Traffic congestion-aware graph-based vehicle rerouting framework from aerial imagery

In digital era, being stranded from very basic telecommunication protocols and internet makes vehicle rerouting-like crucial tools more difficult or even impossible, especially in times of disaster and emergency. In this study, we propose a modular rerouting framework for only one single vehicle com...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 119; p. 105769
Main Authors Bayraktar, Ertugrul, Korkmaz, Burla Nur, Erarslan, Aras Umut, Celebi, Numan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2023
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2022.105769

Cover

Abstract In digital era, being stranded from very basic telecommunication protocols and internet makes vehicle rerouting-like crucial tools more difficult or even impossible, especially in times of disaster and emergency. In this study, we propose a modular rerouting framework for only one single vehicle composed of visual perception, property estimation and trajectory optimization, which enables to generate optimum paths exploiting aerial imagery. Once the deep network, which is fine-tuned on newly introduced dataset herein named MaVefAI, processes the input, the following module estimates pose, motion direction and speed of detected vehicles. Afterwards, we link the appropriate vehicles via graphs to obtain group properties that pave the way for estimating the traffic congestion level. In the end, we get the output as the optimum path from the independent trajectory optimization module to which required inputs are already sent by preceding modules. We solve the multi-objective cost function subject to velocity and congestion intervals, which comprises distance, traffic congestion level, and angle inconsistency. We employ Dijkstra, A*, RRT, and RRT* to optimize the cost while vast majority of existing works focus to optimize via single method. The fine-tuned segmentation model accuracy becomes more than 98% for vehicle groups thanks to MaVefAI. The extensive experiments reveal that all algorithms follow the same path. However, RRT* achieves the fastest result by examining most of the possible options in less time, which also appears to be the most robust method comparing with the alternatives for route optimization. Our dataset MaVefAI is publicly available here: https://precisioncomputing.sakarya.edu.tr.
AbstractList In digital era, being stranded from very basic telecommunication protocols and internet makes vehicle rerouting-like crucial tools more difficult or even impossible, especially in times of disaster and emergency. In this study, we propose a modular rerouting framework for only one single vehicle composed of visual perception, property estimation and trajectory optimization, which enables to generate optimum paths exploiting aerial imagery. Once the deep network, which is fine-tuned on newly introduced dataset herein named MaVefAI, processes the input, the following module estimates pose, motion direction and speed of detected vehicles. Afterwards, we link the appropriate vehicles via graphs to obtain group properties that pave the way for estimating the traffic congestion level. In the end, we get the output as the optimum path from the independent trajectory optimization module to which required inputs are already sent by preceding modules. We solve the multi-objective cost function subject to velocity and congestion intervals, which comprises distance, traffic congestion level, and angle inconsistency. We employ Dijkstra, A*, RRT, and RRT* to optimize the cost while vast majority of existing works focus to optimize via single method. The fine-tuned segmentation model accuracy becomes more than 98% for vehicle groups thanks to MaVefAI. The extensive experiments reveal that all algorithms follow the same path. However, RRT* achieves the fastest result by examining most of the possible options in less time, which also appears to be the most robust method comparing with the alternatives for route optimization. Our dataset MaVefAI is publicly available here: https://precisioncomputing.sakarya.edu.tr.
ArticleNumber 105769
Author Bayraktar, Ertugrul
Erarslan, Aras Umut
Korkmaz, Burla Nur
Celebi, Numan
Author_xml – sequence: 1
  givenname: Ertugrul
  orcidid: 0000-0002-7387-4783
  surname: Bayraktar
  fullname: Bayraktar, Ertugrul
  email: eb@yildiz.edu.tr
  organization: Department of Mechatronics Engineering, Yildiz Technical University, Besiktas, 34349 Istanbul, Turkey
– sequence: 2
  givenname: Burla Nur
  surname: Korkmaz
  fullname: Korkmaz, Burla Nur
  organization: Department of Information Engineering, University of Padua, Via VIII Febbraio, 2, 35122 Padova PD, Italy
– sequence: 3
  givenname: Aras Umut
  surname: Erarslan
  fullname: Erarslan, Aras Umut
  organization: Department of Information Engineering, University of Padua, Via VIII Febbraio, 2, 35122 Padova PD, Italy
– sequence: 4
  givenname: Numan
  surname: Celebi
  fullname: Celebi, Numan
  organization: Department of Information Systems Engineering, Sakarya University, 54050 Sakarya, Turkey
BookMark eNqFkM1Kw0AUhQepYFt9BckLpM5PZpKAC6X4BwU3dT3czNykU9NMmIktfXtTqhs3ru7hwnfgfDMy6XyHhNwyumCUqbvtArsG-h7cglPOx6fMVXlBpqzIRarGPCFTWkqesjJXV2QW45ZSKopMTcl6HaCunUmM7xqMg_NdCgcImDQB-k1aQUSb7HHjTItJwOC_Btc1SR1ghwcfPsfkdwlgcNAmbgcNhuM1uayhjXjzc-fk4_lpvXxNV-8vb8vHVWoE40MqlcqY4KhYlRfS5AzQCpBcGiVZISxkVlVVLjJeZawujEJujVRoy6yqVYliTu7PvSb4GAPW2rgBThuGAK7VjOqTIb3Vv4b0yZA-Gxpx9Qfvw7ggHP8HH84gjuP2DoOOxmFn0LqAZtDWu_8qvgGxIIht
CitedBy_id crossref_primary_10_1016_j_compeleceng_2025_110082
crossref_primary_10_1016_j_engappai_2023_106656
crossref_primary_10_1016_j_dajour_2025_100558
crossref_primary_10_1109_JSTARS_2024_3382389
crossref_primary_10_1109_TVT_2024_3496513
crossref_primary_10_1109_TGRS_2024_3376456
crossref_primary_10_3390_w17010068
crossref_primary_10_1109_TGRS_2024_3428360
crossref_primary_10_3390_buildings14082324
crossref_primary_10_3390_buildings15010127
crossref_primary_10_1016_j_patrec_2023_05_031
crossref_primary_10_1109_TGRS_2023_3343453
crossref_primary_10_1007_s00521_024_10429_2
crossref_primary_10_26552_com_C_2023_074
crossref_primary_10_3390_app13105896
crossref_primary_10_1016_j_imavis_2024_105336
crossref_primary_10_1016_j_engappai_2024_108135
crossref_primary_10_1109_TGRS_2024_3353192
Cites_doi 10.2514/2.4231
10.1016/j.eswa.2016.12.018
10.1007/s005210050015
10.1016/j.ecoinf.2020.101085
10.1016/j.cities.2019.03.022
10.1109/WACV.2017.41
10.1016/j.trb.2009.05.004
10.1016/j.eswa.2016.10.055
10.1016/j.engappai.2021.104606
10.1109/CVPR.2019.00952
10.1007/s00521-012-1114-z
10.1016/j.engappai.2022.105439
10.1007/s11263-015-0812-2
10.1109/CVPR.2012.6248074
10.1109/CVPR.2018.00418
10.1007/s11263-015-0816-y
10.1109/TITS.2016.2531425
10.1109/TGRS.2018.2841808
10.1016/j.engappai.2011.10.002
10.1016/j.cor.2021.105507
10.1109/WCNC.2018.8377077
10.1016/j.cie.2018.05.039
10.1109/ITSC.2016.7795543
10.1109/CVPR.2019.00900
10.1016/j.isprsjprs.2020.06.012
10.1016/j.engappai.2021.104510
10.1016/j.swevo.2022.101147
10.1007/978-3-319-10602-1_48
10.1007/s00521-020-04932-5
10.3390/e21070709
10.1109/ICCV.2017.446
10.1109/ICVES.2012.6294294
10.1109/WACV.2017.107
10.1609/aaai.v33i01.33014039
10.1016/j.engappai.2022.105179
10.1109/ICCVE45908.2019.8965242
10.3390/rs12060989
10.1109/TVT.2013.2260422
10.1007/s00521-019-04579-x
10.1007/s10846-018-0806-8
10.1109/VTCSpring.2018.8417546
10.1109/RTSS.2017.00022
10.1016/j.isprsjprs.2020.06.016
10.1109/TITS.2016.2521779
10.3390/rs9040368
10.1109/TNNLS.2018.2876865
10.1016/j.engappai.2019.03.017
10.3390/rs10010124
10.1016/j.engappai.2019.08.023
10.1109/IVS.2016.7535375
10.1007/BF01386390
10.1007/s00521-019-04458-5
10.1016/j.engappai.2010.02.002
10.1109/ICCV.2017.322
10.1016/j.engappai.2022.105095
10.1109/TITS.2018.2835523
10.1016/j.cogsys.2018.10.031
10.1038/s42003-020-0905-5
10.1109/CSCI46756.2018.00068
10.1007/s00521-016-2696-7
10.1080/15472450.2020.1742121
10.1103/PhysRevE.51.1035
10.1177/02783640122067453
10.1016/j.ins.2016.01.004
10.1007/978-3-319-46487-9_48
10.1109/TSSC.1968.300136
10.1007/s00138-018-0966-3
10.3141/1634-12
10.1016/j.jvcir.2015.11.002
10.1109/IJCNN48605.2020.9207661
10.1007/978-3-319-51204-4_7
10.1007/978-3-319-67361-5_40
10.1016/j.cosrev.2007.05.001
10.1109/CVPR.2016.90
10.1109/TITS.2018.2797697
10.1109/TITS.2022.3181282
10.1007/s00521-020-05115-y
10.1109/ACCESS.2019.2923407
10.1287/trsc.34.3.239.12300
10.3390/s20164424
10.1109/JSTARS.2017.2694890
10.1109/TITS.2016.2613997
10.1109/TMI.2016.2535302
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2022.105769
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2022_105769
S095219762200759X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-5664132e61b785c71aed3a525c65183da4d6bb7342b41f8c6e2dc56ed94bf69e3
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Sat Oct 25 05:29:50 EDT 2025
Thu Apr 24 22:54:35 EDT 2025
Fri Feb 23 02:39:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Path optimization
Traffic congestion detection
Graph-based estimation
Proactive rerouting
Route recommendation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-5664132e61b785c71aed3a525c65183da4d6bb7342b41f8c6e2dc56ed94bf69e3
ORCID 0000-0002-7387-4783
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2022_105769
crossref_primary_10_1016_j_engappai_2022_105769
elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105769
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hart, Nilsson, Raphael (b35) 1968; 4
Elloumi, M., Dhaou, R., Escrig, B., Idoudi, H., Saidane, L., 2018. Monitoring road traffic with a UAV-based system. In: 2018 IEEE Wireless Communications And Networking Conference. WCNC, pp. 1–6.
Al-Smadi, Abdulrahim, Seman, Salam (b1) 2020; 32
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b70) 2015; 115
Shahinfar, Meek, Falzon (b74) 2020; 57
Niu, H., Gonzalez-Prelcic, N., Heath, R., 2018. A UAV-based traffic monitoring system-invited paper. In: 2018 IEEE 87th Vehicular Technology Conference. VTC Spring, pp. 1–5.
Wu, M., Zhang, G., Bi, N., Xie, L., Hu, Y., Shi, Z., Intelligence, Y., 2019. Multiview Vehicle Tracking by Graph Matching Model. In: CVPR Workshops. pp. 29–36.
Chen, Wang, Yuan, Jia, Yao (b20) 2020; 32
Shah, Dey, Lovett, Kapoor (b73) 2018
Kim, Ong, Cheong, Tan (b46) 2016; 17
Pan, Popa, Zeitouni, Borcea (b65) 2013; 62
D’Andrea, Marcelloni (b24) 2017; 73
Florian, Ehemalige Schmidt, Data set for tracking vehicles in aerial image sequences. KIT AIS Vehicles Data Set. Available online
Ke, Li, Tang, Pan, Wang (b44) 2018; 20
Amato, Carrara, Falchi, Gennaro, Meghini, Vairo (b3) 2017; 72
Wang, Djahel, Zhang, McManis (b83) 2016; 17
Betts (b12) 1998; 21
Yang, Y., Liu, F., Wang, P., Luo, P., Liu, X., 2012. Vehicle detection methods from an unmanned aerial vehicle platform. In: 2012 IEEE International Conference on Vehicular Electronics and Safety. ICVES 2012, pp. 411–415.
LaValle (b48) 1998
Lei, Cui, Li (b50) 2022; 107
Buric, M., Pobar, M., Ivasic-Kos, M., 2018. Ball detection using YOLO and Mask R-CNN. In: 2018 International Conference on Computational Science and Computational Intelligence. CSCI, pp. 319–323.
Bando, Hasebe, Nakayama, Shibata, Sugiyama (b6) 1995; 51
Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C., 2014. Microsoft coco: Common objects in context. In: European Conference On Computer Vision. pp. 740–755.
AlKheder, Alkhamees, Almutairi, Alkhedher (b2) 2021; 33
Razakarivony, Jurie (b67) 2016; 34
LaValle, Kuffner (b49) 2001; 20
Tang, Z., Naphade, M., Liu, M., Yang, X., Birchfield, S., Wang, S., Kumar, R., Anastasiu, D., Hwang, J., 2019. Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 8797–8806.
Marinakis, Marinaki, Dounias (b56) 2010; 23
Audebert, Le Saux, Lefèvre (b5) 2017; 9
Chen, Song, Zhao (b19) 2021; 33
Wang, Guo, Yu (b84) 2018; 10
Hsieh, M., Lin, Y., Hsu, W., 2017. Drone-based object counting by spatially regularized regional proposal network. In: Proceedings of The IEEE International Conference On Computer Vision. pp. 4145–4153.
Huang, Xia, Li, Li, Li (b40) 2019; 21
Zhang, Yin, Chen, Su (b96) 2022; 114
Deng, Sun, Zhou, Zhao, Zou (b25) 2017; 10
Hu, Zhang, Zhang, Zhang, Li, Leeson, Liao (b39) 2020; 87
Benjdira, Koubaa, Azar, Khan, Ammar, Boulila (b10) 2022; 114
Arishi, Krishnan, Arishi (b4) 2022; 116
Hansen (b34) 2018; 1
Liu, Peng, Zhang (b54) 2019; 94
Rocha, Aloise, Aloise, Contardo (b69) 2022; 137
Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (b78) 2016; 35
Niemirepo, T., Toivonen, J., Viitanen, M., Vanne, J., 2019. Open-source CiThruS simulation environment for real-time 360-degree traffic imaging. In: 2019 IEEE International Conference On Connected Vehicles And Expo. ICCVE, pp. 1–5.
Kim, Bodunkov (b45) 2018
Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for Autonomous Driving?. In: The KITTI Vision Benchmark Suite. Conference on Computer Vision and Pattern Recognition. CVPR.
Yu, D., Deng, L., Dahl, G., 2010. Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition. In: Proc. NIPS Workshop On Deep Learning And Unsupervised Feature Learning.
Cannarsa, Frankowska, Marchini (b15) 2009
Xu, H., Jiang, C., Liang, X., Li, Z., 2019. Spatial-aware graph relation network for large-scale object detection. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 9298–9307.
Li, Chen (b51) 2013; 23
Pinto, L., Almeida, L., Alizadeh, H., Rowe, A., 2017. Aerial video stream over multi-hop using adaptive tdma slots. In: 2017 IEEE Real-Time Systems Symposium. RTSS, pp. 157–166.
Corman, D’Ariano, Pacciarelli, Pranzo (b22) 2010; 44
Oliveira, Rampinelli, Tozatto, Andreão, Müller (b64) 2021
Dijkstra (b26) 1959; 1
Cao, Wang, Li (b17) 2016; 366
Juba, B., Le, H., 2019. Precision–recall versus accuracy and the role of large data sets. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. pp. 4039–4048.
Yang, Xie, Yang (b91) 2019; 7
Jie, Liu, Sun (b41) 2022; 109
Officials (b63) 2011
Schaeffer (b72) 2007; 1
Zhu, Vondrick, Fowlkes, Ramanan (b99) 2016; 119
Chen, Yu, Liu (b21) 2018; 19
Manibardo, E., Laña, I., Lobo, J., Ser, J.Del., 2020. New Perspectives on the Use of Online Learning for Congestion Level Prediction over Traffic Data. In: 2020 International Joint Conference On Neural Networks. IJCNN, pp. 1–8.
Bayraktar, Boyraz (b8) 2017; 25
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 770–778.
Garcia-Aunon, Roldán, Barrientos (b32) 2019; 54
Bayraktar, Basarkan, Celebi (b7) 2020; 167
Juliani, Berges, Vckay, Gao, Henry, Mattar, Lange (b43) 2018
Bertsimas, Patterson (b11) 2000; 34
Koga, Miyazaki, Shibasaki (b47) 2018; 10
Moyano, Stepniak, Moya-Gomez, Garcia-Palomares (b58) 2021
Li, Zhen, Wang, Lv, Qu (b52) 2018; 122
Bayraktar, Yigit, Boyraz (b9) 2019; 30
(Accessed 25 May 2021).
Wu, Li, Hong, Tian, Tao, Du (b85) 2020; 167
Vahdani, Veysmoradi, Shekari, Mousavi (b82) 2018; 30
Cui, Yuan, Liu, Xu, Song (b23) 2020; 24
Zhao, Zheng, Xu, Wu (b98) 2019; 30
Yasdi (b93) 1999; 8
Sommer, L., Schuchert, T., Beyerer, J., 2017. Fast deep vehicle detection in aerial images. In: 2017 IEEE Winter Conference on Applications of Computer Vision. WACV, pp. 311–319.
Zhao, Hu (b97) 2019; 92
He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2961–2969.
Chen, Y., Lv, Y., Li, Z., Wang, F., 2016. Long short-term memory model for traffic congestion prediction with online open data. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems. ITSC, pp. 132–137.
Sakla, W., Konjevod, G., Mundhenk, T., 2017. Deep multi-modal vehicle detection in aerial ISR imagery. In: 2017 IEEE Winter Conference on Applications of Computer Vision. WACV, pp. 916–923.
Wu, Mao, Luo, Xu, Shi, Suganthan (b86) 2022
Yanmaz, Quaritsch, Yahyanejad, Rinner, Hellwagner, Bettstetter (b92) 2017
Ren, He, Girshick, Sun (b68) 2015
Toda, Okura, Ito, Okada, Kinoshita, Tsuji, Saisho (b80) 2020; 3
Soon, Lim, Parthiban (b76) 2019; 82
Boarnet, Kim, Parkany (b13) 1998; 1634
Dutta, Zisserman (b28) 2019
Xia, G., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L., 2018. DOTA: A large-scale dataset for object detection in aerial images. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 3974–3983.
Tsitsulin, Palowitch, Perozzi, Müller (b81) 2020
Mou, Zhu (b57) 2018; 56
Cao, Jiang, Zhang, Guo (b16) 2016; 18
Nguyen, Lee, Bae, Lee (b60) 2020; 20
Mundhenk, T., Konjevod, G., Sakla, W., Boakye, K., 2016. A large contextual dataset for classification, detection and counting of cars with deep learning. In: European Conference On Computer Vision. pp. 785–800.
Zang, Jiang, Liang, Dong, Lu, Mladenovic (b95) 2022; 75
Duhamel, Lacomme, Prodhon (b27) 2012; 25
Fan, Q., Brown, L., Smith, J., 2016. A closer look at Faster R-CNN for vehicle detection. In: 2016 IEEE Intelligent Vehicles Symposium. IV, pp. 124–129.
Su, Wei, Liu, Liang, Wang, Shi, Zhang (b77) 2020; 12
Cannarsa (10.1016/j.engappai.2022.105769_b15) 2009
Lei (10.1016/j.engappai.2022.105769_b50) 2022; 107
Wang (10.1016/j.engappai.2022.105769_b84) 2018; 10
Li (10.1016/j.engappai.2022.105769_b51) 2013; 23
Zhang (10.1016/j.engappai.2022.105769_b96) 2022; 114
Shahinfar (10.1016/j.engappai.2022.105769_b74) 2020; 57
Juliani (10.1016/j.engappai.2022.105769_b43) 2018
10.1016/j.engappai.2022.105769_b31
LaValle (10.1016/j.engappai.2022.105769_b48) 1998
10.1016/j.engappai.2022.105769_b30
10.1016/j.engappai.2022.105769_b36
10.1016/j.engappai.2022.105769_b33
Audebert (10.1016/j.engappai.2022.105769_b5) 2017; 9
10.1016/j.engappai.2022.105769_b37
10.1016/j.engappai.2022.105769_b38
Hansen (10.1016/j.engappai.2022.105769_b34) 2018; 1
Marinakis (10.1016/j.engappai.2022.105769_b56) 2010; 23
Wu (10.1016/j.engappai.2022.105769_b86) 2022
Chen (10.1016/j.engappai.2022.105769_b20) 2020; 32
Dijkstra (10.1016/j.engappai.2022.105769_b26) 1959; 1
Bayraktar (10.1016/j.engappai.2022.105769_b9) 2019; 30
Zang (10.1016/j.engappai.2022.105769_b95) 2022; 75
Betts (10.1016/j.engappai.2022.105769_b12) 1998; 21
Wu (10.1016/j.engappai.2022.105769_b85) 2020; 167
Bertsimas (10.1016/j.engappai.2022.105769_b11) 2000; 34
Yang (10.1016/j.engappai.2022.105769_b91) 2019; 7
10.1016/j.engappai.2022.105769_b42
AlKheder (10.1016/j.engappai.2022.105769_b2) 2021; 33
Kim (10.1016/j.engappai.2022.105769_b46) 2016; 17
Wang (10.1016/j.engappai.2022.105769_b83) 2016; 17
Chen (10.1016/j.engappai.2022.105769_b21) 2018; 19
10.1016/j.engappai.2022.105769_b53
Razakarivony (10.1016/j.engappai.2022.105769_b67) 2016; 34
10.1016/j.engappai.2022.105769_b55
Zhu (10.1016/j.engappai.2022.105769_b99) 2016; 119
10.1016/j.engappai.2022.105769_b59
Mou (10.1016/j.engappai.2022.105769_b57) 2018; 56
Yanmaz (10.1016/j.engappai.2022.105769_b92) 2017
Yasdi (10.1016/j.engappai.2022.105769_b93) 1999; 8
Corman (10.1016/j.engappai.2022.105769_b22) 2010; 44
10.1016/j.engappai.2022.105769_b61
10.1016/j.engappai.2022.105769_b62
Cao (10.1016/j.engappai.2022.105769_b17) 2016; 366
Hart (10.1016/j.engappai.2022.105769_b35) 1968; 4
Hu (10.1016/j.engappai.2022.105769_b39) 2020; 87
10.1016/j.engappai.2022.105769_b66
Tsitsulin (10.1016/j.engappai.2022.105769_b81) 2020
Toda (10.1016/j.engappai.2022.105769_b80) 2020; 3
Kim (10.1016/j.engappai.2022.105769_b45) 2018
Deng (10.1016/j.engappai.2022.105769_b25) 2017; 10
Zhao (10.1016/j.engappai.2022.105769_b97) 2019; 92
Oliveira (10.1016/j.engappai.2022.105769_b64) 2021
Pan (10.1016/j.engappai.2022.105769_b65) 2013; 62
LaValle (10.1016/j.engappai.2022.105769_b49) 2001; 20
10.1016/j.engappai.2022.105769_b71
Officials (10.1016/j.engappai.2022.105769_b63) 2011
10.1016/j.engappai.2022.105769_b75
10.1016/j.engappai.2022.105769_b79
Soon (10.1016/j.engappai.2022.105769_b76) 2019; 82
Vahdani (10.1016/j.engappai.2022.105769_b82) 2018; 30
Zhao (10.1016/j.engappai.2022.105769_b98) 2019; 30
Boarnet (10.1016/j.engappai.2022.105769_b13) 1998; 1634
Koga (10.1016/j.engappai.2022.105769_b47) 2018; 10
Chen (10.1016/j.engappai.2022.105769_b19) 2021; 33
D’Andrea (10.1016/j.engappai.2022.105769_b24) 2017; 73
10.1016/j.engappai.2022.105769_b87
Huang (10.1016/j.engappai.2022.105769_b40) 2019; 21
10.1016/j.engappai.2022.105769_b88
10.1016/j.engappai.2022.105769_b89
Russakovsky (10.1016/j.engappai.2022.105769_b70) 2015; 115
Arishi (10.1016/j.engappai.2022.105769_b4) 2022; 116
Cui (10.1016/j.engappai.2022.105769_b23) 2020; 24
Li (10.1016/j.engappai.2022.105769_b52) 2018; 122
10.1016/j.engappai.2022.105769_b90
Bayraktar (10.1016/j.engappai.2022.105769_b8) 2017; 25
Shah (10.1016/j.engappai.2022.105769_b73) 2018
Ren (10.1016/j.engappai.2022.105769_b68) 2015
10.1016/j.engappai.2022.105769_b94
Liu (10.1016/j.engappai.2022.105769_b54) 2019; 94
Tajbakhsh (10.1016/j.engappai.2022.105769_b78) 2016; 35
Benjdira (10.1016/j.engappai.2022.105769_b10) 2022; 114
Schaeffer (10.1016/j.engappai.2022.105769_b72) 2007; 1
Su (10.1016/j.engappai.2022.105769_b77) 2020; 12
10.1016/j.engappai.2022.105769_b14
10.1016/j.engappai.2022.105769_b18
Bayraktar (10.1016/j.engappai.2022.105769_b7) 2020; 167
Jie (10.1016/j.engappai.2022.105769_b41) 2022; 109
Garcia-Aunon (10.1016/j.engappai.2022.105769_b32) 2019; 54
Rocha (10.1016/j.engappai.2022.105769_b69) 2022; 137
Ke (10.1016/j.engappai.2022.105769_b44) 2018; 20
Nguyen (10.1016/j.engappai.2022.105769_b60) 2020; 20
Amato (10.1016/j.engappai.2022.105769_b3) 2017; 72
Cao (10.1016/j.engappai.2022.105769_b16) 2016; 18
Duhamel (10.1016/j.engappai.2022.105769_b27) 2012; 25
Al-Smadi (10.1016/j.engappai.2022.105769_b1) 2020; 32
Bando (10.1016/j.engappai.2022.105769_b6) 1995; 51
Moyano (10.1016/j.engappai.2022.105769_b58) 2021
10.1016/j.engappai.2022.105769_b29
Dutta (10.1016/j.engappai.2022.105769_b28) 2019
References_xml – volume: 51
  start-page: 1035
  year: 1995
  ident: b6
  article-title: Dynamical model of traffic congestion and numerical simulation
  publication-title: Phys. Rev. E.
– volume: 54
  start-page: 273
  year: 2019
  end-page: 286
  ident: b32
  article-title: Monitoring traffic in future cities with aerial swarms: Developing and optimizing a behavior-based surveillance algorithm
  publication-title: Cogn. Syst. Res.
– reference: Wu, M., Zhang, G., Bi, N., Xie, L., Hu, Y., Shi, Z., Intelligence, Y., 2019. Multiview Vehicle Tracking by Graph Matching Model. In: CVPR Workshops. pp. 29–36.
– volume: 23
  start-page: 1611
  year: 2013
  end-page: 1629
  ident: b51
  article-title: Identifying important variables for predicting travel time of freeway with non-recurrent congestion with neural networks
  publication-title: Neural Comput. Appl.
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  ident: b78
  article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning?
  publication-title: IEEE Trans. Med. Imag.
– reference: Buric, M., Pobar, M., Ivasic-Kos, M., 2018. Ball detection using YOLO and Mask R-CNN. In: 2018 International Conference on Computational Science and Computational Intelligence. CSCI, pp. 319–323.
– volume: 7
  start-page: 85042
  year: 2019
  end-page: 85054
  ident: b91
  article-title: Effective contexts for UAV vehicle detection
  publication-title: IEEE Access
– volume: 24
  start-page: 279
  year: 2020
  end-page: 289
  ident: b23
  article-title: Convolutional neural network for recognizing highway traffic congestion
  publication-title: J. Intell. Transp. Syst.
– reference: Pinto, L., Almeida, L., Alizadeh, H., Rowe, A., 2017. Aerial video stream over multi-hop using adaptive tdma slots. In: 2017 IEEE Real-Time Systems Symposium. RTSS, pp. 157–166.
– volume: 30
  start-page: 3212
  year: 2019
  end-page: 3232
  ident: b98
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 75
  year: 2022
  ident: b95
  article-title: Optimization approaches for the urban delivery problem with trucks and drones
  publication-title: Swarm Evol. Comput.
– volume: 137
  year: 2022
  ident: b69
  article-title: Visual attractiveness in vehicle routing via bi-objective optimization
  publication-title: Comput. Oper. Res.
– reference: Yu, D., Deng, L., Dahl, G., 2010. Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition. In: Proc. NIPS Workshop On Deep Learning And Unsupervised Feature Learning.
– reference: Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for Autonomous Driving?. In: The KITTI Vision Benchmark Suite. Conference on Computer Vision and Pattern Recognition. CVPR.
– volume: 1
  start-page: 61
  year: 2018
  end-page: 72
  ident: b34
  article-title: Determination and evaluation of traffic congestion costs
  publication-title: Eur. J. Trans. Infrastructure Res.
– year: 2011
  ident: b63
  article-title: A policy on geometric design of highways and streets
– year: 2019
  ident: b28
  article-title: The VIA annotation software for images, audio and video
  publication-title: Proceedings of The 27th ACM International Conference On Multimedia
– reference: , (Accessed 25 May 2021).
– volume: 9
  start-page: 368
  year: 2017
  ident: b5
  article-title: Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images
  publication-title: Remote Sens.
– start-page: 1
  year: 2021
  end-page: 24
  ident: b58
  article-title: Traffic congestion and economic context: changes of spatiotemporal patterns of traffic travel times during crisis and post-crisis periods
  publication-title: Transportation
– reference: Xu, H., Jiang, C., Liang, X., Li, Z., 2019. Spatial-aware graph relation network for large-scale object detection. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 9298–9307.
– volume: 1
  start-page: 27
  year: 2007
  end-page: 64
  ident: b72
  article-title: Graph clustering
  publication-title: Comput. Sci. Rev.
– volume: 87
  year: 2020
  ident: b39
  article-title: Finding the k shortest paths by ripple-spreading algorithms
  publication-title: Eng. Appl. Artif. Intell.
– volume: 72
  start-page: 327
  year: 2017
  end-page: 334
  ident: b3
  article-title: Deep learning for decentralized parking lot occupancy detection
  publication-title: Expert Syst. Appl.
– reference: Manibardo, E., Laña, I., Lobo, J., Ser, J.Del., 2020. New Perspectives on the Use of Online Learning for Congestion Level Prediction over Traffic Data. In: 2020 International Joint Conference On Neural Networks. IJCNN, pp. 1–8.
– reference: Elloumi, M., Dhaou, R., Escrig, B., Idoudi, H., Saidane, L., 2018. Monitoring road traffic with a UAV-based system. In: 2018 IEEE Wireless Communications And Networking Conference. WCNC, pp. 1–6.
– reference: Sommer, L., Schuchert, T., Beyerer, J., 2017. Fast deep vehicle detection in aerial images. In: 2017 IEEE Winter Conference on Applications of Computer Vision. WACV, pp. 311–319.
– volume: 56
  start-page: 6699
  year: 2018
  end-page: 6711
  ident: b57
  article-title: Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 30
  start-page: 23
  year: 2019
  end-page: 40
  ident: b9
  article-title: A hybrid image dataset toward bridging the gap between real and simulation environments for robotics
  publication-title: Mach. Vis. Appl.
– year: 2020
  ident: b81
  article-title: Graph clustering with graph neural networks
– reference: Sakla, W., Konjevod, G., Mundhenk, T., 2017. Deep multi-modal vehicle detection in aerial ISR imagery. In: 2017 IEEE Winter Conference on Applications of Computer Vision. WACV, pp. 916–923.
– volume: 10
  year: 2018
  ident: b84
  article-title: Research on road traffic congestion index based on comprehensive parameters: Taking dalian city as an example
  publication-title: Adv. Mech. Eng.
– volume: 8
  start-page: 135
  year: 1999
  end-page: 142
  ident: b93
  article-title: Prediction of road traffic using a neural network approach
  publication-title: Neural Comput. Appl.
– year: 2022
  ident: b86
  article-title: Collaborative truck-drone routing for contactless parcel delivery during the epidemic
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 57
  year: 2020
  ident: b74
  article-title: How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring
  publication-title: Ecol. Inform.
– volume: 32
  start-page: 10435
  year: 2020
  end-page: 10449
  ident: b20
  article-title: Bus travel time prediction based on deep belief network with back-propagation
  publication-title: Neural Comput. Appl.
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: b26
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
– volume: 20
  start-page: 4424
  year: 2020
  ident: b60
  article-title: Multiple object detection based on clustering and deep learning methods
  publication-title: Sensors
– volume: 82
  start-page: 60
  year: 2019
  end-page: 75
  ident: b76
  article-title: Extended pheromone-based short-term traffic forecasting models for vehicular systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 25
  start-page: 345
  year: 2012
  end-page: 358
  ident: b27
  article-title: A hybrid evolutionary local search with depth first search split procedure for the heterogeneous vehicle routing problems
  publication-title: Eng. Appl. Artif. Intell.
– reference: Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C., 2014. Microsoft coco: Common objects in context. In: European Conference On Computer Vision. pp. 740–755.
– start-page: 621
  year: 2018
  end-page: 635
  ident: b73
  article-title: Airsim: High-fidelity visual and physical simulation for autonomous vehicles
  publication-title: Field Serv. Robot.
– reference: Florian, Ehemalige Schmidt, Data set for tracking vehicles in aerial image sequences. KIT AIS Vehicles Data Set. Available online:
– volume: 10
  start-page: 124
  year: 2018
  ident: b47
  article-title: A CNN-based method of vehicle detection from aerial images using hard example mining
  publication-title: Remote Sens.
– year: 2009
  ident: b15
  article-title: On Bolza optimal control problems with constraints
– year: 1998
  ident: b48
  article-title: Rapidly-exploring random trees: A new tool for path planning
– volume: 33
  start-page: 8181
  year: 2021
  end-page: 8190
  ident: b19
  article-title: Short-term traffic flow prediction based on improved wavelet neural network
  publication-title: Neural Comput. Appl.
– volume: 114
  year: 2022
  ident: b96
  article-title: IGCRRN: Improved graph convolution res-recurrent network for spatio-temporal dependence capturing and traffic flow prediction
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 79
  year: 2017
  end-page: 91
  ident: b92
  article-title: Communication and coordination for drone networks
  publication-title: Ad Hoc Netw.
– volume: 21
  start-page: 709
  year: 2019
  ident: b40
  article-title: A peak traffic congestion prediction method based on bus driving time
  publication-title: Entropy
– reference: Tang, Z., Naphade, M., Liu, M., Yang, X., Birchfield, S., Wang, S., Kumar, R., Anastasiu, D., Hwang, J., 2019. Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 8797–8806.
– volume: 33
  start-page: 1785
  year: 2021
  end-page: 1836
  ident: b2
  article-title: Bayesian combined neural network for traffic volume short-term forecasting at adjacent intersections
  publication-title: Neural Comput. Appl.
– volume: 10
  start-page: 3652
  year: 2017
  end-page: 3664
  ident: b25
  article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 17
  start-page: 2888
  year: 2016
  end-page: 2899
  ident: b83
  article-title: Next road rerouting: A multiagent system for mitigating unexpected urban traffic congestion
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 62
  start-page: 3551
  year: 2013
  end-page: 3568
  ident: b65
  article-title: Proactive vehicular traffic rerouting for lower travel time
  publication-title: IEEE Trans. Veh. Technol.
– volume: 167
  start-page: 1
  year: 2020
  end-page: 11
  ident: b7
  article-title: A low-cost UAV framework towards ornamental plant detection and counting in the wild
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 107
  year: 2022
  ident: b50
  article-title: A dynamical artificial bee colony for vehicle routing problem with drones
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 149
  year: 2018
  end-page: 175
  ident: b45
  article-title: Automated decision making in road traffic monitoring by on-board unmanned aerial vehicle system
  publication-title: Computer Vision in Control Systems. Vol. 3
– volume: 116
  year: 2022
  ident: b4
  article-title: Machine learning approach for truck-drones based last-mile delivery in the era of industry 4.0
  publication-title: Eng. Appl. Artif. Intell.
– reference: Mundhenk, T., Konjevod, G., Sakla, W., Boakye, K., 2016. A large contextual dataset for classification, detection and counting of cars with deep learning. In: European Conference On Computer Vision. pp. 785–800.
– volume: 119
  start-page: 76
  year: 2016
  end-page: 92
  ident: b99
  article-title: Do we need more training data?
  publication-title: Int. J. Comput. Vis.
– volume: 167
  start-page: 39
  year: 2020
  end-page: 53
  ident: b85
  article-title: Vehicle detection of multi-source remote sensing data using active fine-tuning network
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 30
  start-page: 835
  year: 2018
  end-page: 854
  ident: b82
  article-title: Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair
  publication-title: Neural Comput. Appl.
– volume: 366
  start-page: 177
  year: 2016
  end-page: 187
  ident: b17
  article-title: Vehicle detection from highway satellite images via transfer learning
  publication-title: Inform. Sci.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b70
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 114
  year: 2022
  ident: b10
  article-title: TAU: A framework for video-based traffic analytics leveraging artificial intelligence and unmanned aerial systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 20
  start-page: 54
  year: 2018
  end-page: 64
  ident: b44
  article-title: Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 73
  start-page: 43
  year: 2017
  end-page: 56
  ident: b24
  article-title: Detection of traffic congestion and incidents from GPS trace analysis
  publication-title: Expert Syst. Appl.
– reference: Fan, Q., Brown, L., Smith, J., 2016. A closer look at Faster R-CNN for vehicle detection. In: 2016 IEEE Intelligent Vehicles Symposium. IV, pp. 124–129.
– volume: 109
  year: 2022
  ident: b41
  article-title: A hybrid algorithm for time-dependent vehicle routing problem with soft time windows and Stochastic factors
  publication-title: Eng. Appl. Artif. Intell.
– reference: Hsieh, M., Lin, Y., Hsu, W., 2017. Drone-based object counting by spatially regularized regional proposal network. In: Proceedings of The IEEE International Conference On Computer Vision. pp. 4145–4153.
– volume: 34
  start-page: 187
  year: 2016
  end-page: 203
  ident: b67
  article-title: Vehicle detection in aerial imagery: A small target detection benchmark
  publication-title: J. Vis. Commun. Image Represent.
– volume: 1634
  start-page: 93
  year: 1998
  end-page: 99
  ident: b13
  article-title: Measuring traffic congestion
  publication-title: Transp. Res. Rec.
– volume: 17
  start-page: 2367
  year: 2016
  end-page: 2380
  ident: b46
  article-title: Solving the dynamic vehicle routing problem under traffic congestion
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Yang, Y., Liu, F., Wang, P., Luo, P., Liu, X., 2012. Vehicle detection methods from an unmanned aerial vehicle platform. In: 2012 IEEE International Conference on Vehicular Electronics and Safety. ICVES 2012, pp. 411–415.
– volume: 18
  start-page: 1958
  year: 2016
  end-page: 1973
  ident: b16
  article-title: A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2018
  ident: b43
  article-title: Unity: A general platform for intelligent agents
– reference: Juba, B., Le, H., 2019. Precision–recall versus accuracy and the role of large data sets. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. pp. 4039–4048.
– volume: 92
  start-page: 164
  year: 2019
  end-page: 174
  ident: b97
  article-title: Geographical patterns of traffic congestion in growing megacities: Big data analytics from Beijing
  publication-title: Cities
– volume: 4
  start-page: 100
  year: 1968
  end-page: 107
  ident: b35
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
– reference: Xia, G., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L., 2018. DOTA: A large-scale dataset for object detection in aerial images. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 3974–3983.
– volume: 12
  start-page: 989
  year: 2020
  ident: b77
  article-title: HQ-ISNet: High-quality instance segmentation for remote sensing imagery
  publication-title: Remote Sens.
– volume: 20
  start-page: 378
  year: 2001
  end-page: 400
  ident: b49
  article-title: Randomized kinodynamic planning
  publication-title: Int. J. Robot. Res.
– volume: 3
  start-page: 1
  year: 2020
  end-page: 12
  ident: b80
  article-title: Training instance segmentation neural network with synthetic datasets for crop seed phenotyping
  publication-title: Commun. Biol.
– volume: 44
  start-page: 175
  year: 2010
  end-page: 192
  ident: b22
  article-title: A tabu search algorithm for rerouting trains during rail operations
  publication-title: Transp. Res. B
– volume: 19
  start-page: 3550
  year: 2018
  end-page: 3559
  ident: b21
  article-title: PCNN: Deep convolutional networks for short-term traffic congestion prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2961–2969.
– reference: Niemirepo, T., Toivonen, J., Viitanen, M., Vanne, J., 2019. Open-source CiThruS simulation environment for real-time 360-degree traffic imaging. In: 2019 IEEE International Conference On Connected Vehicles And Expo. ICCVE, pp. 1–5.
– start-page: 1
  year: 2021
  end-page: 12
  ident: b64
  article-title: Forecasting vehicular traffic flow using MLP and LSTM
  publication-title: Neural Comput. Appl.
– volume: 122
  start-page: 15
  year: 2018
  end-page: 23
  ident: b52
  article-title: Unmanned aerial vehicle scheduling problem for traffic monitoring
  publication-title: Comput. Ind. Eng.
– volume: 21
  start-page: 193
  year: 1998
  end-page: 207
  ident: b12
  article-title: Survey of numerical methods for trajectory optimization
  publication-title: J. Guid. Control Dyn.
– volume: 23
  start-page: 463
  year: 2010
  end-page: 472
  ident: b56
  article-title: A hybrid particle swarm optimization algorithm for the vehicle routing problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 32
  start-page: 9453
  year: 2020
  end-page: 9469
  ident: b1
  article-title: A new spatio-temporal background–foreground bimodal for motion segmentation and detection in Urban traffic scenes
  publication-title: Neural Comput. Appl.
– volume: 94
  start-page: 491
  year: 2019
  end-page: 501
  ident: b54
  article-title: Real-time UAV rerouting for traffic monitoring with decomposition based multi-objective optimization
  publication-title: J. Intell. Robot. Syst.
– reference: Chen, Y., Lv, Y., Li, Z., Wang, F., 2016. Long short-term memory model for traffic congestion prediction with online open data. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems. ITSC, pp. 132–137.
– volume: 25
  year: 2017
  ident: b8
  article-title: Analysis of feature detector and descriptor combinations with a localization experiment for various performance metrics
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 770–778.
– reference: Niu, H., Gonzalez-Prelcic, N., Heath, R., 2018. A UAV-based traffic monitoring system-invited paper. In: 2018 IEEE 87th Vehicular Technology Conference. VTC Spring, pp. 1–5.
– volume: 34
  start-page: 239
  year: 2000
  end-page: 255
  ident: b11
  article-title: The traffic flow management rerouting problem in air traffic control: A dynamic network flow approach
  publication-title: Transp. Sci.
– start-page: 91
  year: 2015
  end-page: 99
  ident: b68
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 21
  start-page: 193
  year: 1998
  ident: 10.1016/j.engappai.2022.105769_b12
  article-title: Survey of numerical methods for trajectory optimization
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4231
– volume: 73
  start-page: 43
  year: 2017
  ident: 10.1016/j.engappai.2022.105769_b24
  article-title: Detection of traffic congestion and incidents from GPS trace analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.12.018
– year: 2018
  ident: 10.1016/j.engappai.2022.105769_b43
– volume: 8
  start-page: 135
  year: 1999
  ident: 10.1016/j.engappai.2022.105769_b93
  article-title: Prediction of road traffic using a neural network approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s005210050015
– volume: 57
  year: 2020
  ident: 10.1016/j.engappai.2022.105769_b74
  article-title: How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101085
– volume: 92
  start-page: 164
  year: 2019
  ident: 10.1016/j.engappai.2022.105769_b97
  article-title: Geographical patterns of traffic congestion in growing megacities: Big data analytics from Beijing
  publication-title: Cities
  doi: 10.1016/j.cities.2019.03.022
– ident: 10.1016/j.engappai.2022.105769_b75
  doi: 10.1109/WACV.2017.41
– volume: 44
  start-page: 175
  year: 2010
  ident: 10.1016/j.engappai.2022.105769_b22
  article-title: A tabu search algorithm for rerouting trains during rail operations
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2009.05.004
– volume: 72
  start-page: 327
  year: 2017
  ident: 10.1016/j.engappai.2022.105769_b3
  article-title: Deep learning for decentralized parking lot occupancy detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.055
– volume: 109
  year: 2022
  ident: 10.1016/j.engappai.2022.105769_b41
  article-title: A hybrid algorithm for time-dependent vehicle routing problem with soft time windows and Stochastic factors
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104606
– ident: 10.1016/j.engappai.2022.105769_b89
  doi: 10.1109/CVPR.2019.00952
– volume: 23
  start-page: 1611
  year: 2013
  ident: 10.1016/j.engappai.2022.105769_b51
  article-title: Identifying important variables for predicting travel time of freeway with non-recurrent congestion with neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1114-z
– volume: 116
  year: 2022
  ident: 10.1016/j.engappai.2022.105769_b4
  article-title: Machine learning approach for truck-drones based last-mile delivery in the era of industry 4.0
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105439
– volume: 119
  start-page: 76
  year: 2016
  ident: 10.1016/j.engappai.2022.105769_b99
  article-title: Do we need more training data?
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0812-2
– ident: 10.1016/j.engappai.2022.105769_b33
  doi: 10.1109/CVPR.2012.6248074
– ident: 10.1016/j.engappai.2022.105769_b88
  doi: 10.1109/CVPR.2018.00418
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.engappai.2022.105769_b70
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 17
  start-page: 2888
  year: 2016
  ident: 10.1016/j.engappai.2022.105769_b83
  article-title: Next road rerouting: A multiagent system for mitigating unexpected urban traffic congestion
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2531425
– volume: 56
  start-page: 6699
  year: 2018
  ident: 10.1016/j.engappai.2022.105769_b57
  article-title: Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2841808
– volume: 25
  start-page: 345
  year: 2012
  ident: 10.1016/j.engappai.2022.105769_b27
  article-title: A hybrid evolutionary local search with depth first search split procedure for the heterogeneous vehicle routing problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2011.10.002
– volume: 137
  year: 2022
  ident: 10.1016/j.engappai.2022.105769_b69
  article-title: Visual attractiveness in vehicle routing via bi-objective optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105507
– ident: 10.1016/j.engappai.2022.105769_b29
  doi: 10.1109/WCNC.2018.8377077
– volume: 122
  start-page: 15
  year: 2018
  ident: 10.1016/j.engappai.2022.105769_b52
  article-title: Unmanned aerial vehicle scheduling problem for traffic monitoring
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.05.039
– ident: 10.1016/j.engappai.2022.105769_b18
  doi: 10.1109/ITSC.2016.7795543
– start-page: 149
  year: 2018
  ident: 10.1016/j.engappai.2022.105769_b45
  article-title: Automated decision making in road traffic monitoring by on-board unmanned aerial vehicle system
– ident: 10.1016/j.engappai.2022.105769_b79
  doi: 10.1109/CVPR.2019.00900
– volume: 167
  start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2022.105769_b7
  article-title: A low-cost UAV framework towards ornamental plant detection and counting in the wild
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.012
– volume: 107
  year: 2022
  ident: 10.1016/j.engappai.2022.105769_b50
  article-title: A dynamical artificial bee colony for vehicle routing problem with drones
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104510
– volume: 75
  year: 2022
  ident: 10.1016/j.engappai.2022.105769_b95
  article-title: Optimization approaches for the urban delivery problem with trucks and drones
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101147
– year: 2011
  ident: 10.1016/j.engappai.2022.105769_b63
– ident: 10.1016/j.engappai.2022.105769_b53
  doi: 10.1007/978-3-319-10602-1_48
– volume: 33
  start-page: 8181
  year: 2021
  ident: 10.1016/j.engappai.2022.105769_b19
  article-title: Short-term traffic flow prediction based on improved wavelet neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04932-5
– volume: 21
  start-page: 709
  year: 2019
  ident: 10.1016/j.engappai.2022.105769_b40
  article-title: A peak traffic congestion prediction method based on bus driving time
  publication-title: Entropy
  doi: 10.3390/e21070709
– ident: 10.1016/j.engappai.2022.105769_b38
  doi: 10.1109/ICCV.2017.446
– ident: 10.1016/j.engappai.2022.105769_b90
  doi: 10.1109/ICVES.2012.6294294
– ident: 10.1016/j.engappai.2022.105769_b71
  doi: 10.1109/WACV.2017.107
– ident: 10.1016/j.engappai.2022.105769_b42
  doi: 10.1609/aaai.v33i01.33014039
– volume: 114
  year: 2022
  ident: 10.1016/j.engappai.2022.105769_b96
  article-title: IGCRRN: Improved graph convolution res-recurrent network for spatio-temporal dependence capturing and traffic flow prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105179
– ident: 10.1016/j.engappai.2022.105769_b61
  doi: 10.1109/ICCVE45908.2019.8965242
– volume: 12
  start-page: 989
  year: 2020
  ident: 10.1016/j.engappai.2022.105769_b77
  article-title: HQ-ISNet: High-quality instance segmentation for remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs12060989
– volume: 62
  start-page: 3551
  year: 2013
  ident: 10.1016/j.engappai.2022.105769_b65
  article-title: Proactive vehicular traffic rerouting for lower travel time
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2013.2260422
– volume: 32
  start-page: 10435
  year: 2020
  ident: 10.1016/j.engappai.2022.105769_b20
  article-title: Bus travel time prediction based on deep belief network with back-propagation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04579-x
– volume: 94
  start-page: 491
  year: 2019
  ident: 10.1016/j.engappai.2022.105769_b54
  article-title: Real-time UAV rerouting for traffic monitoring with decomposition based multi-objective optimization
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-018-0806-8
– ident: 10.1016/j.engappai.2022.105769_b62
  doi: 10.1109/VTCSpring.2018.8417546
– year: 2020
  ident: 10.1016/j.engappai.2022.105769_b81
– ident: 10.1016/j.engappai.2022.105769_b66
  doi: 10.1109/RTSS.2017.00022
– volume: 167
  start-page: 39
  year: 2020
  ident: 10.1016/j.engappai.2022.105769_b85
  article-title: Vehicle detection of multi-source remote sensing data using active fine-tuning network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.016
– ident: 10.1016/j.engappai.2022.105769_b94
– volume: 17
  start-page: 2367
  year: 2016
  ident: 10.1016/j.engappai.2022.105769_b46
  article-title: Solving the dynamic vehicle routing problem under traffic congestion
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2521779
– volume: 9
  start-page: 368
  year: 2017
  ident: 10.1016/j.engappai.2022.105769_b5
  article-title: Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images
  publication-title: Remote Sens.
  doi: 10.3390/rs9040368
– volume: 30
  start-page: 3212
  year: 2019
  ident: 10.1016/j.engappai.2022.105769_b98
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– volume: 1
  start-page: 61
  year: 2018
  ident: 10.1016/j.engappai.2022.105769_b34
  article-title: Determination and evaluation of traffic congestion costs
  publication-title: Eur. J. Trans. Infrastructure Res.
– year: 2009
  ident: 10.1016/j.engappai.2022.105769_b15
– volume: 82
  start-page: 60
  year: 2019
  ident: 10.1016/j.engappai.2022.105769_b76
  article-title: Extended pheromone-based short-term traffic forecasting models for vehicular systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.03.017
– volume: 10
  year: 2018
  ident: 10.1016/j.engappai.2022.105769_b84
  article-title: Research on road traffic congestion index based on comprehensive parameters: Taking dalian city as an example
  publication-title: Adv. Mech. Eng.
– volume: 10
  start-page: 124
  year: 2018
  ident: 10.1016/j.engappai.2022.105769_b47
  article-title: A CNN-based method of vehicle detection from aerial images using hard example mining
  publication-title: Remote Sens.
  doi: 10.3390/rs10010124
– volume: 87
  year: 2020
  ident: 10.1016/j.engappai.2022.105769_b39
  article-title: Finding the k shortest paths by ripple-spreading algorithms
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.023
– year: 2019
  ident: 10.1016/j.engappai.2022.105769_b28
  article-title: The VIA annotation software for images, audio and video
– ident: 10.1016/j.engappai.2022.105769_b30
  doi: 10.1109/IVS.2016.7535375
– volume: 1
  start-page: 269
  year: 1959
  ident: 10.1016/j.engappai.2022.105769_b26
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– volume: 32
  start-page: 9453
  year: 2020
  ident: 10.1016/j.engappai.2022.105769_b1
  article-title: A new spatio-temporal background–foreground bimodal for motion segmentation and detection in Urban traffic scenes
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04458-5
– volume: 23
  start-page: 463
  year: 2010
  ident: 10.1016/j.engappai.2022.105769_b56
  article-title: A hybrid particle swarm optimization algorithm for the vehicle routing problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.02.002
– ident: 10.1016/j.engappai.2022.105769_b36
  doi: 10.1109/ICCV.2017.322
– volume: 114
  year: 2022
  ident: 10.1016/j.engappai.2022.105769_b10
  article-title: TAU: A framework for video-based traffic analytics leveraging artificial intelligence and unmanned aerial systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105095
– volume: 19
  start-page: 3550
  year: 2018
  ident: 10.1016/j.engappai.2022.105769_b21
  article-title: PCNN: Deep convolutional networks for short-term traffic congestion prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2835523
– volume: 54
  start-page: 273
  year: 2019
  ident: 10.1016/j.engappai.2022.105769_b32
  article-title: Monitoring traffic in future cities with aerial swarms: Developing and optimizing a behavior-based surveillance algorithm
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.10.031
– volume: 3
  start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2022.105769_b80
  article-title: Training instance segmentation neural network with synthetic datasets for crop seed phenotyping
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-0905-5
– ident: 10.1016/j.engappai.2022.105769_b14
  doi: 10.1109/CSCI46756.2018.00068
– start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2022.105769_b64
  article-title: Forecasting vehicular traffic flow using MLP and LSTM
  publication-title: Neural Comput. Appl.
– volume: 30
  start-page: 835
  year: 2018
  ident: 10.1016/j.engappai.2022.105769_b82
  article-title: Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2696-7
– volume: 24
  start-page: 279
  year: 2020
  ident: 10.1016/j.engappai.2022.105769_b23
  article-title: Convolutional neural network for recognizing highway traffic congestion
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/15472450.2020.1742121
– volume: 51
  start-page: 1035
  year: 1995
  ident: 10.1016/j.engappai.2022.105769_b6
  article-title: Dynamical model of traffic congestion and numerical simulation
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.51.1035
– volume: 20
  start-page: 378
  year: 2001
  ident: 10.1016/j.engappai.2022.105769_b49
  article-title: Randomized kinodynamic planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/02783640122067453
– volume: 366
  start-page: 177
  year: 2016
  ident: 10.1016/j.engappai.2022.105769_b17
  article-title: Vehicle detection from highway satellite images via transfer learning
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.01.004
– ident: 10.1016/j.engappai.2022.105769_b59
  doi: 10.1007/978-3-319-46487-9_48
– volume: 4
  start-page: 100
  year: 1968
  ident: 10.1016/j.engappai.2022.105769_b35
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– start-page: 91
  year: 2015
  ident: 10.1016/j.engappai.2022.105769_b68
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
– volume: 30
  start-page: 23
  year: 2019
  ident: 10.1016/j.engappai.2022.105769_b9
  article-title: A hybrid image dataset toward bridging the gap between real and simulation environments for robotics
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-018-0966-3
– volume: 1634
  start-page: 93
  year: 1998
  ident: 10.1016/j.engappai.2022.105769_b13
  article-title: Measuring traffic congestion
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1634-12
– volume: 34
  start-page: 187
  year: 2016
  ident: 10.1016/j.engappai.2022.105769_b67
  article-title: Vehicle detection in aerial imagery: A small target detection benchmark
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.11.002
– ident: 10.1016/j.engappai.2022.105769_b55
  doi: 10.1109/IJCNN48605.2020.9207661
– year: 1998
  ident: 10.1016/j.engappai.2022.105769_b48
– start-page: 79
  year: 2017
  ident: 10.1016/j.engappai.2022.105769_b92
  article-title: Communication and coordination for drone networks
  publication-title: Ad Hoc Netw.
  doi: 10.1007/978-3-319-51204-4_7
– start-page: 621
  year: 2018
  ident: 10.1016/j.engappai.2022.105769_b73
  article-title: Airsim: High-fidelity visual and physical simulation for autonomous vehicles
  publication-title: Field Serv. Robot.
  doi: 10.1007/978-3-319-67361-5_40
– volume: 1
  start-page: 27
  year: 2007
  ident: 10.1016/j.engappai.2022.105769_b72
  article-title: Graph clustering
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2007.05.001
– ident: 10.1016/j.engappai.2022.105769_b37
  doi: 10.1109/CVPR.2016.90
– volume: 20
  start-page: 54
  year: 2018
  ident: 10.1016/j.engappai.2022.105769_b44
  article-title: Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2797697
– start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2022.105769_b58
  article-title: Traffic congestion and economic context: changes of spatiotemporal patterns of traffic travel times during crisis and post-crisis periods
  publication-title: Transportation
– year: 2022
  ident: 10.1016/j.engappai.2022.105769_b86
  article-title: Collaborative truck-drone routing for contactless parcel delivery during the epidemic
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3181282
– ident: 10.1016/j.engappai.2022.105769_b87
– volume: 33
  start-page: 1785
  year: 2021
  ident: 10.1016/j.engappai.2022.105769_b2
  article-title: Bayesian combined neural network for traffic volume short-term forecasting at adjacent intersections
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05115-y
– volume: 25
  year: 2017
  ident: 10.1016/j.engappai.2022.105769_b8
  article-title: Analysis of feature detector and descriptor combinations with a localization experiment for various performance metrics
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– volume: 7
  start-page: 85042
  year: 2019
  ident: 10.1016/j.engappai.2022.105769_b91
  article-title: Effective contexts for UAV vehicle detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923407
– volume: 34
  start-page: 239
  year: 2000
  ident: 10.1016/j.engappai.2022.105769_b11
  article-title: The traffic flow management rerouting problem in air traffic control: A dynamic network flow approach
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.34.3.239.12300
– ident: 10.1016/j.engappai.2022.105769_b31
– volume: 20
  start-page: 4424
  year: 2020
  ident: 10.1016/j.engappai.2022.105769_b60
  article-title: Multiple object detection based on clustering and deep learning methods
  publication-title: Sensors
  doi: 10.3390/s20164424
– volume: 10
  start-page: 3652
  year: 2017
  ident: 10.1016/j.engappai.2022.105769_b25
  article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2017.2694890
– volume: 18
  start-page: 1958
  year: 2016
  ident: 10.1016/j.engappai.2022.105769_b16
  article-title: A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2613997
– volume: 35
  start-page: 1299
  year: 2016
  ident: 10.1016/j.engappai.2022.105769_b78
  article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning?
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2016.2535302
SSID ssj0003846
Score 2.4796238
Snippet In digital era, being stranded from very basic telecommunication protocols and internet makes vehicle rerouting-like crucial tools more difficult or even...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105769
SubjectTerms Graph-based estimation
Path optimization
Proactive rerouting
Route recommendation
Traffic congestion detection
Title Traffic congestion-aware graph-based vehicle rerouting framework from aerial imagery
URI https://dx.doi.org/10.1016/j.engappai.2022.105769
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQuPRSoA_xKMiHXk1ir-3dPSJEFIiaQ5uoua38mIVEEKIQQFz625nZB6VSJQ6cVhp5rNXsvLz-Zoax7yVkGZi8FNInSuisp4VzOhfgtS2tjKhXVJz8Y2QHE30xNdMNdtrWwhCssvH9tU-vvHVD6TbS7C5ns-4vTA7Q3NCY6XebyadUwa5TmmJw_OcvzCPJ6mIdXCxo9asq4fkxLC7dculmeE5Uqhp5S8Dn_wWoV0Gnv80-NtkiP6lfaIdtwOIT22oyR97Y5R2S2uEMLe0zG2MUovYQHA-8dIeE8hfu0a2AVz2qBYWvyB_ginbmK1jd3hMCmpctWotT5Ql3lYby2Q31unj6wib9s_HpQDQjFERIpFoLTNYwSimw0qeZCal0EBNnlAnWoDFHp6P1Pk208lqWWbCgYjAWYq59aXNIvrLO4nYBu4zLAL0oe6UESLVLow8ulxkmSF7hLlnYY6aVWxGa_uI05uK6aIFk86KVd0HyLmp577HuC9-y7rDxJkfefpbiH10pMAy8wbv_Dt4D9oGGzdcItG-ss17dwyGmJGt_VOncEds8OR8ORvQc_vw9fAayoORL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKDLDwRrzxwGpaO7aTjAiBCrRdKFK3yI8LFEGpSgGx8Ns558FDQmJgtXyWdb5n8t0dIYc5JAmoNGfcRoLJpCWZMTJlYKXONfcoV6E4udvT7Wt5MVCDBjmpa2ECrLKy_aVNL6x1tdKsuNkcD4fNKwwOUN1QmcPnNpUOZsicVCIOGdjR-xfOI0rKah3czcL2b2XCd0cwujHjsRlioihEMfM2IJ9_81DfvM7ZMlmswkV6XN5ohTRgtEqWqtCRVor5hEv1dIZ6bY300Q2F_hAUM97wEwkfgJlXMwFaNKlmwX95-gK34WQ6gcnjc4BA07yGa9FQekJNIaJ0-BCaXbytk-uz0_5Jm1UzFJiLuJgyjNbQTQnQ3MaJcjE34COjhHJaoTZ7I722No6ksJLnidMgvFMafCptrlOINsjs6HEEm4RyBy3PWzkHiKWJvXUm5QlGSFbgKYnbIqrmW-aqBuNhzsV9ViPJ7rKa31ngd1bye4s0P-nGZYuNPynS-lmyH8KSoR_4g3b7H7QHZL7d73ayznnvcocshMnzJRxtl8xOJ8-wh_HJ1O4X8vcB7DfkPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+congestion-aware+graph-based+vehicle+rerouting+framework+from+aerial+imagery&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Bayraktar%2C+Ertugrul&rft.au=Korkmaz%2C+Burla+Nur&rft.au=Erarslan%2C+Aras+Umut&rft.au=Celebi%2C+Numan&rft.date=2023-03-01&rft.issn=0952-1976&rft.volume=119&rft.spage=105769&rft_id=info:doi/10.1016%2Fj.engappai.2022.105769&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon