Chemometrics web app's part 2: Dimensionality reduction and exploratory analysis

This work reports the release and the usability of the dimensionality reduction app, an R application developed with the RShiny package to reduce data dimensionality using filters, resolution reduction, and algorithms based on parametric and non-parametric approaches. This application accepts data d...

Full description

Saved in:
Bibliographic Details
Published inChemometrics and intelligent laboratory systems Vol. 237; p. 104810
Main Authors Darzé, Bernardo Cardeal, Lima, Igor C.A., Luna, Aderval S., Pinto, Licarion
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.06.2023
Subjects
Online AccessGet full text
ISSN0169-7439
1873-3239
DOI10.1016/j.chemolab.2023.104810

Cover

Abstract This work reports the release and the usability of the dimensionality reduction app, an R application developed with the RShiny package to reduce data dimensionality using filters, resolution reduction, and algorithms based on parametric and non-parametric approaches. This application accepts data directly from.txt,.csv,.xlsx file extensions, and R data files directly exported by the data handling app presented in the Chemometrics web app's part 1: Data handling manuscript. The idea is to use the data directly from the instrument or preprocess it with the first app. Therefore, using the application does not require a deep knowledge of R software or matrix manipulation. The dimensionality reduction app allows performing basic Preprocessing such as mean centering and autoscaling, some adequacy testing, some filtering methods to reduce the data dimensionality, cluster analysis, diagnosis of the number of clusters, parametric and non-parametric based algorithms for dimensionality reduction and exploratory analysis, such as PCA and T-SNE respectively. Three datasets will be used for data dimensionality reduction and exploratory analysis. All the figures presented in this manuscript were directly exported from the dimensionality reduction app to highlight its functionalities. The main idea of this application is to allow chemometrics users to perform several strategies for dimensionality reduction and exploratory analysis even with no knowledge of programming language. Besides, the dimensionality reduction app is an open-access code available to be used on RStudio free environment at the software or cloud computing using computers, tablets, smartphones, or similar devices, even without installing anything for usage. •Open-source web app developed in R for dimensionality reduction and exploratory analysis.•Data adequacy test, variable preprocessing, filtering methods and simple resolution reduction.•Cluster Analysis and diagnosis tools to evaluate the number of clusters.•Parametric methods for dimensionality reduction and exploratory analysis.•Non-Parametric methods for dimensionality reduction and exploratory analysis.
AbstractList This work reports the release and the usability of the dimensionality reduction app, an R application developed with the RShiny package to reduce data dimensionality using filters, resolution reduction, and algorithms based on parametric and non-parametric approaches. This application accepts data directly from.txt,.csv,.xlsx file extensions, and R data files directly exported by the data handling app presented in the Chemometrics web app's part 1: Data handling manuscript. The idea is to use the data directly from the instrument or preprocess it with the first app. Therefore, using the application does not require a deep knowledge of R software or matrix manipulation. The dimensionality reduction app allows performing basic Preprocessing such as mean centering and autoscaling, some adequacy testing, some filtering methods to reduce the data dimensionality, cluster analysis, diagnosis of the number of clusters, parametric and non-parametric based algorithms for dimensionality reduction and exploratory analysis, such as PCA and T-SNE respectively. Three datasets will be used for data dimensionality reduction and exploratory analysis. All the figures presented in this manuscript were directly exported from the dimensionality reduction app to highlight its functionalities. The main idea of this application is to allow chemometrics users to perform several strategies for dimensionality reduction and exploratory analysis even with no knowledge of programming language. Besides, the dimensionality reduction app is an open-access code available to be used on RStudio free environment at the software or cloud computing using computers, tablets, smartphones, or similar devices, even without installing anything for usage. •Open-source web app developed in R for dimensionality reduction and exploratory analysis.•Data adequacy test, variable preprocessing, filtering methods and simple resolution reduction.•Cluster Analysis and diagnosis tools to evaluate the number of clusters.•Parametric methods for dimensionality reduction and exploratory analysis.•Non-Parametric methods for dimensionality reduction and exploratory analysis.
ArticleNumber 104810
Author Darzé, Bernardo Cardeal
Luna, Aderval S.
Pinto, Licarion
Lima, Igor C.A.
Author_xml – sequence: 1
  givenname: Bernardo Cardeal
  surname: Darzé
  fullname: Darzé, Bernardo Cardeal
– sequence: 2
  givenname: Igor C.A.
  surname: Lima
  fullname: Lima, Igor C.A.
– sequence: 3
  givenname: Aderval S.
  surname: Luna
  fullname: Luna, Aderval S.
  email: asluna@uerj.com.br
– sequence: 4
  givenname: Licarion
  orcidid: 0000-0002-8682-6174
  surname: Pinto
  fullname: Pinto, Licarion
  email: jose.licarion.neto@uerj.com.br
BookMark eNqFkE1LxDAQhoOs4O7qX5DcPHXNR7dtxIOyfsKCHvQcpukUs7RNSeJH_70tqxcvnoZ3mOeFeRZk1rkOCTnlbMUZz853K_OGrWugXAkm5LhMC84OyJwXuUykkGpG5uOhSvJUqiOyCGHHppzyOXneTGyL0VsT6CeWFPr-LNAefKTigt7YFrtgXQeNjQP1WL2bOEYKXUXxq2-ch-j8MGZohmDDMTmsoQl48jOX5PXu9mXzkGyf7h8319vESC5ikgmWcUx5qnKleImVkoXJaoHrtAJUmGMOvCzKtclFJVABFshVXWSGm3VRglySbN9rvAvBY617b1vwg-ZMT170Tv960ZMXvfcygpd_QGMjTD9FD7b5H7_a4zg-92HR62AsdgYr69FEXTn7X8U3pfCGnw
CitedBy_id crossref_primary_10_1016_j_marpolbul_2024_117483
crossref_primary_10_1016_j_conbuildmat_2024_135711
crossref_primary_10_1016_j_microc_2025_112994
crossref_primary_10_1016_j_foodchem_2025_143163
crossref_primary_10_1016_j_foodres_2024_115130
crossref_primary_10_1016_j_chemolab_2023_104933
crossref_primary_10_1134_S1061934824700291
crossref_primary_10_1016_j_forc_2024_100563
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126801
crossref_primary_10_1039_D3AY00683B
Cites_doi 10.1016/j.chemolab.2011.04.004
10.1039/c3ay40582f
10.1007/s10815-020-01896-2
10.12691/ajams-9-1-2
10.1039/C3AY41907J
10.1016/j.asoc.2008.05.006
10.1016/j.patrec.2005.11.017
10.1080/10408340600969403
10.1007/s41664-018-0065-5
10.1038/s41467-019-13055-y
10.1198/004017004000000563
10.1177/0013164416645162
10.1021/acs.jchemed.9b00850
10.1111/j.1469-1809.1936.tb02137.x
10.1016/j.chemolab.2015.10.003
10.1016/j.cosrev.2021.100378
10.1016/j.chemolab.2021.104304
10.1111/1467-9868.00293
10.1016/S0169-7439(98)00080-X
10.1016/j.chemolab.2004.03.004
10.1016/j.trac.2013.03.013
10.1016/S0169-7439(97)00010-5
10.1016/j.chemolab.2009.02.005
10.1016/S0169-7439(01)00188-5
10.1016/j.chemolab.2012.03.018
10.1016/j.envsoft.2020.104797
10.3389/fchem.2018.00503
10.1016/j.ceramint.2015.12.030
10.1214/09-STS301
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2023.104810
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
ExternalDocumentID 10_1016_j_chemolab_2023_104810
S0169743923000606
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
WUQ
XPP
~HD
ID FETCH-LOGICAL-c312t-62061e41497991bed938c6f2e54dae9e7e7a1b8b5c72d2e9ae8e19f86c1c58ba3
IEDL.DBID .~1
ISSN 0169-7439
IngestDate Thu Apr 24 23:08:10 EDT 2025
Thu Oct 02 04:25:23 EDT 2025
Fri Feb 23 02:39:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data test
RShiny
Non-parametric
Pattern recognition
PCA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-62061e41497991bed938c6f2e54dae9e7e7a1b8b5c72d2e9ae8e19f86c1c58ba3
ORCID 0000-0002-8682-6174
ParticipantIDs crossref_primary_10_1016_j_chemolab_2023_104810
crossref_citationtrail_10_1016_j_chemolab_2023_104810
elsevier_sciencedirect_doi_10_1016_j_chemolab_2023_104810
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nanga, Bawah, Acquaye, Billa, Baeta, Odai, Obeng, Nsiah (bib33) 2021; 9
Rutledge (bib37) 2018; 2
Costa, Lourenço, Pereira (bib32) 2011; 107
Rousseeuw, Debruyne, Engelen, Hubert (bib26) 2006; 36
He, Zhang, Zhang (bib21) 2016; 42
Anowar, Sadaoui, Selim (bib15) 2021; 40
Samko, Marshall, Rosin (bib44) 2006; 27
Li (bib12) 2020; 132
Chen, Lin, He, He, Li (bib43) 2016; 6
Hubert, Rousseeuw, Vanden Branden (bib35) 2005; 47
Antonelli, Olivieri (bib11) 2020; 97
Belkina, Ciccolella, Anno, Halpert, Spidlen, Snyder-Cappione (bib42) 2019; 10
Dinh, Fujinami, Huynh (bib30) 2019
Arora, Hu, Kothari (bib40) 2018
Neto, Marques, de Freitas Cavalcanti Filho, Araujo, Lima, Pinto, Silva (bib19) 2020; 37
Olivieri, Wu, Yu (bib4) 2009; 96
(bib8) 2020
Tibshirani, Walther, Hastie (bib31) 2001; 63
Hubert, Rousseeuw, Verboven (bib34) 2002; 60
Thangavel, Pethalakshmi (bib16) 2009; 9
Bro, Smilde (bib13) 2014; 6
Rutledge, Jouan-Rimbaud Bouveresse (bib38) 2013; 50
Wu, Massart, de Jong (bib39) 1997; 36
Rodionova, Kucheryavskiy, Pomerantsev (bib14) 2021; 213
Lima, Santos, Silva, Santos, Silva, Gomes, Oliveira, Alves, Pinto, Oliveira (bib20) 2021; 362
Gupta, Sharma, Akhtar (bib29) 2021
Dinç, Yazan (bib27) 2018; 6
Park, Tauler (bib36) 2020
Ballabio (bib2) 2015; 149
Gastwirth, Gel, Miao (bib23) 2009; 24
Olivieri, Goicoechea, Iñón (bib6) 2004; 73
Wang, Rodríguez de Gil, Chen, Kromrey, Kim, Pham, Nguyen, Romano (bib24) 2017; 77
bib7
Leung, Chau, Gao (bib28) 1998; 43
Rogovschi, Kitazono, Grozavu, Omori, Ozawa (bib41) 2017
bib17
(bib1) 2016
Darzé, Lima, Pinto, Luna (bib10) 2022
Shrestha (bib22) 2021; 9
Olivieri, Wu, Yu (bib5) 2012; 116
Fisher (bib18) 1936; 7
(bib25) 2022
Ballabio, Consonni (bib3) 2013; 5
Ohn, Joseph (bib9) 2022
Olivieri (10.1016/j.chemolab.2023.104810_bib5) 2012; 116
Bro (10.1016/j.chemolab.2023.104810_bib13) 2014; 6
(10.1016/j.chemolab.2023.104810_bib8) 2020
Samko (10.1016/j.chemolab.2023.104810_bib44) 2006; 27
Antonelli (10.1016/j.chemolab.2023.104810_bib11) 2020; 97
Rodionova (10.1016/j.chemolab.2023.104810_bib14) 2021; 213
Anowar (10.1016/j.chemolab.2023.104810_bib15) 2021; 40
Hubert (10.1016/j.chemolab.2023.104810_bib35) 2005; 47
Rogovschi (10.1016/j.chemolab.2023.104810_bib41) 2017
Ballabio (10.1016/j.chemolab.2023.104810_bib3) 2013; 5
Lima (10.1016/j.chemolab.2023.104810_bib20) 2021; 362
Dinh (10.1016/j.chemolab.2023.104810_bib30) 2019
Rousseeuw (10.1016/j.chemolab.2023.104810_bib26) 2006; 36
Wu (10.1016/j.chemolab.2023.104810_bib39) 1997; 36
Arora (10.1016/j.chemolab.2023.104810_bib40) 2018
Shrestha (10.1016/j.chemolab.2023.104810_bib22) 2021; 9
Neto (10.1016/j.chemolab.2023.104810_bib19) 2020; 37
(10.1016/j.chemolab.2023.104810_bib25) 2022
Rutledge (10.1016/j.chemolab.2023.104810_bib37) 2018; 2
Park (10.1016/j.chemolab.2023.104810_bib36) 2020
Tibshirani (10.1016/j.chemolab.2023.104810_bib31) 2001; 63
Nanga (10.1016/j.chemolab.2023.104810_bib33) 2021; 9
Leung (10.1016/j.chemolab.2023.104810_bib28) 1998; 43
Costa (10.1016/j.chemolab.2023.104810_bib32) 2011; 107
Belkina (10.1016/j.chemolab.2023.104810_bib42) 2019; 10
Fisher (10.1016/j.chemolab.2023.104810_bib18) 1936; 7
Darzé (10.1016/j.chemolab.2023.104810_bib10) 2022
Li (10.1016/j.chemolab.2023.104810_bib12) 2020; 132
Ohn (10.1016/j.chemolab.2023.104810_bib9) 2022
Wang (10.1016/j.chemolab.2023.104810_bib24) 2017; 77
Hubert (10.1016/j.chemolab.2023.104810_bib34) 2002; 60
Olivieri (10.1016/j.chemolab.2023.104810_bib4) 2009; 96
Dinç (10.1016/j.chemolab.2023.104810_bib27) 2018; 6
(10.1016/j.chemolab.2023.104810_bib1) 2016
Olivieri (10.1016/j.chemolab.2023.104810_bib6) 2004; 73
Gastwirth (10.1016/j.chemolab.2023.104810_bib23) 2009; 24
Rutledge (10.1016/j.chemolab.2023.104810_bib38) 2013; 50
Thangavel (10.1016/j.chemolab.2023.104810_bib16) 2009; 9
Gupta (10.1016/j.chemolab.2023.104810_bib29) 2021
Ballabio (10.1016/j.chemolab.2023.104810_bib2) 2015; 149
He (10.1016/j.chemolab.2023.104810_bib21) 2016; 42
Chen (10.1016/j.chemolab.2023.104810_bib43) 2016; 6
References_xml – start-page: 355
  year: 2020
  end-page: 369
  ident: bib36
  article-title: Bayesian methods for factor analysis in chemometrics
  publication-title: Compr. Chemom.
– volume: 43
  start-page: 165
  year: 1998
  end-page: 184
  ident: bib28
  article-title: A review on applications of wavelet transform techniques in chemical analysis: 1989–1997
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 107
  start-page: 234
  year: 2011
  end-page: 244
  ident: bib32
  article-title: Desirability function approach: a review and performance evaluation in adverse conditions
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 42
  start-page: 5123
  year: 2016
  end-page: 5129
  ident: bib21
  article-title: Data-driven research on chemical features of Jingdezhen and Longquan celadon by energy dispersive X-ray fluorescence
  publication-title: Ceram. Int.
– volume: 50
  start-page: 22
  year: 2013
  end-page: 32
  ident: bib38
  article-title: Independent components analysis with the JADE algorithm
  publication-title: TrAC Trends Anal. Chem.
– year: 2022
  ident: bib9
  article-title: Nonparametric Statistical Methods Using R
– volume: 10
  start-page: 5415
  year: 2019
  ident: bib42
  article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
  publication-title: Nat. Commun.
– ident: bib17
  article-title: LEAMS-UERJ-Apps
– volume: 6
  year: 2016
  ident: bib43
  article-title: Combination of the manifold dimensionality reduction methods with least squares support vector machines for classifying the species of sorghum seeds
  publication-title: Sci. Rep.
– ident: bib7
  article-title: Rproject, CRAN
– volume: 27
  start-page: 968
  year: 2006
  end-page: 979
  ident: bib44
  article-title: Selection of the optimal parameter value for the Isomap algorithm
  publication-title: Pattern Recogn. Lett.
– volume: 9
  start-page: 1
  year: 2009
  end-page: 12
  ident: bib16
  article-title: Dimensionality reduction based on rough set theory: a review
  publication-title: Appl. Soft Comput.
– volume: 6
  year: 2018
  ident: bib27
  article-title: Wavelet transform-based UV spectroscopy for pharmaceutical analysis
  publication-title: Front. Chem.
– year: 2020
  ident: bib8
  publication-title: r-Bloggers
– start-page: 1
  year: 2019
  end-page: 17
  ident: bib30
  article-title: Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coefficient
– volume: 96
  start-page: 246
  year: 2009
  end-page: 251
  ident: bib4
  article-title: MVC2: a MATLAB graphical interface toolbox for second-order multivariate calibration
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 24
  year: 2009
  ident: bib23
  article-title: The impact of Levene's test of equality of variances on statistical theory and practice
  publication-title: Stat. Sci.
– volume: 60
  start-page: 101
  year: 2002
  end-page: 111
  ident: bib34
  article-title: A fast method for robust principal components with applications to chemometrics
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 362
  year: 2021
  ident: bib20
  article-title: VOCs profile of Colletotrichum spp. as a potential tool for quality control of açaí pulp
  publication-title: Food Chem.
– volume: 97
  start-page: 1176
  year: 2020
  end-page: 1180
  ident: bib11
  article-title: Developing and implementing an R shiny application to introduce multivariate calibration to advanced undergraduate students
  publication-title: J. Chem. Educ.
– volume: 6
  start-page: 2812
  year: 2014
  end-page: 2831
  ident: bib13
  article-title: Principal component analysis
  publication-title: Anal. Methods
– volume: 36
  start-page: 221
  year: 2006
  end-page: 242
  ident: bib26
  article-title: Robustness and outlier detection in chemometrics
  publication-title: Crit. Rev. Anal. Chem.
– year: 2022
  ident: bib25
  article-title: R: A Language and Environment for Statistical Computing
– volume: 37
  start-page: 2233
  year: 2020
  end-page: 2247
  ident: bib19
  article-title: 1H NMR-based metabonomics for infertility diagnosis in men with varicocele
  publication-title: J. Assist. Reprod. Genet.
– volume: 9
  start-page: 189
  year: 2021
  end-page: 231
  ident: bib33
  article-title: Review of dimension reduction methods
  publication-title: J. Data Anal. Inf. Process.
– volume: 63
  start-page: 411
  year: 2001
  end-page: 423
  ident: bib31
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 47
  start-page: 64
  year: 2005
  end-page: 79
  ident: bib35
  article-title: ROBPCA: a new approach to robust principal component analysis
  publication-title: Technometrics
– volume: 5
  start-page: 3790
  year: 2013
  ident: bib3
  article-title: Classification tools in chemistry. Part 1: linear models. PLS-DA
  publication-title: Anal. Methods
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: bib18
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
– volume: 36
  start-page: 165
  year: 1997
  end-page: 172
  ident: bib39
  article-title: The kernel PCA algorithms for wide data. Part I: theory and algorithms
  publication-title: Chemometr. Intell. Lab. Syst.
– start-page: 412
  year: 2021
  end-page: 418
  ident: bib29
  article-title: A comparative analysis of K-means and hierarchical clustering
  publication-title: EPRA Int. J. Multidiscip. Res.
– volume: 116
  start-page: 9
  year: 2012
  end-page: 16
  ident: bib5
  article-title: MVC3: a MATLAB graphical interface toolbox for third-order multivariate calibration
  publication-title: Chemometr. Intell. Lab. Syst.
– year: 2018
  ident: bib40
  article-title: An Analysis of the T-SNE Algorithm for Data Visualization
– start-page: 1628
  year: 2017
  end-page: 1632
  ident: bib41
  article-title: t-Distributed stochastic neighbor embedding spectral clustering
  publication-title: 2017 Int. Jt. Conf. Neural Networks
– volume: 9
  start-page: 4
  year: 2021
  end-page: 11
  ident: bib22
  article-title: Factor analysis as a tool for survey analysis
  publication-title: Am. J. Appl. Math. Stat.
– volume: 132
  year: 2020
  ident: bib12
  article-title: Towards fast prototyping of cloud-based environmental decision support systems for environmental scientists using R Shiny and Docker
  publication-title: Environ. Model. Software
– volume: 2
  start-page: 235
  year: 2018
  end-page: 248
  ident: bib37
  article-title: Comparison of principal components analysis, independent components analysis and common components analysis
  publication-title: J. Anal. Test.
– year: 2022
  ident: bib10
  article-title: Chemometrics Web App Part 1: Data Handling
– volume: 213
  year: 2021
  ident: bib14
  article-title: Efficient tools for principal component analysis of complex data— a tutorial
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 77
  start-page: 305
  year: 2017
  end-page: 329
  ident: bib24
  article-title: Comparing the performance of approaches for testing the homogeneity of variance assumption in one-factor ANOVA models
  publication-title: Educ. Psychol. Meas.
– year: 2016
  ident: bib1
  publication-title: PLS_Toolbox with MIA_Toolbox 8.2.1
– volume: 73
  start-page: 189
  year: 2004
  end-page: 197
  ident: bib6
  article-title: MVC1: an integrated MatLab toolbox for first-order multivariate calibration
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 149
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib2
  article-title: A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 40
  year: 2021
  ident: bib15
  article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)
  publication-title: Comput. Sci. Rev.
– volume: 107
  start-page: 234
  year: 2011
  ident: 10.1016/j.chemolab.2023.104810_bib32
  article-title: Desirability function approach: a review and performance evaluation in adverse conditions
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.04.004
– volume: 5
  start-page: 3790
  year: 2013
  ident: 10.1016/j.chemolab.2023.104810_bib3
  article-title: Classification tools in chemistry. Part 1: linear models. PLS-DA
  publication-title: Anal. Methods
  doi: 10.1039/c3ay40582f
– volume: 37
  start-page: 2233
  year: 2020
  ident: 10.1016/j.chemolab.2023.104810_bib19
  article-title: 1H NMR-based metabonomics for infertility diagnosis in men with varicocele
  publication-title: J. Assist. Reprod. Genet.
  doi: 10.1007/s10815-020-01896-2
– volume: 9
  start-page: 4
  year: 2021
  ident: 10.1016/j.chemolab.2023.104810_bib22
  article-title: Factor analysis as a tool for survey analysis
  publication-title: Am. J. Appl. Math. Stat.
  doi: 10.12691/ajams-9-1-2
– year: 2018
  ident: 10.1016/j.chemolab.2023.104810_bib40
– start-page: 1
  year: 2019
  ident: 10.1016/j.chemolab.2023.104810_bib30
– volume: 6
  start-page: 2812
  year: 2014
  ident: 10.1016/j.chemolab.2023.104810_bib13
  article-title: Principal component analysis
  publication-title: Anal. Methods
  doi: 10.1039/C3AY41907J
– start-page: 1628
  year: 2017
  ident: 10.1016/j.chemolab.2023.104810_bib41
  article-title: t-Distributed stochastic neighbor embedding spectral clustering
– volume: 9
  start-page: 1
  year: 2009
  ident: 10.1016/j.chemolab.2023.104810_bib16
  article-title: Dimensionality reduction based on rough set theory: a review
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2008.05.006
– volume: 27
  start-page: 968
  year: 2006
  ident: 10.1016/j.chemolab.2023.104810_bib44
  article-title: Selection of the optimal parameter value for the Isomap algorithm
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.11.017
– volume: 36
  start-page: 221
  year: 2006
  ident: 10.1016/j.chemolab.2023.104810_bib26
  article-title: Robustness and outlier detection in chemometrics
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408340600969403
– volume: 2
  start-page: 235
  year: 2018
  ident: 10.1016/j.chemolab.2023.104810_bib37
  article-title: Comparison of principal components analysis, independent components analysis and common components analysis
  publication-title: J. Anal. Test.
  doi: 10.1007/s41664-018-0065-5
– year: 2022
  ident: 10.1016/j.chemolab.2023.104810_bib10
– volume: 6
  year: 2016
  ident: 10.1016/j.chemolab.2023.104810_bib43
  article-title: Combination of the manifold dimensionality reduction methods with least squares support vector machines for classifying the species of sorghum seeds
  publication-title: Sci. Rep.
– volume: 10
  start-page: 5415
  year: 2019
  ident: 10.1016/j.chemolab.2023.104810_bib42
  article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13055-y
– start-page: 355
  year: 2020
  ident: 10.1016/j.chemolab.2023.104810_bib36
  article-title: Bayesian methods for factor analysis in chemometrics
– year: 2020
  ident: 10.1016/j.chemolab.2023.104810_bib8
– start-page: 412
  year: 2021
  ident: 10.1016/j.chemolab.2023.104810_bib29
  article-title: A comparative analysis of K-means and hierarchical clustering
  publication-title: EPRA Int. J. Multidiscip. Res.
– volume: 47
  start-page: 64
  year: 2005
  ident: 10.1016/j.chemolab.2023.104810_bib35
  article-title: ROBPCA: a new approach to robust principal component analysis
  publication-title: Technometrics
  doi: 10.1198/004017004000000563
– volume: 77
  start-page: 305
  year: 2017
  ident: 10.1016/j.chemolab.2023.104810_bib24
  article-title: Comparing the performance of approaches for testing the homogeneity of variance assumption in one-factor ANOVA models
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/0013164416645162
– volume: 97
  start-page: 1176
  year: 2020
  ident: 10.1016/j.chemolab.2023.104810_bib11
  article-title: Developing and implementing an R shiny application to introduce multivariate calibration to advanced undergraduate students
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.9b00850
– volume: 7
  start-page: 179
  year: 1936
  ident: 10.1016/j.chemolab.2023.104810_bib18
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 149
  start-page: 1
  year: 2015
  ident: 10.1016/j.chemolab.2023.104810_bib2
  article-title: A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.10.003
– year: 2016
  ident: 10.1016/j.chemolab.2023.104810_bib1
– volume: 40
  year: 2021
  ident: 10.1016/j.chemolab.2023.104810_bib15
  article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100378
– volume: 213
  year: 2021
  ident: 10.1016/j.chemolab.2023.104810_bib14
  article-title: Efficient tools for principal component analysis of complex data— a tutorial
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2021.104304
– volume: 63
  start-page: 411
  year: 2001
  ident: 10.1016/j.chemolab.2023.104810_bib31
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00293
– year: 2022
  ident: 10.1016/j.chemolab.2023.104810_bib25
– volume: 9
  start-page: 189
  year: 2021
  ident: 10.1016/j.chemolab.2023.104810_bib33
  article-title: Review of dimension reduction methods
  publication-title: J. Data Anal. Inf. Process.
– year: 2022
  ident: 10.1016/j.chemolab.2023.104810_bib9
– volume: 43
  start-page: 165
  year: 1998
  ident: 10.1016/j.chemolab.2023.104810_bib28
  article-title: A review on applications of wavelet transform techniques in chemical analysis: 1989–1997
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(98)00080-X
– volume: 73
  start-page: 189
  year: 2004
  ident: 10.1016/j.chemolab.2023.104810_bib6
  article-title: MVC1: an integrated MatLab toolbox for first-order multivariate calibration
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.03.004
– volume: 50
  start-page: 22
  year: 2013
  ident: 10.1016/j.chemolab.2023.104810_bib38
  article-title: Independent components analysis with the JADE algorithm
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2013.03.013
– volume: 36
  start-page: 165
  year: 1997
  ident: 10.1016/j.chemolab.2023.104810_bib39
  article-title: The kernel PCA algorithms for wide data. Part I: theory and algorithms
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00010-5
– volume: 96
  start-page: 246
  year: 2009
  ident: 10.1016/j.chemolab.2023.104810_bib4
  article-title: MVC2: a MATLAB graphical interface toolbox for second-order multivariate calibration
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2009.02.005
– volume: 60
  start-page: 101
  year: 2002
  ident: 10.1016/j.chemolab.2023.104810_bib34
  article-title: A fast method for robust principal components with applications to chemometrics
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00188-5
– volume: 116
  start-page: 9
  year: 2012
  ident: 10.1016/j.chemolab.2023.104810_bib5
  article-title: MVC3: a MATLAB graphical interface toolbox for third-order multivariate calibration
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.03.018
– volume: 362
  year: 2021
  ident: 10.1016/j.chemolab.2023.104810_bib20
  article-title: VOCs profile of Colletotrichum spp. as a potential tool for quality control of açaí pulp
  publication-title: Food Chem.
– volume: 132
  year: 2020
  ident: 10.1016/j.chemolab.2023.104810_bib12
  article-title: Towards fast prototyping of cloud-based environmental decision support systems for environmental scientists using R Shiny and Docker
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2020.104797
– volume: 6
  year: 2018
  ident: 10.1016/j.chemolab.2023.104810_bib27
  article-title: Wavelet transform-based UV spectroscopy for pharmaceutical analysis
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00503
– volume: 42
  start-page: 5123
  year: 2016
  ident: 10.1016/j.chemolab.2023.104810_bib21
  article-title: Data-driven research on chemical features of Jingdezhen and Longquan celadon by energy dispersive X-ray fluorescence
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.12.030
– volume: 24
  year: 2009
  ident: 10.1016/j.chemolab.2023.104810_bib23
  article-title: The impact of Levene's test of equality of variances on statistical theory and practice
  publication-title: Stat. Sci.
  doi: 10.1214/09-STS301
SSID ssj0016941
Score 2.4674282
Snippet This work reports the release and the usability of the dimensionality reduction app, an R application developed with the RShiny package to reduce data...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104810
SubjectTerms Data test
Non-parametric
Pattern recognition
PCA
RShiny
Title Chemometrics web app's part 2: Dimensionality reduction and exploratory analysis
URI https://dx.doi.org/10.1016/j.chemolab.2023.104810
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPehFfGJ9lD0InrZpkk2y661US1UsghZ6C7ubDbTYNLT16m93Jo9SQejBWzbMhOTLMvstO_MNIbfCS0UCRJ35YMF4IAyTXZmyNO0m2rUhrDlYKPw6Codj_jwJJg3Sr2thMK2yiv1lTC-idXXHqdB08unUeUcdEaTTQKJRVQRltzmPsItB53uT5uFioWap7y0ZWm9VCc86gMscdpC6g03E8bhTYCXtXwvU1qIzOCKHFVukvfKFjknDZidkv183aTslb3i9mGNbLLOiEBKpyvO7Fc3hG6h3Tx9QvL8U3gC6TZco1Iq_gqosobbIvyuO2WFcipOckfHg8aM_ZFWTBGZ811szQDN0LYeNTgRUT9tE-sKEqWcDnigrbWQj5WqhAxN5iWelssK6MhWhcU0gtPLPSTNbZPaCUMMTAyYmjJTgXHZ1aKyERwU-7_pGhS0S1MjEplIQx0YWn3GdKjaLa0RjRDQuEW0RZ-OXlxoaOz1kDXz8azbEEOh3-F7-w_eKHOAIU8Hc4Jo018svewOkY63bxaxqk73e08tw9ANdIdfm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qPdSL-MT63IPgKU2T7G52vUlVqrZFsIXeQrLZQItNQ1uv_nZn8igVhB685bETki_L7DfszDeE3Eo3kTEQdcuDERbjUluqrRIrSdpx5BgBaw4WCvcHojtir2M-rpFOVQuDaZWl7y98eu6tyyt2iaadTSb2B-qIIJ0GEo2qImKH7DLu-hiBtb7XeR4OVmoWAt_KwuEbZcLTFgAzgxAyamEXcdzvlFhK-9cKtbHqPB-Q_ZIu0ofijQ5JzaRHpNGpurQdk3c8ns-wL5ZeUvCJNMyyuyXN4COoe08fUb2_UN4Avk0XqNSK_4KGaUxNnoCX77PDeaFOckJGz0_DTtcquyRY2nPclQVwCscwiHR84HqRiZUntUhcw1kcGmV844dOJCOufTd2jQqNNI5KpNCO5jIKvVNST-epOSNUs1jDEC38UDKm2pHQRsGjuMfang5Fk_AKmUCXEuLYyeIzqHLFpkGFaICIBgWiTWKv7bJCRGOrhaqAD35NhwA8_Rbb83_Y3pBGd9jvBb2XwdsF2cM7mBfm8EtSXy2-zBUwkFV0nc-wH3-82Xs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemometrics+web+app%27s+part+2%3A+Dimensionality+reduction+and+exploratory+analysis&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Darz%C3%A9%2C+Bernardo+Cardeal&rft.au=Lima%2C+Igor+C.A.&rft.au=Luna%2C+Aderval+S.&rft.au=Pinto%2C+Licarion&rft.date=2023-06-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.eissn=1873-3239&rft.volume=237&rft_id=info:doi/10.1016%2Fj.chemolab.2023.104810&rft.externalDocID=S0169743923000606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon