Comparison of variable selection algorithms on vis-NIR hyperspectral imaging spectra for quantitative monitoring and visualization of bacterial foodborne pathogens in fresh pork muscles
[Display omitted] •Bacterial foodborne pathogens in pork are quantified using VIS-NIR hyperspectral imaging.•A hybrid variable selection strategy based VCPA-IRIV and GA is applied for wavelength selection.•VCPA-GA significantly improved model's prediction performance as compared to other method...
Saved in:
| Published in | Infrared physics & technology Vol. 107; p. 103327 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.06.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1350-4495 1879-0275 |
| DOI | 10.1016/j.infrared.2020.103327 |
Cover
| Abstract | [Display omitted]
•Bacterial foodborne pathogens in pork are quantified using VIS-NIR hyperspectral imaging.•A hybrid variable selection strategy based VCPA-IRIV and GA is applied for wavelength selection.•VCPA-GA significantly improved model's prediction performance as compared to other methods.•The best model is selected to visualize bacterial loads on inoculated pork.•The new hybrid models reduce high-dimensional data associated with hyperspectral data.
This research aims to verify the feasibility of developing an improved and efficient reduced spectrum model for quantitative tracking of foodborne pathogens. Rapid monitoring of bacteria foodborne pathogen (Escherichia coli O157 and Staphylococcus aureus) contamination of fresh longissimus pork muscles was implemented by employing visible near-infrared (Vis-NIR) hyperspectral imaging spectra and partial least squares regression algorithm (PLSR). Six (6) wavelength variables selection algorithms were applied to the full spectral information to determine the wavelength variables of the collected HSI spectra that provides essential and relevant information about the concentration of bacterial foodborne pathogen. Commonly used algorithms based on model population analysis (MPA) (2), Intelligent Optimization Algorithms (2), and Hybrid variable selection methods (HVSM) (2) were utilised to select characteristic wavelengths. Compared to other strategies, variable combination population analysis with genetic algorithm (VCPA – GA), and variable combination population analysis with iteratively retaining informative variables (VCPA – IRIV) considerably bettered the predictive efficiency of the model, suggesting that the updated VCPA step is a very efficient way to remove unrelated variables. Vcpa-based hybrid strategy is an effective and reliable approach for variable selection of visible near-infrared (vis-NIR) spectra. Visualising bacterial foodborne pathogen distribution map on the pork samples provided a more insightful and detailed evaluation of the bacterial contamination at each pixel, offering a novel approach for evaluating bacterial contamination of agricultural products. |
|---|---|
| AbstractList | [Display omitted]
•Bacterial foodborne pathogens in pork are quantified using VIS-NIR hyperspectral imaging.•A hybrid variable selection strategy based VCPA-IRIV and GA is applied for wavelength selection.•VCPA-GA significantly improved model's prediction performance as compared to other methods.•The best model is selected to visualize bacterial loads on inoculated pork.•The new hybrid models reduce high-dimensional data associated with hyperspectral data.
This research aims to verify the feasibility of developing an improved and efficient reduced spectrum model for quantitative tracking of foodborne pathogens. Rapid monitoring of bacteria foodborne pathogen (Escherichia coli O157 and Staphylococcus aureus) contamination of fresh longissimus pork muscles was implemented by employing visible near-infrared (Vis-NIR) hyperspectral imaging spectra and partial least squares regression algorithm (PLSR). Six (6) wavelength variables selection algorithms were applied to the full spectral information to determine the wavelength variables of the collected HSI spectra that provides essential and relevant information about the concentration of bacterial foodborne pathogen. Commonly used algorithms based on model population analysis (MPA) (2), Intelligent Optimization Algorithms (2), and Hybrid variable selection methods (HVSM) (2) were utilised to select characteristic wavelengths. Compared to other strategies, variable combination population analysis with genetic algorithm (VCPA – GA), and variable combination population analysis with iteratively retaining informative variables (VCPA – IRIV) considerably bettered the predictive efficiency of the model, suggesting that the updated VCPA step is a very efficient way to remove unrelated variables. Vcpa-based hybrid strategy is an effective and reliable approach for variable selection of visible near-infrared (vis-NIR) spectra. Visualising bacterial foodborne pathogen distribution map on the pork samples provided a more insightful and detailed evaluation of the bacterial contamination at each pixel, offering a novel approach for evaluating bacterial contamination of agricultural products. |
| ArticleNumber | 103327 |
| Author | Tu, Hongyang Huang, Xingyi Yi, Ren Yu, Shanshan Bonah, Ernest Aheto, Joshua Harrington |
| Author_xml | – sequence: 1 givenname: Ernest surname: Bonah fullname: Bonah, Ernest organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China – sequence: 2 givenname: Xingyi surname: Huang fullname: Huang, Xingyi email: h_xingyi@163.com organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China – sequence: 3 givenname: Joshua Harrington surname: Aheto fullname: Aheto, Joshua Harrington organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China – sequence: 4 givenname: Ren surname: Yi fullname: Yi, Ren organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China – sequence: 5 givenname: Shanshan surname: Yu fullname: Yu, Shanshan organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China – sequence: 6 givenname: Hongyang surname: Tu fullname: Tu, Hongyang organization: School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China |
| BookMark | eNqFUctqHDEQFMGB2I5_IegHZiPN0wM5JCx5GEwCxj6LHqm1q41GmkjaBefP8nfp9TqXXHyRupuuKqrrgp2FGJCxd1KspJD9-93KBZsgoVnVoj4Om6YeXrFzeT2MlaiH7ozqphNV247dG3aR804QsBX9OfuzjvMCyeUYeLT8QCVMHnlGj7o4moLfxOTKds6cuoPL1febO759XDDlhXYSeO5m2Liw4c8DbmPiv_YQiitQ3AH5HIMrREM7EMyRZQ_e_YYnBdKdQBckaU_QaKaYAvIFyjZuMGTuArcJ85YvMf3k8z5rj_kte23BZ7x6_i_Zw5fP9-tv1e2PrzfrT7eVbmRdql60ojW96QDaURhtLA7a1nbEoRGyaRstB7jWncChm_qpnlBqAyCl0fSOU3PJPpx4dYo5J7RKP7mKgZw6r6RQxxjUTv2LQR1jUKcYCN7_B18SnSs9vgz8eAIimTs4TCprh0GjcYmurEx0L1H8BchQsC4 |
| CitedBy_id | crossref_primary_10_3390_s22072800 crossref_primary_10_1016_j_meatsci_2022_108767 crossref_primary_10_1016_j_ultsonch_2020_105344 crossref_primary_10_1016_j_fbio_2024_104346 crossref_primary_10_1016_j_heliyon_2023_e15482 crossref_primary_10_1016_j_saa_2023_123740 crossref_primary_10_1016_j_jfca_2022_105069 crossref_primary_10_1016_j_foodcont_2023_109940 crossref_primary_10_3390_s20236982 crossref_primary_10_1016_j_microc_2020_105085 crossref_primary_10_1039_D1AY00757B crossref_primary_10_1007_s12161_022_02275_6 crossref_primary_10_3390_en13164236 crossref_primary_10_1080_10408398_2022_2121805 crossref_primary_10_1109_TIM_2021_3098793 crossref_primary_10_3389_fnut_2024_1325934 crossref_primary_10_1016_j_crfs_2023_100574 crossref_primary_10_1016_j_foodres_2024_115184 crossref_primary_10_1016_j_saa_2022_121838 crossref_primary_10_1016_j_infrared_2022_104077 crossref_primary_10_1016_j_infrared_2022_104231 crossref_primary_10_26599_FSHW_2024_9250104 crossref_primary_10_1016_j_compag_2022_107084 crossref_primary_10_1016_j_infrared_2022_104414 crossref_primary_10_1111_jfpp_16081 crossref_primary_10_3390_foods11162386 crossref_primary_10_1016_j_infrared_2023_105026 crossref_primary_10_1016_j_infrared_2020_103613 crossref_primary_10_1016_j_saa_2021_120733 crossref_primary_10_3390_s22249764 crossref_primary_10_1007_s11694_022_01552_6 crossref_primary_10_1111_1750_3841_17134 crossref_primary_10_1007_s11694_023_02044_x crossref_primary_10_1080_07388551_2024_2409124 crossref_primary_10_1038_s41538_025_00394_y |
| Cites_doi | 10.1016/j.talanta.2016.02.059 10.1111/jfpp.14197 10.1016/j.aca.2011.08.026 10.1117/1.JBO.20.3.030901 10.1016/j.aca.2013.11.032 10.1016/j.trac.2019.01.018 10.1186/s12951-017-0260-y 10.1016/j.foodchem.2018.09.058 10.3390/app9051027 10.1089/fpd.2018.2617 10.1021/acsabm.9b00172 10.1007/s11947-014-1457-9 10.1016/j.jfoodeng.2013.11.006 10.1021/ac501254b 10.1007/s00216-019-02345-5 10.1016/j.compag.2019.03.004 10.1089/fpd.2017.2309 10.1016/j.chemolab.2017.08.012 10.1016/j.saa.2019.117376 10.1016/j.infrared.2015.11.004 10.1111/jfpe.13225 10.1016/j.aca.2019.01.022 10.1016/j.infrared.2020.103220 10.1007/s12161-019-01537-0 10.1016/S0003-2670(01)85039-X 10.1016/j.chemolab.2015.08.018 10.1016/j.infrared.2019.103034 10.1255/nirn.1479 10.1016/j.biotechadv.2018.03.002 10.1016/j.aca.2009.11.045 10.1016/j.saa.2019.02.038 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.infrared.2020.103327 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-0275 |
| ExternalDocumentID | 10_1016_j_infrared_2020_103327 S1350449520300347 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K VH1 VOH WUQ ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-60404d6d5aa490dcdfe7cf2f9e7301343c17a8c50e75b6b2be1cdaa11dcaa19b3 |
| IEDL.DBID | .~1 |
| ISSN | 1350-4495 |
| IngestDate | Wed Oct 29 21:20:59 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Fri Feb 23 02:48:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variable combination population analysis Hybrid variable selection Bacterial foodborne pathogens Multivariate calibration Variable selection Hyperspectral imaging |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-60404d6d5aa490dcdfe7cf2f9e7301343c17a8c50e75b6b2be1cdaa11dcaa19b3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_infrared_2020_103327 crossref_primary_10_1016_j_infrared_2020_103327 elsevier_sciencedirect_doi_10_1016_j_infrared_2020_103327 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Infrared physics & technology |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Johnstone, Titterington (b0090) 2009; 367 Wilson, Nadeau, Jaworski, Tromberg, Durkin (b0150) 2015; 20 Carlson, Misra, Mohanty (b0010) 2017; 15 Shi, Zhang, Wu, Guo, Huang, Hu, Holmes, Zou (b0030) 2019; 274 Aheto, Huang, Tian, Ren, Ernest, Alenyorege, Dai, Hongyang, Xiaorui, Wang (b0080) 2020; 412 Jiang, Xu, Chen (b0115) 2019; 214 Jiang, Xu, Ding, Chen (b0140) 2019 Agyekum, Kutsanedzie, Mintah, Annavaram, Zareef, Hassan, Arslan, Chen (b0145) 2019; 12 Bonah, Huang, Aheto, Osae (b0025) 2019 Edwards-Gayle, Castelletto, Hamley, Barrett, Greco, Hermida-Merino, Rambo, Seitsonen, Ruokolainen (b0155) 2019; 2 Mocan, Matea, Pop, Mosteanu, Buzoianu, Puia, Iancu, Mocan (b0005) 2017; 15 Hamid, Jarmusch, Pirro, Pincus, Clay, Gervasi, Cooks (b0160) 2014; 86 Xiaobo, Jiyong, Limin, Jiewen, Hanpin, Zhenwei, Yanxiao, Holmes (b0065) 2011; 706 Xu, Zhang, Zhang, Wu, Li, Xia, Fan (b0170) 2019; 102 Deng, Yun, Liang (b0110) 2015; 149 Aheto, Huang, Tian, Lv, Dai, Bonah, Chang (b0075) 2019 Aheto, Huang, Tian, Ren, Bonah, Alenyorege, Lv, Dai (b0070) 2019 Yun, Wang, Tan, Liang, Li, Cao, Lu, Xu (b0095) 2014; 807 Wu, He, Nie, Cao, Bao (b0130) 2010; 659 Feng, Sun (b0135) 2014; 25 Baek, Kim, Cho, Mo, Barnaby, McClung, Oh (b0045) 2019; 9 Lohumi, Lee, Lee, Kim, Lee, Cho (b0165) 2016; 74 Bonah, Huang, Yi, Aheto, Yu (b0050) 2020; 105 Aheto, Huang, Xiaoyu, Bonah, Ren, Alenyorege, Chunxia (b0060) 2019; 43 Yu, Yun, Zhang, Chen, Liu, Zhong, Chen, Chen (b0175) 2020; 224 Yun, Li, Deng, Cao (b0085) 2019; 113 Sun, Zhou, Hu, Wu, Zhang, Wang (b0100) 2019; 160 Tao, Peng (b0035) 2014; 126 Yu, Huang, Zhang, Yang (b0055) 2019; 9 Yang, Xie, Yan, Li, Xu, Liu, Wen, Li (b0105) 2017; 170 Foca, Ferrari, Ulrici, Sciutto, Prati, Morandi, Brasca, Lavermicocca, Lanteri, Oliveri (b0020) 2016; 153 Cheng, Sun (b0040) 2015; 8 Yun, Bin, Liu, Xu, Yan, Cao, Xu (b0120) 2019; 1058 Gerlach, Kowalski, Wold (b0125) 1979; 112 Kant, Shahbazi, Dave, Ngo, Chidambara, Than, Bang, Wolff (b0015) 2018; 36 Tao (10.1016/j.infrared.2020.103327_b0035) 2014; 126 Yun (10.1016/j.infrared.2020.103327_b0120) 2019; 1058 Aheto (10.1016/j.infrared.2020.103327_b0070) 2019 Jiang (10.1016/j.infrared.2020.103327_b0140) 2019 Shi (10.1016/j.infrared.2020.103327_b0030) 2019; 274 Wilson (10.1016/j.infrared.2020.103327_b0150) 2015; 20 Yun (10.1016/j.infrared.2020.103327_b0085) 2019; 113 Bonah (10.1016/j.infrared.2020.103327_b0025) 2019 Yu (10.1016/j.infrared.2020.103327_b0055) 2019; 9 Aheto (10.1016/j.infrared.2020.103327_b0060) 2019; 43 Hamid (10.1016/j.infrared.2020.103327_b0160) 2014; 86 Aheto (10.1016/j.infrared.2020.103327_b0080) 2020; 412 Aheto (10.1016/j.infrared.2020.103327_b0075) 2019 Yang (10.1016/j.infrared.2020.103327_b0105) 2017; 170 Kant (10.1016/j.infrared.2020.103327_b0015) 2018; 36 Cheng (10.1016/j.infrared.2020.103327_b0040) 2015; 8 Johnstone (10.1016/j.infrared.2020.103327_b0090) 2009; 367 Baek (10.1016/j.infrared.2020.103327_b0045) 2019; 9 Deng (10.1016/j.infrared.2020.103327_b0110) 2015; 149 Xu (10.1016/j.infrared.2020.103327_b0170) 2019; 102 Gerlach (10.1016/j.infrared.2020.103327_b0125) 1979; 112 Agyekum (10.1016/j.infrared.2020.103327_b0145) 2019; 12 Yu (10.1016/j.infrared.2020.103327_b0175) 2020; 224 Yun (10.1016/j.infrared.2020.103327_b0095) 2014; 807 Feng (10.1016/j.infrared.2020.103327_b0135) 2014; 25 Edwards-Gayle (10.1016/j.infrared.2020.103327_b0155) 2019; 2 Lohumi (10.1016/j.infrared.2020.103327_b0165) 2016; 74 Sun (10.1016/j.infrared.2020.103327_b0100) 2019; 160 Mocan (10.1016/j.infrared.2020.103327_b0005) 2017; 15 Bonah (10.1016/j.infrared.2020.103327_b0050) 2020; 105 Foca (10.1016/j.infrared.2020.103327_b0020) 2016; 153 Xiaobo (10.1016/j.infrared.2020.103327_b0065) 2011; 706 Jiang (10.1016/j.infrared.2020.103327_b0115) 2019; 214 Carlson (10.1016/j.infrared.2020.103327_b0010) 2017; 15 Wu (10.1016/j.infrared.2020.103327_b0130) 2010; 659 |
| References_xml | – volume: 113 start-page: 102 year: 2019 end-page: 115 ident: b0085 article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra publication-title: TrAC, Trends Anal. Chem. – volume: 214 start-page: 366 year: 2019 end-page: 371 ident: b0115 article-title: Comparison of algorithms for wavelength variables selection from near-infrared (NIR) spectra for quantitative monitoring of yeast (Saccharomyces cerevisiae) cultivations publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. – volume: 659 start-page: 229 year: 2010 end-page: 237 ident: b0130 article-title: Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice publication-title: Anal. Chim. Acta – volume: 20 year: 2015 ident: b0150 article-title: Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization publication-title: J. Biomed. Opt. – volume: 43 year: 2019 ident: b0060 article-title: Investigation into crystal size effect on sodium chloride uptake and water activity of pork meat using hyperspectral imaging publication-title: J. Food Process. Preserv. – volume: 412 start-page: 1169 year: 2020 end-page: 1179 ident: b0080 article-title: Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat publication-title: Anal. Bioanal. Chem. – volume: 367 start-page: 4237 year: 2009 end-page: 4253 ident: b0090 article-title: Statistical challenges of high-dimensional data publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 15 start-page: 25 year: 2017 ident: b0005 article-title: Development of nanoparticle-based optical sensors for pathogenic bacterial detection publication-title: J. Nanobiotechnol. – volume: 86 start-page: 7500 year: 2014 end-page: 7507 ident: b0160 article-title: Rapid discrimination of bacteria by paper spray mass spectrometry publication-title: Anal. Chem. – volume: 224 year: 2020 ident: b0175 article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. – volume: 9 year: 2019 ident: b0045 article-title: Selection of optimal hyperspectral wavebands for detection of discolored, diseased rice seeds publication-title: Appl. Sci. – volume: 170 start-page: 102 year: 2017 end-page: 108 ident: b0105 article-title: A reliable multiclass classification model for identifying the subtypes of parotid neoplasms constructed with variable combination population analysis and partial least squares regression based on Raman spectra publication-title: Chemomet. Intell. Lab. Syst. – volume: 25 start-page: 4 year: 2014 end-page: 6 ident: b0135 article-title: “Seeing the Bacteria”: hyperspectral imaging for bacterial prediction and visualisation on chicken meat publication-title: NIR News – year: 2019 ident: b0025 article-title: Application of hyperspectral imaging as a nondestructive technique for foodborne pathogen detection and characterization publication-title: Foodborne Pathogens Disease – volume: 105 year: 2020 ident: b0050 article-title: Vis-NIR hyperspectral imaging for the classification of bacterial foodborne pathogens based on pixel-wise analysis and a novel CARS-PSO-SVM model publication-title: Infrared Phys. Technol. – volume: 8 start-page: 951 year: 2015 end-page: 959 ident: b0040 article-title: Rapid quantification analysis and visualization of Escherichia coli loads in grass carp fish flesh by hyperspectral imaging method publication-title: Food Bioprocess Technol. – volume: 2 start-page: 2208 year: 2019 end-page: 2218 ident: b0155 article-title: Self-assembly, antimicrobial activity, and membrane interactions of arginine-capped peptide bola-amphiphiles publication-title: ACS Appl. Bio Mater. – year: 2019 ident: b0140 article-title: Quantitative analysis of yeast fermentation process using Raman spectroscopy: comparison of CARS and VCPA for variable selection publication-title: Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. – volume: 74 start-page: 1 year: 2016 end-page: 10 ident: b0165 article-title: Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef publication-title: Infrared Phys. Technol. – volume: 102 year: 2019 ident: b0170 article-title: Rapid prediction and visualization of moisture content in single cucumber (Cucumis sativus L.) seed using hyperspectral imaging technology publication-title: Infrared Phys. Technol. – volume: 15 start-page: 16 year: 2017 end-page: 25 ident: b0010 article-title: Developments in micro- and nanotechnology for foodborne pathogen detection publication-title: Foodborne Pathogens Disease – volume: 149 start-page: 166 year: 2015 end-page: 176 ident: b0110 article-title: Model population analysis in chemometrics publication-title: Chemomet. Intell. Lab. Syst. – volume: 36 start-page: 1003 year: 2018 end-page: 1024 ident: b0015 article-title: Microfluidic devices for sample preparation and rapid detection of foodborne pathogens publication-title: Biotechnol. Adv. – year: 2019 ident: b0070 article-title: Combination of spectra and image information of hyperspectral imaging data for fast prediction of lipid oxidation attributes in pork meat publication-title: J. Food Process Eng. – volume: 274 start-page: 925 year: 2019 end-page: 932 ident: b0030 article-title: Noise-free microbial colony counting method based on hyperspectral features of agar plates publication-title: Food Chem. – volume: 1058 start-page: 58 year: 2019 end-page: 69 ident: b0120 article-title: A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration publication-title: Anal. Chim. Acta – volume: 160 start-page: 153 year: 2019 end-page: 159 ident: b0100 article-title: Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging publication-title: Comput. Electron. Agric. – volume: 126 start-page: 98 year: 2014 end-page: 106 ident: b0035 article-title: A method for nondestructive prediction of pork meat quality and safety attributes by hyperspectral imaging technique publication-title: J. Food Eng. – year: 2019 ident: b0075 article-title: Evaluation of lipid oxidation and volatile compounds of traditional dry-cured pork belly: the hyperspectral imaging and multi-gas-sensory approaches publication-title: J. Food Process Eng. – volume: 12 start-page: 2035 year: 2019 end-page: 2044 ident: b0145 article-title: Rapid and nondestructive quantification of trimethylamine by FT-NIR coupled with chemometric techniques publication-title: Food Anal. Methods – volume: 9 year: 2019 ident: b0055 article-title: Optimal wavelength selection for hyperspectral imaging evaluation on vegetable soybean moisture content during drying publication-title: Appl. Sci. – volume: 706 start-page: 105 year: 2011 end-page: 112 ident: b0065 article-title: In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging publication-title: Anal. Chim. Acta – volume: 807 start-page: 36 year: 2014 end-page: 43 ident: b0095 article-title: A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration publication-title: Anal. Chim. Acta – volume: 112 start-page: 417 year: 1979 end-page: 421 ident: b0125 article-title: Partial least-squares path modelling with latent variables publication-title: Anal. Chim. Acta – volume: 153 start-page: 111 year: 2016 end-page: 119 ident: b0020 article-title: The potential of spectral and hyperspectral-imaging techniques for bacterial detection in food: a case study on lactic acid bacteria publication-title: Talanta – volume: 153 start-page: 111 year: 2016 ident: 10.1016/j.infrared.2020.103327_b0020 article-title: The potential of spectral and hyperspectral-imaging techniques for bacterial detection in food: a case study on lactic acid bacteria publication-title: Talanta doi: 10.1016/j.talanta.2016.02.059 – volume: 43 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0060 article-title: Investigation into crystal size effect on sodium chloride uptake and water activity of pork meat using hyperspectral imaging publication-title: J. Food Process. Preserv. doi: 10.1111/jfpp.14197 – volume: 706 start-page: 105 year: 2011 ident: 10.1016/j.infrared.2020.103327_b0065 article-title: In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.08.026 – volume: 20 year: 2015 ident: 10.1016/j.infrared.2020.103327_b0150 article-title: Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.20.3.030901 – volume: 807 start-page: 36 year: 2014 ident: 10.1016/j.infrared.2020.103327_b0095 article-title: A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2013.11.032 – volume: 113 start-page: 102 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0085 article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2019.01.018 – volume: 15 start-page: 25 year: 2017 ident: 10.1016/j.infrared.2020.103327_b0005 article-title: Development of nanoparticle-based optical sensors for pathogenic bacterial detection publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-017-0260-y – volume: 274 start-page: 925 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0030 article-title: Noise-free microbial colony counting method based on hyperspectral features of agar plates publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.09.058 – volume: 9 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0045 article-title: Selection of optimal hyperspectral wavebands for detection of discolored, diseased rice seeds publication-title: Appl. Sci. doi: 10.3390/app9051027 – year: 2019 ident: 10.1016/j.infrared.2020.103327_b0025 article-title: Application of hyperspectral imaging as a nondestructive technique for foodborne pathogen detection and characterization publication-title: Foodborne Pathogens Disease doi: 10.1089/fpd.2018.2617 – volume: 2 start-page: 2208 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0155 article-title: Self-assembly, antimicrobial activity, and membrane interactions of arginine-capped peptide bola-amphiphiles publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.9b00172 – volume: 8 start-page: 951 year: 2015 ident: 10.1016/j.infrared.2020.103327_b0040 article-title: Rapid quantification analysis and visualization of Escherichia coli loads in grass carp fish flesh by hyperspectral imaging method publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-014-1457-9 – volume: 126 start-page: 98 year: 2014 ident: 10.1016/j.infrared.2020.103327_b0035 article-title: A method for nondestructive prediction of pork meat quality and safety attributes by hyperspectral imaging technique publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2013.11.006 – volume: 9 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0055 article-title: Optimal wavelength selection for hyperspectral imaging evaluation on vegetable soybean moisture content during drying publication-title: Appl. Sci. – year: 2019 ident: 10.1016/j.infrared.2020.103327_b0075 article-title: Evaluation of lipid oxidation and volatile compounds of traditional dry-cured pork belly: the hyperspectral imaging and multi-gas-sensory approaches publication-title: J. Food Process Eng. – year: 2019 ident: 10.1016/j.infrared.2020.103327_b0140 article-title: Quantitative analysis of yeast fermentation process using Raman spectroscopy: comparison of CARS and VCPA for variable selection publication-title: Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. – volume: 86 start-page: 7500 year: 2014 ident: 10.1016/j.infrared.2020.103327_b0160 article-title: Rapid discrimination of bacteria by paper spray mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac501254b – volume: 412 start-page: 1169 year: 2020 ident: 10.1016/j.infrared.2020.103327_b0080 article-title: Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-019-02345-5 – volume: 160 start-page: 153 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0100 article-title: Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.03.004 – volume: 15 start-page: 16 year: 2017 ident: 10.1016/j.infrared.2020.103327_b0010 article-title: Developments in micro- and nanotechnology for foodborne pathogen detection publication-title: Foodborne Pathogens Disease doi: 10.1089/fpd.2017.2309 – volume: 170 start-page: 102 year: 2017 ident: 10.1016/j.infrared.2020.103327_b0105 article-title: A reliable multiclass classification model for identifying the subtypes of parotid neoplasms constructed with variable combination population analysis and partial least squares regression based on Raman spectra publication-title: Chemomet. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.08.012 – volume: 224 year: 2020 ident: 10.1016/j.infrared.2020.103327_b0175 article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2019.117376 – volume: 367 start-page: 4237 year: 2009 ident: 10.1016/j.infrared.2020.103327_b0090 article-title: Statistical challenges of high-dimensional data publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 74 start-page: 1 year: 2016 ident: 10.1016/j.infrared.2020.103327_b0165 article-title: Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2015.11.004 – year: 2019 ident: 10.1016/j.infrared.2020.103327_b0070 article-title: Combination of spectra and image information of hyperspectral imaging data for fast prediction of lipid oxidation attributes in pork meat publication-title: J. Food Process Eng. doi: 10.1111/jfpe.13225 – volume: 1058 start-page: 58 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0120 article-title: A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.01.022 – volume: 105 year: 2020 ident: 10.1016/j.infrared.2020.103327_b0050 article-title: Vis-NIR hyperspectral imaging for the classification of bacterial foodborne pathogens based on pixel-wise analysis and a novel CARS-PSO-SVM model publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103220 – volume: 12 start-page: 2035 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0145 article-title: Rapid and nondestructive quantification of trimethylamine by FT-NIR coupled with chemometric techniques publication-title: Food Anal. Methods doi: 10.1007/s12161-019-01537-0 – volume: 112 start-page: 417 year: 1979 ident: 10.1016/j.infrared.2020.103327_b0125 article-title: Partial least-squares path modelling with latent variables publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)85039-X – volume: 149 start-page: 166 year: 2015 ident: 10.1016/j.infrared.2020.103327_b0110 article-title: Model population analysis in chemometrics publication-title: Chemomet. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.018 – volume: 102 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0170 article-title: Rapid prediction and visualization of moisture content in single cucumber (Cucumis sativus L.) seed using hyperspectral imaging technology publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.103034 – volume: 25 start-page: 4 year: 2014 ident: 10.1016/j.infrared.2020.103327_b0135 article-title: “Seeing the Bacteria”: hyperspectral imaging for bacterial prediction and visualisation on chicken meat publication-title: NIR News doi: 10.1255/nirn.1479 – volume: 36 start-page: 1003 year: 2018 ident: 10.1016/j.infrared.2020.103327_b0015 article-title: Microfluidic devices for sample preparation and rapid detection of foodborne pathogens publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.03.002 – volume: 659 start-page: 229 year: 2010 ident: 10.1016/j.infrared.2020.103327_b0130 article-title: Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2009.11.045 – volume: 214 start-page: 366 year: 2019 ident: 10.1016/j.infrared.2020.103327_b0115 article-title: Comparison of algorithms for wavelength variables selection from near-infrared (NIR) spectra for quantitative monitoring of yeast (Saccharomyces cerevisiae) cultivations publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2019.02.038 |
| SSID | ssj0016406 |
| Score | 2.4286969 |
| Snippet | [Display omitted]
•Bacterial foodborne pathogens in pork are quantified using VIS-NIR hyperspectral imaging.•A hybrid variable selection strategy based... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103327 |
| SubjectTerms | Bacterial foodborne pathogens Hybrid variable selection Hyperspectral imaging Multivariate calibration Variable combination population analysis Variable selection |
| Title | Comparison of variable selection algorithms on vis-NIR hyperspectral imaging spectra for quantitative monitoring and visualization of bacterial foodborne pathogens in fresh pork muscles |
| URI | https://dx.doi.org/10.1016/j.infrared.2020.103327 |
| Volume | 107 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0275 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016406 issn: 1350-4495 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0275 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016406 issn: 1350-4495 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0275 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016406 issn: 1350-4495 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0275 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016406 issn: 1350-4495 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0275 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016406 issn: 1350-4495 databaseCode: AKRWK dateStart: 19940201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiQuiKdogWoOXM3Gj6w3x2pFtQWxB6BSb1H8YlO6Sdns9sj_4t8x4ySrIiH1wCVKLNuJPOPxTDTffIy9k9JUMZeRh-g91057PgtScGdC4ayYmZiKPX9eThcX-uNlfnnA5iMWhtIqB9vf2_RkrYeWybCak5u6nnwVKs80-vcS9TRTmhDlWhtiMXj_a5_mgdFA4tekzpx630EJX5Fvu6E8b4wTZcKfK2KX-dcBdefQOXvCHg_eIpz2H_SUHYTmGXuYsjZd95z9nu9ZBKGNcIu3hISCLpHb4IpDdf29xfB_te4An27rji_Pv8AKg88eY7nB2et1YiqCoQHQjYWfu6pJ8DM0hrBO-55-AELVeJqFkJg9fpPea_uKzzhVbFuPStUEIKbjFpWzg7qBiDH9CtDT_wHrXUd5eC_YxdmHb_MFH7gYuFNCbvkUN7v2U59XlS4y73wMxkUZi0AmQmnlhKlmLs-Cye3UShuE81UlhHd4Lax6yQ6btgmvGOhCRWFCnkWL7gyVYCtCYTxGoqg4NlNHLB8FULqhUDnxZVyXY0baVTkKriTBlb3gjthkP-6mL9Vx74hilG_5l9KVeJ7cM_b4P8a-Zo_oqc84e8MOt5tdeIu-zdaeJOU9YQ9Ozz8tln8ASfH_5w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEaIXxFOUR_GBq9nEj_XmiFZU29LuAVqpt8hPNqWbtJvdHvlf_DtmnGRVJKQeuESJYzuRZzKeieabj5CPnGsTFY8sRO-ZdNKzSeA5czoUzuYTHVOx59P5eHYujy_UxQ6ZDlgYTKvsbX9n05O17ltG_WqOrqtq9D0XKpPg33PQ00xI_YA8lIprjMA-_drmeUA4kAg2sTfD7ndgwpfo3K4w0RsCRZ4A6ALpZf61Q93ZdQ6fkie9u0g_d2_0jOyE-jl5lNI2XfuC_J5uaQRpE-ktnCIUiraJ3QaWnJqrHw3E_4tlS-HqtmrZ_OgbXUD02YEsVzB7tUxURbRvoODH0puNqRP-DKwhXaYPH_8AUlN7nAWhmB2AE59ru5LPMFVsGg9aVQeKVMcNaGdLq5pGCOoXFFz9n3S5aTER7yU5P_xyNp2xnoyBOZHzNRvD1y792CtjZJF552PQLvJYBLQRQgqXazNxKgta2bHlNuTOG5Pn3sGxsOIV2a2bOrwmVBYi5jqoLFrwZ7AGWxEK7SEUBc2xmdgnahBA6fpK5UiYcVUOKWmX5SC4EgVXdoLbJ6PtuOuuVse9I4pBvuVfWlfChnLP2Df_MfYDeTw7Oz0pT47mX9-SPbzTpZ-9I7vr1Sa8B0dnbQ-SIv8BJFMBiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+variable+selection+algorithms+on+vis-NIR+hyperspectral+imaging+spectra+for+quantitative+monitoring+and+visualization+of+bacterial+foodborne+pathogens+in+fresh+pork+muscles&rft.jtitle=Infrared+physics+%26+technology&rft.au=Bonah%2C+Ernest&rft.au=Huang%2C+Xingyi&rft.au=Aheto%2C+Joshua+Harrington&rft.au=Yi%2C+Ren&rft.date=2020-06-01&rft.issn=1350-4495&rft.volume=107&rft.spage=103327&rft_id=info:doi/10.1016%2Fj.infrared.2020.103327&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infrared_2020_103327 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon |