Traffic congestion-aware graph-based vehicle rerouting framework from aerial imagery
In digital era, being stranded from very basic telecommunication protocols and internet makes vehicle rerouting-like crucial tools more difficult or even impossible, especially in times of disaster and emergency. In this study, we propose a modular rerouting framework for only one single vehicle com...
Saved in:
| Published in | Engineering applications of artificial intelligence Vol. 119; p. 105769 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-1976 1873-6769 |
| DOI | 10.1016/j.engappai.2022.105769 |
Cover
| Abstract | In digital era, being stranded from very basic telecommunication protocols and internet makes vehicle rerouting-like crucial tools more difficult or even impossible, especially in times of disaster and emergency. In this study, we propose a modular rerouting framework for only one single vehicle composed of visual perception, property estimation and trajectory optimization, which enables to generate optimum paths exploiting aerial imagery. Once the deep network, which is fine-tuned on newly introduced dataset herein named MaVefAI, processes the input, the following module estimates pose, motion direction and speed of detected vehicles. Afterwards, we link the appropriate vehicles via graphs to obtain group properties that pave the way for estimating the traffic congestion level. In the end, we get the output as the optimum path from the independent trajectory optimization module to which required inputs are already sent by preceding modules. We solve the multi-objective cost function subject to velocity and congestion intervals, which comprises distance, traffic congestion level, and angle inconsistency. We employ Dijkstra, A*, RRT, and RRT* to optimize the cost while vast majority of existing works focus to optimize via single method. The fine-tuned segmentation model accuracy becomes more than 98% for vehicle groups thanks to MaVefAI. The extensive experiments reveal that all algorithms follow the same path. However, RRT* achieves the fastest result by examining most of the possible options in less time, which also appears to be the most robust method comparing with the alternatives for route optimization. Our dataset MaVefAI is publicly available here: https://precisioncomputing.sakarya.edu.tr. |
|---|---|
| AbstractList | In digital era, being stranded from very basic telecommunication protocols and internet makes vehicle rerouting-like crucial tools more difficult or even impossible, especially in times of disaster and emergency. In this study, we propose a modular rerouting framework for only one single vehicle composed of visual perception, property estimation and trajectory optimization, which enables to generate optimum paths exploiting aerial imagery. Once the deep network, which is fine-tuned on newly introduced dataset herein named MaVefAI, processes the input, the following module estimates pose, motion direction and speed of detected vehicles. Afterwards, we link the appropriate vehicles via graphs to obtain group properties that pave the way for estimating the traffic congestion level. In the end, we get the output as the optimum path from the independent trajectory optimization module to which required inputs are already sent by preceding modules. We solve the multi-objective cost function subject to velocity and congestion intervals, which comprises distance, traffic congestion level, and angle inconsistency. We employ Dijkstra, A*, RRT, and RRT* to optimize the cost while vast majority of existing works focus to optimize via single method. The fine-tuned segmentation model accuracy becomes more than 98% for vehicle groups thanks to MaVefAI. The extensive experiments reveal that all algorithms follow the same path. However, RRT* achieves the fastest result by examining most of the possible options in less time, which also appears to be the most robust method comparing with the alternatives for route optimization. Our dataset MaVefAI is publicly available here: https://precisioncomputing.sakarya.edu.tr. |
| ArticleNumber | 105769 |
| Author | Bayraktar, Ertugrul Erarslan, Aras Umut Korkmaz, Burla Nur Celebi, Numan |
| Author_xml | – sequence: 1 givenname: Ertugrul orcidid: 0000-0002-7387-4783 surname: Bayraktar fullname: Bayraktar, Ertugrul email: eb@yildiz.edu.tr organization: Department of Mechatronics Engineering, Yildiz Technical University, Besiktas, 34349 Istanbul, Turkey – sequence: 2 givenname: Burla Nur surname: Korkmaz fullname: Korkmaz, Burla Nur organization: Department of Information Engineering, University of Padua, Via VIII Febbraio, 2, 35122 Padova PD, Italy – sequence: 3 givenname: Aras Umut surname: Erarslan fullname: Erarslan, Aras Umut organization: Department of Information Engineering, University of Padua, Via VIII Febbraio, 2, 35122 Padova PD, Italy – sequence: 4 givenname: Numan surname: Celebi fullname: Celebi, Numan organization: Department of Information Systems Engineering, Sakarya University, 54050 Sakarya, Turkey |
| BookMark | eNqFkM1Kw0AUhQepYFt9BckLpM5PZpKAC6X4BwU3dT3czNykU9NMmIktfXtTqhs3ru7hwnfgfDMy6XyHhNwyumCUqbvtArsG-h7cglPOx6fMVXlBpqzIRarGPCFTWkqesjJXV2QW45ZSKopMTcl6HaCunUmM7xqMg_NdCgcImDQB-k1aQUSb7HHjTItJwOC_Btc1SR1ghwcfPsfkdwlgcNAmbgcNhuM1uayhjXjzc-fk4_lpvXxNV-8vb8vHVWoE40MqlcqY4KhYlRfS5AzQCpBcGiVZISxkVlVVLjJeZawujEJujVRoy6yqVYliTu7PvSb4GAPW2rgBThuGAK7VjOqTIb3Vv4b0yZA-Gxpx9Qfvw7ggHP8HH84gjuP2DoOOxmFn0LqAZtDWu_8qvgGxIIht |
| CitedBy_id | crossref_primary_10_1016_j_compeleceng_2025_110082 crossref_primary_10_1016_j_engappai_2023_106656 crossref_primary_10_1016_j_dajour_2025_100558 crossref_primary_10_1109_JSTARS_2024_3382389 crossref_primary_10_1109_TVT_2024_3496513 crossref_primary_10_1109_TGRS_2024_3376456 crossref_primary_10_3390_w17010068 crossref_primary_10_1109_TGRS_2024_3428360 crossref_primary_10_3390_buildings14082324 crossref_primary_10_3390_buildings15010127 crossref_primary_10_1016_j_patrec_2023_05_031 crossref_primary_10_1109_TGRS_2023_3343453 crossref_primary_10_1007_s00521_024_10429_2 crossref_primary_10_26552_com_C_2023_074 crossref_primary_10_3390_app13105896 crossref_primary_10_1016_j_imavis_2024_105336 crossref_primary_10_1016_j_engappai_2024_108135 crossref_primary_10_1109_TGRS_2024_3353192 |
| Cites_doi | 10.2514/2.4231 10.1016/j.eswa.2016.12.018 10.1007/s005210050015 10.1016/j.ecoinf.2020.101085 10.1016/j.cities.2019.03.022 10.1109/WACV.2017.41 10.1016/j.trb.2009.05.004 10.1016/j.eswa.2016.10.055 10.1016/j.engappai.2021.104606 10.1109/CVPR.2019.00952 10.1007/s00521-012-1114-z 10.1016/j.engappai.2022.105439 10.1007/s11263-015-0812-2 10.1109/CVPR.2012.6248074 10.1109/CVPR.2018.00418 10.1007/s11263-015-0816-y 10.1109/TITS.2016.2531425 10.1109/TGRS.2018.2841808 10.1016/j.engappai.2011.10.002 10.1016/j.cor.2021.105507 10.1109/WCNC.2018.8377077 10.1016/j.cie.2018.05.039 10.1109/ITSC.2016.7795543 10.1109/CVPR.2019.00900 10.1016/j.isprsjprs.2020.06.012 10.1016/j.engappai.2021.104510 10.1016/j.swevo.2022.101147 10.1007/978-3-319-10602-1_48 10.1007/s00521-020-04932-5 10.3390/e21070709 10.1109/ICCV.2017.446 10.1109/ICVES.2012.6294294 10.1109/WACV.2017.107 10.1609/aaai.v33i01.33014039 10.1016/j.engappai.2022.105179 10.1109/ICCVE45908.2019.8965242 10.3390/rs12060989 10.1109/TVT.2013.2260422 10.1007/s00521-019-04579-x 10.1007/s10846-018-0806-8 10.1109/VTCSpring.2018.8417546 10.1109/RTSS.2017.00022 10.1016/j.isprsjprs.2020.06.016 10.1109/TITS.2016.2521779 10.3390/rs9040368 10.1109/TNNLS.2018.2876865 10.1016/j.engappai.2019.03.017 10.3390/rs10010124 10.1016/j.engappai.2019.08.023 10.1109/IVS.2016.7535375 10.1007/BF01386390 10.1007/s00521-019-04458-5 10.1016/j.engappai.2010.02.002 10.1109/ICCV.2017.322 10.1016/j.engappai.2022.105095 10.1109/TITS.2018.2835523 10.1016/j.cogsys.2018.10.031 10.1038/s42003-020-0905-5 10.1109/CSCI46756.2018.00068 10.1007/s00521-016-2696-7 10.1080/15472450.2020.1742121 10.1103/PhysRevE.51.1035 10.1177/02783640122067453 10.1016/j.ins.2016.01.004 10.1007/978-3-319-46487-9_48 10.1109/TSSC.1968.300136 10.1007/s00138-018-0966-3 10.3141/1634-12 10.1016/j.jvcir.2015.11.002 10.1109/IJCNN48605.2020.9207661 10.1007/978-3-319-51204-4_7 10.1007/978-3-319-67361-5_40 10.1016/j.cosrev.2007.05.001 10.1109/CVPR.2016.90 10.1109/TITS.2018.2797697 10.1109/TITS.2022.3181282 10.1007/s00521-020-05115-y 10.1109/ACCESS.2019.2923407 10.1287/trsc.34.3.239.12300 10.3390/s20164424 10.1109/JSTARS.2017.2694890 10.1109/TITS.2016.2613997 10.1109/TMI.2016.2535302 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2022.105769 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2022_105769 S095219762200759X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-5664132e61b785c71aed3a525c65183da4d6bb7342b41f8c6e2dc56ed94bf69e3 |
| IEDL.DBID | .~1 |
| ISSN | 0952-1976 |
| IngestDate | Sat Oct 25 05:29:50 EDT 2025 Thu Apr 24 22:54:35 EDT 2025 Fri Feb 23 02:39:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Path optimization Traffic congestion detection Graph-based estimation Proactive rerouting Route recommendation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-5664132e61b785c71aed3a525c65183da4d6bb7342b41f8c6e2dc56ed94bf69e3 |
| ORCID | 0000-0002-7387-4783 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2022_105769 crossref_primary_10_1016_j_engappai_2022_105769 elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105769 |
| PublicationCentury | 2000 |
| PublicationDate | March 2023 2023-03-00 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hart, Nilsson, Raphael (b35) 1968; 4 Elloumi, M., Dhaou, R., Escrig, B., Idoudi, H., Saidane, L., 2018. Monitoring road traffic with a UAV-based system. In: 2018 IEEE Wireless Communications And Networking Conference. WCNC, pp. 1–6. Al-Smadi, Abdulrahim, Seman, Salam (b1) 2020; 32 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b70) 2015; 115 Shahinfar, Meek, Falzon (b74) 2020; 57 Niu, H., Gonzalez-Prelcic, N., Heath, R., 2018. A UAV-based traffic monitoring system-invited paper. In: 2018 IEEE 87th Vehicular Technology Conference. VTC Spring, pp. 1–5. Wu, M., Zhang, G., Bi, N., Xie, L., Hu, Y., Shi, Z., Intelligence, Y., 2019. Multiview Vehicle Tracking by Graph Matching Model. In: CVPR Workshops. pp. 29–36. Chen, Wang, Yuan, Jia, Yao (b20) 2020; 32 Shah, Dey, Lovett, Kapoor (b73) 2018 Kim, Ong, Cheong, Tan (b46) 2016; 17 Pan, Popa, Zeitouni, Borcea (b65) 2013; 62 D’Andrea, Marcelloni (b24) 2017; 73 Florian, Ehemalige Schmidt, Data set for tracking vehicles in aerial image sequences. KIT AIS Vehicles Data Set. Available online Ke, Li, Tang, Pan, Wang (b44) 2018; 20 Amato, Carrara, Falchi, Gennaro, Meghini, Vairo (b3) 2017; 72 Wang, Djahel, Zhang, McManis (b83) 2016; 17 Betts (b12) 1998; 21 Yang, Y., Liu, F., Wang, P., Luo, P., Liu, X., 2012. Vehicle detection methods from an unmanned aerial vehicle platform. In: 2012 IEEE International Conference on Vehicular Electronics and Safety. ICVES 2012, pp. 411–415. LaValle (b48) 1998 Lei, Cui, Li (b50) 2022; 107 Buric, M., Pobar, M., Ivasic-Kos, M., 2018. Ball detection using YOLO and Mask R-CNN. In: 2018 International Conference on Computational Science and Computational Intelligence. CSCI, pp. 319–323. Bando, Hasebe, Nakayama, Shibata, Sugiyama (b6) 1995; 51 Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C., 2014. Microsoft coco: Common objects in context. In: European Conference On Computer Vision. pp. 740–755. AlKheder, Alkhamees, Almutairi, Alkhedher (b2) 2021; 33 Razakarivony, Jurie (b67) 2016; 34 LaValle, Kuffner (b49) 2001; 20 Tang, Z., Naphade, M., Liu, M., Yang, X., Birchfield, S., Wang, S., Kumar, R., Anastasiu, D., Hwang, J., 2019. Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 8797–8806. Marinakis, Marinaki, Dounias (b56) 2010; 23 Audebert, Le Saux, Lefèvre (b5) 2017; 9 Chen, Song, Zhao (b19) 2021; 33 Wang, Guo, Yu (b84) 2018; 10 Hsieh, M., Lin, Y., Hsu, W., 2017. Drone-based object counting by spatially regularized regional proposal network. In: Proceedings of The IEEE International Conference On Computer Vision. pp. 4145–4153. Huang, Xia, Li, Li, Li (b40) 2019; 21 Zhang, Yin, Chen, Su (b96) 2022; 114 Deng, Sun, Zhou, Zhao, Zou (b25) 2017; 10 Hu, Zhang, Zhang, Zhang, Li, Leeson, Liao (b39) 2020; 87 Benjdira, Koubaa, Azar, Khan, Ammar, Boulila (b10) 2022; 114 Arishi, Krishnan, Arishi (b4) 2022; 116 Hansen (b34) 2018; 1 Liu, Peng, Zhang (b54) 2019; 94 Rocha, Aloise, Aloise, Contardo (b69) 2022; 137 Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (b78) 2016; 35 Niemirepo, T., Toivonen, J., Viitanen, M., Vanne, J., 2019. Open-source CiThruS simulation environment for real-time 360-degree traffic imaging. In: 2019 IEEE International Conference On Connected Vehicles And Expo. ICCVE, pp. 1–5. Kim, Bodunkov (b45) 2018 Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for Autonomous Driving?. In: The KITTI Vision Benchmark Suite. Conference on Computer Vision and Pattern Recognition. CVPR. Yu, D., Deng, L., Dahl, G., 2010. Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition. In: Proc. NIPS Workshop On Deep Learning And Unsupervised Feature Learning. Cannarsa, Frankowska, Marchini (b15) 2009 Xu, H., Jiang, C., Liang, X., Li, Z., 2019. Spatial-aware graph relation network for large-scale object detection. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 9298–9307. Li, Chen (b51) 2013; 23 Pinto, L., Almeida, L., Alizadeh, H., Rowe, A., 2017. Aerial video stream over multi-hop using adaptive tdma slots. In: 2017 IEEE Real-Time Systems Symposium. RTSS, pp. 157–166. Corman, D’Ariano, Pacciarelli, Pranzo (b22) 2010; 44 Oliveira, Rampinelli, Tozatto, Andreão, Müller (b64) 2021 Dijkstra (b26) 1959; 1 Cao, Wang, Li (b17) 2016; 366 Juba, B., Le, H., 2019. Precision–recall versus accuracy and the role of large data sets. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. pp. 4039–4048. Yang, Xie, Yang (b91) 2019; 7 Jie, Liu, Sun (b41) 2022; 109 Officials (b63) 2011 Schaeffer (b72) 2007; 1 Zhu, Vondrick, Fowlkes, Ramanan (b99) 2016; 119 Chen, Yu, Liu (b21) 2018; 19 Manibardo, E., Laña, I., Lobo, J., Ser, J.Del., 2020. New Perspectives on the Use of Online Learning for Congestion Level Prediction over Traffic Data. In: 2020 International Joint Conference On Neural Networks. IJCNN, pp. 1–8. Bayraktar, Boyraz (b8) 2017; 25 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 770–778. Garcia-Aunon, Roldán, Barrientos (b32) 2019; 54 Bayraktar, Basarkan, Celebi (b7) 2020; 167 Juliani, Berges, Vckay, Gao, Henry, Mattar, Lange (b43) 2018 Bertsimas, Patterson (b11) 2000; 34 Koga, Miyazaki, Shibasaki (b47) 2018; 10 Moyano, Stepniak, Moya-Gomez, Garcia-Palomares (b58) 2021 Li, Zhen, Wang, Lv, Qu (b52) 2018; 122 Bayraktar, Yigit, Boyraz (b9) 2019; 30 (Accessed 25 May 2021). Wu, Li, Hong, Tian, Tao, Du (b85) 2020; 167 Vahdani, Veysmoradi, Shekari, Mousavi (b82) 2018; 30 Cui, Yuan, Liu, Xu, Song (b23) 2020; 24 Zhao, Zheng, Xu, Wu (b98) 2019; 30 Yasdi (b93) 1999; 8 Sommer, L., Schuchert, T., Beyerer, J., 2017. Fast deep vehicle detection in aerial images. In: 2017 IEEE Winter Conference on Applications of Computer Vision. WACV, pp. 311–319. Zhao, Hu (b97) 2019; 92 He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2961–2969. Chen, Y., Lv, Y., Li, Z., Wang, F., 2016. Long short-term memory model for traffic congestion prediction with online open data. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems. ITSC, pp. 132–137. Sakla, W., Konjevod, G., Mundhenk, T., 2017. Deep multi-modal vehicle detection in aerial ISR imagery. In: 2017 IEEE Winter Conference on Applications of Computer Vision. WACV, pp. 916–923. Wu, Mao, Luo, Xu, Shi, Suganthan (b86) 2022 Yanmaz, Quaritsch, Yahyanejad, Rinner, Hellwagner, Bettstetter (b92) 2017 Ren, He, Girshick, Sun (b68) 2015 Toda, Okura, Ito, Okada, Kinoshita, Tsuji, Saisho (b80) 2020; 3 Soon, Lim, Parthiban (b76) 2019; 82 Boarnet, Kim, Parkany (b13) 1998; 1634 Dutta, Zisserman (b28) 2019 Xia, G., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L., 2018. DOTA: A large-scale dataset for object detection in aerial images. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 3974–3983. Tsitsulin, Palowitch, Perozzi, Müller (b81) 2020 Mou, Zhu (b57) 2018; 56 Cao, Jiang, Zhang, Guo (b16) 2016; 18 Nguyen, Lee, Bae, Lee (b60) 2020; 20 Mundhenk, T., Konjevod, G., Sakla, W., Boakye, K., 2016. A large contextual dataset for classification, detection and counting of cars with deep learning. In: European Conference On Computer Vision. pp. 785–800. Zang, Jiang, Liang, Dong, Lu, Mladenovic (b95) 2022; 75 Duhamel, Lacomme, Prodhon (b27) 2012; 25 Fan, Q., Brown, L., Smith, J., 2016. A closer look at Faster R-CNN for vehicle detection. In: 2016 IEEE Intelligent Vehicles Symposium. IV, pp. 124–129. Su, Wei, Liu, Liang, Wang, Shi, Zhang (b77) 2020; 12 Cannarsa (10.1016/j.engappai.2022.105769_b15) 2009 Lei (10.1016/j.engappai.2022.105769_b50) 2022; 107 Wang (10.1016/j.engappai.2022.105769_b84) 2018; 10 Li (10.1016/j.engappai.2022.105769_b51) 2013; 23 Zhang (10.1016/j.engappai.2022.105769_b96) 2022; 114 Shahinfar (10.1016/j.engappai.2022.105769_b74) 2020; 57 Juliani (10.1016/j.engappai.2022.105769_b43) 2018 10.1016/j.engappai.2022.105769_b31 LaValle (10.1016/j.engappai.2022.105769_b48) 1998 10.1016/j.engappai.2022.105769_b30 10.1016/j.engappai.2022.105769_b36 10.1016/j.engappai.2022.105769_b33 Audebert (10.1016/j.engappai.2022.105769_b5) 2017; 9 10.1016/j.engappai.2022.105769_b37 10.1016/j.engappai.2022.105769_b38 Hansen (10.1016/j.engappai.2022.105769_b34) 2018; 1 Marinakis (10.1016/j.engappai.2022.105769_b56) 2010; 23 Wu (10.1016/j.engappai.2022.105769_b86) 2022 Chen (10.1016/j.engappai.2022.105769_b20) 2020; 32 Dijkstra (10.1016/j.engappai.2022.105769_b26) 1959; 1 Bayraktar (10.1016/j.engappai.2022.105769_b9) 2019; 30 Zang (10.1016/j.engappai.2022.105769_b95) 2022; 75 Betts (10.1016/j.engappai.2022.105769_b12) 1998; 21 Wu (10.1016/j.engappai.2022.105769_b85) 2020; 167 Bertsimas (10.1016/j.engappai.2022.105769_b11) 2000; 34 Yang (10.1016/j.engappai.2022.105769_b91) 2019; 7 10.1016/j.engappai.2022.105769_b42 AlKheder (10.1016/j.engappai.2022.105769_b2) 2021; 33 Kim (10.1016/j.engappai.2022.105769_b46) 2016; 17 Wang (10.1016/j.engappai.2022.105769_b83) 2016; 17 Chen (10.1016/j.engappai.2022.105769_b21) 2018; 19 10.1016/j.engappai.2022.105769_b53 Razakarivony (10.1016/j.engappai.2022.105769_b67) 2016; 34 10.1016/j.engappai.2022.105769_b55 Zhu (10.1016/j.engappai.2022.105769_b99) 2016; 119 10.1016/j.engappai.2022.105769_b59 Mou (10.1016/j.engappai.2022.105769_b57) 2018; 56 Yanmaz (10.1016/j.engappai.2022.105769_b92) 2017 Yasdi (10.1016/j.engappai.2022.105769_b93) 1999; 8 Corman (10.1016/j.engappai.2022.105769_b22) 2010; 44 10.1016/j.engappai.2022.105769_b61 10.1016/j.engappai.2022.105769_b62 Cao (10.1016/j.engappai.2022.105769_b17) 2016; 366 Hart (10.1016/j.engappai.2022.105769_b35) 1968; 4 Hu (10.1016/j.engappai.2022.105769_b39) 2020; 87 10.1016/j.engappai.2022.105769_b66 Tsitsulin (10.1016/j.engappai.2022.105769_b81) 2020 Toda (10.1016/j.engappai.2022.105769_b80) 2020; 3 Kim (10.1016/j.engappai.2022.105769_b45) 2018 Deng (10.1016/j.engappai.2022.105769_b25) 2017; 10 Zhao (10.1016/j.engappai.2022.105769_b97) 2019; 92 Oliveira (10.1016/j.engappai.2022.105769_b64) 2021 Pan (10.1016/j.engappai.2022.105769_b65) 2013; 62 LaValle (10.1016/j.engappai.2022.105769_b49) 2001; 20 10.1016/j.engappai.2022.105769_b71 Officials (10.1016/j.engappai.2022.105769_b63) 2011 10.1016/j.engappai.2022.105769_b75 10.1016/j.engappai.2022.105769_b79 Soon (10.1016/j.engappai.2022.105769_b76) 2019; 82 Vahdani (10.1016/j.engappai.2022.105769_b82) 2018; 30 Zhao (10.1016/j.engappai.2022.105769_b98) 2019; 30 Boarnet (10.1016/j.engappai.2022.105769_b13) 1998; 1634 Koga (10.1016/j.engappai.2022.105769_b47) 2018; 10 Chen (10.1016/j.engappai.2022.105769_b19) 2021; 33 D’Andrea (10.1016/j.engappai.2022.105769_b24) 2017; 73 10.1016/j.engappai.2022.105769_b87 Huang (10.1016/j.engappai.2022.105769_b40) 2019; 21 10.1016/j.engappai.2022.105769_b88 10.1016/j.engappai.2022.105769_b89 Russakovsky (10.1016/j.engappai.2022.105769_b70) 2015; 115 Arishi (10.1016/j.engappai.2022.105769_b4) 2022; 116 Cui (10.1016/j.engappai.2022.105769_b23) 2020; 24 Li (10.1016/j.engappai.2022.105769_b52) 2018; 122 10.1016/j.engappai.2022.105769_b90 Bayraktar (10.1016/j.engappai.2022.105769_b8) 2017; 25 Shah (10.1016/j.engappai.2022.105769_b73) 2018 Ren (10.1016/j.engappai.2022.105769_b68) 2015 10.1016/j.engappai.2022.105769_b94 Liu (10.1016/j.engappai.2022.105769_b54) 2019; 94 Tajbakhsh (10.1016/j.engappai.2022.105769_b78) 2016; 35 Benjdira (10.1016/j.engappai.2022.105769_b10) 2022; 114 Schaeffer (10.1016/j.engappai.2022.105769_b72) 2007; 1 Su (10.1016/j.engappai.2022.105769_b77) 2020; 12 10.1016/j.engappai.2022.105769_b14 10.1016/j.engappai.2022.105769_b18 Bayraktar (10.1016/j.engappai.2022.105769_b7) 2020; 167 Jie (10.1016/j.engappai.2022.105769_b41) 2022; 109 Garcia-Aunon (10.1016/j.engappai.2022.105769_b32) 2019; 54 Rocha (10.1016/j.engappai.2022.105769_b69) 2022; 137 Ke (10.1016/j.engappai.2022.105769_b44) 2018; 20 Nguyen (10.1016/j.engappai.2022.105769_b60) 2020; 20 Amato (10.1016/j.engappai.2022.105769_b3) 2017; 72 Cao (10.1016/j.engappai.2022.105769_b16) 2016; 18 Duhamel (10.1016/j.engappai.2022.105769_b27) 2012; 25 Al-Smadi (10.1016/j.engappai.2022.105769_b1) 2020; 32 Bando (10.1016/j.engappai.2022.105769_b6) 1995; 51 Moyano (10.1016/j.engappai.2022.105769_b58) 2021 10.1016/j.engappai.2022.105769_b29 Dutta (10.1016/j.engappai.2022.105769_b28) 2019 |
| References_xml | – volume: 51 start-page: 1035 year: 1995 ident: b6 article-title: Dynamical model of traffic congestion and numerical simulation publication-title: Phys. Rev. E. – volume: 54 start-page: 273 year: 2019 end-page: 286 ident: b32 article-title: Monitoring traffic in future cities with aerial swarms: Developing and optimizing a behavior-based surveillance algorithm publication-title: Cogn. Syst. Res. – reference: Wu, M., Zhang, G., Bi, N., Xie, L., Hu, Y., Shi, Z., Intelligence, Y., 2019. Multiview Vehicle Tracking by Graph Matching Model. In: CVPR Workshops. pp. 29–36. – volume: 23 start-page: 1611 year: 2013 end-page: 1629 ident: b51 article-title: Identifying important variables for predicting travel time of freeway with non-recurrent congestion with neural networks publication-title: Neural Comput. Appl. – volume: 35 start-page: 1299 year: 2016 end-page: 1312 ident: b78 article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning? publication-title: IEEE Trans. Med. Imag. – reference: Buric, M., Pobar, M., Ivasic-Kos, M., 2018. Ball detection using YOLO and Mask R-CNN. In: 2018 International Conference on Computational Science and Computational Intelligence. CSCI, pp. 319–323. – volume: 7 start-page: 85042 year: 2019 end-page: 85054 ident: b91 article-title: Effective contexts for UAV vehicle detection publication-title: IEEE Access – volume: 24 start-page: 279 year: 2020 end-page: 289 ident: b23 article-title: Convolutional neural network for recognizing highway traffic congestion publication-title: J. Intell. Transp. Syst. – reference: Pinto, L., Almeida, L., Alizadeh, H., Rowe, A., 2017. Aerial video stream over multi-hop using adaptive tdma slots. In: 2017 IEEE Real-Time Systems Symposium. RTSS, pp. 157–166. – volume: 30 start-page: 3212 year: 2019 end-page: 3232 ident: b98 article-title: Object detection with deep learning: A review publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 75 year: 2022 ident: b95 article-title: Optimization approaches for the urban delivery problem with trucks and drones publication-title: Swarm Evol. Comput. – volume: 137 year: 2022 ident: b69 article-title: Visual attractiveness in vehicle routing via bi-objective optimization publication-title: Comput. Oper. Res. – reference: Yu, D., Deng, L., Dahl, G., 2010. Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition. In: Proc. NIPS Workshop On Deep Learning And Unsupervised Feature Learning. – reference: Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for Autonomous Driving?. In: The KITTI Vision Benchmark Suite. Conference on Computer Vision and Pattern Recognition. CVPR. – volume: 1 start-page: 61 year: 2018 end-page: 72 ident: b34 article-title: Determination and evaluation of traffic congestion costs publication-title: Eur. J. Trans. Infrastructure Res. – year: 2011 ident: b63 article-title: A policy on geometric design of highways and streets – year: 2019 ident: b28 article-title: The VIA annotation software for images, audio and video publication-title: Proceedings of The 27th ACM International Conference On Multimedia – reference: , (Accessed 25 May 2021). – volume: 9 start-page: 368 year: 2017 ident: b5 article-title: Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images publication-title: Remote Sens. – start-page: 1 year: 2021 end-page: 24 ident: b58 article-title: Traffic congestion and economic context: changes of spatiotemporal patterns of traffic travel times during crisis and post-crisis periods publication-title: Transportation – reference: Xu, H., Jiang, C., Liang, X., Li, Z., 2019. Spatial-aware graph relation network for large-scale object detection. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 9298–9307. – volume: 1 start-page: 27 year: 2007 end-page: 64 ident: b72 article-title: Graph clustering publication-title: Comput. Sci. Rev. – volume: 87 year: 2020 ident: b39 article-title: Finding the k shortest paths by ripple-spreading algorithms publication-title: Eng. Appl. Artif. Intell. – volume: 72 start-page: 327 year: 2017 end-page: 334 ident: b3 article-title: Deep learning for decentralized parking lot occupancy detection publication-title: Expert Syst. Appl. – reference: Manibardo, E., Laña, I., Lobo, J., Ser, J.Del., 2020. New Perspectives on the Use of Online Learning for Congestion Level Prediction over Traffic Data. In: 2020 International Joint Conference On Neural Networks. IJCNN, pp. 1–8. – reference: Elloumi, M., Dhaou, R., Escrig, B., Idoudi, H., Saidane, L., 2018. Monitoring road traffic with a UAV-based system. In: 2018 IEEE Wireless Communications And Networking Conference. WCNC, pp. 1–6. – reference: Sommer, L., Schuchert, T., Beyerer, J., 2017. Fast deep vehicle detection in aerial images. In: 2017 IEEE Winter Conference on Applications of Computer Vision. WACV, pp. 311–319. – volume: 56 start-page: 6699 year: 2018 end-page: 6711 ident: b57 article-title: Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 30 start-page: 23 year: 2019 end-page: 40 ident: b9 article-title: A hybrid image dataset toward bridging the gap between real and simulation environments for robotics publication-title: Mach. Vis. Appl. – year: 2020 ident: b81 article-title: Graph clustering with graph neural networks – reference: Sakla, W., Konjevod, G., Mundhenk, T., 2017. Deep multi-modal vehicle detection in aerial ISR imagery. In: 2017 IEEE Winter Conference on Applications of Computer Vision. WACV, pp. 916–923. – volume: 10 year: 2018 ident: b84 article-title: Research on road traffic congestion index based on comprehensive parameters: Taking dalian city as an example publication-title: Adv. Mech. Eng. – volume: 8 start-page: 135 year: 1999 end-page: 142 ident: b93 article-title: Prediction of road traffic using a neural network approach publication-title: Neural Comput. Appl. – year: 2022 ident: b86 article-title: Collaborative truck-drone routing for contactless parcel delivery during the epidemic publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 57 year: 2020 ident: b74 article-title: How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring publication-title: Ecol. Inform. – volume: 32 start-page: 10435 year: 2020 end-page: 10449 ident: b20 article-title: Bus travel time prediction based on deep belief network with back-propagation publication-title: Neural Comput. Appl. – volume: 1 start-page: 269 year: 1959 end-page: 271 ident: b26 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. – volume: 20 start-page: 4424 year: 2020 ident: b60 article-title: Multiple object detection based on clustering and deep learning methods publication-title: Sensors – volume: 82 start-page: 60 year: 2019 end-page: 75 ident: b76 article-title: Extended pheromone-based short-term traffic forecasting models for vehicular systems publication-title: Eng. Appl. Artif. Intell. – volume: 25 start-page: 345 year: 2012 end-page: 358 ident: b27 article-title: A hybrid evolutionary local search with depth first search split procedure for the heterogeneous vehicle routing problems publication-title: Eng. Appl. Artif. Intell. – reference: Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C., 2014. Microsoft coco: Common objects in context. In: European Conference On Computer Vision. pp. 740–755. – start-page: 621 year: 2018 end-page: 635 ident: b73 article-title: Airsim: High-fidelity visual and physical simulation for autonomous vehicles publication-title: Field Serv. Robot. – reference: Florian, Ehemalige Schmidt, Data set for tracking vehicles in aerial image sequences. KIT AIS Vehicles Data Set. Available online: – volume: 10 start-page: 124 year: 2018 ident: b47 article-title: A CNN-based method of vehicle detection from aerial images using hard example mining publication-title: Remote Sens. – year: 2009 ident: b15 article-title: On Bolza optimal control problems with constraints – year: 1998 ident: b48 article-title: Rapidly-exploring random trees: A new tool for path planning – volume: 33 start-page: 8181 year: 2021 end-page: 8190 ident: b19 article-title: Short-term traffic flow prediction based on improved wavelet neural network publication-title: Neural Comput. Appl. – volume: 114 year: 2022 ident: b96 article-title: IGCRRN: Improved graph convolution res-recurrent network for spatio-temporal dependence capturing and traffic flow prediction publication-title: Eng. Appl. Artif. Intell. – start-page: 79 year: 2017 end-page: 91 ident: b92 article-title: Communication and coordination for drone networks publication-title: Ad Hoc Netw. – volume: 21 start-page: 709 year: 2019 ident: b40 article-title: A peak traffic congestion prediction method based on bus driving time publication-title: Entropy – reference: Tang, Z., Naphade, M., Liu, M., Yang, X., Birchfield, S., Wang, S., Kumar, R., Anastasiu, D., Hwang, J., 2019. Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 8797–8806. – volume: 33 start-page: 1785 year: 2021 end-page: 1836 ident: b2 article-title: Bayesian combined neural network for traffic volume short-term forecasting at adjacent intersections publication-title: Neural Comput. Appl. – volume: 10 start-page: 3652 year: 2017 end-page: 3664 ident: b25 article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 17 start-page: 2888 year: 2016 end-page: 2899 ident: b83 article-title: Next road rerouting: A multiagent system for mitigating unexpected urban traffic congestion publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 62 start-page: 3551 year: 2013 end-page: 3568 ident: b65 article-title: Proactive vehicular traffic rerouting for lower travel time publication-title: IEEE Trans. Veh. Technol. – volume: 167 start-page: 1 year: 2020 end-page: 11 ident: b7 article-title: A low-cost UAV framework towards ornamental plant detection and counting in the wild publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 107 year: 2022 ident: b50 article-title: A dynamical artificial bee colony for vehicle routing problem with drones publication-title: Eng. Appl. Artif. Intell. – start-page: 149 year: 2018 end-page: 175 ident: b45 article-title: Automated decision making in road traffic monitoring by on-board unmanned aerial vehicle system publication-title: Computer Vision in Control Systems. Vol. 3 – volume: 116 year: 2022 ident: b4 article-title: Machine learning approach for truck-drones based last-mile delivery in the era of industry 4.0 publication-title: Eng. Appl. Artif. Intell. – reference: Mundhenk, T., Konjevod, G., Sakla, W., Boakye, K., 2016. A large contextual dataset for classification, detection and counting of cars with deep learning. In: European Conference On Computer Vision. pp. 785–800. – volume: 119 start-page: 76 year: 2016 end-page: 92 ident: b99 article-title: Do we need more training data? publication-title: Int. J. Comput. Vis. – volume: 167 start-page: 39 year: 2020 end-page: 53 ident: b85 article-title: Vehicle detection of multi-source remote sensing data using active fine-tuning network publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 30 start-page: 835 year: 2018 end-page: 854 ident: b82 article-title: Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair publication-title: Neural Comput. Appl. – volume: 366 start-page: 177 year: 2016 end-page: 187 ident: b17 article-title: Vehicle detection from highway satellite images via transfer learning publication-title: Inform. Sci. – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b70 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 114 year: 2022 ident: b10 article-title: TAU: A framework for video-based traffic analytics leveraging artificial intelligence and unmanned aerial systems publication-title: Eng. Appl. Artif. Intell. – volume: 20 start-page: 54 year: 2018 end-page: 64 ident: b44 article-title: Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 73 start-page: 43 year: 2017 end-page: 56 ident: b24 article-title: Detection of traffic congestion and incidents from GPS trace analysis publication-title: Expert Syst. Appl. – reference: Fan, Q., Brown, L., Smith, J., 2016. A closer look at Faster R-CNN for vehicle detection. In: 2016 IEEE Intelligent Vehicles Symposium. IV, pp. 124–129. – volume: 109 year: 2022 ident: b41 article-title: A hybrid algorithm for time-dependent vehicle routing problem with soft time windows and Stochastic factors publication-title: Eng. Appl. Artif. Intell. – reference: Hsieh, M., Lin, Y., Hsu, W., 2017. Drone-based object counting by spatially regularized regional proposal network. In: Proceedings of The IEEE International Conference On Computer Vision. pp. 4145–4153. – volume: 34 start-page: 187 year: 2016 end-page: 203 ident: b67 article-title: Vehicle detection in aerial imagery: A small target detection benchmark publication-title: J. Vis. Commun. Image Represent. – volume: 1634 start-page: 93 year: 1998 end-page: 99 ident: b13 article-title: Measuring traffic congestion publication-title: Transp. Res. Rec. – volume: 17 start-page: 2367 year: 2016 end-page: 2380 ident: b46 article-title: Solving the dynamic vehicle routing problem under traffic congestion publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Yang, Y., Liu, F., Wang, P., Luo, P., Liu, X., 2012. Vehicle detection methods from an unmanned aerial vehicle platform. In: 2012 IEEE International Conference on Vehicular Electronics and Safety. ICVES 2012, pp. 411–415. – volume: 18 start-page: 1958 year: 2016 end-page: 1973 ident: b16 article-title: A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2018 ident: b43 article-title: Unity: A general platform for intelligent agents – reference: Juba, B., Le, H., 2019. Precision–recall versus accuracy and the role of large data sets. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. pp. 4039–4048. – volume: 92 start-page: 164 year: 2019 end-page: 174 ident: b97 article-title: Geographical patterns of traffic congestion in growing megacities: Big data analytics from Beijing publication-title: Cities – volume: 4 start-page: 100 year: 1968 end-page: 107 ident: b35 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. – reference: Xia, G., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L., 2018. DOTA: A large-scale dataset for object detection in aerial images. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 3974–3983. – volume: 12 start-page: 989 year: 2020 ident: b77 article-title: HQ-ISNet: High-quality instance segmentation for remote sensing imagery publication-title: Remote Sens. – volume: 20 start-page: 378 year: 2001 end-page: 400 ident: b49 article-title: Randomized kinodynamic planning publication-title: Int. J. Robot. Res. – volume: 3 start-page: 1 year: 2020 end-page: 12 ident: b80 article-title: Training instance segmentation neural network with synthetic datasets for crop seed phenotyping publication-title: Commun. Biol. – volume: 44 start-page: 175 year: 2010 end-page: 192 ident: b22 article-title: A tabu search algorithm for rerouting trains during rail operations publication-title: Transp. Res. B – volume: 19 start-page: 3550 year: 2018 end-page: 3559 ident: b21 article-title: PCNN: Deep convolutional networks for short-term traffic congestion prediction publication-title: IEEE Trans. Intell. Transp. Syst. – reference: He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2961–2969. – reference: Niemirepo, T., Toivonen, J., Viitanen, M., Vanne, J., 2019. Open-source CiThruS simulation environment for real-time 360-degree traffic imaging. In: 2019 IEEE International Conference On Connected Vehicles And Expo. ICCVE, pp. 1–5. – start-page: 1 year: 2021 end-page: 12 ident: b64 article-title: Forecasting vehicular traffic flow using MLP and LSTM publication-title: Neural Comput. Appl. – volume: 122 start-page: 15 year: 2018 end-page: 23 ident: b52 article-title: Unmanned aerial vehicle scheduling problem for traffic monitoring publication-title: Comput. Ind. Eng. – volume: 21 start-page: 193 year: 1998 end-page: 207 ident: b12 article-title: Survey of numerical methods for trajectory optimization publication-title: J. Guid. Control Dyn. – volume: 23 start-page: 463 year: 2010 end-page: 472 ident: b56 article-title: A hybrid particle swarm optimization algorithm for the vehicle routing problem publication-title: Eng. Appl. Artif. Intell. – volume: 32 start-page: 9453 year: 2020 end-page: 9469 ident: b1 article-title: A new spatio-temporal background–foreground bimodal for motion segmentation and detection in Urban traffic scenes publication-title: Neural Comput. Appl. – volume: 94 start-page: 491 year: 2019 end-page: 501 ident: b54 article-title: Real-time UAV rerouting for traffic monitoring with decomposition based multi-objective optimization publication-title: J. Intell. Robot. Syst. – reference: Chen, Y., Lv, Y., Li, Z., Wang, F., 2016. Long short-term memory model for traffic congestion prediction with online open data. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems. ITSC, pp. 132–137. – volume: 25 year: 2017 ident: b8 article-title: Analysis of feature detector and descriptor combinations with a localization experiment for various performance metrics publication-title: Turk. J. Electr. Eng. Comput. Sci. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 770–778. – reference: Niu, H., Gonzalez-Prelcic, N., Heath, R., 2018. A UAV-based traffic monitoring system-invited paper. In: 2018 IEEE 87th Vehicular Technology Conference. VTC Spring, pp. 1–5. – volume: 34 start-page: 239 year: 2000 end-page: 255 ident: b11 article-title: The traffic flow management rerouting problem in air traffic control: A dynamic network flow approach publication-title: Transp. Sci. – start-page: 91 year: 2015 end-page: 99 ident: b68 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – volume: 21 start-page: 193 year: 1998 ident: 10.1016/j.engappai.2022.105769_b12 article-title: Survey of numerical methods for trajectory optimization publication-title: J. Guid. Control Dyn. doi: 10.2514/2.4231 – volume: 73 start-page: 43 year: 2017 ident: 10.1016/j.engappai.2022.105769_b24 article-title: Detection of traffic congestion and incidents from GPS trace analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.12.018 – year: 2018 ident: 10.1016/j.engappai.2022.105769_b43 – volume: 8 start-page: 135 year: 1999 ident: 10.1016/j.engappai.2022.105769_b93 article-title: Prediction of road traffic using a neural network approach publication-title: Neural Comput. Appl. doi: 10.1007/s005210050015 – volume: 57 year: 2020 ident: 10.1016/j.engappai.2022.105769_b74 article-title: How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101085 – volume: 92 start-page: 164 year: 2019 ident: 10.1016/j.engappai.2022.105769_b97 article-title: Geographical patterns of traffic congestion in growing megacities: Big data analytics from Beijing publication-title: Cities doi: 10.1016/j.cities.2019.03.022 – ident: 10.1016/j.engappai.2022.105769_b75 doi: 10.1109/WACV.2017.41 – volume: 44 start-page: 175 year: 2010 ident: 10.1016/j.engappai.2022.105769_b22 article-title: A tabu search algorithm for rerouting trains during rail operations publication-title: Transp. Res. B doi: 10.1016/j.trb.2009.05.004 – volume: 72 start-page: 327 year: 2017 ident: 10.1016/j.engappai.2022.105769_b3 article-title: Deep learning for decentralized parking lot occupancy detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.10.055 – volume: 109 year: 2022 ident: 10.1016/j.engappai.2022.105769_b41 article-title: A hybrid algorithm for time-dependent vehicle routing problem with soft time windows and Stochastic factors publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104606 – ident: 10.1016/j.engappai.2022.105769_b89 doi: 10.1109/CVPR.2019.00952 – volume: 23 start-page: 1611 year: 2013 ident: 10.1016/j.engappai.2022.105769_b51 article-title: Identifying important variables for predicting travel time of freeway with non-recurrent congestion with neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1114-z – volume: 116 year: 2022 ident: 10.1016/j.engappai.2022.105769_b4 article-title: Machine learning approach for truck-drones based last-mile delivery in the era of industry 4.0 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105439 – volume: 119 start-page: 76 year: 2016 ident: 10.1016/j.engappai.2022.105769_b99 article-title: Do we need more training data? publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0812-2 – ident: 10.1016/j.engappai.2022.105769_b33 doi: 10.1109/CVPR.2012.6248074 – ident: 10.1016/j.engappai.2022.105769_b88 doi: 10.1109/CVPR.2018.00418 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.engappai.2022.105769_b70 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 17 start-page: 2888 year: 2016 ident: 10.1016/j.engappai.2022.105769_b83 article-title: Next road rerouting: A multiagent system for mitigating unexpected urban traffic congestion publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2531425 – volume: 56 start-page: 6699 year: 2018 ident: 10.1016/j.engappai.2022.105769_b57 article-title: Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2841808 – volume: 25 start-page: 345 year: 2012 ident: 10.1016/j.engappai.2022.105769_b27 article-title: A hybrid evolutionary local search with depth first search split procedure for the heterogeneous vehicle routing problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2011.10.002 – volume: 137 year: 2022 ident: 10.1016/j.engappai.2022.105769_b69 article-title: Visual attractiveness in vehicle routing via bi-objective optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105507 – ident: 10.1016/j.engappai.2022.105769_b29 doi: 10.1109/WCNC.2018.8377077 – volume: 122 start-page: 15 year: 2018 ident: 10.1016/j.engappai.2022.105769_b52 article-title: Unmanned aerial vehicle scheduling problem for traffic monitoring publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.05.039 – ident: 10.1016/j.engappai.2022.105769_b18 doi: 10.1109/ITSC.2016.7795543 – start-page: 149 year: 2018 ident: 10.1016/j.engappai.2022.105769_b45 article-title: Automated decision making in road traffic monitoring by on-board unmanned aerial vehicle system – ident: 10.1016/j.engappai.2022.105769_b79 doi: 10.1109/CVPR.2019.00900 – volume: 167 start-page: 1 year: 2020 ident: 10.1016/j.engappai.2022.105769_b7 article-title: A low-cost UAV framework towards ornamental plant detection and counting in the wild publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.06.012 – volume: 107 year: 2022 ident: 10.1016/j.engappai.2022.105769_b50 article-title: A dynamical artificial bee colony for vehicle routing problem with drones publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104510 – volume: 75 year: 2022 ident: 10.1016/j.engappai.2022.105769_b95 article-title: Optimization approaches for the urban delivery problem with trucks and drones publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101147 – year: 2011 ident: 10.1016/j.engappai.2022.105769_b63 – ident: 10.1016/j.engappai.2022.105769_b53 doi: 10.1007/978-3-319-10602-1_48 – volume: 33 start-page: 8181 year: 2021 ident: 10.1016/j.engappai.2022.105769_b19 article-title: Short-term traffic flow prediction based on improved wavelet neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04932-5 – volume: 21 start-page: 709 year: 2019 ident: 10.1016/j.engappai.2022.105769_b40 article-title: A peak traffic congestion prediction method based on bus driving time publication-title: Entropy doi: 10.3390/e21070709 – ident: 10.1016/j.engappai.2022.105769_b38 doi: 10.1109/ICCV.2017.446 – ident: 10.1016/j.engappai.2022.105769_b90 doi: 10.1109/ICVES.2012.6294294 – ident: 10.1016/j.engappai.2022.105769_b71 doi: 10.1109/WACV.2017.107 – ident: 10.1016/j.engappai.2022.105769_b42 doi: 10.1609/aaai.v33i01.33014039 – volume: 114 year: 2022 ident: 10.1016/j.engappai.2022.105769_b96 article-title: IGCRRN: Improved graph convolution res-recurrent network for spatio-temporal dependence capturing and traffic flow prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105179 – ident: 10.1016/j.engappai.2022.105769_b61 doi: 10.1109/ICCVE45908.2019.8965242 – volume: 12 start-page: 989 year: 2020 ident: 10.1016/j.engappai.2022.105769_b77 article-title: HQ-ISNet: High-quality instance segmentation for remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs12060989 – volume: 62 start-page: 3551 year: 2013 ident: 10.1016/j.engappai.2022.105769_b65 article-title: Proactive vehicular traffic rerouting for lower travel time publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2013.2260422 – volume: 32 start-page: 10435 year: 2020 ident: 10.1016/j.engappai.2022.105769_b20 article-title: Bus travel time prediction based on deep belief network with back-propagation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04579-x – volume: 94 start-page: 491 year: 2019 ident: 10.1016/j.engappai.2022.105769_b54 article-title: Real-time UAV rerouting for traffic monitoring with decomposition based multi-objective optimization publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-018-0806-8 – ident: 10.1016/j.engappai.2022.105769_b62 doi: 10.1109/VTCSpring.2018.8417546 – year: 2020 ident: 10.1016/j.engappai.2022.105769_b81 – ident: 10.1016/j.engappai.2022.105769_b66 doi: 10.1109/RTSS.2017.00022 – volume: 167 start-page: 39 year: 2020 ident: 10.1016/j.engappai.2022.105769_b85 article-title: Vehicle detection of multi-source remote sensing data using active fine-tuning network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.06.016 – ident: 10.1016/j.engappai.2022.105769_b94 – volume: 17 start-page: 2367 year: 2016 ident: 10.1016/j.engappai.2022.105769_b46 article-title: Solving the dynamic vehicle routing problem under traffic congestion publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2521779 – volume: 9 start-page: 368 year: 2017 ident: 10.1016/j.engappai.2022.105769_b5 article-title: Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images publication-title: Remote Sens. doi: 10.3390/rs9040368 – volume: 30 start-page: 3212 year: 2019 ident: 10.1016/j.engappai.2022.105769_b98 article-title: Object detection with deep learning: A review publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2876865 – volume: 1 start-page: 61 year: 2018 ident: 10.1016/j.engappai.2022.105769_b34 article-title: Determination and evaluation of traffic congestion costs publication-title: Eur. J. Trans. Infrastructure Res. – year: 2009 ident: 10.1016/j.engappai.2022.105769_b15 – volume: 82 start-page: 60 year: 2019 ident: 10.1016/j.engappai.2022.105769_b76 article-title: Extended pheromone-based short-term traffic forecasting models for vehicular systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.03.017 – volume: 10 year: 2018 ident: 10.1016/j.engappai.2022.105769_b84 article-title: Research on road traffic congestion index based on comprehensive parameters: Taking dalian city as an example publication-title: Adv. Mech. Eng. – volume: 10 start-page: 124 year: 2018 ident: 10.1016/j.engappai.2022.105769_b47 article-title: A CNN-based method of vehicle detection from aerial images using hard example mining publication-title: Remote Sens. doi: 10.3390/rs10010124 – volume: 87 year: 2020 ident: 10.1016/j.engappai.2022.105769_b39 article-title: Finding the k shortest paths by ripple-spreading algorithms publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.023 – year: 2019 ident: 10.1016/j.engappai.2022.105769_b28 article-title: The VIA annotation software for images, audio and video – ident: 10.1016/j.engappai.2022.105769_b30 doi: 10.1109/IVS.2016.7535375 – volume: 1 start-page: 269 year: 1959 ident: 10.1016/j.engappai.2022.105769_b26 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. doi: 10.1007/BF01386390 – volume: 32 start-page: 9453 year: 2020 ident: 10.1016/j.engappai.2022.105769_b1 article-title: A new spatio-temporal background–foreground bimodal for motion segmentation and detection in Urban traffic scenes publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04458-5 – volume: 23 start-page: 463 year: 2010 ident: 10.1016/j.engappai.2022.105769_b56 article-title: A hybrid particle swarm optimization algorithm for the vehicle routing problem publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.02.002 – ident: 10.1016/j.engappai.2022.105769_b36 doi: 10.1109/ICCV.2017.322 – volume: 114 year: 2022 ident: 10.1016/j.engappai.2022.105769_b10 article-title: TAU: A framework for video-based traffic analytics leveraging artificial intelligence and unmanned aerial systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105095 – volume: 19 start-page: 3550 year: 2018 ident: 10.1016/j.engappai.2022.105769_b21 article-title: PCNN: Deep convolutional networks for short-term traffic congestion prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2835523 – volume: 54 start-page: 273 year: 2019 ident: 10.1016/j.engappai.2022.105769_b32 article-title: Monitoring traffic in future cities with aerial swarms: Developing and optimizing a behavior-based surveillance algorithm publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.10.031 – volume: 3 start-page: 1 year: 2020 ident: 10.1016/j.engappai.2022.105769_b80 article-title: Training instance segmentation neural network with synthetic datasets for crop seed phenotyping publication-title: Commun. Biol. doi: 10.1038/s42003-020-0905-5 – ident: 10.1016/j.engappai.2022.105769_b14 doi: 10.1109/CSCI46756.2018.00068 – start-page: 1 year: 2021 ident: 10.1016/j.engappai.2022.105769_b64 article-title: Forecasting vehicular traffic flow using MLP and LSTM publication-title: Neural Comput. Appl. – volume: 30 start-page: 835 year: 2018 ident: 10.1016/j.engappai.2022.105769_b82 article-title: Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2696-7 – volume: 24 start-page: 279 year: 2020 ident: 10.1016/j.engappai.2022.105769_b23 article-title: Convolutional neural network for recognizing highway traffic congestion publication-title: J. Intell. Transp. Syst. doi: 10.1080/15472450.2020.1742121 – volume: 51 start-page: 1035 year: 1995 ident: 10.1016/j.engappai.2022.105769_b6 article-title: Dynamical model of traffic congestion and numerical simulation publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.51.1035 – volume: 20 start-page: 378 year: 2001 ident: 10.1016/j.engappai.2022.105769_b49 article-title: Randomized kinodynamic planning publication-title: Int. J. Robot. Res. doi: 10.1177/02783640122067453 – volume: 366 start-page: 177 year: 2016 ident: 10.1016/j.engappai.2022.105769_b17 article-title: Vehicle detection from highway satellite images via transfer learning publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.01.004 – ident: 10.1016/j.engappai.2022.105769_b59 doi: 10.1007/978-3-319-46487-9_48 – volume: 4 start-page: 100 year: 1968 ident: 10.1016/j.engappai.2022.105769_b35 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – start-page: 91 year: 2015 ident: 10.1016/j.engappai.2022.105769_b68 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks – volume: 30 start-page: 23 year: 2019 ident: 10.1016/j.engappai.2022.105769_b9 article-title: A hybrid image dataset toward bridging the gap between real and simulation environments for robotics publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-018-0966-3 – volume: 1634 start-page: 93 year: 1998 ident: 10.1016/j.engappai.2022.105769_b13 article-title: Measuring traffic congestion publication-title: Transp. Res. Rec. doi: 10.3141/1634-12 – volume: 34 start-page: 187 year: 2016 ident: 10.1016/j.engappai.2022.105769_b67 article-title: Vehicle detection in aerial imagery: A small target detection benchmark publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2015.11.002 – ident: 10.1016/j.engappai.2022.105769_b55 doi: 10.1109/IJCNN48605.2020.9207661 – year: 1998 ident: 10.1016/j.engappai.2022.105769_b48 – start-page: 79 year: 2017 ident: 10.1016/j.engappai.2022.105769_b92 article-title: Communication and coordination for drone networks publication-title: Ad Hoc Netw. doi: 10.1007/978-3-319-51204-4_7 – start-page: 621 year: 2018 ident: 10.1016/j.engappai.2022.105769_b73 article-title: Airsim: High-fidelity visual and physical simulation for autonomous vehicles publication-title: Field Serv. Robot. doi: 10.1007/978-3-319-67361-5_40 – volume: 1 start-page: 27 year: 2007 ident: 10.1016/j.engappai.2022.105769_b72 article-title: Graph clustering publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2007.05.001 – ident: 10.1016/j.engappai.2022.105769_b37 doi: 10.1109/CVPR.2016.90 – volume: 20 start-page: 54 year: 2018 ident: 10.1016/j.engappai.2022.105769_b44 article-title: Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2797697 – start-page: 1 year: 2021 ident: 10.1016/j.engappai.2022.105769_b58 article-title: Traffic congestion and economic context: changes of spatiotemporal patterns of traffic travel times during crisis and post-crisis periods publication-title: Transportation – year: 2022 ident: 10.1016/j.engappai.2022.105769_b86 article-title: Collaborative truck-drone routing for contactless parcel delivery during the epidemic publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3181282 – ident: 10.1016/j.engappai.2022.105769_b87 – volume: 33 start-page: 1785 year: 2021 ident: 10.1016/j.engappai.2022.105769_b2 article-title: Bayesian combined neural network for traffic volume short-term forecasting at adjacent intersections publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05115-y – volume: 25 year: 2017 ident: 10.1016/j.engappai.2022.105769_b8 article-title: Analysis of feature detector and descriptor combinations with a localization experiment for various performance metrics publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 7 start-page: 85042 year: 2019 ident: 10.1016/j.engappai.2022.105769_b91 article-title: Effective contexts for UAV vehicle detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923407 – volume: 34 start-page: 239 year: 2000 ident: 10.1016/j.engappai.2022.105769_b11 article-title: The traffic flow management rerouting problem in air traffic control: A dynamic network flow approach publication-title: Transp. Sci. doi: 10.1287/trsc.34.3.239.12300 – ident: 10.1016/j.engappai.2022.105769_b31 – volume: 20 start-page: 4424 year: 2020 ident: 10.1016/j.engappai.2022.105769_b60 article-title: Multiple object detection based on clustering and deep learning methods publication-title: Sensors doi: 10.3390/s20164424 – volume: 10 start-page: 3652 year: 2017 ident: 10.1016/j.engappai.2022.105769_b25 article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2017.2694890 – volume: 18 start-page: 1958 year: 2016 ident: 10.1016/j.engappai.2022.105769_b16 article-title: A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2613997 – volume: 35 start-page: 1299 year: 2016 ident: 10.1016/j.engappai.2022.105769_b78 article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning? publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2016.2535302 |
| SSID | ssj0003846 |
| Score | 2.4796238 |
| Snippet | In digital era, being stranded from very basic telecommunication protocols and internet makes vehicle rerouting-like crucial tools more difficult or even... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105769 |
| SubjectTerms | Graph-based estimation Path optimization Proactive rerouting Route recommendation Traffic congestion detection |
| Title | Traffic congestion-aware graph-based vehicle rerouting framework from aerial imagery |
| URI | https://dx.doi.org/10.1016/j.engappai.2022.105769 |
| Volume | 119 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQuPRSoA_xKMiHXk1ir-3dPSJEFIiaQ5uoua38mIVEEKIQQFz625nZB6VSJQ6cVhp5rNXsvLz-Zoax7yVkGZi8FNInSuisp4VzOhfgtS2tjKhXVJz8Y2QHE30xNdMNdtrWwhCssvH9tU-vvHVD6TbS7C5ns-4vTA7Q3NCY6XebyadUwa5TmmJw_OcvzCPJ6mIdXCxo9asq4fkxLC7dculmeE5Uqhp5S8Dn_wWoV0Gnv80-NtkiP6lfaIdtwOIT22oyR97Y5R2S2uEMLe0zG2MUovYQHA-8dIeE8hfu0a2AVz2qBYWvyB_ginbmK1jd3hMCmpctWotT5Ql3lYby2Q31unj6wib9s_HpQDQjFERIpFoLTNYwSimw0qeZCal0EBNnlAnWoDFHp6P1Pk208lqWWbCgYjAWYq59aXNIvrLO4nYBu4zLAL0oe6UESLVLow8ulxkmSF7hLlnYY6aVWxGa_uI05uK6aIFk86KVd0HyLmp577HuC9-y7rDxJkfefpbiH10pMAy8wbv_Dt4D9oGGzdcItG-ss17dwyGmJGt_VOncEds8OR8ORvQc_vw9fAayoORL |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKDLDwRrzxwGpaO7aTjAiBCrRdKFK3yI8LFEGpSgGx8Ns558FDQmJgtXyWdb5n8t0dIYc5JAmoNGfcRoLJpCWZMTJlYKXONfcoV6E4udvT7Wt5MVCDBjmpa2ECrLKy_aVNL6x1tdKsuNkcD4fNKwwOUN1QmcPnNpUOZsicVCIOGdjR-xfOI0rKah3czcL2b2XCd0cwujHjsRlioihEMfM2IJ9_81DfvM7ZMlmswkV6XN5ohTRgtEqWqtCRVor5hEv1dIZ6bY300Q2F_hAUM97wEwkfgJlXMwFaNKlmwX95-gK34WQ6gcnjc4BA07yGa9FQekJNIaJ0-BCaXbytk-uz0_5Jm1UzFJiLuJgyjNbQTQnQ3MaJcjE34COjhHJaoTZ7I722No6ksJLnidMgvFMafCptrlOINsjs6HEEm4RyBy3PWzkHiKWJvXUm5QlGSFbgKYnbIqrmW-aqBuNhzsV9ViPJ7rKa31ngd1bye4s0P-nGZYuNPynS-lmyH8KSoR_4g3b7H7QHZL7d73ayznnvcocshMnzJRxtl8xOJ8-wh_HJ1O4X8vcB7DfkPQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+congestion-aware+graph-based+vehicle+rerouting+framework+from+aerial+imagery&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Bayraktar%2C+Ertugrul&rft.au=Korkmaz%2C+Burla+Nur&rft.au=Erarslan%2C+Aras+Umut&rft.au=Celebi%2C+Numan&rft.date=2023-03-01&rft.issn=0952-1976&rft.volume=119&rft.spage=105769&rft_id=info:doi/10.1016%2Fj.engappai.2022.105769&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105769 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |