Comparison of variable selection algorithms on vis-NIR hyperspectral imaging spectra for quantitative monitoring and visualization of bacterial foodborne pathogens in fresh pork muscles

[Display omitted] •Bacterial foodborne pathogens in pork are quantified using VIS-NIR hyperspectral imaging.•A hybrid variable selection strategy based VCPA-IRIV and GA is applied for wavelength selection.•VCPA-GA significantly improved model's prediction performance as compared to other method...

Full description

Saved in:
Bibliographic Details
Published inInfrared physics & technology Vol. 107; p. 103327
Main Authors Bonah, Ernest, Huang, Xingyi, Aheto, Joshua Harrington, Yi, Ren, Yu, Shanshan, Tu, Hongyang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN1350-4495
1879-0275
DOI10.1016/j.infrared.2020.103327

Cover

Abstract [Display omitted] •Bacterial foodborne pathogens in pork are quantified using VIS-NIR hyperspectral imaging.•A hybrid variable selection strategy based VCPA-IRIV and GA is applied for wavelength selection.•VCPA-GA significantly improved model's prediction performance as compared to other methods.•The best model is selected to visualize bacterial loads on inoculated pork.•The new hybrid models reduce high-dimensional data associated with hyperspectral data. This research aims to verify the feasibility of developing an improved and efficient reduced spectrum model for quantitative tracking of foodborne pathogens. Rapid monitoring of bacteria foodborne pathogen (Escherichia coli O157 and Staphylococcus aureus) contamination of fresh longissimus pork muscles was implemented by employing visible near-infrared (Vis-NIR) hyperspectral imaging spectra and partial least squares regression algorithm (PLSR). Six (6) wavelength variables selection algorithms were applied to the full spectral information to determine the wavelength variables of the collected HSI spectra that provides essential and relevant information about the concentration of bacterial foodborne pathogen. Commonly used algorithms based on model population analysis (MPA) (2), Intelligent Optimization Algorithms (2), and Hybrid variable selection methods (HVSM) (2) were utilised to select characteristic wavelengths. Compared to other strategies, variable combination population analysis with genetic algorithm (VCPA – GA), and variable combination population analysis with iteratively retaining informative variables (VCPA – IRIV) considerably bettered the predictive efficiency of the model, suggesting that the updated VCPA step is a very efficient way to remove unrelated variables. Vcpa-based hybrid strategy is an effective and reliable approach for variable selection of visible near-infrared (vis-NIR) spectra. Visualising bacterial foodborne pathogen distribution map on the pork samples provided a more insightful and detailed evaluation of the bacterial contamination at each pixel, offering a novel approach for evaluating bacterial contamination of agricultural products.
AbstractList [Display omitted] •Bacterial foodborne pathogens in pork are quantified using VIS-NIR hyperspectral imaging.•A hybrid variable selection strategy based VCPA-IRIV and GA is applied for wavelength selection.•VCPA-GA significantly improved model's prediction performance as compared to other methods.•The best model is selected to visualize bacterial loads on inoculated pork.•The new hybrid models reduce high-dimensional data associated with hyperspectral data. This research aims to verify the feasibility of developing an improved and efficient reduced spectrum model for quantitative tracking of foodborne pathogens. Rapid monitoring of bacteria foodborne pathogen (Escherichia coli O157 and Staphylococcus aureus) contamination of fresh longissimus pork muscles was implemented by employing visible near-infrared (Vis-NIR) hyperspectral imaging spectra and partial least squares regression algorithm (PLSR). Six (6) wavelength variables selection algorithms were applied to the full spectral information to determine the wavelength variables of the collected HSI spectra that provides essential and relevant information about the concentration of bacterial foodborne pathogen. Commonly used algorithms based on model population analysis (MPA) (2), Intelligent Optimization Algorithms (2), and Hybrid variable selection methods (HVSM) (2) were utilised to select characteristic wavelengths. Compared to other strategies, variable combination population analysis with genetic algorithm (VCPA – GA), and variable combination population analysis with iteratively retaining informative variables (VCPA – IRIV) considerably bettered the predictive efficiency of the model, suggesting that the updated VCPA step is a very efficient way to remove unrelated variables. Vcpa-based hybrid strategy is an effective and reliable approach for variable selection of visible near-infrared (vis-NIR) spectra. Visualising bacterial foodborne pathogen distribution map on the pork samples provided a more insightful and detailed evaluation of the bacterial contamination at each pixel, offering a novel approach for evaluating bacterial contamination of agricultural products.
ArticleNumber 103327
Author Tu, Hongyang
Huang, Xingyi
Yi, Ren
Yu, Shanshan
Bonah, Ernest
Aheto, Joshua Harrington
Author_xml – sequence: 1
  givenname: Ernest
  surname: Bonah
  fullname: Bonah, Ernest
  organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
– sequence: 2
  givenname: Xingyi
  surname: Huang
  fullname: Huang, Xingyi
  email: h_xingyi@163.com
  organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
– sequence: 3
  givenname: Joshua Harrington
  surname: Aheto
  fullname: Aheto, Joshua Harrington
  organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
– sequence: 4
  givenname: Ren
  surname: Yi
  fullname: Yi, Ren
  organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
– sequence: 5
  givenname: Shanshan
  surname: Yu
  fullname: Yu, Shanshan
  organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
– sequence: 6
  givenname: Hongyang
  surname: Tu
  fullname: Tu, Hongyang
  organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
BookMark eNqFUctqHDEQFMGB2I5_IegHZiPN0wM5JCx5GEwCxj6LHqm1q41GmkjaBefP8nfp9TqXXHyRupuuKqrrgp2FGJCxd1KspJD9-93KBZsgoVnVoj4Om6YeXrFzeT2MlaiH7ozqphNV247dG3aR804QsBX9OfuzjvMCyeUYeLT8QCVMHnlGj7o4moLfxOTKds6cuoPL1febO759XDDlhXYSeO5m2Liw4c8DbmPiv_YQiitQ3AH5HIMrREM7EMyRZQ_e_YYnBdKdQBckaU_QaKaYAvIFyjZuMGTuArcJ85YvMf3k8z5rj_kte23BZ7x6_i_Zw5fP9-tv1e2PrzfrT7eVbmRdql60ojW96QDaURhtLA7a1nbEoRGyaRstB7jWncChm_qpnlBqAyCl0fSOU3PJPpx4dYo5J7RKP7mKgZw6r6RQxxjUTv2LQR1jUKcYCN7_B18SnSs9vgz8eAIimTs4TCprh0GjcYmurEx0L1H8BchQsC4
CitedBy_id crossref_primary_10_3390_s22072800
crossref_primary_10_1016_j_meatsci_2022_108767
crossref_primary_10_1016_j_ultsonch_2020_105344
crossref_primary_10_1016_j_fbio_2024_104346
crossref_primary_10_1016_j_heliyon_2023_e15482
crossref_primary_10_1016_j_saa_2023_123740
crossref_primary_10_1016_j_jfca_2022_105069
crossref_primary_10_1016_j_foodcont_2023_109940
crossref_primary_10_3390_s20236982
crossref_primary_10_1016_j_microc_2020_105085
crossref_primary_10_1039_D1AY00757B
crossref_primary_10_1007_s12161_022_02275_6
crossref_primary_10_3390_en13164236
crossref_primary_10_1080_10408398_2022_2121805
crossref_primary_10_1109_TIM_2021_3098793
crossref_primary_10_3389_fnut_2024_1325934
crossref_primary_10_1016_j_crfs_2023_100574
crossref_primary_10_1016_j_foodres_2024_115184
crossref_primary_10_1016_j_saa_2022_121838
crossref_primary_10_1016_j_infrared_2022_104077
crossref_primary_10_1016_j_infrared_2022_104231
crossref_primary_10_26599_FSHW_2024_9250104
crossref_primary_10_1016_j_compag_2022_107084
crossref_primary_10_1016_j_infrared_2022_104414
crossref_primary_10_1111_jfpp_16081
crossref_primary_10_3390_foods11162386
crossref_primary_10_1016_j_infrared_2023_105026
crossref_primary_10_1016_j_infrared_2020_103613
crossref_primary_10_1016_j_saa_2021_120733
crossref_primary_10_3390_s22249764
crossref_primary_10_1007_s11694_022_01552_6
crossref_primary_10_1111_1750_3841_17134
crossref_primary_10_1007_s11694_023_02044_x
crossref_primary_10_1080_07388551_2024_2409124
crossref_primary_10_1038_s41538_025_00394_y
Cites_doi 10.1016/j.talanta.2016.02.059
10.1111/jfpp.14197
10.1016/j.aca.2011.08.026
10.1117/1.JBO.20.3.030901
10.1016/j.aca.2013.11.032
10.1016/j.trac.2019.01.018
10.1186/s12951-017-0260-y
10.1016/j.foodchem.2018.09.058
10.3390/app9051027
10.1089/fpd.2018.2617
10.1021/acsabm.9b00172
10.1007/s11947-014-1457-9
10.1016/j.jfoodeng.2013.11.006
10.1021/ac501254b
10.1007/s00216-019-02345-5
10.1016/j.compag.2019.03.004
10.1089/fpd.2017.2309
10.1016/j.chemolab.2017.08.012
10.1016/j.saa.2019.117376
10.1016/j.infrared.2015.11.004
10.1111/jfpe.13225
10.1016/j.aca.2019.01.022
10.1016/j.infrared.2020.103220
10.1007/s12161-019-01537-0
10.1016/S0003-2670(01)85039-X
10.1016/j.chemolab.2015.08.018
10.1016/j.infrared.2019.103034
10.1255/nirn.1479
10.1016/j.biotechadv.2018.03.002
10.1016/j.aca.2009.11.045
10.1016/j.saa.2019.02.038
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.infrared.2020.103327
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-0275
ExternalDocumentID 10_1016_j_infrared_2020_103327
S1350449520300347
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
VH1
VOH
WUQ
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-60404d6d5aa490dcdfe7cf2f9e7301343c17a8c50e75b6b2be1cdaa11dcaa19b3
IEDL.DBID .~1
ISSN 1350-4495
IngestDate Wed Oct 29 21:20:59 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Fri Feb 23 02:48:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variable combination population analysis
Hybrid variable selection
Bacterial foodborne pathogens
Multivariate calibration
Variable selection
Hyperspectral imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-60404d6d5aa490dcdfe7cf2f9e7301343c17a8c50e75b6b2be1cdaa11dcaa19b3
ParticipantIDs crossref_citationtrail_10_1016_j_infrared_2020_103327
crossref_primary_10_1016_j_infrared_2020_103327
elsevier_sciencedirect_doi_10_1016_j_infrared_2020_103327
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Infrared physics & technology
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Johnstone, Titterington (b0090) 2009; 367
Wilson, Nadeau, Jaworski, Tromberg, Durkin (b0150) 2015; 20
Carlson, Misra, Mohanty (b0010) 2017; 15
Shi, Zhang, Wu, Guo, Huang, Hu, Holmes, Zou (b0030) 2019; 274
Aheto, Huang, Tian, Ren, Ernest, Alenyorege, Dai, Hongyang, Xiaorui, Wang (b0080) 2020; 412
Jiang, Xu, Chen (b0115) 2019; 214
Jiang, Xu, Ding, Chen (b0140) 2019
Agyekum, Kutsanedzie, Mintah, Annavaram, Zareef, Hassan, Arslan, Chen (b0145) 2019; 12
Bonah, Huang, Aheto, Osae (b0025) 2019
Edwards-Gayle, Castelletto, Hamley, Barrett, Greco, Hermida-Merino, Rambo, Seitsonen, Ruokolainen (b0155) 2019; 2
Mocan, Matea, Pop, Mosteanu, Buzoianu, Puia, Iancu, Mocan (b0005) 2017; 15
Hamid, Jarmusch, Pirro, Pincus, Clay, Gervasi, Cooks (b0160) 2014; 86
Xiaobo, Jiyong, Limin, Jiewen, Hanpin, Zhenwei, Yanxiao, Holmes (b0065) 2011; 706
Xu, Zhang, Zhang, Wu, Li, Xia, Fan (b0170) 2019; 102
Deng, Yun, Liang (b0110) 2015; 149
Aheto, Huang, Tian, Lv, Dai, Bonah, Chang (b0075) 2019
Aheto, Huang, Tian, Ren, Bonah, Alenyorege, Lv, Dai (b0070) 2019
Yun, Wang, Tan, Liang, Li, Cao, Lu, Xu (b0095) 2014; 807
Wu, He, Nie, Cao, Bao (b0130) 2010; 659
Feng, Sun (b0135) 2014; 25
Baek, Kim, Cho, Mo, Barnaby, McClung, Oh (b0045) 2019; 9
Lohumi, Lee, Lee, Kim, Lee, Cho (b0165) 2016; 74
Bonah, Huang, Yi, Aheto, Yu (b0050) 2020; 105
Aheto, Huang, Xiaoyu, Bonah, Ren, Alenyorege, Chunxia (b0060) 2019; 43
Yu, Yun, Zhang, Chen, Liu, Zhong, Chen, Chen (b0175) 2020; 224
Yun, Li, Deng, Cao (b0085) 2019; 113
Sun, Zhou, Hu, Wu, Zhang, Wang (b0100) 2019; 160
Tao, Peng (b0035) 2014; 126
Yu, Huang, Zhang, Yang (b0055) 2019; 9
Yang, Xie, Yan, Li, Xu, Liu, Wen, Li (b0105) 2017; 170
Foca, Ferrari, Ulrici, Sciutto, Prati, Morandi, Brasca, Lavermicocca, Lanteri, Oliveri (b0020) 2016; 153
Cheng, Sun (b0040) 2015; 8
Yun, Bin, Liu, Xu, Yan, Cao, Xu (b0120) 2019; 1058
Gerlach, Kowalski, Wold (b0125) 1979; 112
Kant, Shahbazi, Dave, Ngo, Chidambara, Than, Bang, Wolff (b0015) 2018; 36
Tao (10.1016/j.infrared.2020.103327_b0035) 2014; 126
Yun (10.1016/j.infrared.2020.103327_b0120) 2019; 1058
Aheto (10.1016/j.infrared.2020.103327_b0070) 2019
Jiang (10.1016/j.infrared.2020.103327_b0140) 2019
Shi (10.1016/j.infrared.2020.103327_b0030) 2019; 274
Wilson (10.1016/j.infrared.2020.103327_b0150) 2015; 20
Yun (10.1016/j.infrared.2020.103327_b0085) 2019; 113
Bonah (10.1016/j.infrared.2020.103327_b0025) 2019
Yu (10.1016/j.infrared.2020.103327_b0055) 2019; 9
Aheto (10.1016/j.infrared.2020.103327_b0060) 2019; 43
Hamid (10.1016/j.infrared.2020.103327_b0160) 2014; 86
Aheto (10.1016/j.infrared.2020.103327_b0080) 2020; 412
Aheto (10.1016/j.infrared.2020.103327_b0075) 2019
Yang (10.1016/j.infrared.2020.103327_b0105) 2017; 170
Kant (10.1016/j.infrared.2020.103327_b0015) 2018; 36
Cheng (10.1016/j.infrared.2020.103327_b0040) 2015; 8
Johnstone (10.1016/j.infrared.2020.103327_b0090) 2009; 367
Baek (10.1016/j.infrared.2020.103327_b0045) 2019; 9
Deng (10.1016/j.infrared.2020.103327_b0110) 2015; 149
Xu (10.1016/j.infrared.2020.103327_b0170) 2019; 102
Gerlach (10.1016/j.infrared.2020.103327_b0125) 1979; 112
Agyekum (10.1016/j.infrared.2020.103327_b0145) 2019; 12
Yu (10.1016/j.infrared.2020.103327_b0175) 2020; 224
Yun (10.1016/j.infrared.2020.103327_b0095) 2014; 807
Feng (10.1016/j.infrared.2020.103327_b0135) 2014; 25
Edwards-Gayle (10.1016/j.infrared.2020.103327_b0155) 2019; 2
Lohumi (10.1016/j.infrared.2020.103327_b0165) 2016; 74
Sun (10.1016/j.infrared.2020.103327_b0100) 2019; 160
Mocan (10.1016/j.infrared.2020.103327_b0005) 2017; 15
Bonah (10.1016/j.infrared.2020.103327_b0050) 2020; 105
Foca (10.1016/j.infrared.2020.103327_b0020) 2016; 153
Xiaobo (10.1016/j.infrared.2020.103327_b0065) 2011; 706
Jiang (10.1016/j.infrared.2020.103327_b0115) 2019; 214
Carlson (10.1016/j.infrared.2020.103327_b0010) 2017; 15
Wu (10.1016/j.infrared.2020.103327_b0130) 2010; 659
References_xml – volume: 113
  start-page: 102
  year: 2019
  end-page: 115
  ident: b0085
  article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra
  publication-title: TrAC, Trends Anal. Chem.
– volume: 214
  start-page: 366
  year: 2019
  end-page: 371
  ident: b0115
  article-title: Comparison of algorithms for wavelength variables selection from near-infrared (NIR) spectra for quantitative monitoring of yeast (Saccharomyces cerevisiae) cultivations
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
– volume: 659
  start-page: 229
  year: 2010
  end-page: 237
  ident: b0130
  article-title: Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice
  publication-title: Anal. Chim. Acta
– volume: 20
  year: 2015
  ident: b0150
  article-title: Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization
  publication-title: J. Biomed. Opt.
– volume: 43
  year: 2019
  ident: b0060
  article-title: Investigation into crystal size effect on sodium chloride uptake and water activity of pork meat using hyperspectral imaging
  publication-title: J. Food Process. Preserv.
– volume: 412
  start-page: 1169
  year: 2020
  end-page: 1179
  ident: b0080
  article-title: Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat
  publication-title: Anal. Bioanal. Chem.
– volume: 367
  start-page: 4237
  year: 2009
  end-page: 4253
  ident: b0090
  article-title: Statistical challenges of high-dimensional data
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 15
  start-page: 25
  year: 2017
  ident: b0005
  article-title: Development of nanoparticle-based optical sensors for pathogenic bacterial detection
  publication-title: J. Nanobiotechnol.
– volume: 86
  start-page: 7500
  year: 2014
  end-page: 7507
  ident: b0160
  article-title: Rapid discrimination of bacteria by paper spray mass spectrometry
  publication-title: Anal. Chem.
– volume: 224
  year: 2020
  ident: b0175
  article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
– volume: 9
  year: 2019
  ident: b0045
  article-title: Selection of optimal hyperspectral wavebands for detection of discolored, diseased rice seeds
  publication-title: Appl. Sci.
– volume: 170
  start-page: 102
  year: 2017
  end-page: 108
  ident: b0105
  article-title: A reliable multiclass classification model for identifying the subtypes of parotid neoplasms constructed with variable combination population analysis and partial least squares regression based on Raman spectra
  publication-title: Chemomet. Intell. Lab. Syst.
– volume: 25
  start-page: 4
  year: 2014
  end-page: 6
  ident: b0135
  article-title: “Seeing the Bacteria”: hyperspectral imaging for bacterial prediction and visualisation on chicken meat
  publication-title: NIR News
– year: 2019
  ident: b0025
  article-title: Application of hyperspectral imaging as a nondestructive technique for foodborne pathogen detection and characterization
  publication-title: Foodborne Pathogens Disease
– volume: 105
  year: 2020
  ident: b0050
  article-title: Vis-NIR hyperspectral imaging for the classification of bacterial foodborne pathogens based on pixel-wise analysis and a novel CARS-PSO-SVM model
  publication-title: Infrared Phys. Technol.
– volume: 8
  start-page: 951
  year: 2015
  end-page: 959
  ident: b0040
  article-title: Rapid quantification analysis and visualization of Escherichia coli loads in grass carp fish flesh by hyperspectral imaging method
  publication-title: Food Bioprocess Technol.
– volume: 2
  start-page: 2208
  year: 2019
  end-page: 2218
  ident: b0155
  article-title: Self-assembly, antimicrobial activity, and membrane interactions of arginine-capped peptide bola-amphiphiles
  publication-title: ACS Appl. Bio Mater.
– year: 2019
  ident: b0140
  article-title: Quantitative analysis of yeast fermentation process using Raman spectroscopy: comparison of CARS and VCPA for variable selection
  publication-title: Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
– volume: 74
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0165
  article-title: Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef
  publication-title: Infrared Phys. Technol.
– volume: 102
  year: 2019
  ident: b0170
  article-title: Rapid prediction and visualization of moisture content in single cucumber (Cucumis sativus L.) seed using hyperspectral imaging technology
  publication-title: Infrared Phys. Technol.
– volume: 15
  start-page: 16
  year: 2017
  end-page: 25
  ident: b0010
  article-title: Developments in micro- and nanotechnology for foodborne pathogen detection
  publication-title: Foodborne Pathogens Disease
– volume: 149
  start-page: 166
  year: 2015
  end-page: 176
  ident: b0110
  article-title: Model population analysis in chemometrics
  publication-title: Chemomet. Intell. Lab. Syst.
– volume: 36
  start-page: 1003
  year: 2018
  end-page: 1024
  ident: b0015
  article-title: Microfluidic devices for sample preparation and rapid detection of foodborne pathogens
  publication-title: Biotechnol. Adv.
– year: 2019
  ident: b0070
  article-title: Combination of spectra and image information of hyperspectral imaging data for fast prediction of lipid oxidation attributes in pork meat
  publication-title: J. Food Process Eng.
– volume: 274
  start-page: 925
  year: 2019
  end-page: 932
  ident: b0030
  article-title: Noise-free microbial colony counting method based on hyperspectral features of agar plates
  publication-title: Food Chem.
– volume: 1058
  start-page: 58
  year: 2019
  end-page: 69
  ident: b0120
  article-title: A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration
  publication-title: Anal. Chim. Acta
– volume: 160
  start-page: 153
  year: 2019
  end-page: 159
  ident: b0100
  article-title: Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging
  publication-title: Comput. Electron. Agric.
– volume: 126
  start-page: 98
  year: 2014
  end-page: 106
  ident: b0035
  article-title: A method for nondestructive prediction of pork meat quality and safety attributes by hyperspectral imaging technique
  publication-title: J. Food Eng.
– year: 2019
  ident: b0075
  article-title: Evaluation of lipid oxidation and volatile compounds of traditional dry-cured pork belly: the hyperspectral imaging and multi-gas-sensory approaches
  publication-title: J. Food Process Eng.
– volume: 12
  start-page: 2035
  year: 2019
  end-page: 2044
  ident: b0145
  article-title: Rapid and nondestructive quantification of trimethylamine by FT-NIR coupled with chemometric techniques
  publication-title: Food Anal. Methods
– volume: 9
  year: 2019
  ident: b0055
  article-title: Optimal wavelength selection for hyperspectral imaging evaluation on vegetable soybean moisture content during drying
  publication-title: Appl. Sci.
– volume: 706
  start-page: 105
  year: 2011
  end-page: 112
  ident: b0065
  article-title: In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging
  publication-title: Anal. Chim. Acta
– volume: 807
  start-page: 36
  year: 2014
  end-page: 43
  ident: b0095
  article-title: A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration
  publication-title: Anal. Chim. Acta
– volume: 112
  start-page: 417
  year: 1979
  end-page: 421
  ident: b0125
  article-title: Partial least-squares path modelling with latent variables
  publication-title: Anal. Chim. Acta
– volume: 153
  start-page: 111
  year: 2016
  end-page: 119
  ident: b0020
  article-title: The potential of spectral and hyperspectral-imaging techniques for bacterial detection in food: a case study on lactic acid bacteria
  publication-title: Talanta
– volume: 153
  start-page: 111
  year: 2016
  ident: 10.1016/j.infrared.2020.103327_b0020
  article-title: The potential of spectral and hyperspectral-imaging techniques for bacterial detection in food: a case study on lactic acid bacteria
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.02.059
– volume: 43
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0060
  article-title: Investigation into crystal size effect on sodium chloride uptake and water activity of pork meat using hyperspectral imaging
  publication-title: J. Food Process. Preserv.
  doi: 10.1111/jfpp.14197
– volume: 706
  start-page: 105
  year: 2011
  ident: 10.1016/j.infrared.2020.103327_b0065
  article-title: In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.08.026
– volume: 20
  year: 2015
  ident: 10.1016/j.infrared.2020.103327_b0150
  article-title: Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.20.3.030901
– volume: 807
  start-page: 36
  year: 2014
  ident: 10.1016/j.infrared.2020.103327_b0095
  article-title: A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2013.11.032
– volume: 113
  start-page: 102
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0085
  article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.01.018
– volume: 15
  start-page: 25
  year: 2017
  ident: 10.1016/j.infrared.2020.103327_b0005
  article-title: Development of nanoparticle-based optical sensors for pathogenic bacterial detection
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-017-0260-y
– volume: 274
  start-page: 925
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0030
  article-title: Noise-free microbial colony counting method based on hyperspectral features of agar plates
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2018.09.058
– volume: 9
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0045
  article-title: Selection of optimal hyperspectral wavebands for detection of discolored, diseased rice seeds
  publication-title: Appl. Sci.
  doi: 10.3390/app9051027
– year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0025
  article-title: Application of hyperspectral imaging as a nondestructive technique for foodborne pathogen detection and characterization
  publication-title: Foodborne Pathogens Disease
  doi: 10.1089/fpd.2018.2617
– volume: 2
  start-page: 2208
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0155
  article-title: Self-assembly, antimicrobial activity, and membrane interactions of arginine-capped peptide bola-amphiphiles
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.9b00172
– volume: 8
  start-page: 951
  year: 2015
  ident: 10.1016/j.infrared.2020.103327_b0040
  article-title: Rapid quantification analysis and visualization of Escherichia coli loads in grass carp fish flesh by hyperspectral imaging method
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-014-1457-9
– volume: 126
  start-page: 98
  year: 2014
  ident: 10.1016/j.infrared.2020.103327_b0035
  article-title: A method for nondestructive prediction of pork meat quality and safety attributes by hyperspectral imaging technique
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2013.11.006
– volume: 9
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0055
  article-title: Optimal wavelength selection for hyperspectral imaging evaluation on vegetable soybean moisture content during drying
  publication-title: Appl. Sci.
– year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0075
  article-title: Evaluation of lipid oxidation and volatile compounds of traditional dry-cured pork belly: the hyperspectral imaging and multi-gas-sensory approaches
  publication-title: J. Food Process Eng.
– year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0140
  article-title: Quantitative analysis of yeast fermentation process using Raman spectroscopy: comparison of CARS and VCPA for variable selection
  publication-title: Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
– volume: 86
  start-page: 7500
  year: 2014
  ident: 10.1016/j.infrared.2020.103327_b0160
  article-title: Rapid discrimination of bacteria by paper spray mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac501254b
– volume: 412
  start-page: 1169
  year: 2020
  ident: 10.1016/j.infrared.2020.103327_b0080
  article-title: Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-019-02345-5
– volume: 160
  start-page: 153
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0100
  article-title: Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.03.004
– volume: 15
  start-page: 16
  year: 2017
  ident: 10.1016/j.infrared.2020.103327_b0010
  article-title: Developments in micro- and nanotechnology for foodborne pathogen detection
  publication-title: Foodborne Pathogens Disease
  doi: 10.1089/fpd.2017.2309
– volume: 170
  start-page: 102
  year: 2017
  ident: 10.1016/j.infrared.2020.103327_b0105
  article-title: A reliable multiclass classification model for identifying the subtypes of parotid neoplasms constructed with variable combination population analysis and partial least squares regression based on Raman spectra
  publication-title: Chemomet. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.08.012
– volume: 224
  year: 2020
  ident: 10.1016/j.infrared.2020.103327_b0175
  article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2019.117376
– volume: 367
  start-page: 4237
  year: 2009
  ident: 10.1016/j.infrared.2020.103327_b0090
  article-title: Statistical challenges of high-dimensional data
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 74
  start-page: 1
  year: 2016
  ident: 10.1016/j.infrared.2020.103327_b0165
  article-title: Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2015.11.004
– year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0070
  article-title: Combination of spectra and image information of hyperspectral imaging data for fast prediction of lipid oxidation attributes in pork meat
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.13225
– volume: 1058
  start-page: 58
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0120
  article-title: A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.01.022
– volume: 105
  year: 2020
  ident: 10.1016/j.infrared.2020.103327_b0050
  article-title: Vis-NIR hyperspectral imaging for the classification of bacterial foodborne pathogens based on pixel-wise analysis and a novel CARS-PSO-SVM model
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103220
– volume: 12
  start-page: 2035
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0145
  article-title: Rapid and nondestructive quantification of trimethylamine by FT-NIR coupled with chemometric techniques
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-019-01537-0
– volume: 112
  start-page: 417
  year: 1979
  ident: 10.1016/j.infrared.2020.103327_b0125
  article-title: Partial least-squares path modelling with latent variables
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)85039-X
– volume: 149
  start-page: 166
  year: 2015
  ident: 10.1016/j.infrared.2020.103327_b0110
  article-title: Model population analysis in chemometrics
  publication-title: Chemomet. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.08.018
– volume: 102
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0170
  article-title: Rapid prediction and visualization of moisture content in single cucumber (Cucumis sativus L.) seed using hyperspectral imaging technology
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.103034
– volume: 25
  start-page: 4
  year: 2014
  ident: 10.1016/j.infrared.2020.103327_b0135
  article-title: “Seeing the Bacteria”: hyperspectral imaging for bacterial prediction and visualisation on chicken meat
  publication-title: NIR News
  doi: 10.1255/nirn.1479
– volume: 36
  start-page: 1003
  year: 2018
  ident: 10.1016/j.infrared.2020.103327_b0015
  article-title: Microfluidic devices for sample preparation and rapid detection of foodborne pathogens
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.03.002
– volume: 659
  start-page: 229
  year: 2010
  ident: 10.1016/j.infrared.2020.103327_b0130
  article-title: Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.11.045
– volume: 214
  start-page: 366
  year: 2019
  ident: 10.1016/j.infrared.2020.103327_b0115
  article-title: Comparison of algorithms for wavelength variables selection from near-infrared (NIR) spectra for quantitative monitoring of yeast (Saccharomyces cerevisiae) cultivations
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2019.02.038
SSID ssj0016406
Score 2.4286969
Snippet [Display omitted] •Bacterial foodborne pathogens in pork are quantified using VIS-NIR hyperspectral imaging.•A hybrid variable selection strategy based...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103327
SubjectTerms Bacterial foodborne pathogens
Hybrid variable selection
Hyperspectral imaging
Multivariate calibration
Variable combination population analysis
Variable selection
Title Comparison of variable selection algorithms on vis-NIR hyperspectral imaging spectra for quantitative monitoring and visualization of bacterial foodborne pathogens in fresh pork muscles
URI https://dx.doi.org/10.1016/j.infrared.2020.103327
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0275
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016406
  issn: 1350-4495
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0275
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016406
  issn: 1350-4495
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0275
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016406
  issn: 1350-4495
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0275
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016406
  issn: 1350-4495
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0275
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016406
  issn: 1350-4495
  databaseCode: AKRWK
  dateStart: 19940201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiQuiKdogWoOXM3Gj6w3x2pFtQWxB6BSb1H8YlO6Sdns9sj_4t8x4ySrIiH1wCVKLNuJPOPxTDTffIy9k9JUMZeRh-g91057PgtScGdC4ayYmZiKPX9eThcX-uNlfnnA5iMWhtIqB9vf2_RkrYeWybCak5u6nnwVKs80-vcS9TRTmhDlWhtiMXj_a5_mgdFA4tekzpx630EJX5Fvu6E8b4wTZcKfK2KX-dcBdefQOXvCHg_eIpz2H_SUHYTmGXuYsjZd95z9nu9ZBKGNcIu3hISCLpHb4IpDdf29xfB_te4An27rji_Pv8AKg88eY7nB2et1YiqCoQHQjYWfu6pJ8DM0hrBO-55-AELVeJqFkJg9fpPea_uKzzhVbFuPStUEIKbjFpWzg7qBiDH9CtDT_wHrXUd5eC_YxdmHb_MFH7gYuFNCbvkUN7v2U59XlS4y73wMxkUZi0AmQmnlhKlmLs-Cye3UShuE81UlhHd4Lax6yQ6btgmvGOhCRWFCnkWL7gyVYCtCYTxGoqg4NlNHLB8FULqhUDnxZVyXY0baVTkKriTBlb3gjthkP-6mL9Vx74hilG_5l9KVeJ7cM_b4P8a-Zo_oqc84e8MOt5tdeIu-zdaeJOU9YQ9Ozz8tln8ASfH_5w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEaIXxFOUR_GBq9nEj_XmiFZU29LuAVqpt8hPNqWbtJvdHvlf_DtmnGRVJKQeuESJYzuRZzKeieabj5CPnGsTFY8sRO-ZdNKzSeA5czoUzuYTHVOx59P5eHYujy_UxQ6ZDlgYTKvsbX9n05O17ltG_WqOrqtq9D0XKpPg33PQ00xI_YA8lIprjMA-_drmeUA4kAg2sTfD7ndgwpfo3K4w0RsCRZ4A6ALpZf61Q93ZdQ6fkie9u0g_d2_0jOyE-jl5lNI2XfuC_J5uaQRpE-ktnCIUiraJ3QaWnJqrHw3E_4tlS-HqtmrZ_OgbXUD02YEsVzB7tUxURbRvoODH0puNqRP-DKwhXaYPH_8AUlN7nAWhmB2AE59ru5LPMFVsGg9aVQeKVMcNaGdLq5pGCOoXFFz9n3S5aTER7yU5P_xyNp2xnoyBOZHzNRvD1y792CtjZJF552PQLvJYBLQRQgqXazNxKgta2bHlNuTOG5Pn3sGxsOIV2a2bOrwmVBYi5jqoLFrwZ7AGWxEK7SEUBc2xmdgnahBA6fpK5UiYcVUOKWmX5SC4EgVXdoLbJ6PtuOuuVse9I4pBvuVfWlfChnLP2Df_MfYDeTw7Oz0pT47mX9-SPbzTpZ-9I7vr1Sa8B0dnbQ-SIv8BJFMBiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+variable+selection+algorithms+on+vis-NIR+hyperspectral+imaging+spectra+for+quantitative+monitoring+and+visualization+of+bacterial+foodborne+pathogens+in+fresh+pork+muscles&rft.jtitle=Infrared+physics+%26+technology&rft.au=Bonah%2C+Ernest&rft.au=Huang%2C+Xingyi&rft.au=Aheto%2C+Joshua+Harrington&rft.au=Yi%2C+Ren&rft.date=2020-06-01&rft.issn=1350-4495&rft.volume=107&rft.spage=103327&rft_id=info:doi/10.1016%2Fj.infrared.2020.103327&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infrared_2020_103327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon