern Recogn. Lett. – volume: 9 start-page: 1 year: 2009 end-page: 12 ident: bib16 article-title: Dimensionality reduction based on rough set theory: a review publication-title: Appl. Soft Comput. – volume: 6 year: 2018 ident: bib27 article-title: Wavelet transform-based UV spectroscopy for pharmaceutical analysis publication-title: Front. Chem. – year: 2020 ident: bib8 publication-title: r-Bloggers – start-page: 1 year: 2019 end-page: 17 ident: bib30 article-title: Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coefficient – volume: 96 start-page: 246 year: 2009 end-page: 251 ident: bib4 article-title: MVC2: a MATLAB graphical interface toolbox for second-order multivariate calibration publication-title: Chemometr. Intell. Lab. Syst. – volume: 24 year: 2009 ident: bib23 article-title: The impact of Levene's test of equality of variances on statistical theory and practice publication-title: Stat. Sci. – volume: 60 start-page: 101 year: 2002 end-page: 111 ident: bib34 article-title: A fast method for robust principal components with applications to chemometrics publication-title: Chemometr. Intell. Lab. Syst. – volume: 362 year: 2021 ident: bib20 article-title: VOCs profile of Colletotrichum spp. as a potential tool for quality control of açaí pulp publication-title: Food Chem. – volume: 97 start-page: 1176 year: 2020 end-page: 1180 ident: bib11 article-title: Developing and implementing an R shiny application to introduce multivariate calibration to advanced undergraduate students publication-title: J. Chem. Educ. – volume: 6 start-page: 2812 year: 2014 end-page: 2831 ident: bib13 article-title: Principal component analysis publication-title: Anal. Methods – volume: 36 start-page: 221 year: 2006 end-page: 242 ident: bib26 article-title: Robustness and outlier detection in chemometrics publication-title: Crit. Rev. Anal. Chem. – year: 2022 ident: bib25 article-title: R: A Language and Environment for Statistical Computing – volume: 37 start-page: 2233 year: 2020 end-page: 2247 ident: bib19 article-title: 1H NMR-based metabonomics for infertility diagnosis in men with varicocele publication-title: J. Assist. Reprod. Genet. – volume: 9 start-page: 189 year: 2021 end-page: 231 ident: bib33 article-title: Review of dimension reduction methods publication-title: J. Data Anal. Inf. Process. – volume: 63 start-page: 411 year: 2001 end-page: 423 ident: bib31 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 47 start-page: 64 year: 2005 end-page: 79 ident: bib35 article-title: ROBPCA: a new approach to robust principal component analysis publication-title: Technometrics – volume: 5 start-page: 3790 year: 2013 ident: bib3 article-title: Classification tools in chemistry. Part 1: linear models. PLS-DA publication-title: Anal. Methods – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: bib18 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. – volume: 36 start-page: 165 year: 1997 end-page: 172 ident: bib39 article-title: The kernel PCA algorithms for wide data. Part I: theory and algorithms publication-title: Chemometr. Intell. Lab. Syst. – start-page: 412 year: 2021 end-page: 418 ident: bib29 article-title: A comparative analysis of K-means and hierarchical clustering publication-title: EPRA Int. J. Multidiscip. Res. – volume: 116 start-page: 9 year: 2012 end-page: 16 ident: bib5 article-title: MVC3: a MATLAB graphical interface toolbox for third-order multivariate calibration publication-title: Chemometr. Intell. Lab. Syst. – year: 2018 ident: bib40 article-title: An Analysis of the T-SNE Algorithm for Data Visualization – start-page: 1628 year: 2017 end-page: 1632 ident: bib41 article-title: t-Distributed stochastic neighbor embedding spectral clustering publication-title: 2017 Int. Jt. Conf. Neural Networks – volume: 9 start-page: 4 year: 2021 end-page: 11 ident: bib22 article-title: Factor analysis as a tool for survey analysis publication-title: Am. J. Appl. Math. Stat. – volume: 132 year: 2020 ident: bib12 article-title: Towards fast prototyping of cloud-based environmental decision support systems for environmental scientists using R Shiny and Docker publication-title: Environ. Model. Software – volume: 2 start-page: 235 year: 2018 end-page: 248 ident: bib37 article-title: Comparison of principal components analysis, independent components analysis and common components analysis publication-title: J. Anal. Test. – year: 2022 ident: bib10 article-title: Chemometrics Web App Part 1: Data Handling – volume: 213 year: 2021 ident: bib14 article-title: Efficient tools for principal component analysis of complex data— a tutorial publication-title: Chemometr. Intell. Lab. Syst. – volume: 77 start-page: 305 year: 2017 end-page: 329 ident: bib24 article-title: Comparing the performance of approaches for testing the homogeneity of variance assumption in one-factor ANOVA models publication-title: Educ. Psychol. Meas. – year: 2016 ident: bib1 publication-title: PLS_Toolbox with MIA_Toolbox 8.2.1 – volume: 73 start-page: 189 year: 2004 end-page: 197 ident: bib6 article-title: MVC1: an integrated MatLab toolbox for first-order multivariate calibration publication-title: Chemometr. Intell. Lab. Syst. – volume: 149 start-page: 1 year: 2015 end-page: 9 ident: bib2 article-title: A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure publication-title: Chemometr. Intell. Lab. Syst. – volume: 40 year: 2021 ident: bib15 article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE) publication-title: Comput. Sci. Rev. – volume: 107 start-page: 234 year: 2011 ident: 10.1016/j.chemolab.2023.104810_bib32 article-title: Desirability function approach: a review and performance evaluation in adverse conditions publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.04.004 – volume: 5 start-page: 3790 year: 2013 ident: 10.1016/j.chemolab.2023.104810_bib3 article-title: Classification tools in chemistry. Part 1: linear models. PLS-DA publication-title: Anal. Methods doi: 10.1039/c3ay40582f – volume: 37 start-page: 2233 year: 2020 ident: 10.1016/j.chemolab.2023.104810_bib19 article-title: 1H NMR-based metabonomics for infertility diagnosis in men with varicocele publication-title: J. Assist. Reprod. Genet. doi: 10.1007/s10815-020-01896-2 – volume: 9 start-page: 4 year: 2021 ident: 10.1016/j.chemolab.2023.104810_bib22 article-title: Factor analysis as a tool for survey analysis publication-title: Am. J. Appl. Math. Stat. doi: 10.12691/ajams-9-1-2 – year: 2018 ident: 10.1016/j.chemolab.2023.104810_bib40 – start-page: 1 year: 2019 ident: 10.1016/j.chemolab.2023.104810_bib30 – volume: 6 start-page: 2812 year: 2014 ident: 10.1016/j.chemolab.2023.104810_bib13 article-title: Principal component analysis publication-title: Anal. Methods doi: 10.1039/C3AY41907J – start-page: 1628 year: 2017 ident: 10.1016/j.chemolab.2023.104810_bib41 article-title: t-Distributed stochastic neighbor embedding spectral clustering – volume: 9 start-page: 1 year: 2009 ident: 10.1016/j.chemolab.2023.104810_bib16 article-title: Dimensionality reduction based on rough set theory: a review publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2008.05.006 – volume: 27 start-page: 968 year: 2006 ident: 10.1016/j.chemolab.2023.104810_bib44 article-title: Selection of the optimal parameter value for the Isomap algorithm publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.11.017 – volume: 36 start-page: 221 year: 2006 ident: 10.1016/j.chemolab.2023.104810_bib26 article-title: Robustness and outlier detection in chemometrics publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408340600969403 – volume: 2 start-page: 235 year: 2018 ident: 10.1016/j.chemolab.2023.104810_bib37 article-title: Comparison of principal components analysis, independent components analysis and common components analysis publication-title: J. Anal. Test. doi: 10.1007/s41664-018-0065-5 – year: 2022 ident: 10.1016/j.chemolab.2023.104810_bib10 – volume: 6 year: 2016 ident: 10.1016/j.chemolab.2023.104810_bib43 article-title: Combination of the manifold dimensionality reduction methods with least squares support vector machines for classifying the species of sorghum seeds publication-title: Sci. Rep. – volume: 10 start-page: 5415 year: 2019 ident: 10.1016/j.chemolab.2023.104810_bib42 article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets publication-title: Nat. Commun. doi: 10.1038/s41467-019-13055-y – start-page: 355 year: 2020 ident: 10.1016/j.chemolab.2023.104810_bib36 article-title: Bayesian methods for factor analysis in chemometrics – year: 2020 ident: 10.1016/j.chemolab.2023.104810_bib8 – start-page: 412 year: 2021 ident: 10.1016/j.chemolab.2023.104810_bib29 article-title: A comparative analysis of K-means and hierarchical clustering publication-title: EPRA Int. J. Multidiscip. Res. – volume: 47 start-page: 64 year: 2005 ident: 10.1016/j.chemolab.2023.104810_bib35 article-title: ROBPCA: a new approach to robust principal component analysis publication-title: Technometrics doi: 10.1198/004017004000000563 – volume: 77 start-page: 305 year: 2017 ident: 10.1016/j.chemolab.2023.104810_bib24 article-title: Comparing the performance of approaches for testing the homogeneity of variance assumption in one-factor ANOVA models publication-title: Educ. Psychol. Meas. doi: 10.1177/0013164416645162 – volume: 97 start-page: 1176 year: 2020 ident: 10.1016/j.chemolab.2023.104810_bib11 article-title: Developing and implementing an R shiny application to introduce multivariate calibration to advanced undergraduate students publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.9b00850 – volume: 7 start-page: 179 year: 1936 ident: 10.1016/j.chemolab.2023.104810_bib18 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 149 start-page: 1 year: 2015 ident: 10.1016/j.chemolab.2023.104810_bib2 article-title: A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.10.003 – year: 2016 ident: 10.1016/j.chemolab.2023.104810_bib1 – volume: 40 year: 2021 ident: 10.1016/j.chemolab.2023.104810_bib15 article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE) publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2021.100378 – volume: 213 year: 2021 ident: 10.1016/j.chemolab.2023.104810_bib14 article-title: Efficient tools for principal component analysis of complex data— a tutorial publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2021.104304 – volume: 63 start-page: 411 year: 2001 ident: 10.1016/j.chemolab.2023.104810_bib31 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00293 – year: 2022 ident: 10.1016/j.chemolab.2023.104810_bib25 – volume: 9 start-page: 189 year: 2021 ident: 10.1016/j.chemolab.2023.104810_bib33 article-title: Review of dimension reduction methods publication-title: J. Data Anal. Inf. Process. – year: 2022 ident: 10.1016/j.chemolab.2023.104810_bib9 – volume: 43 start-page: 165 year: 1998 ident: 10.1016/j.chemolab.2023.104810_bib28 article-title: A review on applications of wavelet transform techniques in chemical analysis: 1989–1997 publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(98)00080-X – volume: 73 start-page: 189 year: 2004 ident: 10.1016/j.chemolab.2023.104810_bib6 article-title: MVC1: an integrated MatLab toolbox for first-order multivariate calibration publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.03.004 – volume: 50 start-page: 22 year: 2013 ident: 10.1016/j.chemolab.2023.104810_bib38 article-title: Independent components analysis with the JADE algorithm publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2013.03.013 – volume: 36 start-page: 165 year: 1997 ident: 10.1016/j.chemolab.2023.104810_bib39 article-title: The kernel PCA algorithms for wide data. Part I: theory and algorithms publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00010-5 – volume: 96 start-page: 246 year: 2009 ident: 10.1016/j.chemolab.2023.104810_bib4 article-title: MVC2: a MATLAB graphical interface toolbox for second-order multivariate calibration publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2009.02.005 – volume: 60 start-page: 101 year: 2002 ident: 10.1016/j.chemolab.2023.104810_bib34 article-title: A fast method for robust principal components with applications to chemometrics publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00188-5 – volume: 116 start-page: 9 year: 2012 ident: 10.1016/j.chemolab.2023.104810_bib5 article-title: MVC3: a MATLAB graphical interface toolbox for third-order multivariate calibration publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.03.018 – volume: 362 year: 2021 ident: 10.1016/j.chemolab.2023.104810_bib20 article-title: VOCs profile of Colletotrichum spp. as a potential tool for quality control of açaí pulp publication-title: Food Chem. – volume: 132 year: 2020 ident: 10.1016/j.chemolab.2023.104810_bib12 article-title: Towards fast prototyping of cloud-based environmental decision support systems for environmental scientists using R Shiny and Docker publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2020.104797 – volume: 6 year: 2018 ident: 10.1016/j.chemolab.2023.104810_bib27 article-title: Wavelet transform-based UV spectroscopy for pharmaceutical analysis publication-title: Front. Chem. doi: 10.3389/fchem.2018.00503 – volume: 42 start-page: 5123 year: 2016 ident: 10.1016/j.chemolab.2023.104810_bib21 article-title: Data-driven research on chemical features of Jingdezhen and Longquan celadon by energy dispersive X-ray fluorescence publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.12.030 – volume: 24 year: 2009 ident: 10.1016/j.chemolab.2023.104810_bib23 article-title: The impact of Levene's test of equality of variances on statistical theory and practice publication-title: Stat. Sci. doi: 10.1214/09-STS301 |
| SSID | ssj0016941 |
| Score | 2.4674282 |
| Snippet | This work reports the release and the usability of the dimensionality reduction app, an R application developed with the RShiny package to reduce data... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104810 |
| SubjectTerms | Data test Non-parametric Pattern recognition PCA RShiny |
| Title | Chemometrics web app's part 2: Dimensionality reduction and exploratory analysis |
| URI | https://dx.doi.org/10.1016/j.chemolab.2023.104810 |
| Volume | 237 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPehFfGJ9lD0InrZpkk2y661US1UsghZ6C7ubDbTYNLT16m93Jo9SQejBWzbMhOTLMvstO_MNIbfCS0UCRJ35YMF4IAyTXZmyNO0m2rUhrDlYKPw6Codj_jwJJg3Sr2thMK2yiv1lTC-idXXHqdB08unUeUcdEaTTQKJRVQRltzmPsItB53uT5uFioWap7y0ZWm9VCc86gMscdpC6g03E8bhTYCXtXwvU1qIzOCKHFVukvfKFjknDZidkv183aTslb3i9mGNbLLOiEBKpyvO7Fc3hG6h3Tx9QvL8U3gC6TZco1Iq_gqosobbIvyuO2WFcipOckfHg8aM_ZFWTBGZ811szQDN0LYeNTgRUT9tE-sKEqWcDnigrbWQj5WqhAxN5iWelssK6MhWhcU0gtPLPSTNbZPaCUMMTAyYmjJTgXHZ1aKyERwU-7_pGhS0S1MjEplIQx0YWn3GdKjaLa0RjRDQuEW0RZ-OXlxoaOz1kDXz8azbEEOh3-F7-w_eKHOAIU8Hc4Jo018svewOkY63bxaxqk73e08tw9ANdIdfm |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qPdSL-MT63IPgKU2T7G52vUlVqrZFsIXeQrLZQItNQ1uv_nZn8igVhB685bETki_L7DfszDeE3Eo3kTEQdcuDERbjUluqrRIrSdpx5BgBaw4WCvcHojtir2M-rpFOVQuDaZWl7y98eu6tyyt2iaadTSb2B-qIIJ0GEo2qImKH7DLu-hiBtb7XeR4OVmoWAt_KwuEbZcLTFgAzgxAyamEXcdzvlFhK-9cKtbHqPB-Q_ZIu0ofijQ5JzaRHpNGpurQdk3c8ns-wL5ZeUvCJNMyyuyXN4COoe08fUb2_UN4Avk0XqNSK_4KGaUxNnoCX77PDeaFOckJGz0_DTtcquyRY2nPclQVwCscwiHR84HqRiZUntUhcw1kcGmV844dOJCOufTd2jQqNNI5KpNCO5jIKvVNST-epOSNUs1jDEC38UDKm2pHQRsGjuMfang5Fk_AKmUCXEuLYyeIzqHLFpkGFaICIBgWiTWKv7bJCRGOrhaqAD35NhwA8_Rbb83_Y3pBGd9jvBb2XwdsF2cM7mBfm8EtSXy2-zBUwkFV0nc-wH3-82Xs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemometrics+web+app%27s+part+2%3A+Dimensionality+reduction+and+exploratory+analysis&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Darz%C3%A9%2C+Bernardo+Cardeal&rft.au=Lima%2C+Igor+C.A.&rft.au=Luna%2C+Aderval+S.&rft.au=Pinto%2C+Licarion&rft.date=2023-06-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.eissn=1873-3239&rft.volume=237&rft_id=info:doi/10.1016%2Fj.chemolab.2023.104810&rft.externalDocID=S0169743923000606 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon |