Conversion of surface CH4 concentrations from GOSAT satellite observations using XGBoost algorithm
Methane (CH4), the second most significant greenhouse gas after carbon dioxide, contributes significantly to global warming. Owing to its wide monitoring range and long observation time, satellite remote sensing has emerged as a popular method for monitoring CH4. Although the existing algorithm for...
Saved in:
| Published in | Atmospheric environment (1994) Vol. 301; p. 119694 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.05.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1352-2310 1873-2844 |
| DOI | 10.1016/j.atmosenv.2023.119694 |
Cover
| Abstract | Methane (CH4), the second most significant greenhouse gas after carbon dioxide, contributes significantly to global warming. Owing to its wide monitoring range and long observation time, satellite remote sensing has emerged as a popular method for monitoring CH4. Although the existing algorithm for satellite retrievals of CH4 column amount is mature, it has some drawbacks: the retrieval calculation process is complicated, and there is still a discrepancy between the satellite-retried column amount of CH4 and surface CH4 concentrations. To obtain more accurate near-surface CH4 concentrations from satellite observations, this paper proposed a conversion method based on the Extreme Gradient Boosting (XGBoost) algorithm, taking column amount retrieved by the Greenhouse Gas Observation SATellite (GOSAT) satellite, meteorological factors and near-surface methane concentrations as predictor variables. Using this method, we analyzed the importance of the characteristic factors and predicted methane concentrations at four ground monitoring sites in World Center for Greenhouse Gases (WDCGG), and reached the following conclusions: (1) The model performed well on the test set, with a sample-based cross-validation coefficient of determination (R2) of 0.79, a root mean square error (RMSE) of 0.0251 ppm and a mean absolute percentage error (MAPE) of 0.88%. (2) Of the five meteorological input features, surface net solar radiation had a greater impact on the construction of the model than the other four. (3) The CH4 monthly average concentrations predicted by this model are generally consistent with the trend of the CH4 concentrations of ground monitoring stations.
•A machine learning method is used to obtain surface CH4 concentrations reliably.•The R2 between the model estimated value and surface CH4 concentrations is 0.79.•The importance of features in the model is analyzed. |
|---|---|
| AbstractList | Methane (CH4), the second most significant greenhouse gas after carbon dioxide, contributes significantly to global warming. Owing to its wide monitoring range and long observation time, satellite remote sensing has emerged as a popular method for monitoring CH4. Although the existing algorithm for satellite retrievals of CH4 column amount is mature, it has some drawbacks: the retrieval calculation process is complicated, and there is still a discrepancy between the satellite-retried column amount of CH4 and surface CH4 concentrations. To obtain more accurate near-surface CH4 concentrations from satellite observations, this paper proposed a conversion method based on the Extreme Gradient Boosting (XGBoost) algorithm, taking column amount retrieved by the Greenhouse Gas Observation SATellite (GOSAT) satellite, meteorological factors and near-surface methane concentrations as predictor variables. Using this method, we analyzed the importance of the characteristic factors and predicted methane concentrations at four ground monitoring sites in World Center for Greenhouse Gases (WDCGG), and reached the following conclusions: (1) The model performed well on the test set, with a sample-based cross-validation coefficient of determination (R2) of 0.79, a root mean square error (RMSE) of 0.0251 ppm and a mean absolute percentage error (MAPE) of 0.88%. (2) Of the five meteorological input features, surface net solar radiation had a greater impact on the construction of the model than the other four. (3) The CH4 monthly average concentrations predicted by this model are generally consistent with the trend of the CH4 concentrations of ground monitoring stations.
•A machine learning method is used to obtain surface CH4 concentrations reliably.•The R2 between the model estimated value and surface CH4 concentrations is 0.79.•The importance of features in the model is analyzed. |
| ArticleNumber | 119694 |
| Author | Dai, Yongshou Li, Ligang Wan, Yong Chen, Yuyu Chen, Fangfang Sun, Dong Fan, Lu He, Hu |
| Author_xml | – sequence: 1 givenname: Yong surname: Wan fullname: Wan, Yong organization: College of Oceanography and Space Informatics, China University of Petroleum, Qingdao, 266580, China – sequence: 2 givenname: Fangfang surname: Chen fullname: Chen, Fangfang email: Z21160042@s.upc.edu.cn organization: College of Oceanography and Space Informatics, China University of Petroleum, Qingdao, 266580, China – sequence: 3 givenname: Lu surname: Fan fullname: Fan, Lu organization: Technical Testing Center of Shengli Oilfield Branch, China Petroleum & Chemical Corporation, Dongying, 257000, China – sequence: 4 givenname: Dong surname: Sun fullname: Sun, Dong organization: Technical Testing Center of Shengli Oilfield Branch, China Petroleum & Chemical Corporation, Dongying, 257000, China – sequence: 5 givenname: Hu surname: He fullname: He, Hu organization: Technical Testing Center of Shengli Oilfield Branch, China Petroleum & Chemical Corporation, Dongying, 257000, China – sequence: 6 givenname: Yongshou surname: Dai fullname: Dai, Yongshou organization: College of Oceanography and Space Informatics, China University of Petroleum, Qingdao, 266580, China – sequence: 7 givenname: Ligang surname: Li fullname: Li, Ligang organization: College of Oceanography and Space Informatics, China University of Petroleum, Qingdao, 266580, China – sequence: 8 givenname: Yuyu surname: Chen fullname: Chen, Yuyu organization: College of Oceanography and Space Informatics, China University of Petroleum, Qingdao, 266580, China |
| BookMark | eNqFkMFKAzEQhoNUsK2-guQFdk02yW4XPFiLtkKhByt4C2l2UlN2E0nSgm_v1urFS08zMPMN838jNHDeAUK3lOSU0PJul6vU-QjukBekYDmldVnzCzSkk4plxYTzQd8zUWQFo-QKjWLcEUJYVVdDtJl5d4AQrXfYGxz3wSgNeLbgWHunwaWgUj-M2ATf4fnqdbrGUSVoW5sA-02EcPjd2Efrtvh9_uh9TFi1Wx9s-uiu0aVRbYSb3zpGb89P69kiW67mL7PpMtOMFinjG8OYEsZAJSbaFFyVVAlVcV01GgyQmhsjNBEAmpS82gjWVBPFRUmaWgnGxuj-dFcHH2MAI7VNP6_1GWwrKZFHX3In_3zJoy958tXj5T_8M9hOha_z4MMJhD7cwUKQUVvo3TU2gE6y8fbciW-e6Y5W |
| CitedBy_id | crossref_primary_10_1016_j_envint_2023_108057 crossref_primary_10_3390_s25071974 crossref_primary_10_3390_chemosensors11100525 crossref_primary_10_1016_j_asr_2024_07_007 crossref_primary_10_1016_j_atmosres_2023_106811 |
| Cites_doi | 10.5194/acp-16-14371-2016 10.1016/j.atmosenv.2010.05.043 10.1016/j.envint.2019.104934 10.1016/j.rse.2019.111221 10.1007/s11356-021-14007-0 10.1016/j.atmosenv.2008.05.057 10.1029/2021JD034925 10.5194/acp-15-7049-2015 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2 10.5194/amt-6-1533-2013 10.1029/2011GL047888 10.3390/rs9090950 10.1016/j.rse.2011.09.027 10.3390/rs9060519 10.1006/jcss.1997.1504 10.1007/BF01636899 10.17582/journal.pjz/2019.51.2.421.431 10.1117/12.581198 10.1145/2939672.2939785 10.1109/USBEREIT.2019.8736679 10.1088/1748-9326/abf9c8 10.7813/2075-4124.2014/6-2/A.29 10.1021/es0606780 10.1016/j.atmosenv.2017.07.044 10.3390/fire4020025 10.1016/j.scitotenv.2018.03.324 10.1023/A:1007515423169 10.1007/s10661-013-3605-5 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.atmosenv.2023.119694 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1873-2844 |
| ExternalDocumentID | 10_1016_j_atmosenv_2023_119694 S1352231023001206 |
| GroupedDBID | --- --K --M -DZ -~X ..I .DC .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABEFU ABFNM ABFYP ABLJU ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SEN SES SEW SPC SPCBC SSE SSJ SSZ T5K TAE ~02 ~G- .HR 186 3O- 53G AAFWJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ R2- SEP T9H VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-4bf33a5ffe758cf24a61a5a74c7dcefe094ff5c05eec0647b53d78a4560d9a533 |
| IEDL.DBID | .~1 |
| ISSN | 1352-2310 |
| IngestDate | Thu Apr 24 23:00:33 EDT 2025 Wed Oct 29 21:15:23 EDT 2025 Fri Feb 23 02:37:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Methane Satellite remote sensing XGBoost Near-surface CH4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-4bf33a5ffe758cf24a61a5a74c7dcefe094ff5c05eec0647b53d78a4560d9a533 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_atmosenv_2023_119694 crossref_primary_10_1016_j_atmosenv_2023_119694 elsevier_sciencedirect_doi_10_1016_j_atmosenv_2023_119694 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-15 |
| PublicationDateYYYYMMDD | 2023-05-15 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Atmospheric environment (1994) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Butz, Guerlet, Hasekamp, Schepers, Galli, Aben, Frankenberg, Hartmann, Tran, Kuze (bib4) 2011; 38 Losey, Gregg, Andres (bib16) 1999 Tırınk, Öztürk (bib24) 2022 Xu, Liu, Wang, Wang, Wang, Liu, Li (bib30) 2021; 28 Ghahremanloo, Lops, Choi, Yeganeh (bib9) 2021; 126 Freund, Schapire (bib8) 1997; 55 Ocko, Sun, Shindell, Oppenheimer, Hristov, Pacala, Mauzerall, Xu, Hamburg (bib19) 2021; 16 Turner, Jacob, Wecht, Maasakkers, Lundgren, Andrews, Biraud, Boesch, Bowman, Deutscher (bib25) 2015; 15 Wei, Huang, Li, Xue, Peng, Sun, Cribb (bib28) 2019; 231 Gu, Chen, Yu, Li, Tao, Fan, Xiong, Wang, Shang, Su (bib10) 2017; 9 Veefkind, Aben, McMullan, Förster, De Vries, Otter, Claas, Eskes, De Haan, Kleipool (bib26) 2012; 120 Winarso, Basuki (bib29) 2014; 6 Yoshida, Kikuchi, Morino, Uchino, Oshchepkov, Bril, Saeki, Schutgens, Toon, Wunch (bib32) 2013; 6 Bovensmann, Burrows, Buchwitz, Frerick, Noel, Rozanov, Chance, Goede (bib3) 1999; 56 Magro, Nunes, Gonçalves, Neng, Nogueira, Rego, Vieira (bib17) 2021; 4 Zhang, Liu, Li, Zhao, Zhao (bib34) 2022 Henderson, Beckerman, Jerrett, Brauer (bib12) 2007; 41 Sheel, Lal, Richter, Burrows (bib22) 2010; 44 Hamazaki, T., Kaneko, Y., Kuze, A., Kondo, K., Fourier Transform Spectrometer for Greenhouse Gases Observing Satellite (GOSAT). SPIE, pp. 73-80. Jacob, Turner, Maasakkers, Sheng, Sun, Liu, Chance, Aben, McKeever, Frankenberg (bib14) 2016; 16 Chen, de Hoogh, Gulliver, Hoffmann, Hertel, Ketzel, Bauwelinck, van Donkelaar, Hvidtfeldt, Katsouyanni, Janssen, Martin, Samoli, Schwartz, Stafoggia, Bellander, Strak, Wolf, Vienneau, Vermeulen, Brunekreef, Hoek (bib5) 2019; 130 Bauer, Kohavi (bib2) 1999; 36 Kavitha, Nair (bib15) 2017; 166 Wan, Qu, Shi, Dai (bib27) 2022; 19 Taghipour Javi, Malekmohammadi, Mokhtari (bib23) 2014; 186 Araki, Shima, Yamamoto (bib1) 2018; 634 Ehhalt, Schmidt (bib7) 1978; 116 Chen, Guestrin (bib6) 2016 Qin, Rao, Xu, Bai, Zou, Hao, Li, Yu (bib20) 2017; 9 Yokota, Yoshida, Eguchi, Ota, Tanaka, Watanabe, Maksyutov (bib31) 2009; 5 Zaborski, Ali, Eyduran, Grzesiak, Tariq, Abbas, Waheed, Tirink (bib33) 2019; 51 Hoek, Beelen, De Hoogh, Vienneau, Gulliver, Fischer, Briggs (bib13) 2008; 42 Robinson, Lloyd, McKinley (bib21) 2013; 21 Masih, A., Application of Random Forest Algorithm to Predict the Atmospheric Concentration of NO2. IEEE, pp. 252-255. Taghipour Javi (10.1016/j.atmosenv.2023.119694_bib23) 2014; 186 Xu (10.1016/j.atmosenv.2023.119694_bib30) 2021; 28 Henderson (10.1016/j.atmosenv.2023.119694_bib12) 2007; 41 10.1016/j.atmosenv.2023.119694_bib18 Ocko (10.1016/j.atmosenv.2023.119694_bib19) 2021; 16 Ehhalt (10.1016/j.atmosenv.2023.119694_bib7) 1978; 116 10.1016/j.atmosenv.2023.119694_bib11 Ghahremanloo (10.1016/j.atmosenv.2023.119694_bib9) 2021; 126 Bovensmann (10.1016/j.atmosenv.2023.119694_bib3) 1999; 56 Gu (10.1016/j.atmosenv.2023.119694_bib10) 2017; 9 Zaborski (10.1016/j.atmosenv.2023.119694_bib33) 2019; 51 Robinson (10.1016/j.atmosenv.2023.119694_bib21) 2013; 21 Jacob (10.1016/j.atmosenv.2023.119694_bib14) 2016; 16 Sheel (10.1016/j.atmosenv.2023.119694_bib22) 2010; 44 Chen (10.1016/j.atmosenv.2023.119694_bib5) 2019; 130 Zhang (10.1016/j.atmosenv.2023.119694_bib34) 2022 Wei (10.1016/j.atmosenv.2023.119694_bib28) 2019; 231 Magro (10.1016/j.atmosenv.2023.119694_bib17) 2021; 4 Yoshida (10.1016/j.atmosenv.2023.119694_bib32) 2013; 6 Veefkind (10.1016/j.atmosenv.2023.119694_bib26) 2012; 120 Chen (10.1016/j.atmosenv.2023.119694_bib6) 2016 Kavitha (10.1016/j.atmosenv.2023.119694_bib15) 2017; 166 Losey (10.1016/j.atmosenv.2023.119694_bib16) 1999 Tırınk (10.1016/j.atmosenv.2023.119694_bib24) 2022 Wan (10.1016/j.atmosenv.2023.119694_bib27) 2022; 19 Araki (10.1016/j.atmosenv.2023.119694_bib1) 2018; 634 Winarso (10.1016/j.atmosenv.2023.119694_bib29) 2014; 6 Butz (10.1016/j.atmosenv.2023.119694_bib4) 2011; 38 Freund (10.1016/j.atmosenv.2023.119694_bib8) 1997; 55 Qin (10.1016/j.atmosenv.2023.119694_bib20) 2017; 9 Bauer (10.1016/j.atmosenv.2023.119694_bib2) 1999; 36 Yokota (10.1016/j.atmosenv.2023.119694_bib31) 2009; 5 Hoek (10.1016/j.atmosenv.2023.119694_bib13) 2008; 42 Turner (10.1016/j.atmosenv.2023.119694_bib25) 2015; 15 |
| References_xml | – year: 1999 ident: bib16 article-title: Greenhouse gases and other atmospheric gases publication-title: Environ. Sys. Sci. Data Infrastruct. Virt. Ecosys. – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: bib8 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – volume: 9 start-page: 950 year: 2017 ident: bib20 article-title: Estimating ground level NO2 concentrations over Central-Eastern China using a satellite-based geographically and temporally weighted regression model publication-title: Rem. Sens. – volume: 9 start-page: 519 year: 2017 ident: bib10 article-title: Ground-level NO2 concentrations over China inferred from the satellite OMI and CMAQ model simulations publication-title: Rem. Sens. – volume: 634 start-page: 1269 year: 2018 end-page: 1277 ident: bib1 article-title: Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan publication-title: Sci. Total Environ. – volume: 130 year: 2019 ident: bib5 article-title: A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide publication-title: Environ. Int. – volume: 38 year: 2011 ident: bib4 article-title: Toward accurate CO2 and CH4 observations from GOSAT publication-title: Geophys. Res. Lett. – volume: 5 start-page: 160 year: 2009 end-page: 163 ident: bib31 article-title: Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results publication-title: Inside Solaris – volume: 116 start-page: 452 year: 1978 end-page: 464 ident: bib7 article-title: Sources and sinks of atmospheric methane publication-title: Pure Appl. Geophys. – volume: 56 start-page: 127 year: 1999 end-page: 150 ident: bib3 article-title: SCIAMACHY: mission objectives and measurement modes publication-title: J. Atmos. Sci. – volume: 44 start-page: 3314 year: 2010 end-page: 3321 ident: bib22 article-title: Comparison of satellite observed tropospheric NO2 over India with model simulations publication-title: Atmos. Environ. – volume: 126 year: 2021 ident: bib9 article-title: Deep learning estimation of daily ground‐level NO2 concentrations from remote sensing data publication-title: J. Geophys. Res. Atmos. – volume: 42 start-page: 7561 year: 2008 end-page: 7578 ident: bib13 article-title: A review of land-use regression models to assess spatial variation of outdoor air pollution publication-title: Atmos. Environ. – volume: 36 start-page: 105 year: 1999 end-page: 139 ident: bib2 article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants publication-title: Mach. Learn. – volume: 16 start-page: 14371 year: 2016 end-page: 14396 ident: bib14 article-title: Satellite observations of atmospheric methane and their value for quantifying methane emissions publication-title: Atmos. Chem. Phys. – start-page: 785 year: 2016 end-page: 794 ident: bib6 article-title: Xgboost: a scalable tree boosting system publication-title: Proc.22nd acm sigkdd Int.Conf. Knowled. Dis. data mining – year: 2022 ident: bib34 article-title: Spatiotemporal Neural Network for Estimating Surface NO2 Concentrations over North China and Their Human Health Impact – reference: Masih, A., Application of Random Forest Algorithm to Predict the Atmospheric Concentration of NO2. IEEE, pp. 252-255. – volume: 41 start-page: 2422 year: 2007 end-page: 2428 ident: bib12 article-title: Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter publication-title: Environ. Sci. Technol. – volume: 15 start-page: 7049 year: 2015 end-page: 7069 ident: bib25 article-title: Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data publication-title: Atmos. Chem. Phys. – volume: 51 start-page: 421 year: 2019 ident: bib33 article-title: Prediction of selected reproductive traits of indigenous Harnai sheep under the farm management system via various data mining algorithms publication-title: Pakistan J. Zool. – volume: 186 start-page: 3123 year: 2014 end-page: 3138 ident: bib23 article-title: Application of geographically weighted regression model to analysis of spatiotemporal varying relationships between groundwater quantity and land use changes (case study: Khanmirza Plain, Iran) publication-title: Environ. Monit. Assess. – volume: 21 start-page: 374 year: 2013 end-page: 383 ident: bib21 article-title: Increasing the accuracy of nitrogen dioxide (NO2) pollution mapping using geographically weighted regression (GWR) and geostatistics publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 231 year: 2019 ident: bib28 article-title: Estimating 1-km-resolution PM2. 5 concentrations across China using the space-time random forest approach publication-title: Rem. Sens. Environ. – volume: 6 start-page: 193 year: 2014 end-page: 198 ident: bib29 article-title: Development of air polluter standard index model based on mixed geographically temporal weighted regression approach publication-title: Int. J. Acad. Res. – volume: 166 start-page: 454 year: 2017 end-page: 466 ident: bib15 article-title: SCIAMACHY observed changes in the column mixing ratio of methane over the Indian region and a comparison with global scenario publication-title: Atmos. Environ. – start-page: 1 year: 2022 end-page: 10 ident: bib24 article-title: Evaluation of PM10 concentration by using Mars and XGBOOST algorithms in Iğdır Province of Türkiye publication-title: Int. J. Environ. Sci. Technol. – reference: Hamazaki, T., Kaneko, Y., Kuze, A., Kondo, K., Fourier Transform Spectrometer for Greenhouse Gases Observing Satellite (GOSAT). SPIE, pp. 73-80. – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: bib27 article-title: A joint inversion method of wave and wind field parameters based on SAR SLC data publication-title: Geosci. Rem. Sens. Lett. IEEE – volume: 4 start-page: 25 year: 2021 ident: bib17 article-title: Atmospheric trends of CO and CH4 from extreme wildfires in Portugal using Sentinel-5P TROPOMI level-2 data publication-title: Fire – volume: 6 start-page: 1533 year: 2013 end-page: 1547 ident: bib32 article-title: Improvement of the retrieval algorithm for GOSAT SWIR XCO 2 and XCH 4 and their validation using TCCON data publication-title: Atmos. Meas. Tech. – volume: 120 start-page: 70 year: 2012 end-page: 83 ident: bib26 article-title: TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications publication-title: Rem. Sens. Environ. – volume: 16 year: 2021 ident: bib19 article-title: Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming publication-title: Environ. Res. Lett. – volume: 28 start-page: 47239 year: 2021 end-page: 47250 ident: bib30 article-title: Spatiotemporal variation in near-surface CH4 concentrations in China over the last two decades publication-title: Environ. Sci. Pollut. Control Ser. – volume: 16 start-page: 14371 year: 2016 ident: 10.1016/j.atmosenv.2023.119694_bib14 article-title: Satellite observations of atmospheric methane and their value for quantifying methane emissions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-14371-2016 – volume: 44 start-page: 3314 year: 2010 ident: 10.1016/j.atmosenv.2023.119694_bib22 article-title: Comparison of satellite observed tropospheric NO2 over India with model simulations publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.05.043 – volume: 130 year: 2019 ident: 10.1016/j.atmosenv.2023.119694_bib5 article-title: A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide publication-title: Environ. Int. doi: 10.1016/j.envint.2019.104934 – volume: 231 year: 2019 ident: 10.1016/j.atmosenv.2023.119694_bib28 article-title: Estimating 1-km-resolution PM2. 5 concentrations across China using the space-time random forest approach publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2019.111221 – volume: 19 start-page: 1 year: 2022 ident: 10.1016/j.atmosenv.2023.119694_bib27 article-title: A joint inversion method of wave and wind field parameters based on SAR SLC data publication-title: Geosci. Rem. Sens. Lett. IEEE – volume: 28 start-page: 47239 year: 2021 ident: 10.1016/j.atmosenv.2023.119694_bib30 article-title: Spatiotemporal variation in near-surface CH4 concentrations in China over the last two decades publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-021-14007-0 – volume: 42 start-page: 7561 year: 2008 ident: 10.1016/j.atmosenv.2023.119694_bib13 article-title: A review of land-use regression models to assess spatial variation of outdoor air pollution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.05.057 – volume: 126 year: 2021 ident: 10.1016/j.atmosenv.2023.119694_bib9 article-title: Deep learning estimation of daily ground‐level NO2 concentrations from remote sensing data publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2021JD034925 – volume: 15 start-page: 7049 year: 2015 ident: 10.1016/j.atmosenv.2023.119694_bib25 article-title: Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-7049-2015 – volume: 56 start-page: 127 year: 1999 ident: 10.1016/j.atmosenv.2023.119694_bib3 article-title: SCIAMACHY: mission objectives and measurement modes publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2 – volume: 5 start-page: 160 year: 2009 ident: 10.1016/j.atmosenv.2023.119694_bib31 article-title: Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results publication-title: Inside Solaris – volume: 6 start-page: 1533 year: 2013 ident: 10.1016/j.atmosenv.2023.119694_bib32 article-title: Improvement of the retrieval algorithm for GOSAT SWIR XCO 2 and XCH 4 and their validation using TCCON data publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-6-1533-2013 – volume: 38 year: 2011 ident: 10.1016/j.atmosenv.2023.119694_bib4 article-title: Toward accurate CO2 and CH4 observations from GOSAT publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL047888 – start-page: 1 year: 2022 ident: 10.1016/j.atmosenv.2023.119694_bib24 article-title: Evaluation of PM10 concentration by using Mars and XGBOOST algorithms in Iğdır Province of Türkiye publication-title: Int. J. Environ. Sci. Technol. – volume: 9 start-page: 950 year: 2017 ident: 10.1016/j.atmosenv.2023.119694_bib20 article-title: Estimating ground level NO2 concentrations over Central-Eastern China using a satellite-based geographically and temporally weighted regression model publication-title: Rem. Sens. doi: 10.3390/rs9090950 – volume: 120 start-page: 70 year: 2012 ident: 10.1016/j.atmosenv.2023.119694_bib26 article-title: TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2011.09.027 – volume: 9 start-page: 519 year: 2017 ident: 10.1016/j.atmosenv.2023.119694_bib10 article-title: Ground-level NO2 concentrations over China inferred from the satellite OMI and CMAQ model simulations publication-title: Rem. Sens. doi: 10.3390/rs9060519 – volume: 55 start-page: 119 year: 1997 ident: 10.1016/j.atmosenv.2023.119694_bib8 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 116 start-page: 452 year: 1978 ident: 10.1016/j.atmosenv.2023.119694_bib7 article-title: Sources and sinks of atmospheric methane publication-title: Pure Appl. Geophys. doi: 10.1007/BF01636899 – volume: 51 start-page: 421 year: 2019 ident: 10.1016/j.atmosenv.2023.119694_bib33 article-title: Prediction of selected reproductive traits of indigenous Harnai sheep under the farm management system via various data mining algorithms publication-title: Pakistan J. Zool. doi: 10.17582/journal.pjz/2019.51.2.421.431 – volume: 21 start-page: 374 year: 2013 ident: 10.1016/j.atmosenv.2023.119694_bib21 article-title: Increasing the accuracy of nitrogen dioxide (NO2) pollution mapping using geographically weighted regression (GWR) and geostatistics publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 1999 ident: 10.1016/j.atmosenv.2023.119694_bib16 article-title: Greenhouse gases and other atmospheric gases publication-title: Environ. Sys. Sci. Data Infrastruct. Virt. Ecosys. – ident: 10.1016/j.atmosenv.2023.119694_bib11 doi: 10.1117/12.581198 – start-page: 785 year: 2016 ident: 10.1016/j.atmosenv.2023.119694_bib6 article-title: Xgboost: a scalable tree boosting system publication-title: Proc.22nd acm sigkdd Int.Conf. Knowled. Dis. data mining doi: 10.1145/2939672.2939785 – ident: 10.1016/j.atmosenv.2023.119694_bib18 doi: 10.1109/USBEREIT.2019.8736679 – volume: 16 year: 2021 ident: 10.1016/j.atmosenv.2023.119694_bib19 article-title: Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abf9c8 – volume: 6 start-page: 193 year: 2014 ident: 10.1016/j.atmosenv.2023.119694_bib29 article-title: Development of air polluter standard index model based on mixed geographically temporal weighted regression approach publication-title: Int. J. Acad. Res. doi: 10.7813/2075-4124.2014/6-2/A.29 – year: 2022 ident: 10.1016/j.atmosenv.2023.119694_bib34 – volume: 41 start-page: 2422 year: 2007 ident: 10.1016/j.atmosenv.2023.119694_bib12 article-title: Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter publication-title: Environ. Sci. Technol. doi: 10.1021/es0606780 – volume: 166 start-page: 454 year: 2017 ident: 10.1016/j.atmosenv.2023.119694_bib15 article-title: SCIAMACHY observed changes in the column mixing ratio of methane over the Indian region and a comparison with global scenario publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.07.044 – volume: 4 start-page: 25 year: 2021 ident: 10.1016/j.atmosenv.2023.119694_bib17 article-title: Atmospheric trends of CO and CH4 from extreme wildfires in Portugal using Sentinel-5P TROPOMI level-2 data publication-title: Fire doi: 10.3390/fire4020025 – volume: 634 start-page: 1269 year: 2018 ident: 10.1016/j.atmosenv.2023.119694_bib1 article-title: Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.324 – volume: 36 start-page: 105 year: 1999 ident: 10.1016/j.atmosenv.2023.119694_bib2 article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants publication-title: Mach. Learn. doi: 10.1023/A:1007515423169 – volume: 186 start-page: 3123 year: 2014 ident: 10.1016/j.atmosenv.2023.119694_bib23 article-title: Application of geographically weighted regression model to analysis of spatiotemporal varying relationships between groundwater quantity and land use changes (case study: Khanmirza Plain, Iran) publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-013-3605-5 |
| SSID | ssj0003797 |
| Score | 2.4768531 |
| Snippet | Methane (CH4), the second most significant greenhouse gas after carbon dioxide, contributes significantly to global warming. Owing to its wide monitoring range... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 119694 |
| SubjectTerms | Methane Near-surface CH4 Satellite remote sensing XGBoost |
| Title | Conversion of surface CH4 concentrations from GOSAT satellite observations using XGBoost algorithm |
| URI | https://dx.doi.org/10.1016/j.atmosenv.2023.119694 |
| Volume | 301 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMABwQAxHlMOXLu1a9LHcUx7AGIc2KTdKjdNYBO009px5LcT97ENCYkDx1Z2Vdmp7aT-PhNy6_uhTvsRGK4HHYN5ljIg4r6hS28dM5XDeb5RfBo7oyl7mPFZjfQqLAy2VZaxv4jpebQu77RLa7aX83n7xcLawUbqgRwBirTbjLk4xaD1tW3zsN1iwIoWNlB6ByW80B75SFIZf7ZwiLiOHr7js98T1E7SGRyTo7JapN3ihU5ITcZ1crjDIVgn5_0tVE2Llt9qekrCHjaU56dhNFE0Xa8UCEl7I0YFYhXjkjA3pQgxocPnl-6EppAzdGaSJuHmvDal2B3_SmfDuyRJMwrvr8lqnr19nJHpoD_pjYxyooIhbKuTGSxUtg1cKam3CUJ1GDgWcHCZcCMhldR7PaW4MLmUAlGoIbcj7URdZJmRD7oyPCd7cRLLC0JDx_OBmQJ_BOvHCg8ATGWqSNgAruk1CK_MGIiSbhynXrwHVV_ZIqjMH6D5g8L8DdLe6C0Lwo0_NfzKS8GPpRPorPCH7uU_dK_IAV5hK4HFr8letlrLG12hZGEzX4JNst-9fxyNvwGD1-is |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VMgADggKiPD2whiaNncdYqkJ5lYEidYsujl1aQVI1KSO_HTuPUiQkBtbEF0V3zj2c77sDuPD9UIX9CA3Xw7ZBPUsaGDHfUKm38pnSYSwvFB8HTv-F3o3YqAbdigujYZWl7y98eu6tyyutUput2WTSerZ07mDr1gM5A9RZg3XK2q6uwC4_v3EetltMWFGrDb18hSY8VSZ5T1IRf1zqKeLKffiOT3-PUCtR53oHtst0kXSKN9qFmogbsLXSRLABB71vrppaWn6s6R6EXY0oz4_DSCJJuphL5IJ0-5RwTVaMy465KdEcE3Lz9NwZkhTzFp2ZIEm4PLBNiYbHj8no5ipJ0ozg2ziZT7LX9314ue4Nu32jHKlgcNtqZwYNpW0jk1KoOoHLNkXHQoYu5W7EhRSq2JOScZMJwTUNNWR2pKyosiwz8lGlhgdQj5NYHAIJHc9HanL9J1g9lnuIaEpTRtxGdE2vCaxSY8DLfuN67MVbUAHLpkGl_kCrPyjU34TWUm5WdNz4U8KvrBT82DuBCgt_yB79Q_YcNvrDx4fg4XZwfwyb-o7GFVjsBOrZfCFOVbqShWf5dvwC8pLqQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conversion+of+surface+CH4+concentrations+from+GOSAT+satellite+observations+using+XGBoost+algorithm&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Wan%2C+Yong&rft.au=Chen%2C+Fangfang&rft.au=Fan%2C+Lu&rft.au=Sun%2C+Dong&rft.date=2023-05-15&rft.pub=Elsevier+Ltd&rft.issn=1352-2310&rft.eissn=1873-2844&rft.volume=301&rft_id=info:doi/10.1016%2Fj.atmosenv.2023.119694&rft.externalDocID=S1352231023001206 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon |