UnderBagging based reduced Kernelized weighted extreme learning machine for class imbalance learning
Extreme learning machine (ELM) is one of the foremost capable, quick genuine esteemed classification algorithm with good generalization performance. Conventional ELM does not take into account the class imbalance problem effectively. Numerous variants of ELM-like weighted ELM (WELM), Boosting WELM (...
Saved in:
| Published in | Engineering applications of artificial intelligence Vol. 74; pp. 252 - 270 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.09.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-1976 1873-6769 |
| DOI | 10.1016/j.engappai.2018.07.002 |
Cover
| Abstract | Extreme learning machine (ELM) is one of the foremost capable, quick genuine esteemed classification algorithm with good generalization performance. Conventional ELM does not take into account the class imbalance problem effectively. Numerous variants of ELM-like weighted ELM (WELM), Boosting WELM (BWELM) etc. have been proposed in order to diminish the performance degradation which happens due to the class imbalance problem. This work proposed a novel Reduced Kernelized WELM (RKWELM) which is a variant of kernelized WELM to handle the class imbalance problem more effectively. The performance of RKWELM varies due to the arbitrary selection of the kernel centroids. To reduce this variation, this work uses ensemble method. The computational complexity of kernelized ELM (KELM) is subject to the number of kernels. KELM generally employ Gaussian kernel function. It employs all of the training instances to act as the centroid. This will lead to computation of the pseudoinverse of N×N matrix. Here, N represents the number of training instances. This operation becomes very slow for the large values of N. Moreover, for the imbalanced classification problems, using all the training instances as the centroid will result in more number of centroids representing the majority class compared to the centroids representing the minority class. This might lead to biased classification model, which favors the majority class instances. So, this work uses a subset of the training instances as the centroid of the kernels. RKWELM arbitrarily chooses Nmin instances from each class which acts as the centroid. The total number of centroids will be N˜=m×Nmin. Here, m represents the number of classes and Nmin is the number of instances belonging to the minority class which has the least number of instances. This reduction in the number of kernels will lead to reduced kernel matrix of size, N˜×N˜ leading to decrease in the computational complexity. This work creates a number of balanced kernel subsets depending on the degree of class imbalance. A number of RKWELM based classification models are produced utilizing these balanced kernel subsets. The ultimate outcome is computed by the majority voting and the soft voting of these classification models. The proposed algorithm is assessed by using the benchmark real-world imbalanced datasets downloaded from the KEEL dataset repository. The experimental results indicate the superiority of the proposed work in contrast with the rest of classifiers for the imbalanced classification problems. |
|---|---|
| AbstractList | Extreme learning machine (ELM) is one of the foremost capable, quick genuine esteemed classification algorithm with good generalization performance. Conventional ELM does not take into account the class imbalance problem effectively. Numerous variants of ELM-like weighted ELM (WELM), Boosting WELM (BWELM) etc. have been proposed in order to diminish the performance degradation which happens due to the class imbalance problem. This work proposed a novel Reduced Kernelized WELM (RKWELM) which is a variant of kernelized WELM to handle the class imbalance problem more effectively. The performance of RKWELM varies due to the arbitrary selection of the kernel centroids. To reduce this variation, this work uses ensemble method. The computational complexity of kernelized ELM (KELM) is subject to the number of kernels. KELM generally employ Gaussian kernel function. It employs all of the training instances to act as the centroid. This will lead to computation of the pseudoinverse of N×N matrix. Here, N represents the number of training instances. This operation becomes very slow for the large values of N. Moreover, for the imbalanced classification problems, using all the training instances as the centroid will result in more number of centroids representing the majority class compared to the centroids representing the minority class. This might lead to biased classification model, which favors the majority class instances. So, this work uses a subset of the training instances as the centroid of the kernels. RKWELM arbitrarily chooses Nmin instances from each class which acts as the centroid. The total number of centroids will be N˜=m×Nmin. Here, m represents the number of classes and Nmin is the number of instances belonging to the minority class which has the least number of instances. This reduction in the number of kernels will lead to reduced kernel matrix of size, N˜×N˜ leading to decrease in the computational complexity. This work creates a number of balanced kernel subsets depending on the degree of class imbalance. A number of RKWELM based classification models are produced utilizing these balanced kernel subsets. The ultimate outcome is computed by the majority voting and the soft voting of these classification models. The proposed algorithm is assessed by using the benchmark real-world imbalanced datasets downloaded from the KEEL dataset repository. The experimental results indicate the superiority of the proposed work in contrast with the rest of classifiers for the imbalanced classification problems. |
| Author | Shukla, Sanyam Raghuwanshi, Bhagat Singh |
| Author_xml | – sequence: 1 givenname: Bhagat Singh surname: Raghuwanshi fullname: Raghuwanshi, Bhagat Singh email: bhagat.mnit@gmail.com – sequence: 2 givenname: Sanyam surname: Shukla fullname: Shukla, Sanyam email: sanyamshukla@gmail.com |
| BookMark | eNqFkMtOwzAQRS1UJNrCL6D8QMI4jp1EYgFUvEQlNnRtTZxp6ip1Kjs8v55UBSGx6erexZwrzZmwkescMXbOIeHA1cU6Idfgdos2SYEXCeQJQHrExrzIRaxyVY7YGEqZxrzM1QmbhLAGAFFkaszqhavJ32DTWNdEFQaqI0_1qxnyibyj1n4N9Z1ss-qHQh-9pw1FLaF3O2SDZmUdRcvOR6bFECK7qbBFZ_6OTtnxEttAZz85ZYu725fZQzx_vn-cXc9jI3jax5IrJQWRquqKQBqZAUgAIyVgWlOZZoJ4VglVqJJyk-YCM1liwaECICnFlF3ud43vQvC01Mb22NvO9R5tqznonTG91r_G9M6YhlwPxgZc_cO33m7Qfx4Gr_YgDc-9WfI6GEuDgdp6Mr2uO3to4huFk41f |
| CitedBy_id | crossref_primary_10_1007_s11042_019_08321_6 crossref_primary_10_1016_j_isatra_2020_05_001 crossref_primary_10_1016_j_knosys_2021_107588 crossref_primary_10_1007_s13042_022_01601_y crossref_primary_10_1016_j_ins_2020_01_032 crossref_primary_10_1016_j_knosys_2019_06_022 crossref_primary_10_3390_sym14020379 crossref_primary_10_1016_j_bdr_2022_100356 crossref_primary_10_1155_2022_9107430 crossref_primary_10_3390_app122211688 crossref_primary_10_1016_j_eswa_2019_04_017 crossref_primary_10_1016_j_eswa_2021_114994 crossref_primary_10_1016_j_neucom_2020_10_038 crossref_primary_10_1016_j_knosys_2020_106631 crossref_primary_10_1016_j_chemer_2024_126156 crossref_primary_10_1016_j_asoc_2022_108560 crossref_primary_10_3233_JIFS_231344 crossref_primary_10_1007_s00500_022_07705_5 crossref_primary_10_1016_j_ins_2021_12_066 crossref_primary_10_1007_s13042_019_01001_9 crossref_primary_10_1016_j_engappai_2021_104355 crossref_primary_10_1007_s13748_021_00236_4 crossref_primary_10_1016_j_eswa_2018_12_024 crossref_primary_10_1016_j_asoc_2022_108846 crossref_primary_10_1007_s10044_019_00844_w crossref_primary_10_1016_j_engappai_2019_103427 crossref_primary_10_1016_j_neucom_2018_10_056 crossref_primary_10_1016_j_neunet_2019_08_018 crossref_primary_10_1016_j_eswa_2020_114041 crossref_primary_10_1016_j_asoc_2018_10_011 crossref_primary_10_1007_s13042_020_01232_1 crossref_primary_10_1016_j_jisa_2023_103618 crossref_primary_10_1016_j_ins_2024_121103 crossref_primary_10_1177_09544100211068906 crossref_primary_10_1007_s00521_022_07167_8 crossref_primary_10_1109_TFUZZ_2023_3321768 crossref_primary_10_1007_s13369_021_06147_9 crossref_primary_10_1016_j_eswa_2024_126033 crossref_primary_10_1016_j_ifacol_2020_11_045 |
| Cites_doi | 10.1016/0925-2312(94)90053-1 10.1016/j.neucom.2015.11.024 10.1109/TNN.2006.883722 10.1016/j.neunet.2015.06.005 10.1016/j.neucom.2017.04.060 10.1109/TSMCB.2008.2007853 10.1016/j.asoc.2018.03.013 10.1016/j.neucom.2016.09.023 10.1016/j.neucom.2017.08.040 10.1016/j.asoc.2015.08.060 10.1016/j.engappai.2017.05.003 10.1016/j.neucom.2013.05.051 10.1109/TSMCC.2011.2161285 10.1016/j.neucom.2012.08.010 10.1016/j.eswa.2016.12.035 10.1016/j.neucom.2017.04.052 10.1109/TSMCB.2011.2168604 10.1016/j.neunet.2018.05.011 10.1016/j.ins.2015.09.025 10.1016/S0031-3203(96)00142-2 10.1109/TNNLS.2014.2311466 10.1016/j.patrec.2015.09.015 10.1080/00401706.2000.10485983 10.1109/TKDE.2008.239 10.1016/j.patrec.2014.12.003 10.1016/j.neucom.2005.12.126 10.1007/s12559-014-9255-2 10.1109/TKDE.2005.50 10.1109/ACCESS.2015.2506601 10.1016/j.patcog.2018.03.008 10.1016/j.neunet.2015.10.006 10.1016/j.neucom.2015.06.087 10.1016/j.eswa.2011.09.033 10.1016/j.eswa.2011.09.059 10.1142/S0218001407005703 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2018.07.002 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| EndPage | 270 |
| ExternalDocumentID | 10_1016_j_engappai_2018_07_002 S0952197618301465 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-516653ee6bdbe05c5400500c550a2de9243e14b36869e7c273a459a810b00e553 |
| IEDL.DBID | .~1 |
| ISSN | 0952-1976 |
| IngestDate | Sat Oct 25 05:01:23 EDT 2025 Thu Apr 24 22:50:52 EDT 2025 Fri Feb 23 02:49:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | UnderBagging ensemble Kernelized extreme learning machine Class imbalance problem Classification Voting methods |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-516653ee6bdbe05c5400500c550a2de9243e14b36869e7c273a459a810b00e553 |
| PageCount | 19 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2018_07_002 crossref_primary_10_1016_j_engappai_2018_07_002 elsevier_sciencedirect_doi_10_1016_j_engappai_2018_07_002 |
| PublicationCentury | 2000 |
| PublicationDate | September 2018 2018-09-00 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Demšar (b9) 2006; 7 He, Garcia (b18) 2009; 21 Wang, Chen, Li, Cai, Zhao, Tong, Li, Xu (b42) 2017; 63 Courrieu, P., 2005. Fast computation of moore-penrose inverse matrices. CoRR, abs/0804.4809. Tang, Chen (b40) 2018 Fasshauer (b14) 2007 Fawcett, T., 2003. ROC Graphs: Notes and Practical Considerations for Researchers. Technical Report HP Labs, Tech. Rep. HPL-2003-4. Vuković, Petrović, Miljković (b41) 2017 Hoerl, Kennard (b20) 2000; 42 Lee, Huang (b31) 2007; 18 Iosifidis, Gabbouj (b25) 2015; 68 Galar, Fernandez, Barrenechea, Bustince, Herrera (b16) 2012; 42 Janakiraman, Nguyen, Sterniak, Assanis (b29) 2015; 26 Alcalá, Fernández, Luengo, Derrac, García, Sánchez, Herrera (b1) 2010; 17 Krawczyk, Galar, Jele, Herrera (b30) 2016; 38 Li, Kong, Lu, Wenyin, Yin (b32) 2014; 128 Deng, Zheng, Zhang (b13) 2013 Zhang, Suganthan (b49) 2016; 367–368 Iosifidis, Tefas, Pitas (b26) 2015; 54 Janakiraman, Nguyen, Assanis (b28) 2016; 177 Huang, Zhou, Ding, Zhang (b23) 2012; 42 Bradley (b2) 1997; 30 . Yang, Song, Wang (b46) 2007; 21 Das, Datta, Chaudhuri (b6) 2018 Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (b17) 2017; 73 Zeng, Xu, Shen, Fang, Xiao (b47) 2017; 18 Raghuwanshi, Shukla (b36) 2018; 105 Brown, Mues (b3) 2012; 39 Luo, Guo, Yu, Chen (b34) 2017; 260 Williams, Seeger (b44) 2001 Schapire (b38) 1999 Datta, Das (b7) 2015; 70 Zong, Huang, Chen (b51) 2013; 101 Deng, Ong, Zheng (b11) 2016; 76 Xiao, Xie, He, Jiang (b45) 2012; 39 Iosifidis, Tefas, Pitas (b27) 2017; 219 Liu, Wu, Zhou (b33) 2009; 39 Henríquez, Ruz (b19) 2018 Shukla, Yadav (b39) 2015; 3 Wang, Chen, Yang, Zhao, Hu, Cai, Huang, Tong (b43) 2017; 267 Deng, Zheng, Chen (b12) 2009 Rao, Mitra (b37) 1972 Huang, Ling (b22) 2005; 17 Zhou (b50) 2012 Huang (b21) 2014; 6 Deng, Ong, Tan, Zheng (b10) 2016; 174 Pao, Park, Sobajic (b35) 1994; 6 Datta, S., Nag, S., Mullick, S.S., Das, S., 2017. Diversifying support vector machines for boosting using kernel perturbation: Applications to class imbalance and small disjuncts. CoRR, abs/1712.08493. URL Zhang, Liu, Cai, Zhang (b48) 2016 Cao, Wang, Ming, Gao (b4) 2018; 275 Huang, Zhu, Siew (b24) 2006; 70 Deng (10.1016/j.engappai.2018.07.002_b13) 2013 Alcalá (10.1016/j.engappai.2018.07.002_b1) 2010; 17 Luo (10.1016/j.engappai.2018.07.002_b34) 2017; 260 Cao (10.1016/j.engappai.2018.07.002_b4) 2018; 275 Henríquez (10.1016/j.engappai.2018.07.002_b19) 2018 Schapire (10.1016/j.engappai.2018.07.002_b38) 1999 Huang (10.1016/j.engappai.2018.07.002_b22) 2005; 17 Rao (10.1016/j.engappai.2018.07.002_b37) 1972 Demšar (10.1016/j.engappai.2018.07.002_b9) 2006; 7 Deng (10.1016/j.engappai.2018.07.002_b12) 2009 Fasshauer (10.1016/j.engappai.2018.07.002_b14) 2007 Iosifidis (10.1016/j.engappai.2018.07.002_b27) 2017; 219 Wang (10.1016/j.engappai.2018.07.002_b43) 2017; 267 Brown (10.1016/j.engappai.2018.07.002_b3) 2012; 39 Iosifidis (10.1016/j.engappai.2018.07.002_b26) 2015; 54 Zhou (10.1016/j.engappai.2018.07.002_b50) 2012 Hoerl (10.1016/j.engappai.2018.07.002_b20) 2000; 42 Huang (10.1016/j.engappai.2018.07.002_b24) 2006; 70 Datta (10.1016/j.engappai.2018.07.002_b7) 2015; 70 Iosifidis (10.1016/j.engappai.2018.07.002_b25) 2015; 68 Janakiraman (10.1016/j.engappai.2018.07.002_b29) 2015; 26 Liu (10.1016/j.engappai.2018.07.002_b33) 2009; 39 10.1016/j.engappai.2018.07.002_b5 Lee (10.1016/j.engappai.2018.07.002_b31) 2007; 18 Bradley (10.1016/j.engappai.2018.07.002_b2) 1997; 30 10.1016/j.engappai.2018.07.002_b8 Haixiang (10.1016/j.engappai.2018.07.002_b17) 2017; 73 Vuković (10.1016/j.engappai.2018.07.002_b41) 2017 Zong (10.1016/j.engappai.2018.07.002_b51) 2013; 101 Williams (10.1016/j.engappai.2018.07.002_b44) 2001 Zhang (10.1016/j.engappai.2018.07.002_b49) 2016; 367–368 Huang (10.1016/j.engappai.2018.07.002_b21) 2014; 6 Huang (10.1016/j.engappai.2018.07.002_b23) 2012; 42 Yang (10.1016/j.engappai.2018.07.002_b46) 2007; 21 Deng (10.1016/j.engappai.2018.07.002_b11) 2016; 76 Li (10.1016/j.engappai.2018.07.002_b32) 2014; 128 He (10.1016/j.engappai.2018.07.002_b18) 2009; 21 Zhang (10.1016/j.engappai.2018.07.002_b48) 2016 Zeng (10.1016/j.engappai.2018.07.002_b47) 2017; 18 Wang (10.1016/j.engappai.2018.07.002_b42) 2017; 63 Das (10.1016/j.engappai.2018.07.002_b6) 2018 Deng (10.1016/j.engappai.2018.07.002_b10) 2016; 174 Pao (10.1016/j.engappai.2018.07.002_b35) 1994; 6 Galar (10.1016/j.engappai.2018.07.002_b16) 2012; 42 Shukla (10.1016/j.engappai.2018.07.002_b39) 2015; 3 Tang (10.1016/j.engappai.2018.07.002_b40) 2018 Krawczyk (10.1016/j.engappai.2018.07.002_b30) 2016; 38 Xiao (10.1016/j.engappai.2018.07.002_b45) 2012; 39 10.1016/j.engappai.2018.07.002_b15 Janakiraman (10.1016/j.engappai.2018.07.002_b28) 2016; 177 Raghuwanshi (10.1016/j.engappai.2018.07.002_b36) 2018; 105 |
| References_xml | – volume: 39 start-page: 3668 year: 2012 end-page: 3675 ident: b45 article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution publication-title: Expert Syst. Appl. – reference: Courrieu, P., 2005. Fast computation of moore-penrose inverse matrices. CoRR, abs/0804.4809. – year: 2007 ident: b14 article-title: Meshfree Approximation Methods with MATLAB – volume: 101 start-page: 229 year: 2013 end-page: 242 ident: b51 article-title: Weighted extreme learning machine for imbalance learning publication-title: Neurocomputing – volume: 63 start-page: 54 year: 2017 end-page: 68 ident: b42 article-title: Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction publication-title: Eng. Appl. Artif. Intell. – start-page: 601 year: 1972 end-page: 620 ident: b37 article-title: Generalized inverse of a matrix and its applications publication-title: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics – volume: 73 start-page: 220 year: 2017 end-page: 239 ident: b17 article-title: Learning from class-imbalanced data: Review of methods and applications publication-title: Expert Syst. Appl. – reference: Fawcett, T., 2003. ROC Graphs: Notes and Practical Considerations for Researchers. Technical Report HP Labs, Tech. Rep. HPL-2003-4. – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: b23 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. B – year: 2018 ident: b6 article-title: Handling data irregularities in classification: Foundations, trends, and future challenges publication-title: Pattern Recognit – year: 2018 ident: b19 article-title: A non-iterative method for pruning hidden neurons in neural networks with random weights publication-title: Appl. Soft Comput – volume: 3 start-page: 3048 year: 2015 end-page: 3057 ident: b39 article-title: Regularized weighted circular complex-valued extreme learning machine for imbalanced learning publication-title: IEEE Access – start-page: 1 year: 2016 end-page: 9 ident: b48 article-title: Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution publication-title: Neural Comput. Appl. – volume: 42 start-page: 463 year: 2012 end-page: 484 ident: b16 article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. – volume: 174 start-page: 72 year: 2016 end-page: 84 ident: b10 article-title: Online sequential reduced kernel extreme learning machine publication-title: Neurocomputing – volume: 128 start-page: 15 year: 2014 end-page: 21 ident: b32 article-title: Boosting weighted {ELM} for imbalanced learning publication-title: Neurocomputing – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: b18 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 42 start-page: 80 year: 2000 end-page: 86 ident: b20 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b24 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing – year: 2018 ident: b40 article-title: Artificial bee colony optimization-based weighted extreme learning machine for imbalanced data learning publication-title: Cluster Comput – volume: 260 start-page: 313 year: 2017 end-page: 320 ident: b34 article-title: A multi-label classification algorithm based on kernel extreme learning machine publication-title: Neurocomputing – reference: . – volume: 17 start-page: 299 year: 2005 end-page: 310 ident: b22 article-title: Using auc and accuracy in evaluating learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. – volume: 6 start-page: 163 year: 1994 end-page: 180 ident: b35 article-title: Learning and generalization characteristics of the random vector functional-link net publication-title: Neurocomputing – volume: 177 start-page: 304 year: 2016 end-page: 316 ident: b28 article-title: Stochastic gradient based extreme learning machines for stable online learning of advanced combustion engines publication-title: Neurocomputing – year: 2017 ident: b41 article-title: A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression publication-title: Appl. Soft Comput – volume: 367–368 start-page: 1094 year: 2016 end-page: 1105 ident: b49 article-title: A comprehensive evaluation of random vector functional link networks publication-title: Inform. Sci. – volume: 275 start-page: 278 year: 2018 end-page: 287 ident: b4 article-title: A review on neural networks with random weights publication-title: Neurocomputing – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b9 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 219 start-page: 210 year: 2017 end-page: 220 ident: b27 article-title: Approximate kernel extreme learning machine for large scale data classification publication-title: Neurocomputing – volume: 54 start-page: 11 year: 2015 end-page: 17 ident: b26 article-title: On the kernel extreme learning machine classifier publication-title: Pattern Recognit. Lett. – volume: 26 start-page: 98 year: 2015 end-page: 112 ident: b29 article-title: Identification of the dynamic operating envelope of hcci engines using class imbalance learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 105 start-page: 206 year: 2018 end-page: 217 ident: b36 article-title: Class-specific extreme learning machine for handling binary class imbalance problem publication-title: Neural Netw. – start-page: 1401 year: 1999 end-page: 1406 ident: b38 article-title: A brief introduction to boosting publication-title: Proceedings of the 16th International Joint Conference on Artificial Intelligence - Volume 2 – volume: 39 start-page: 3446 year: 2012 end-page: 3453 ident: b3 article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets publication-title: Expert Syst. Appl. – volume: 70 start-page: 39 year: 2015 end-page: 52 ident: b7 article-title: Near-bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs publication-title: Neural Netw. – volume: 21 start-page: 961 year: 2007 end-page: 976 ident: b46 article-title: A weighted support vector machine for data classification publication-title: Int. J. Pattern Recognit. Artif. Intell. – volume: 6 start-page: 376 year: 2014 end-page: 390 ident: b21 article-title: An insight into extreme learning machines: Random neurons, random features and kernels publication-title: Cogn. Comput. – reference: Datta, S., Nag, S., Mullick, S.S., Das, S., 2017. Diversifying support vector machines for boosting using kernel perturbation: Applications to class imbalance and small disjuncts. CoRR, abs/1712.08493. URL: – volume: 267 start-page: 69 year: 2017 end-page: 84 ident: b43 article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses publication-title: Neurocomputing – volume: 38 start-page: 714 year: 2016 end-page: 726 ident: b30 article-title: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy publication-title: Appl. Soft Comput. – volume: 18 start-page: 1647 year: 2017 end-page: 1653 ident: b47 article-title: Traffic sign recognition using kernel extreme learning machines with deep perceptual features publication-title: IEEE Trans. Intell. Transp. Syst. – reference: . – volume: 39 start-page: 539 year: 2009 end-page: 550 ident: b33 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Trans. Syst. Man Cybern. B – year: 2012 ident: b50 publication-title: Ensemble Methods: Foundations and Algorithms – volume: 68 start-page: 205 year: 2015 end-page: 210 ident: b25 article-title: On the kernel extreme learning machine speedup publication-title: Pattern Recognit. Lett. – volume: 17 start-page: 255 year: 2010 end-page: 287 ident: b1 article-title: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J. Mult.-Valued Logic Soft Comput. – start-page: 682 year: 2001 end-page: 688 ident: b44 article-title: Using the nyström method to speed up kernel machines publication-title: Advances in Neural Information Processing Systems 13 – volume: 30 start-page: 1145 year: 1997 end-page: 1159 ident: b2 article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit. – start-page: 389 year: 2009 end-page: 395 ident: b12 article-title: Regularized extreme learning machine publication-title: IEEE Symposium on Computational Intelligence and Data Mining – start-page: 63 year: 2013 end-page: 69 ident: b13 article-title: Reduced kernel extreme learning machine publication-title: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013 – volume: 18 start-page: 1 year: 2007 end-page: 13 ident: b31 article-title: Reduced support vector machines: A statistical theory publication-title: IEEE Trans. Neural Netw. – volume: 76 start-page: 29 year: 2016 end-page: 38 ident: b11 article-title: A fast reduced kernel extreme learning machine publication-title: Neural Netw. – volume: 6 start-page: 163 issue: 2 year: 1994 ident: 10.1016/j.engappai.2018.07.002_b35 article-title: Learning and generalization characteristics of the random vector functional-link net publication-title: Neurocomputing doi: 10.1016/0925-2312(94)90053-1 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.engappai.2018.07.002_b9 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 177 start-page: 304 year: 2016 ident: 10.1016/j.engappai.2018.07.002_b28 article-title: Stochastic gradient based extreme learning machines for stable online learning of advanced combustion engines publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.024 – volume: 18 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.engappai.2018.07.002_b31 article-title: Reduced support vector machines: A statistical theory publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.883722 – volume: 70 start-page: 39 year: 2015 ident: 10.1016/j.engappai.2018.07.002_b7 article-title: Near-bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs publication-title: Neural Netw. doi: 10.1016/j.neunet.2015.06.005 – volume: 267 start-page: 69 year: 2017 ident: 10.1016/j.engappai.2018.07.002_b43 article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.060 – start-page: 63 year: 2013 ident: 10.1016/j.engappai.2018.07.002_b13 article-title: Reduced kernel extreme learning machine – volume: 18 start-page: 1647 issue: 6 year: 2017 ident: 10.1016/j.engappai.2018.07.002_b47 article-title: Traffic sign recognition using kernel extreme learning machines with deep perceptual features publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 39 start-page: 539 issue: 2 year: 2009 ident: 10.1016/j.engappai.2018.07.002_b33 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2008.2007853 – year: 2012 ident: 10.1016/j.engappai.2018.07.002_b50 – ident: 10.1016/j.engappai.2018.07.002_b5 – year: 2018 ident: 10.1016/j.engappai.2018.07.002_b19 article-title: A non-iterative method for pruning hidden neurons in neural networks with random weights publication-title: Appl. Soft Comput doi: 10.1016/j.asoc.2018.03.013 – ident: 10.1016/j.engappai.2018.07.002_b8 – volume: 219 start-page: 210 year: 2017 ident: 10.1016/j.engappai.2018.07.002_b27 article-title: Approximate kernel extreme learning machine for large scale data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.023 – volume: 275 start-page: 278 year: 2018 ident: 10.1016/j.engappai.2018.07.002_b4 article-title: A review on neural networks with random weights publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.040 – ident: 10.1016/j.engappai.2018.07.002_b15 – volume: 38 start-page: 714 issue: C year: 2016 ident: 10.1016/j.engappai.2018.07.002_b30 article-title: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.08.060 – year: 2007 ident: 10.1016/j.engappai.2018.07.002_b14 – start-page: 682 year: 2001 ident: 10.1016/j.engappai.2018.07.002_b44 article-title: Using the nyström method to speed up kernel machines – volume: 63 start-page: 54 year: 2017 ident: 10.1016/j.engappai.2018.07.002_b42 article-title: Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.05.003 – volume: 128 start-page: 15 year: 2014 ident: 10.1016/j.engappai.2018.07.002_b32 article-title: Boosting weighted {ELM} for imbalanced learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.051 – volume: 42 start-page: 463 issue: 4 year: 2012 ident: 10.1016/j.engappai.2018.07.002_b16 article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/TSMCC.2011.2161285 – volume: 101 start-page: 229 year: 2013 ident: 10.1016/j.engappai.2018.07.002_b51 article-title: Weighted extreme learning machine for imbalance learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.010 – volume: 73 start-page: 220 year: 2017 ident: 10.1016/j.engappai.2018.07.002_b17 article-title: Learning from class-imbalanced data: Review of methods and applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.12.035 – volume: 260 start-page: 313 year: 2017 ident: 10.1016/j.engappai.2018.07.002_b34 article-title: A multi-label classification algorithm based on kernel extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.052 – start-page: 1 year: 2016 ident: 10.1016/j.engappai.2018.07.002_b48 article-title: Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution publication-title: Neural Comput. Appl. – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.engappai.2018.07.002_b23 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2011.2168604 – start-page: 1401 year: 1999 ident: 10.1016/j.engappai.2018.07.002_b38 article-title: A brief introduction to boosting – volume: 105 start-page: 206 year: 2018 ident: 10.1016/j.engappai.2018.07.002_b36 article-title: Class-specific extreme learning machine for handling binary class imbalance problem publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.05.011 – volume: 367–368 start-page: 1094 year: 2016 ident: 10.1016/j.engappai.2018.07.002_b49 article-title: A comprehensive evaluation of random vector functional link networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.09.025 – volume: 30 start-page: 1145 issue: 7 year: 1997 ident: 10.1016/j.engappai.2018.07.002_b2 article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00142-2 – volume: 26 start-page: 98 issue: 1 year: 2015 ident: 10.1016/j.engappai.2018.07.002_b29 article-title: Identification of the dynamic operating envelope of hcci engines using class imbalance learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2311466 – volume: 68 start-page: 205 year: 2015 ident: 10.1016/j.engappai.2018.07.002_b25 article-title: On the kernel extreme learning machine speedup publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.09.015 – volume: 42 start-page: 80 issue: 1 year: 2000 ident: 10.1016/j.engappai.2018.07.002_b20 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.2000.10485983 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.engappai.2018.07.002_b18 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 54 start-page: 11 year: 2015 ident: 10.1016/j.engappai.2018.07.002_b26 article-title: On the kernel extreme learning machine classifier publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.12.003 – volume: 70 start-page: 489 issue: 13 year: 2006 ident: 10.1016/j.engappai.2018.07.002_b24 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 17 start-page: 255 issue: 2–3 year: 2010 ident: 10.1016/j.engappai.2018.07.002_b1 article-title: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J. Mult.-Valued Logic Soft Comput. – volume: 6 start-page: 376 issue: 3 year: 2014 ident: 10.1016/j.engappai.2018.07.002_b21 article-title: An insight into extreme learning machines: Random neurons, random features and kernels publication-title: Cogn. Comput. doi: 10.1007/s12559-014-9255-2 – start-page: 601 year: 1972 ident: 10.1016/j.engappai.2018.07.002_b37 article-title: Generalized inverse of a matrix and its applications – volume: 17 start-page: 299 issue: 3 year: 2005 ident: 10.1016/j.engappai.2018.07.002_b22 article-title: Using auc and accuracy in evaluating learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.50 – volume: 3 start-page: 3048 year: 2015 ident: 10.1016/j.engappai.2018.07.002_b39 article-title: Regularized weighted circular complex-valued extreme learning machine for imbalanced learning publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2506601 – year: 2018 ident: 10.1016/j.engappai.2018.07.002_b6 article-title: Handling data irregularities in classification: Foundations, trends, and future challenges publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.03.008 – volume: 76 start-page: 29 year: 2016 ident: 10.1016/j.engappai.2018.07.002_b11 article-title: A fast reduced kernel extreme learning machine publication-title: Neural Netw. doi: 10.1016/j.neunet.2015.10.006 – start-page: 389 year: 2009 ident: 10.1016/j.engappai.2018.07.002_b12 article-title: Regularized extreme learning machine – year: 2017 ident: 10.1016/j.engappai.2018.07.002_b41 article-title: A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression publication-title: Appl. Soft Comput – volume: 174 start-page: 72 year: 2016 ident: 10.1016/j.engappai.2018.07.002_b10 article-title: Online sequential reduced kernel extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.087 – volume: 39 start-page: 3446 issue: 3 year: 2012 ident: 10.1016/j.engappai.2018.07.002_b3 article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.033 – volume: 39 start-page: 3668 issue: 3 year: 2012 ident: 10.1016/j.engappai.2018.07.002_b45 article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.059 – year: 2018 ident: 10.1016/j.engappai.2018.07.002_b40 article-title: Artificial bee colony optimization-based weighted extreme learning machine for imbalanced data learning publication-title: Cluster Comput – volume: 21 start-page: 961 issue: 05 year: 2007 ident: 10.1016/j.engappai.2018.07.002_b46 article-title: A weighted support vector machine for data classification publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001407005703 |
| SSID | ssj0003846 |
| Score | 2.403835 |
| Snippet | Extreme learning machine (ELM) is one of the foremost capable, quick genuine esteemed classification algorithm with good generalization performance.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 252 |
| SubjectTerms | Class imbalance problem Classification Kernelized extreme learning machine UnderBagging ensemble Voting methods |
| Title | UnderBagging based reduced Kernelized weighted extreme learning machine for class imbalance learning |
| URI | https://dx.doi.org/10.1016/j.engappai.2018.07.002 |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqsrDwRjwrD6xp87KbjqWiKlR0ACq6RbZzrVLRUJUiJAZ-O3eJQ4sYOjDFsXxSdLbvvrvcg7EroAIkkvxu4Rgc1FCeo0XTd8xYqQBaTRV5lJx8P5C9YXg3EqMK65S5MBRWaWV_IdNzaW1nGpabjXmaNh4RHOB1QzM8IrNAUqJ5GDapi0H9axXmEURFsg4udmj1WpbwtA7ZRM3nKqUQrygv4mndK38U1JrS6e6xHYsWebv4oH1WgeyA7VrkyO29fMOpsjlDOXfIkryj0bUij_KEk7JK-ILqtOKzD4sMXtJPHH7krlEcoJAmVyG3bSQmfJaHWQJHVMsNYWyezjQFQprVoiM27N48dXqObangmMDzl47wpBQBgNSJBlcYxGuucF2DdoryE0BjLAAv1IGMZAuaBrGNCkULN8zF6wlCBMesmr1mcMK4MkL7kfH0OBGhn0RaKiVxiwODmFCE5pSJko-xsfXGqe3FS1wGlk3jkv8x8T926Ve4f8oaP3TzouLGRopWuU3xr7MTo1rYQHv2D9pztk1vRcTZBasuF-9wiRBlqWv5GayxrfZtvzegZ__huf8Nn9_pRA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGWDhjShPD6xp87KbjlBRlUe7UCS2yHauVao2VKUIiYHfzl3iUBBDB6ZYjk-Kzvbdd5d7MHYJVIBEkt8tHIKDGspztGj6jhkqFUCrqSKPkpN7fdl9Cu-exXOFtctcGAqrtLK_kOm5tLYzDcvNxixNG48IDvC6oRkekVkgxRpbD4XfJAus_rmM8wiiIlsHVzu0_Eea8LgO2UjNZiqlGK8or-Jp_St_NNQPrdPZYVsWLvKr4ot2WQWyPbZtoSO3F_MVp8ruDOXcPkvylkbXilzKI07aKuFzKtSKz3uYZzBJP3D4nvtGcYBSmnyF3PaRGPFpHmcJHGEtNwSyeTrVFAlplosO2FPnZtDuOrangmMCz184wpNSBABSJxpcYRCwucJ1DRoqyk8ArbEAvFAHMpItaBoENyoULdwxF-8nCBEcsmr2ksER48oI7UfG08NEhH4SaamUxD0ODIJCEZoaEyUfY2MLjlPfi0lcRpaN45L_MfE_dulfuF9jjW-6WVFyYyVFq9ym-NfhiVEvrKA9_gftBdvoDnoP8cNt__6EbdKbIvzslFUX8zc4Q7yy0Of5efwCyFDpNg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UnderBagging+based+reduced+Kernelized+weighted+extreme+learning+machine+for+class+imbalance+learning&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Raghuwanshi%2C+Bhagat+Singh&rft.au=Shukla%2C+Sanyam&rft.date=2018-09-01&rft.issn=0952-1976&rft.volume=74&rft.spage=252&rft.epage=270&rft_id=info:doi/10.1016%2Fj.engappai.2018.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2018_07_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |