Conversion of surface CH4 concentrations from GOSAT satellite observations using XGBoost algorithm

Methane (CH4), the second most significant greenhouse gas after carbon dioxide, contributes significantly to global warming. Owing to its wide monitoring range and long observation time, satellite remote sensing has emerged as a popular method for monitoring CH4. Although the existing algorithm for...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 301; p. 119694
Main Authors Wan, Yong, Chen, Fangfang, Fan, Lu, Sun, Dong, He, Hu, Dai, Yongshou, Li, Ligang, Chen, Yuyu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2023
Subjects
Online AccessGet full text
ISSN1352-2310
1873-2844
DOI10.1016/j.atmosenv.2023.119694

Cover

Abstract Methane (CH4), the second most significant greenhouse gas after carbon dioxide, contributes significantly to global warming. Owing to its wide monitoring range and long observation time, satellite remote sensing has emerged as a popular method for monitoring CH4. Although the existing algorithm for satellite retrievals of CH4 column amount is mature, it has some drawbacks: the retrieval calculation process is complicated, and there is still a discrepancy between the satellite-retried column amount of CH4 and surface CH4 concentrations. To obtain more accurate near-surface CH4 concentrations from satellite observations, this paper proposed a conversion method based on the Extreme Gradient Boosting (XGBoost) algorithm, taking column amount retrieved by the Greenhouse Gas Observation SATellite (GOSAT) satellite, meteorological factors and near-surface methane concentrations as predictor variables. Using this method, we analyzed the importance of the characteristic factors and predicted methane concentrations at four ground monitoring sites in World Center for Greenhouse Gases (WDCGG), and reached the following conclusions: (1) The model performed well on the test set, with a sample-based cross-validation coefficient of determination (R2) of 0.79, a root mean square error (RMSE) of 0.0251 ppm and a mean absolute percentage error (MAPE) of 0.88%. (2) Of the five meteorological input features, surface net solar radiation had a greater impact on the construction of the model than the other four. (3) The CH4 monthly average concentrations predicted by this model are generally consistent with the trend of the CH4 concentrations of ground monitoring stations. •A machine learning method is used to obtain surface CH4 concentrations reliably.•The R2 between the model estimated value and surface CH4 concentrations is 0.79.•The importance of features in the model is analyzed.
AbstractList Methane (CH4), the second most significant greenhouse gas after carbon dioxide, contributes significantly to global warming. Owing to its wide monitoring range and long observation time, satellite remote sensing has emerged as a popular method for monitoring CH4. Although the existing algorithm for satellite retrievals of CH4 column amount is mature, it has some drawbacks: the retrieval calculation process is complicated, and there is still a discrepancy between the satellite-retried column amount of CH4 and surface CH4 concentrations. To obtain more accurate near-surface CH4 concentrations from satellite observations, this paper proposed a conversion method based on the Extreme Gradient Boosting (XGBoost) algorithm, taking column amount retrieved by the Greenhouse Gas Observation SATellite (GOSAT) satellite, meteorological factors and near-surface methane concentrations as predictor variables. Using this method, we analyzed the importance of the characteristic factors and predicted methane concentrations at four ground monitoring sites in World Center for Greenhouse Gases (WDCGG), and reached the following conclusions: (1) The model performed well on the test set, with a sample-based cross-validation coefficient of determination (R2) of 0.79, a root mean square error (RMSE) of 0.0251 ppm and a mean absolute percentage error (MAPE) of 0.88%. (2) Of the five meteorological input features, surface net solar radiation had a greater impact on the construction of the model than the other four. (3) The CH4 monthly average concentrations predicted by this model are generally consistent with the trend of the CH4 concentrations of ground monitoring stations. •A machine learning method is used to obtain surface CH4 concentrations reliably.•The R2 between the model estimated value and surface CH4 concentrations is 0.79.•The importance of features in the model is analyzed.
ArticleNumber 119694
Author Dai, Yongshou
Li, Ligang
Wan, Yong
Chen, Yuyu
Chen, Fangfang
Sun, Dong
Fan, Lu
He, Hu
Author_xml – sequence: 1
  givenname: Yong
  surname: Wan
  fullname: Wan, Yong
  organization: College of Oceanography and Space Informatics, China University of Petroleum, Qingdao, 266580, China
– sequence: 2
  givenname: Fangfang
  surname: Chen
  fullname: Chen, Fangfang
  email: Z21160042@s.upc.edu.cn
  organization: College of Oceanography and Space Informatics, China University of Petroleum, Qingdao, 266580, China
– sequence: 3
  givenname: Lu
  surname: Fan
  fullname: Fan, Lu
  organization: Technical Testing Center of Shengli Oilfield Branch, China Petroleum & Chemical Corporation, Dongying, 257000, China
– sequence: 4
  givenname: Dong
  surname: Sun
  fullname: Sun, Dong
  organization: Technical Testing Center of Shengli Oilfield Branch, China Petroleum & Chemical Corporation, Dongying, 257000, China
– sequence: 5
  givenname: Hu
  surname: He
  fullname: He, Hu
  organization: Technical Testing Center of Shengli Oilfield Branch, China Petroleum & Chemical Corporation, Dongying, 257000, China
– sequence: 6
  givenname: Yongshou
  surname: Dai
  fullname: Dai, Yongshou
  organization: College of Oceanography and Space Informatics, China University of Petroleum, Qingdao, 266580, China
– sequence: 7
  givenname: Ligang
  surname: Li
  fullname: Li, Ligang
  organization: College of Oceanography and Space Informatics, China University of Petroleum, Qingdao, 266580, China
– sequence: 8
  givenname: Yuyu
  surname: Chen
  fullname: Chen, Yuyu
  organization: College of Oceanography and Space Informatics, China University of Petroleum, Qingdao, 266580, China
BookMark eNqFkMFKAzEQhoNUsK2-guQFdk02yW4XPFiLtkKhByt4C2l2UlN2E0nSgm_v1urFS08zMPMN838jNHDeAUK3lOSU0PJul6vU-QjukBekYDmldVnzCzSkk4plxYTzQd8zUWQFo-QKjWLcEUJYVVdDtJl5d4AQrXfYGxz3wSgNeLbgWHunwaWgUj-M2ATf4fnqdbrGUSVoW5sA-02EcPjd2Efrtvh9_uh9TFi1Wx9s-uiu0aVRbYSb3zpGb89P69kiW67mL7PpMtOMFinjG8OYEsZAJSbaFFyVVAlVcV01GgyQmhsjNBEAmpS82gjWVBPFRUmaWgnGxuj-dFcHH2MAI7VNP6_1GWwrKZFHX3In_3zJoy958tXj5T_8M9hOha_z4MMJhD7cwUKQUVvo3TU2gE6y8fbciW-e6Y5W
CitedBy_id crossref_primary_10_1016_j_envint_2023_108057
crossref_primary_10_3390_s25071974
crossref_primary_10_3390_chemosensors11100525
crossref_primary_10_1016_j_asr_2024_07_007
crossref_primary_10_1016_j_atmosres_2023_106811
Cites_doi 10.5194/acp-16-14371-2016
10.1016/j.atmosenv.2010.05.043
10.1016/j.envint.2019.104934
10.1016/j.rse.2019.111221
10.1007/s11356-021-14007-0
10.1016/j.atmosenv.2008.05.057
10.1029/2021JD034925
10.5194/acp-15-7049-2015
10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
10.5194/amt-6-1533-2013
10.1029/2011GL047888
10.3390/rs9090950
10.1016/j.rse.2011.09.027
10.3390/rs9060519
10.1006/jcss.1997.1504
10.1007/BF01636899
10.17582/journal.pjz/2019.51.2.421.431
10.1117/12.581198
10.1145/2939672.2939785
10.1109/USBEREIT.2019.8736679
10.1088/1748-9326/abf9c8
10.7813/2075-4124.2014/6-2/A.29
10.1021/es0606780
10.1016/j.atmosenv.2017.07.044
10.3390/fire4020025
10.1016/j.scitotenv.2018.03.324
10.1023/A:1007515423169
10.1007/s10661-013-3605-5
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.atmosenv.2023.119694
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2844
ExternalDocumentID 10_1016_j_atmosenv_2023_119694
S1352231023001206
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
~02
~G-
.HR
186
3O-
53G
AAFWJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
R2-
SEP
T9H
VH1
WUQ
~HD
ID FETCH-LOGICAL-c312t-4bf33a5ffe758cf24a61a5a74c7dcefe094ff5c05eec0647b53d78a4560d9a533
IEDL.DBID .~1
ISSN 1352-2310
IngestDate Thu Apr 24 23:00:33 EDT 2025
Wed Oct 29 21:15:23 EDT 2025
Fri Feb 23 02:37:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Methane
Satellite remote sensing
XGBoost
Near-surface CH4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-4bf33a5ffe758cf24a61a5a74c7dcefe094ff5c05eec0647b53d78a4560d9a533
ParticipantIDs crossref_citationtrail_10_1016_j_atmosenv_2023_119694
crossref_primary_10_1016_j_atmosenv_2023_119694
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2023_119694
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Atmospheric environment (1994)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Butz, Guerlet, Hasekamp, Schepers, Galli, Aben, Frankenberg, Hartmann, Tran, Kuze (bib4) 2011; 38
Losey, Gregg, Andres (bib16) 1999
Tırınk, Öztürk (bib24) 2022
Xu, Liu, Wang, Wang, Wang, Liu, Li (bib30) 2021; 28
Ghahremanloo, Lops, Choi, Yeganeh (bib9) 2021; 126
Freund, Schapire (bib8) 1997; 55
Ocko, Sun, Shindell, Oppenheimer, Hristov, Pacala, Mauzerall, Xu, Hamburg (bib19) 2021; 16
Turner, Jacob, Wecht, Maasakkers, Lundgren, Andrews, Biraud, Boesch, Bowman, Deutscher (bib25) 2015; 15
Wei, Huang, Li, Xue, Peng, Sun, Cribb (bib28) 2019; 231
Gu, Chen, Yu, Li, Tao, Fan, Xiong, Wang, Shang, Su (bib10) 2017; 9
Veefkind, Aben, McMullan, Förster, De Vries, Otter, Claas, Eskes, De Haan, Kleipool (bib26) 2012; 120
Winarso, Basuki (bib29) 2014; 6
Yoshida, Kikuchi, Morino, Uchino, Oshchepkov, Bril, Saeki, Schutgens, Toon, Wunch (bib32) 2013; 6
Bovensmann, Burrows, Buchwitz, Frerick, Noel, Rozanov, Chance, Goede (bib3) 1999; 56
Magro, Nunes, Gonçalves, Neng, Nogueira, Rego, Vieira (bib17) 2021; 4
Zhang, Liu, Li, Zhao, Zhao (bib34) 2022
Henderson, Beckerman, Jerrett, Brauer (bib12) 2007; 41
Sheel, Lal, Richter, Burrows (bib22) 2010; 44
Hamazaki, T., Kaneko, Y., Kuze, A., Kondo, K., Fourier Transform Spectrometer for Greenhouse Gases Observing Satellite (GOSAT). SPIE, pp. 73-80.
Jacob, Turner, Maasakkers, Sheng, Sun, Liu, Chance, Aben, McKeever, Frankenberg (bib14) 2016; 16
Chen, de Hoogh, Gulliver, Hoffmann, Hertel, Ketzel, Bauwelinck, van Donkelaar, Hvidtfeldt, Katsouyanni, Janssen, Martin, Samoli, Schwartz, Stafoggia, Bellander, Strak, Wolf, Vienneau, Vermeulen, Brunekreef, Hoek (bib5) 2019; 130
Bauer, Kohavi (bib2) 1999; 36
Kavitha, Nair (bib15) 2017; 166
Wan, Qu, Shi, Dai (bib27) 2022; 19
Taghipour Javi, Malekmohammadi, Mokhtari (bib23) 2014; 186
Araki, Shima, Yamamoto (bib1) 2018; 634
Ehhalt, Schmidt (bib7) 1978; 116
Chen, Guestrin (bib6) 2016
Qin, Rao, Xu, Bai, Zou, Hao, Li, Yu (bib20) 2017; 9
Yokota, Yoshida, Eguchi, Ota, Tanaka, Watanabe, Maksyutov (bib31) 2009; 5
Zaborski, Ali, Eyduran, Grzesiak, Tariq, Abbas, Waheed, Tirink (bib33) 2019; 51
Hoek, Beelen, De Hoogh, Vienneau, Gulliver, Fischer, Briggs (bib13) 2008; 42
Robinson, Lloyd, McKinley (bib21) 2013; 21
Masih, A., Application of Random Forest Algorithm to Predict the Atmospheric Concentration of NO2. IEEE, pp. 252-255.
Taghipour Javi (10.1016/j.atmosenv.2023.119694_bib23) 2014; 186
Xu (10.1016/j.atmosenv.2023.119694_bib30) 2021; 28
Henderson (10.1016/j.atmosenv.2023.119694_bib12) 2007; 41
10.1016/j.atmosenv.2023.119694_bib18
Ocko (10.1016/j.atmosenv.2023.119694_bib19) 2021; 16
Ehhalt (10.1016/j.atmosenv.2023.119694_bib7) 1978; 116
10.1016/j.atmosenv.2023.119694_bib11
Ghahremanloo (10.1016/j.atmosenv.2023.119694_bib9) 2021; 126
Bovensmann (10.1016/j.atmosenv.2023.119694_bib3) 1999; 56
Gu (10.1016/j.atmosenv.2023.119694_bib10) 2017; 9
Zaborski (10.1016/j.atmosenv.2023.119694_bib33) 2019; 51
Robinson (10.1016/j.atmosenv.2023.119694_bib21) 2013; 21
Jacob (10.1016/j.atmosenv.2023.119694_bib14) 2016; 16
Sheel (10.1016/j.atmosenv.2023.119694_bib22) 2010; 44
Chen (10.1016/j.atmosenv.2023.119694_bib5) 2019; 130
Zhang (10.1016/j.atmosenv.2023.119694_bib34) 2022
Wei (10.1016/j.atmosenv.2023.119694_bib28) 2019; 231
Magro (10.1016/j.atmosenv.2023.119694_bib17) 2021; 4
Yoshida (10.1016/j.atmosenv.2023.119694_bib32) 2013; 6
Veefkind (10.1016/j.atmosenv.2023.119694_bib26) 2012; 120
Chen (10.1016/j.atmosenv.2023.119694_bib6) 2016
Kavitha (10.1016/j.atmosenv.2023.119694_bib15) 2017; 166
Losey (10.1016/j.atmosenv.2023.119694_bib16) 1999
Tırınk (10.1016/j.atmosenv.2023.119694_bib24) 2022
Wan (10.1016/j.atmosenv.2023.119694_bib27) 2022; 19
Araki (10.1016/j.atmosenv.2023.119694_bib1) 2018; 634
Winarso (10.1016/j.atmosenv.2023.119694_bib29) 2014; 6
Butz (10.1016/j.atmosenv.2023.119694_bib4) 2011; 38
Freund (10.1016/j.atmosenv.2023.119694_bib8) 1997; 55
Qin (10.1016/j.atmosenv.2023.119694_bib20) 2017; 9
Bauer (10.1016/j.atmosenv.2023.119694_bib2) 1999; 36
Yokota (10.1016/j.atmosenv.2023.119694_bib31) 2009; 5
Hoek (10.1016/j.atmosenv.2023.119694_bib13) 2008; 42
Turner (10.1016/j.atmosenv.2023.119694_bib25) 2015; 15
References_xml – year: 1999
  ident: bib16
  article-title: Greenhouse gases and other atmospheric gases
  publication-title: Environ. Sys. Sci. Data Infrastruct. Virt. Ecosys.
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib8
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– volume: 9
  start-page: 950
  year: 2017
  ident: bib20
  article-title: Estimating ground level NO2 concentrations over Central-Eastern China using a satellite-based geographically and temporally weighted regression model
  publication-title: Rem. Sens.
– volume: 9
  start-page: 519
  year: 2017
  ident: bib10
  article-title: Ground-level NO2 concentrations over China inferred from the satellite OMI and CMAQ model simulations
  publication-title: Rem. Sens.
– volume: 634
  start-page: 1269
  year: 2018
  end-page: 1277
  ident: bib1
  article-title: Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan
  publication-title: Sci. Total Environ.
– volume: 130
  year: 2019
  ident: bib5
  article-title: A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide
  publication-title: Environ. Int.
– volume: 38
  year: 2011
  ident: bib4
  article-title: Toward accurate CO2 and CH4 observations from GOSAT
  publication-title: Geophys. Res. Lett.
– volume: 5
  start-page: 160
  year: 2009
  end-page: 163
  ident: bib31
  article-title: Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results
  publication-title: Inside Solaris
– volume: 116
  start-page: 452
  year: 1978
  end-page: 464
  ident: bib7
  article-title: Sources and sinks of atmospheric methane
  publication-title: Pure Appl. Geophys.
– volume: 56
  start-page: 127
  year: 1999
  end-page: 150
  ident: bib3
  article-title: SCIAMACHY: mission objectives and measurement modes
  publication-title: J. Atmos. Sci.
– volume: 44
  start-page: 3314
  year: 2010
  end-page: 3321
  ident: bib22
  article-title: Comparison of satellite observed tropospheric NO2 over India with model simulations
  publication-title: Atmos. Environ.
– volume: 126
  year: 2021
  ident: bib9
  article-title: Deep learning estimation of daily ground‐level NO2 concentrations from remote sensing data
  publication-title: J. Geophys. Res. Atmos.
– volume: 42
  start-page: 7561
  year: 2008
  end-page: 7578
  ident: bib13
  article-title: A review of land-use regression models to assess spatial variation of outdoor air pollution
  publication-title: Atmos. Environ.
– volume: 36
  start-page: 105
  year: 1999
  end-page: 139
  ident: bib2
  article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
  publication-title: Mach. Learn.
– volume: 16
  start-page: 14371
  year: 2016
  end-page: 14396
  ident: bib14
  article-title: Satellite observations of atmospheric methane and their value for quantifying methane emissions
  publication-title: Atmos. Chem. Phys.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib6
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proc.22nd acm sigkdd Int.Conf. Knowled. Dis. data mining
– year: 2022
  ident: bib34
  article-title: Spatiotemporal Neural Network for Estimating Surface NO2 Concentrations over North China and Their Human Health Impact
– reference: Masih, A., Application of Random Forest Algorithm to Predict the Atmospheric Concentration of NO2. IEEE, pp. 252-255.
– volume: 41
  start-page: 2422
  year: 2007
  end-page: 2428
  ident: bib12
  article-title: Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 7049
  year: 2015
  end-page: 7069
  ident: bib25
  article-title: Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data
  publication-title: Atmos. Chem. Phys.
– volume: 51
  start-page: 421
  year: 2019
  ident: bib33
  article-title: Prediction of selected reproductive traits of indigenous Harnai sheep under the farm management system via various data mining algorithms
  publication-title: Pakistan J. Zool.
– volume: 186
  start-page: 3123
  year: 2014
  end-page: 3138
  ident: bib23
  article-title: Application of geographically weighted regression model to analysis of spatiotemporal varying relationships between groundwater quantity and land use changes (case study: Khanmirza Plain, Iran)
  publication-title: Environ. Monit. Assess.
– volume: 21
  start-page: 374
  year: 2013
  end-page: 383
  ident: bib21
  article-title: Increasing the accuracy of nitrogen dioxide (NO2) pollution mapping using geographically weighted regression (GWR) and geostatistics
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 231
  year: 2019
  ident: bib28
  article-title: Estimating 1-km-resolution PM2. 5 concentrations across China using the space-time random forest approach
  publication-title: Rem. Sens. Environ.
– volume: 6
  start-page: 193
  year: 2014
  end-page: 198
  ident: bib29
  article-title: Development of air polluter standard index model based on mixed geographically temporal weighted regression approach
  publication-title: Int. J. Acad. Res.
– volume: 166
  start-page: 454
  year: 2017
  end-page: 466
  ident: bib15
  article-title: SCIAMACHY observed changes in the column mixing ratio of methane over the Indian region and a comparison with global scenario
  publication-title: Atmos. Environ.
– start-page: 1
  year: 2022
  end-page: 10
  ident: bib24
  article-title: Evaluation of PM10 concentration by using Mars and XGBOOST algorithms in Iğdır Province of Türkiye
  publication-title: Int. J. Environ. Sci. Technol.
– reference: Hamazaki, T., Kaneko, Y., Kuze, A., Kondo, K., Fourier Transform Spectrometer for Greenhouse Gases Observing Satellite (GOSAT). SPIE, pp. 73-80.
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: bib27
  article-title: A joint inversion method of wave and wind field parameters based on SAR SLC data
  publication-title: Geosci. Rem. Sens. Lett. IEEE
– volume: 4
  start-page: 25
  year: 2021
  ident: bib17
  article-title: Atmospheric trends of CO and CH4 from extreme wildfires in Portugal using Sentinel-5P TROPOMI level-2 data
  publication-title: Fire
– volume: 6
  start-page: 1533
  year: 2013
  end-page: 1547
  ident: bib32
  article-title: Improvement of the retrieval algorithm for GOSAT SWIR XCO 2 and XCH 4 and their validation using TCCON data
  publication-title: Atmos. Meas. Tech.
– volume: 120
  start-page: 70
  year: 2012
  end-page: 83
  ident: bib26
  article-title: TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications
  publication-title: Rem. Sens. Environ.
– volume: 16
  year: 2021
  ident: bib19
  article-title: Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming
  publication-title: Environ. Res. Lett.
– volume: 28
  start-page: 47239
  year: 2021
  end-page: 47250
  ident: bib30
  article-title: Spatiotemporal variation in near-surface CH4 concentrations in China over the last two decades
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 16
  start-page: 14371
  year: 2016
  ident: 10.1016/j.atmosenv.2023.119694_bib14
  article-title: Satellite observations of atmospheric methane and their value for quantifying methane emissions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-14371-2016
– volume: 44
  start-page: 3314
  year: 2010
  ident: 10.1016/j.atmosenv.2023.119694_bib22
  article-title: Comparison of satellite observed tropospheric NO2 over India with model simulations
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.05.043
– volume: 130
  year: 2019
  ident: 10.1016/j.atmosenv.2023.119694_bib5
  article-title: A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.104934
– volume: 231
  year: 2019
  ident: 10.1016/j.atmosenv.2023.119694_bib28
  article-title: Estimating 1-km-resolution PM2. 5 concentrations across China using the space-time random forest approach
  publication-title: Rem. Sens. Environ.
  doi: 10.1016/j.rse.2019.111221
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.atmosenv.2023.119694_bib27
  article-title: A joint inversion method of wave and wind field parameters based on SAR SLC data
  publication-title: Geosci. Rem. Sens. Lett. IEEE
– volume: 28
  start-page: 47239
  year: 2021
  ident: 10.1016/j.atmosenv.2023.119694_bib30
  article-title: Spatiotemporal variation in near-surface CH4 concentrations in China over the last two decades
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-021-14007-0
– volume: 42
  start-page: 7561
  year: 2008
  ident: 10.1016/j.atmosenv.2023.119694_bib13
  article-title: A review of land-use regression models to assess spatial variation of outdoor air pollution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.05.057
– volume: 126
  year: 2021
  ident: 10.1016/j.atmosenv.2023.119694_bib9
  article-title: Deep learning estimation of daily ground‐level NO2 concentrations from remote sensing data
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2021JD034925
– volume: 15
  start-page: 7049
  year: 2015
  ident: 10.1016/j.atmosenv.2023.119694_bib25
  article-title: Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-7049-2015
– volume: 56
  start-page: 127
  year: 1999
  ident: 10.1016/j.atmosenv.2023.119694_bib3
  article-title: SCIAMACHY: mission objectives and measurement modes
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
– volume: 5
  start-page: 160
  year: 2009
  ident: 10.1016/j.atmosenv.2023.119694_bib31
  article-title: Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results
  publication-title: Inside Solaris
– volume: 6
  start-page: 1533
  year: 2013
  ident: 10.1016/j.atmosenv.2023.119694_bib32
  article-title: Improvement of the retrieval algorithm for GOSAT SWIR XCO 2 and XCH 4 and their validation using TCCON data
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-6-1533-2013
– volume: 38
  year: 2011
  ident: 10.1016/j.atmosenv.2023.119694_bib4
  article-title: Toward accurate CO2 and CH4 observations from GOSAT
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL047888
– start-page: 1
  year: 2022
  ident: 10.1016/j.atmosenv.2023.119694_bib24
  article-title: Evaluation of PM10 concentration by using Mars and XGBOOST algorithms in Iğdır Province of Türkiye
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 9
  start-page: 950
  year: 2017
  ident: 10.1016/j.atmosenv.2023.119694_bib20
  article-title: Estimating ground level NO2 concentrations over Central-Eastern China using a satellite-based geographically and temporally weighted regression model
  publication-title: Rem. Sens.
  doi: 10.3390/rs9090950
– volume: 120
  start-page: 70
  year: 2012
  ident: 10.1016/j.atmosenv.2023.119694_bib26
  article-title: TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications
  publication-title: Rem. Sens. Environ.
  doi: 10.1016/j.rse.2011.09.027
– volume: 9
  start-page: 519
  year: 2017
  ident: 10.1016/j.atmosenv.2023.119694_bib10
  article-title: Ground-level NO2 concentrations over China inferred from the satellite OMI and CMAQ model simulations
  publication-title: Rem. Sens.
  doi: 10.3390/rs9060519
– volume: 55
  start-page: 119
  year: 1997
  ident: 10.1016/j.atmosenv.2023.119694_bib8
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 116
  start-page: 452
  year: 1978
  ident: 10.1016/j.atmosenv.2023.119694_bib7
  article-title: Sources and sinks of atmospheric methane
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/BF01636899
– volume: 51
  start-page: 421
  year: 2019
  ident: 10.1016/j.atmosenv.2023.119694_bib33
  article-title: Prediction of selected reproductive traits of indigenous Harnai sheep under the farm management system via various data mining algorithms
  publication-title: Pakistan J. Zool.
  doi: 10.17582/journal.pjz/2019.51.2.421.431
– volume: 21
  start-page: 374
  year: 2013
  ident: 10.1016/j.atmosenv.2023.119694_bib21
  article-title: Increasing the accuracy of nitrogen dioxide (NO2) pollution mapping using geographically weighted regression (GWR) and geostatistics
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 1999
  ident: 10.1016/j.atmosenv.2023.119694_bib16
  article-title: Greenhouse gases and other atmospheric gases
  publication-title: Environ. Sys. Sci. Data Infrastruct. Virt. Ecosys.
– ident: 10.1016/j.atmosenv.2023.119694_bib11
  doi: 10.1117/12.581198
– start-page: 785
  year: 2016
  ident: 10.1016/j.atmosenv.2023.119694_bib6
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proc.22nd acm sigkdd Int.Conf. Knowled. Dis. data mining
  doi: 10.1145/2939672.2939785
– ident: 10.1016/j.atmosenv.2023.119694_bib18
  doi: 10.1109/USBEREIT.2019.8736679
– volume: 16
  year: 2021
  ident: 10.1016/j.atmosenv.2023.119694_bib19
  article-title: Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/abf9c8
– volume: 6
  start-page: 193
  year: 2014
  ident: 10.1016/j.atmosenv.2023.119694_bib29
  article-title: Development of air polluter standard index model based on mixed geographically temporal weighted regression approach
  publication-title: Int. J. Acad. Res.
  doi: 10.7813/2075-4124.2014/6-2/A.29
– year: 2022
  ident: 10.1016/j.atmosenv.2023.119694_bib34
– volume: 41
  start-page: 2422
  year: 2007
  ident: 10.1016/j.atmosenv.2023.119694_bib12
  article-title: Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0606780
– volume: 166
  start-page: 454
  year: 2017
  ident: 10.1016/j.atmosenv.2023.119694_bib15
  article-title: SCIAMACHY observed changes in the column mixing ratio of methane over the Indian region and a comparison with global scenario
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.07.044
– volume: 4
  start-page: 25
  year: 2021
  ident: 10.1016/j.atmosenv.2023.119694_bib17
  article-title: Atmospheric trends of CO and CH4 from extreme wildfires in Portugal using Sentinel-5P TROPOMI level-2 data
  publication-title: Fire
  doi: 10.3390/fire4020025
– volume: 634
  start-page: 1269
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119694_bib1
  article-title: Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.324
– volume: 36
  start-page: 105
  year: 1999
  ident: 10.1016/j.atmosenv.2023.119694_bib2
  article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007515423169
– volume: 186
  start-page: 3123
  year: 2014
  ident: 10.1016/j.atmosenv.2023.119694_bib23
  article-title: Application of geographically weighted regression model to analysis of spatiotemporal varying relationships between groundwater quantity and land use changes (case study: Khanmirza Plain, Iran)
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-013-3605-5
SSID ssj0003797
Score 2.4768531
Snippet Methane (CH4), the second most significant greenhouse gas after carbon dioxide, contributes significantly to global warming. Owing to its wide monitoring range...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119694
SubjectTerms Methane
Near-surface CH4
Satellite remote sensing
XGBoost
Title Conversion of surface CH4 concentrations from GOSAT satellite observations using XGBoost algorithm
URI https://dx.doi.org/10.1016/j.atmosenv.2023.119694
Volume 301
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMABwQAxHlMOXLu1a9LHcUx7AGIc2KTdKjdNYBO009px5LcT97ENCYkDx1Z2Vdmp7aT-PhNy6_uhTvsRGK4HHYN5ljIg4r6hS28dM5XDeb5RfBo7oyl7mPFZjfQqLAy2VZaxv4jpebQu77RLa7aX83n7xcLawUbqgRwBirTbjLk4xaD1tW3zsN1iwIoWNlB6ByW80B75SFIZf7ZwiLiOHr7js98T1E7SGRyTo7JapN3ihU5ITcZ1crjDIVgn5_0tVE2Llt9qekrCHjaU56dhNFE0Xa8UCEl7I0YFYhXjkjA3pQgxocPnl-6EppAzdGaSJuHmvDal2B3_SmfDuyRJMwrvr8lqnr19nJHpoD_pjYxyooIhbKuTGSxUtg1cKam3CUJ1GDgWcHCZcCMhldR7PaW4MLmUAlGoIbcj7URdZJmRD7oyPCd7cRLLC0JDx_OBmQJ_BOvHCg8ATGWqSNgAruk1CK_MGIiSbhynXrwHVV_ZIqjMH6D5g8L8DdLe6C0Lwo0_NfzKS8GPpRPorPCH7uU_dK_IAV5hK4HFr8letlrLG12hZGEzX4JNst-9fxyNvwGD1-is
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VMgADggKiPD2whiaNncdYqkJ5lYEidYsujl1aQVI1KSO_HTuPUiQkBtbEF0V3zj2c77sDuPD9UIX9CA3Xw7ZBPUsaGDHfUKm38pnSYSwvFB8HTv-F3o3YqAbdigujYZWl7y98eu6tyyutUput2WTSerZ07mDr1gM5A9RZg3XK2q6uwC4_v3EetltMWFGrDb18hSY8VSZ5T1IRf1zqKeLKffiOT3-PUCtR53oHtst0kXSKN9qFmogbsLXSRLABB71vrppaWn6s6R6EXY0oz4_DSCJJuphL5IJ0-5RwTVaMy465KdEcE3Lz9NwZkhTzFp2ZIEm4PLBNiYbHj8no5ipJ0ozg2ziZT7LX9314ue4Nu32jHKlgcNtqZwYNpW0jk1KoOoHLNkXHQoYu5W7EhRSq2JOScZMJwTUNNWR2pKyosiwz8lGlhgdQj5NYHAIJHc9HanL9J1g9lnuIaEpTRtxGdE2vCaxSY8DLfuN67MVbUAHLpkGl_kCrPyjU34TWUm5WdNz4U8KvrBT82DuBCgt_yB79Q_YcNvrDx4fg4XZwfwyb-o7GFVjsBOrZfCFOVbqShWf5dvwC8pLqQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conversion+of+surface+CH4+concentrations+from+GOSAT+satellite+observations+using+XGBoost+algorithm&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Wan%2C+Yong&rft.au=Chen%2C+Fangfang&rft.au=Fan%2C+Lu&rft.au=Sun%2C+Dong&rft.date=2023-05-15&rft.pub=Elsevier+Ltd&rft.issn=1352-2310&rft.eissn=1873-2844&rft.volume=301&rft_id=info:doi/10.1016%2Fj.atmosenv.2023.119694&rft.externalDocID=S1352231023001206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon