UnderBagging based reduced Kernelized weighted extreme learning machine for class imbalance learning

Extreme learning machine (ELM) is one of the foremost capable, quick genuine esteemed classification algorithm with good generalization performance. Conventional ELM does not take into account the class imbalance problem effectively. Numerous variants of ELM-like weighted ELM (WELM), Boosting WELM (...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 74; pp. 252 - 270
Main Authors Raghuwanshi, Bhagat Singh, Shukla, Sanyam
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2018
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2018.07.002

Cover

Abstract Extreme learning machine (ELM) is one of the foremost capable, quick genuine esteemed classification algorithm with good generalization performance. Conventional ELM does not take into account the class imbalance problem effectively. Numerous variants of ELM-like weighted ELM (WELM), Boosting WELM (BWELM) etc. have been proposed in order to diminish the performance degradation which happens due to the class imbalance problem. This work proposed a novel Reduced Kernelized WELM (RKWELM) which is a variant of kernelized WELM to handle the class imbalance problem more effectively. The performance of RKWELM varies due to the arbitrary selection of the kernel centroids. To reduce this variation, this work uses ensemble method. The computational complexity of kernelized ELM (KELM) is subject to the number of kernels. KELM generally employ Gaussian kernel function. It employs all of the training instances to act as the centroid. This will lead to computation of the pseudoinverse of N×N matrix. Here, N represents the number of training instances. This operation becomes very slow for the large values of N. Moreover, for the imbalanced classification problems, using all the training instances as the centroid will result in more number of centroids representing the majority class compared to the centroids representing the minority class. This might lead to biased classification model, which favors the majority class instances. So, this work uses a subset of the training instances as the centroid of the kernels. RKWELM arbitrarily chooses Nmin instances from each class which acts as the centroid. The total number of centroids will be N˜=m×Nmin. Here, m represents the number of classes and Nmin is the number of instances belonging to the minority class which has the least number of instances. This reduction in the number of kernels will lead to reduced kernel matrix of size, N˜×N˜ leading to decrease in the computational complexity. This work creates a number of balanced kernel subsets depending on the degree of class imbalance. A number of RKWELM based classification models are produced utilizing these balanced kernel subsets. The ultimate outcome is computed by the majority voting and the soft voting of these classification models. The proposed algorithm is assessed by using the benchmark real-world imbalanced datasets downloaded from the KEEL dataset repository. The experimental results indicate the superiority of the proposed work in contrast with the rest of classifiers for the imbalanced classification problems.
AbstractList Extreme learning machine (ELM) is one of the foremost capable, quick genuine esteemed classification algorithm with good generalization performance. Conventional ELM does not take into account the class imbalance problem effectively. Numerous variants of ELM-like weighted ELM (WELM), Boosting WELM (BWELM) etc. have been proposed in order to diminish the performance degradation which happens due to the class imbalance problem. This work proposed a novel Reduced Kernelized WELM (RKWELM) which is a variant of kernelized WELM to handle the class imbalance problem more effectively. The performance of RKWELM varies due to the arbitrary selection of the kernel centroids. To reduce this variation, this work uses ensemble method. The computational complexity of kernelized ELM (KELM) is subject to the number of kernels. KELM generally employ Gaussian kernel function. It employs all of the training instances to act as the centroid. This will lead to computation of the pseudoinverse of N×N matrix. Here, N represents the number of training instances. This operation becomes very slow for the large values of N. Moreover, for the imbalanced classification problems, using all the training instances as the centroid will result in more number of centroids representing the majority class compared to the centroids representing the minority class. This might lead to biased classification model, which favors the majority class instances. So, this work uses a subset of the training instances as the centroid of the kernels. RKWELM arbitrarily chooses Nmin instances from each class which acts as the centroid. The total number of centroids will be N˜=m×Nmin. Here, m represents the number of classes and Nmin is the number of instances belonging to the minority class which has the least number of instances. This reduction in the number of kernels will lead to reduced kernel matrix of size, N˜×N˜ leading to decrease in the computational complexity. This work creates a number of balanced kernel subsets depending on the degree of class imbalance. A number of RKWELM based classification models are produced utilizing these balanced kernel subsets. The ultimate outcome is computed by the majority voting and the soft voting of these classification models. The proposed algorithm is assessed by using the benchmark real-world imbalanced datasets downloaded from the KEEL dataset repository. The experimental results indicate the superiority of the proposed work in contrast with the rest of classifiers for the imbalanced classification problems.
Author Shukla, Sanyam
Raghuwanshi, Bhagat Singh
Author_xml – sequence: 1
  givenname: Bhagat Singh
  surname: Raghuwanshi
  fullname: Raghuwanshi, Bhagat Singh
  email: bhagat.mnit@gmail.com
– sequence: 2
  givenname: Sanyam
  surname: Shukla
  fullname: Shukla, Sanyam
  email: sanyamshukla@gmail.com
BookMark eNqFkMtOwzAQRS1UJNrCL6D8QMI4jp1EYgFUvEQlNnRtTZxp6ip1Kjs8v55UBSGx6erexZwrzZmwkescMXbOIeHA1cU6Idfgdos2SYEXCeQJQHrExrzIRaxyVY7YGEqZxrzM1QmbhLAGAFFkaszqhavJ32DTWNdEFQaqI0_1qxnyibyj1n4N9Z1ss-qHQh-9pw1FLaF3O2SDZmUdRcvOR6bFECK7qbBFZ_6OTtnxEttAZz85ZYu725fZQzx_vn-cXc9jI3jax5IrJQWRquqKQBqZAUgAIyVgWlOZZoJ4VglVqJJyk-YCM1liwaECICnFlF3ud43vQvC01Mb22NvO9R5tqznonTG91r_G9M6YhlwPxgZc_cO33m7Qfx4Gr_YgDc-9WfI6GEuDgdp6Mr2uO3to4huFk41f
CitedBy_id crossref_primary_10_1007_s11042_019_08321_6
crossref_primary_10_1016_j_isatra_2020_05_001
crossref_primary_10_1016_j_knosys_2021_107588
crossref_primary_10_1007_s13042_022_01601_y
crossref_primary_10_1016_j_ins_2020_01_032
crossref_primary_10_1016_j_knosys_2019_06_022
crossref_primary_10_3390_sym14020379
crossref_primary_10_1016_j_bdr_2022_100356
crossref_primary_10_1155_2022_9107430
crossref_primary_10_3390_app122211688
crossref_primary_10_1016_j_eswa_2019_04_017
crossref_primary_10_1016_j_eswa_2021_114994
crossref_primary_10_1016_j_neucom_2020_10_038
crossref_primary_10_1016_j_knosys_2020_106631
crossref_primary_10_1016_j_chemer_2024_126156
crossref_primary_10_1016_j_asoc_2022_108560
crossref_primary_10_3233_JIFS_231344
crossref_primary_10_1007_s00500_022_07705_5
crossref_primary_10_1016_j_ins_2021_12_066
crossref_primary_10_1007_s13042_019_01001_9
crossref_primary_10_1016_j_engappai_2021_104355
crossref_primary_10_1007_s13748_021_00236_4
crossref_primary_10_1016_j_eswa_2018_12_024
crossref_primary_10_1016_j_asoc_2022_108846
crossref_primary_10_1007_s10044_019_00844_w
crossref_primary_10_1016_j_engappai_2019_103427
crossref_primary_10_1016_j_neucom_2018_10_056
crossref_primary_10_1016_j_neunet_2019_08_018
crossref_primary_10_1016_j_eswa_2020_114041
crossref_primary_10_1016_j_asoc_2018_10_011
crossref_primary_10_1007_s13042_020_01232_1
crossref_primary_10_1016_j_jisa_2023_103618
crossref_primary_10_1016_j_ins_2024_121103
crossref_primary_10_1177_09544100211068906
crossref_primary_10_1007_s00521_022_07167_8
crossref_primary_10_1109_TFUZZ_2023_3321768
crossref_primary_10_1007_s13369_021_06147_9
crossref_primary_10_1016_j_eswa_2024_126033
crossref_primary_10_1016_j_ifacol_2020_11_045
Cites_doi 10.1016/0925-2312(94)90053-1
10.1016/j.neucom.2015.11.024
10.1109/TNN.2006.883722
10.1016/j.neunet.2015.06.005
10.1016/j.neucom.2017.04.060
10.1109/TSMCB.2008.2007853
10.1016/j.asoc.2018.03.013
10.1016/j.neucom.2016.09.023
10.1016/j.neucom.2017.08.040
10.1016/j.asoc.2015.08.060
10.1016/j.engappai.2017.05.003
10.1016/j.neucom.2013.05.051
10.1109/TSMCC.2011.2161285
10.1016/j.neucom.2012.08.010
10.1016/j.eswa.2016.12.035
10.1016/j.neucom.2017.04.052
10.1109/TSMCB.2011.2168604
10.1016/j.neunet.2018.05.011
10.1016/j.ins.2015.09.025
10.1016/S0031-3203(96)00142-2
10.1109/TNNLS.2014.2311466
10.1016/j.patrec.2015.09.015
10.1080/00401706.2000.10485983
10.1109/TKDE.2008.239
10.1016/j.patrec.2014.12.003
10.1016/j.neucom.2005.12.126
10.1007/s12559-014-9255-2
10.1109/TKDE.2005.50
10.1109/ACCESS.2015.2506601
10.1016/j.patcog.2018.03.008
10.1016/j.neunet.2015.10.006
10.1016/j.neucom.2015.06.087
10.1016/j.eswa.2011.09.033
10.1016/j.eswa.2011.09.059
10.1142/S0218001407005703
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2018.07.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 270
ExternalDocumentID 10_1016_j_engappai_2018_07_002
S0952197618301465
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-516653ee6bdbe05c5400500c550a2de9243e14b36869e7c273a459a810b00e553
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Sat Oct 25 05:01:23 EDT 2025
Thu Apr 24 22:50:52 EDT 2025
Fri Feb 23 02:49:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords UnderBagging ensemble
Kernelized extreme learning machine
Class imbalance problem
Classification
Voting methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-516653ee6bdbe05c5400500c550a2de9243e14b36869e7c273a459a810b00e553
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2018_07_002
crossref_primary_10_1016_j_engappai_2018_07_002
elsevier_sciencedirect_doi_10_1016_j_engappai_2018_07_002
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Demšar (b9) 2006; 7
He, Garcia (b18) 2009; 21
Wang, Chen, Li, Cai, Zhao, Tong, Li, Xu (b42) 2017; 63
Courrieu, P., 2005. Fast computation of moore-penrose inverse matrices. CoRR, abs/0804.4809.
Tang, Chen (b40) 2018
Fasshauer (b14) 2007
Fawcett, T., 2003. ROC Graphs: Notes and Practical Considerations for Researchers. Technical Report HP Labs, Tech. Rep. HPL-2003-4.
Vuković, Petrović, Miljković (b41) 2017
Hoerl, Kennard (b20) 2000; 42
Lee, Huang (b31) 2007; 18
Iosifidis, Gabbouj (b25) 2015; 68
Galar, Fernandez, Barrenechea, Bustince, Herrera (b16) 2012; 42
Janakiraman, Nguyen, Sterniak, Assanis (b29) 2015; 26
Alcalá, Fernández, Luengo, Derrac, García, Sánchez, Herrera (b1) 2010; 17
Krawczyk, Galar, Jele, Herrera (b30) 2016; 38
Li, Kong, Lu, Wenyin, Yin (b32) 2014; 128
Deng, Zheng, Zhang (b13) 2013
Zhang, Suganthan (b49) 2016; 367–368
Iosifidis, Tefas, Pitas (b26) 2015; 54
Janakiraman, Nguyen, Assanis (b28) 2016; 177
Huang, Zhou, Ding, Zhang (b23) 2012; 42
Bradley (b2) 1997; 30
.
Yang, Song, Wang (b46) 2007; 21
Das, Datta, Chaudhuri (b6) 2018
Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (b17) 2017; 73
Zeng, Xu, Shen, Fang, Xiao (b47) 2017; 18
Raghuwanshi, Shukla (b36) 2018; 105
Brown, Mues (b3) 2012; 39
Luo, Guo, Yu, Chen (b34) 2017; 260
Williams, Seeger (b44) 2001
Schapire (b38) 1999
Datta, Das (b7) 2015; 70
Zong, Huang, Chen (b51) 2013; 101
Deng, Ong, Zheng (b11) 2016; 76
Xiao, Xie, He, Jiang (b45) 2012; 39
Iosifidis, Tefas, Pitas (b27) 2017; 219
Liu, Wu, Zhou (b33) 2009; 39
Henríquez, Ruz (b19) 2018
Shukla, Yadav (b39) 2015; 3
Wang, Chen, Yang, Zhao, Hu, Cai, Huang, Tong (b43) 2017; 267
Deng, Zheng, Chen (b12) 2009
Rao, Mitra (b37) 1972
Huang, Ling (b22) 2005; 17
Zhou (b50) 2012
Huang (b21) 2014; 6
Deng, Ong, Tan, Zheng (b10) 2016; 174
Pao, Park, Sobajic (b35) 1994; 6
Datta, S., Nag, S., Mullick, S.S., Das, S., 2017. Diversifying support vector machines for boosting using kernel perturbation: Applications to class imbalance and small disjuncts. CoRR, abs/1712.08493. URL
Zhang, Liu, Cai, Zhang (b48) 2016
Cao, Wang, Ming, Gao (b4) 2018; 275
Huang, Zhu, Siew (b24) 2006; 70
Deng (10.1016/j.engappai.2018.07.002_b13) 2013
Alcalá (10.1016/j.engappai.2018.07.002_b1) 2010; 17
Luo (10.1016/j.engappai.2018.07.002_b34) 2017; 260
Cao (10.1016/j.engappai.2018.07.002_b4) 2018; 275
Henríquez (10.1016/j.engappai.2018.07.002_b19) 2018
Schapire (10.1016/j.engappai.2018.07.002_b38) 1999
Huang (10.1016/j.engappai.2018.07.002_b22) 2005; 17
Rao (10.1016/j.engappai.2018.07.002_b37) 1972
Demšar (10.1016/j.engappai.2018.07.002_b9) 2006; 7
Deng (10.1016/j.engappai.2018.07.002_b12) 2009
Fasshauer (10.1016/j.engappai.2018.07.002_b14) 2007
Iosifidis (10.1016/j.engappai.2018.07.002_b27) 2017; 219
Wang (10.1016/j.engappai.2018.07.002_b43) 2017; 267
Brown (10.1016/j.engappai.2018.07.002_b3) 2012; 39
Iosifidis (10.1016/j.engappai.2018.07.002_b26) 2015; 54
Zhou (10.1016/j.engappai.2018.07.002_b50) 2012
Hoerl (10.1016/j.engappai.2018.07.002_b20) 2000; 42
Huang (10.1016/j.engappai.2018.07.002_b24) 2006; 70
Datta (10.1016/j.engappai.2018.07.002_b7) 2015; 70
Iosifidis (10.1016/j.engappai.2018.07.002_b25) 2015; 68
Janakiraman (10.1016/j.engappai.2018.07.002_b29) 2015; 26
Liu (10.1016/j.engappai.2018.07.002_b33) 2009; 39
10.1016/j.engappai.2018.07.002_b5
Lee (10.1016/j.engappai.2018.07.002_b31) 2007; 18
Bradley (10.1016/j.engappai.2018.07.002_b2) 1997; 30
10.1016/j.engappai.2018.07.002_b8
Haixiang (10.1016/j.engappai.2018.07.002_b17) 2017; 73
Vuković (10.1016/j.engappai.2018.07.002_b41) 2017
Zong (10.1016/j.engappai.2018.07.002_b51) 2013; 101
Williams (10.1016/j.engappai.2018.07.002_b44) 2001
Zhang (10.1016/j.engappai.2018.07.002_b49) 2016; 367–368
Huang (10.1016/j.engappai.2018.07.002_b21) 2014; 6
Huang (10.1016/j.engappai.2018.07.002_b23) 2012; 42
Yang (10.1016/j.engappai.2018.07.002_b46) 2007; 21
Deng (10.1016/j.engappai.2018.07.002_b11) 2016; 76
Li (10.1016/j.engappai.2018.07.002_b32) 2014; 128
He (10.1016/j.engappai.2018.07.002_b18) 2009; 21
Zhang (10.1016/j.engappai.2018.07.002_b48) 2016
Zeng (10.1016/j.engappai.2018.07.002_b47) 2017; 18
Wang (10.1016/j.engappai.2018.07.002_b42) 2017; 63
Das (10.1016/j.engappai.2018.07.002_b6) 2018
Deng (10.1016/j.engappai.2018.07.002_b10) 2016; 174
Pao (10.1016/j.engappai.2018.07.002_b35) 1994; 6
Galar (10.1016/j.engappai.2018.07.002_b16) 2012; 42
Shukla (10.1016/j.engappai.2018.07.002_b39) 2015; 3
Tang (10.1016/j.engappai.2018.07.002_b40) 2018
Krawczyk (10.1016/j.engappai.2018.07.002_b30) 2016; 38
Xiao (10.1016/j.engappai.2018.07.002_b45) 2012; 39
10.1016/j.engappai.2018.07.002_b15
Janakiraman (10.1016/j.engappai.2018.07.002_b28) 2016; 177
Raghuwanshi (10.1016/j.engappai.2018.07.002_b36) 2018; 105
References_xml – volume: 39
  start-page: 3668
  year: 2012
  end-page: 3675
  ident: b45
  article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution
  publication-title: Expert Syst. Appl.
– reference: Courrieu, P., 2005. Fast computation of moore-penrose inverse matrices. CoRR, abs/0804.4809.
– year: 2007
  ident: b14
  article-title: Meshfree Approximation Methods with MATLAB
– volume: 101
  start-page: 229
  year: 2013
  end-page: 242
  ident: b51
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
– volume: 63
  start-page: 54
  year: 2017
  end-page: 68
  ident: b42
  article-title: Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 601
  year: 1972
  end-page: 620
  ident: b37
  article-title: Generalized inverse of a matrix and its applications
  publication-title: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics
– volume: 73
  start-page: 220
  year: 2017
  end-page: 239
  ident: b17
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Syst. Appl.
– reference: Fawcett, T., 2003. ROC Graphs: Notes and Practical Considerations for Researchers. Technical Report HP Labs, Tech. Rep. HPL-2003-4.
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: b23
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. B
– year: 2018
  ident: b6
  article-title: Handling data irregularities in classification: Foundations, trends, and future challenges
  publication-title: Pattern Recognit
– year: 2018
  ident: b19
  article-title: A non-iterative method for pruning hidden neurons in neural networks with random weights
  publication-title: Appl. Soft Comput
– volume: 3
  start-page: 3048
  year: 2015
  end-page: 3057
  ident: b39
  article-title: Regularized weighted circular complex-valued extreme learning machine for imbalanced learning
  publication-title: IEEE Access
– start-page: 1
  year: 2016
  end-page: 9
  ident: b48
  article-title: Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution
  publication-title: Neural Comput. Appl.
– volume: 42
  start-page: 463
  year: 2012
  end-page: 484
  ident: b16
  article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
– volume: 174
  start-page: 72
  year: 2016
  end-page: 84
  ident: b10
  article-title: Online sequential reduced kernel extreme learning machine
  publication-title: Neurocomputing
– volume: 128
  start-page: 15
  year: 2014
  end-page: 21
  ident: b32
  article-title: Boosting weighted {ELM} for imbalanced learning
  publication-title: Neurocomputing
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: b18
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 42
  start-page: 80
  year: 2000
  end-page: 86
  ident: b20
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b24
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
– year: 2018
  ident: b40
  article-title: Artificial bee colony optimization-based weighted extreme learning machine for imbalanced data learning
  publication-title: Cluster Comput
– volume: 260
  start-page: 313
  year: 2017
  end-page: 320
  ident: b34
  article-title: A multi-label classification algorithm based on kernel extreme learning machine
  publication-title: Neurocomputing
– reference: .
– volume: 17
  start-page: 299
  year: 2005
  end-page: 310
  ident: b22
  article-title: Using auc and accuracy in evaluating learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 6
  start-page: 163
  year: 1994
  end-page: 180
  ident: b35
  article-title: Learning and generalization characteristics of the random vector functional-link net
  publication-title: Neurocomputing
– volume: 177
  start-page: 304
  year: 2016
  end-page: 316
  ident: b28
  article-title: Stochastic gradient based extreme learning machines for stable online learning of advanced combustion engines
  publication-title: Neurocomputing
– year: 2017
  ident: b41
  article-title: A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression
  publication-title: Appl. Soft Comput
– volume: 367–368
  start-page: 1094
  year: 2016
  end-page: 1105
  ident: b49
  article-title: A comprehensive evaluation of random vector functional link networks
  publication-title: Inform. Sci.
– volume: 275
  start-page: 278
  year: 2018
  end-page: 287
  ident: b4
  article-title: A review on neural networks with random weights
  publication-title: Neurocomputing
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b9
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 219
  start-page: 210
  year: 2017
  end-page: 220
  ident: b27
  article-title: Approximate kernel extreme learning machine for large scale data classification
  publication-title: Neurocomputing
– volume: 54
  start-page: 11
  year: 2015
  end-page: 17
  ident: b26
  article-title: On the kernel extreme learning machine classifier
  publication-title: Pattern Recognit. Lett.
– volume: 26
  start-page: 98
  year: 2015
  end-page: 112
  ident: b29
  article-title: Identification of the dynamic operating envelope of hcci engines using class imbalance learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 105
  start-page: 206
  year: 2018
  end-page: 217
  ident: b36
  article-title: Class-specific extreme learning machine for handling binary class imbalance problem
  publication-title: Neural Netw.
– start-page: 1401
  year: 1999
  end-page: 1406
  ident: b38
  article-title: A brief introduction to boosting
  publication-title: Proceedings of the 16th International Joint Conference on Artificial Intelligence - Volume 2
– volume: 39
  start-page: 3446
  year: 2012
  end-page: 3453
  ident: b3
  article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets
  publication-title: Expert Syst. Appl.
– volume: 70
  start-page: 39
  year: 2015
  end-page: 52
  ident: b7
  article-title: Near-bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs
  publication-title: Neural Netw.
– volume: 21
  start-page: 961
  year: 2007
  end-page: 976
  ident: b46
  article-title: A weighted support vector machine for data classification
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– volume: 6
  start-page: 376
  year: 2014
  end-page: 390
  ident: b21
  article-title: An insight into extreme learning machines: Random neurons, random features and kernels
  publication-title: Cogn. Comput.
– reference: Datta, S., Nag, S., Mullick, S.S., Das, S., 2017. Diversifying support vector machines for boosting using kernel perturbation: Applications to class imbalance and small disjuncts. CoRR, abs/1712.08493. URL:
– volume: 267
  start-page: 69
  year: 2017
  end-page: 84
  ident: b43
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
– volume: 38
  start-page: 714
  year: 2016
  end-page: 726
  ident: b30
  article-title: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 1647
  year: 2017
  end-page: 1653
  ident: b47
  article-title: Traffic sign recognition using kernel extreme learning machines with deep perceptual features
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: .
– volume: 39
  start-page: 539
  year: 2009
  end-page: 550
  ident: b33
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Trans. Syst. Man Cybern. B
– year: 2012
  ident: b50
  publication-title: Ensemble Methods: Foundations and Algorithms
– volume: 68
  start-page: 205
  year: 2015
  end-page: 210
  ident: b25
  article-title: On the kernel extreme learning machine speedup
  publication-title: Pattern Recognit. Lett.
– volume: 17
  start-page: 255
  year: 2010
  end-page: 287
  ident: b1
  article-title: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Mult.-Valued Logic Soft Comput.
– start-page: 682
  year: 2001
  end-page: 688
  ident: b44
  article-title: Using the nyström method to speed up kernel machines
  publication-title: Advances in Neural Information Processing Systems 13
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: b2
  article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognit.
– start-page: 389
  year: 2009
  end-page: 395
  ident: b12
  article-title: Regularized extreme learning machine
  publication-title: IEEE Symposium on Computational Intelligence and Data Mining
– start-page: 63
  year: 2013
  end-page: 69
  ident: b13
  article-title: Reduced kernel extreme learning machine
  publication-title: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013
– volume: 18
  start-page: 1
  year: 2007
  end-page: 13
  ident: b31
  article-title: Reduced support vector machines: A statistical theory
  publication-title: IEEE Trans. Neural Netw.
– volume: 76
  start-page: 29
  year: 2016
  end-page: 38
  ident: b11
  article-title: A fast reduced kernel extreme learning machine
  publication-title: Neural Netw.
– volume: 6
  start-page: 163
  issue: 2
  year: 1994
  ident: 10.1016/j.engappai.2018.07.002_b35
  article-title: Learning and generalization characteristics of the random vector functional-link net
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(94)90053-1
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.engappai.2018.07.002_b9
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 177
  start-page: 304
  year: 2016
  ident: 10.1016/j.engappai.2018.07.002_b28
  article-title: Stochastic gradient based extreme learning machines for stable online learning of advanced combustion engines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.024
– volume: 18
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.engappai.2018.07.002_b31
  article-title: Reduced support vector machines: A statistical theory
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.883722
– volume: 70
  start-page: 39
  year: 2015
  ident: 10.1016/j.engappai.2018.07.002_b7
  article-title: Near-bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.06.005
– volume: 267
  start-page: 69
  year: 2017
  ident: 10.1016/j.engappai.2018.07.002_b43
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– start-page: 63
  year: 2013
  ident: 10.1016/j.engappai.2018.07.002_b13
  article-title: Reduced kernel extreme learning machine
– volume: 18
  start-page: 1647
  issue: 6
  year: 2017
  ident: 10.1016/j.engappai.2018.07.002_b47
  article-title: Traffic sign recognition using kernel extreme learning machines with deep perceptual features
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 39
  start-page: 539
  issue: 2
  year: 2009
  ident: 10.1016/j.engappai.2018.07.002_b33
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2008.2007853
– year: 2012
  ident: 10.1016/j.engappai.2018.07.002_b50
– ident: 10.1016/j.engappai.2018.07.002_b5
– year: 2018
  ident: 10.1016/j.engappai.2018.07.002_b19
  article-title: A non-iterative method for pruning hidden neurons in neural networks with random weights
  publication-title: Appl. Soft Comput
  doi: 10.1016/j.asoc.2018.03.013
– ident: 10.1016/j.engappai.2018.07.002_b8
– volume: 219
  start-page: 210
  year: 2017
  ident: 10.1016/j.engappai.2018.07.002_b27
  article-title: Approximate kernel extreme learning machine for large scale data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.023
– volume: 275
  start-page: 278
  year: 2018
  ident: 10.1016/j.engappai.2018.07.002_b4
  article-title: A review on neural networks with random weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.040
– ident: 10.1016/j.engappai.2018.07.002_b15
– volume: 38
  start-page: 714
  issue: C
  year: 2016
  ident: 10.1016/j.engappai.2018.07.002_b30
  article-title: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.060
– year: 2007
  ident: 10.1016/j.engappai.2018.07.002_b14
– start-page: 682
  year: 2001
  ident: 10.1016/j.engappai.2018.07.002_b44
  article-title: Using the nyström method to speed up kernel machines
– volume: 63
  start-page: 54
  year: 2017
  ident: 10.1016/j.engappai.2018.07.002_b42
  article-title: Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.05.003
– volume: 128
  start-page: 15
  year: 2014
  ident: 10.1016/j.engappai.2018.07.002_b32
  article-title: Boosting weighted {ELM} for imbalanced learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.051
– volume: 42
  start-page: 463
  issue: 4
  year: 2012
  ident: 10.1016/j.engappai.2018.07.002_b16
  article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2011.2161285
– volume: 101
  start-page: 229
  year: 2013
  ident: 10.1016/j.engappai.2018.07.002_b51
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.010
– volume: 73
  start-page: 220
  year: 2017
  ident: 10.1016/j.engappai.2018.07.002_b17
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.12.035
– volume: 260
  start-page: 313
  year: 2017
  ident: 10.1016/j.engappai.2018.07.002_b34
  article-title: A multi-label classification algorithm based on kernel extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.052
– start-page: 1
  year: 2016
  ident: 10.1016/j.engappai.2018.07.002_b48
  article-title: Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution
  publication-title: Neural Comput. Appl.
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2018.07.002_b23
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2011.2168604
– start-page: 1401
  year: 1999
  ident: 10.1016/j.engappai.2018.07.002_b38
  article-title: A brief introduction to boosting
– volume: 105
  start-page: 206
  year: 2018
  ident: 10.1016/j.engappai.2018.07.002_b36
  article-title: Class-specific extreme learning machine for handling binary class imbalance problem
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.05.011
– volume: 367–368
  start-page: 1094
  year: 2016
  ident: 10.1016/j.engappai.2018.07.002_b49
  article-title: A comprehensive evaluation of random vector functional link networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.09.025
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 10.1016/j.engappai.2018.07.002_b2
  article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 26
  start-page: 98
  issue: 1
  year: 2015
  ident: 10.1016/j.engappai.2018.07.002_b29
  article-title: Identification of the dynamic operating envelope of hcci engines using class imbalance learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2311466
– volume: 68
  start-page: 205
  year: 2015
  ident: 10.1016/j.engappai.2018.07.002_b25
  article-title: On the kernel extreme learning machine speedup
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.09.015
– volume: 42
  start-page: 80
  issue: 1
  year: 2000
  ident: 10.1016/j.engappai.2018.07.002_b20
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485983
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.engappai.2018.07.002_b18
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 54
  start-page: 11
  year: 2015
  ident: 10.1016/j.engappai.2018.07.002_b26
  article-title: On the kernel extreme learning machine classifier
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.12.003
– volume: 70
  start-page: 489
  issue: 13
  year: 2006
  ident: 10.1016/j.engappai.2018.07.002_b24
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 17
  start-page: 255
  issue: 2–3
  year: 2010
  ident: 10.1016/j.engappai.2018.07.002_b1
  article-title: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Mult.-Valued Logic Soft Comput.
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  ident: 10.1016/j.engappai.2018.07.002_b21
  article-title: An insight into extreme learning machines: Random neurons, random features and kernels
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-014-9255-2
– start-page: 601
  year: 1972
  ident: 10.1016/j.engappai.2018.07.002_b37
  article-title: Generalized inverse of a matrix and its applications
– volume: 17
  start-page: 299
  issue: 3
  year: 2005
  ident: 10.1016/j.engappai.2018.07.002_b22
  article-title: Using auc and accuracy in evaluating learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.50
– volume: 3
  start-page: 3048
  year: 2015
  ident: 10.1016/j.engappai.2018.07.002_b39
  article-title: Regularized weighted circular complex-valued extreme learning machine for imbalanced learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2506601
– year: 2018
  ident: 10.1016/j.engappai.2018.07.002_b6
  article-title: Handling data irregularities in classification: Foundations, trends, and future challenges
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.03.008
– volume: 76
  start-page: 29
  year: 2016
  ident: 10.1016/j.engappai.2018.07.002_b11
  article-title: A fast reduced kernel extreme learning machine
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.10.006
– start-page: 389
  year: 2009
  ident: 10.1016/j.engappai.2018.07.002_b12
  article-title: Regularized extreme learning machine
– year: 2017
  ident: 10.1016/j.engappai.2018.07.002_b41
  article-title: A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression
  publication-title: Appl. Soft Comput
– volume: 174
  start-page: 72
  year: 2016
  ident: 10.1016/j.engappai.2018.07.002_b10
  article-title: Online sequential reduced kernel extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.087
– volume: 39
  start-page: 3446
  issue: 3
  year: 2012
  ident: 10.1016/j.engappai.2018.07.002_b3
  article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.033
– volume: 39
  start-page: 3668
  issue: 3
  year: 2012
  ident: 10.1016/j.engappai.2018.07.002_b45
  article-title: Dynamic classifier ensemble model for customer classification with imbalanced class distribution
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.059
– year: 2018
  ident: 10.1016/j.engappai.2018.07.002_b40
  article-title: Artificial bee colony optimization-based weighted extreme learning machine for imbalanced data learning
  publication-title: Cluster Comput
– volume: 21
  start-page: 961
  issue: 05
  year: 2007
  ident: 10.1016/j.engappai.2018.07.002_b46
  article-title: A weighted support vector machine for data classification
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001407005703
SSID ssj0003846
Score 2.403835
Snippet Extreme learning machine (ELM) is one of the foremost capable, quick genuine esteemed classification algorithm with good generalization performance....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 252
SubjectTerms Class imbalance problem
Classification
Kernelized extreme learning machine
UnderBagging ensemble
Voting methods
Title UnderBagging based reduced Kernelized weighted extreme learning machine for class imbalance learning
URI https://dx.doi.org/10.1016/j.engappai.2018.07.002
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqsrDwRjwrD6xp87KbjqWiKlR0ACq6RbZzrVLRUJUiJAZ-O3eJQ4sYOjDFsXxSdLbvvrvcg7EroAIkkvxu4Rgc1FCeo0XTd8xYqQBaTRV5lJx8P5C9YXg3EqMK65S5MBRWaWV_IdNzaW1nGpabjXmaNh4RHOB1QzM8IrNAUqJ5GDapi0H9axXmEURFsg4udmj1WpbwtA7ZRM3nKqUQrygv4mndK38U1JrS6e6xHYsWebv4oH1WgeyA7VrkyO29fMOpsjlDOXfIkryj0bUij_KEk7JK-ILqtOKzD4sMXtJPHH7krlEcoJAmVyG3bSQmfJaHWQJHVMsNYWyezjQFQprVoiM27N48dXqObangmMDzl47wpBQBgNSJBlcYxGuucF2DdoryE0BjLAAv1IGMZAuaBrGNCkULN8zF6wlCBMesmr1mcMK4MkL7kfH0OBGhn0RaKiVxiwODmFCE5pSJko-xsfXGqe3FS1wGlk3jkv8x8T926Ve4f8oaP3TzouLGRopWuU3xr7MTo1rYQHv2D9pztk1vRcTZBasuF-9wiRBlqWv5GayxrfZtvzegZ__huf8Nn9_pRA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGWDhjShPD6xp87KbjlBRlUe7UCS2yHauVao2VKUIiYHfzl3iUBBDB6ZYjk-Kzvbdd5d7MHYJVIBEkt8tHIKDGspztGj6jhkqFUCrqSKPkpN7fdl9Cu-exXOFtctcGAqrtLK_kOm5tLYzDcvNxixNG48IDvC6oRkekVkgxRpbD4XfJAus_rmM8wiiIlsHVzu0_Eea8LgO2UjNZiqlGK8or-Jp_St_NNQPrdPZYVsWLvKr4ot2WQWyPbZtoSO3F_MVp8ruDOXcPkvylkbXilzKI07aKuFzKtSKz3uYZzBJP3D4nvtGcYBSmnyF3PaRGPFpHmcJHGEtNwSyeTrVFAlplosO2FPnZtDuOrangmMCz184wpNSBABSJxpcYRCwucJ1DRoqyk8ArbEAvFAHMpItaBoENyoULdwxF-8nCBEcsmr2ksER48oI7UfG08NEhH4SaamUxD0ODIJCEZoaEyUfY2MLjlPfi0lcRpaN45L_MfE_dulfuF9jjW-6WVFyYyVFq9ym-NfhiVEvrKA9_gftBdvoDnoP8cNt__6EbdKbIvzslFUX8zc4Q7yy0Of5efwCyFDpNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UnderBagging+based+reduced+Kernelized+weighted+extreme+learning+machine+for+class+imbalance+learning&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Raghuwanshi%2C+Bhagat+Singh&rft.au=Shukla%2C+Sanyam&rft.date=2018-09-01&rft.issn=0952-1976&rft.volume=74&rft.spage=252&rft.epage=270&rft_id=info:doi/10.1016%2Fj.engappai.2018.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2018_07_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon