Effect of dielectric material on the uniformity of nanosecond pulsed dielectric barrier discharge
Dielectric barrier discharge (DBD) is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure, and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity. In this work, the uniformity and...
Saved in:
Published in | Plasma science & technology Vol. 26; no. 9; pp. 94008 - 94016 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Plasma Science and Technology
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 2058-6272 |
DOI | 10.1088/2058-6272/ad5fe6 |
Cover
Abstract | Dielectric barrier discharge (DBD) is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure, and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity. In this work, the uniformity and discharge characteristics of the nanosecond (ns) pulsed DBD with dielectric barrier layers made of alumina, quartz glass, polycarbonate (PC), and polypropylene (PP) are investigated via discharge image observation, voltage-current waveform measurement and optical emission spectral diagnosis. Through analyzing discharge image by gray value standard deviation method, the discharge uniformity is quantitatively calculated. The effects of the space electric field intensity, the electron density ( N e ), and the space reactive species on the uniformity are studied with quantifying the gap voltage U g and the discharge current I g , analyzing the recorded optical emission spectra, and simulating the temporal distribution of N e with a one-dimensional fluid model. It is found that as the relative permittivity of the dielectric materials increases, the space electric field intensity is enhanced, which results in a higher N e and electron temperature ( T e ). Therefore, an appropriate value of space electric field intensity can promote electron avalanches, resulting in uniform and stable plasma by the merging of electron avalanches. However, an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field, which reduce the discharge uniformity. The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity. The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity, and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform, stable, and reactive plasma sources. |
---|---|
AbstractList | Dielectric barrier discharge (DBD) is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure, and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity. In this work, the uniformity and discharge characteristics of the nanosecond (ns) pulsed DBD with dielectric barrier layers made of alumina, quartz glass, polycarbonate (PC), and polypropylene (PP) are investigated via discharge image observation, voltage-current waveform measurement and optical emission spectral diagnosis. Through analyzing discharge image by gray value standard deviation method, the discharge uniformity is quantitatively calculated. The effects of the space electric field intensity, the electron density ( N e ), and the space reactive species on the uniformity are studied with quantifying the gap voltage U g and the discharge current I g , analyzing the recorded optical emission spectra, and simulating the temporal distribution of N e with a one-dimensional fluid model. It is found that as the relative permittivity of the dielectric materials increases, the space electric field intensity is enhanced, which results in a higher N e and electron temperature ( T e ). Therefore, an appropriate value of space electric field intensity can promote electron avalanches, resulting in uniform and stable plasma by the merging of electron avalanches. However, an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field, which reduce the discharge uniformity. The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity. The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity, and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform, stable, and reactive plasma sources. |
Author | ZHOU, Wenhao DUAN, Xiaohui ZHU, Xi LIU, Feng ZHANG, Dongxuan FANG, Zhi |
Author_xml | – sequence: 1 givenname: Wenhao surname: ZHOU fullname: ZHOU, Wenhao organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China – sequence: 2 givenname: Dongxuan surname: ZHANG fullname: ZHANG, Dongxuan organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China – sequence: 3 givenname: Xiaohui surname: DUAN fullname: DUAN, Xiaohui organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China – sequence: 4 givenname: Xi surname: ZHU fullname: ZHU, Xi organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China – sequence: 5 givenname: Feng surname: LIU fullname: LIU, Feng organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China – sequence: 6 givenname: Zhi surname: FANG fullname: FANG, Zhi organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China |
BookMark | eNp9kL1PwzAQxS1UJNrCzpiNhVDHSVxnRFX5kCqxwGxd7DN1ldqR7Q7970lUhBACpjs9vd_T3ZuRifMOCbku6F1BhVgwWoucsyVbgK4N8jMy_ZImZFpQ2uSUl_SCzGLcUVpXjSinBNbGoEqZN5m22A1rsCrbQ8Jgocu8y9IWs4Ozxoe9TcfR6MD5iMo7nfWHLqL-jrYQgsUwSFFtIbzjJTk3MLiuPuecvD2sX1dP-ebl8Xl1v8lVWbCUV9DWamnEcFeplTag-LIuTM0LgRVnjUYNjEIpQKvWVK3SHLkWAg3jqsWqnBN6ylXBxxjQyD7YPYSjLKgcK5JjH3LsQ54qGhD-A1E2QbLepQC2-w-8OYHW93LnD8ENn8k-Jsm4bCRtKkqF7LUZnLe_OP8M_gAW-oyc |
CitedBy_id | crossref_primary_10_3390_nano14231922 crossref_primary_10_1016_j_cej_2025_160485 |
Cites_doi | 10.1007/s11356-023-27125-8 10.1063/5.0007662 10.1088/0963-0252/24/5/055016 10.1088/0022-3727/43/38/385203 10.1016/j.elstat.2017.04.005 10.1088/1361-6595/ab2230 10.1088/0022-3727/44/20/205202 10.1016/j.vacuum.2022.111793 10.1016/j.vacuum.2022.111688 10.3390/molecules24213933 10.1007/s11090-023-10384-1 10.1088/1361-6595/abfbc6 10.1088/1009-0630/15/8/11 10.1063/5.0139247 10.1109/TPS.2017.2679210 10.1088/2058-6272/acd83c 10.1088/0963-0252/20/2/024005 10.1016/j.envres.2023.117015 10.1063/5.0135329 10.1063/1.4942225 10.1063/1.4819258 10.1088/2058-6272/aa8766 10.1063/1.5052697 10.1088/1361-6463/ac22d5 10.1088/1361-6463/ab831f 10.1007/s11090-012-9399-3 10.1016/j.fuproc.2016.09.013 10.1088/0963-0252/19/4/045017 10.1088/0963-0252/18/4/045011 10.1063/5.0031220 10.1063/1.4943407 10.1088/1361-6595/ac676e 10.1088/0022-3727/43/32/325201 10.1088/0022-3727/47/25/252003 10.1016/j.vacuum.2023.112047 10.1088/2058-6272/acd529 10.1063/1.1935407 10.1109/TIA.2019.2924879 10.1063/1.5117885 10.1088/1361-6595/acb816 10.3390/ma16082973 10.1088/2058-6272/abf9fd 10.1109/TPS.2020.3043580 10.1063/1.5049463 10.1088/0963-0252/25/4/045016 10.1088/1361-6595/abefa7 10.1016/j.vacuum.2020.109761 10.1109/TPS.2014.2385877 10.1088/2058-6272/ac2b11 |
ContentType | Journal Article |
Copyright | 2024 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China |
Copyright_xml | – notice: 2024 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China |
DBID | AAYXX CITATION |
DOI | 10.1088/2058-6272/ad5fe6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-6272 |
ExternalDocumentID | 10_1088_2058_6272_ad5fe6 pstad5fe6 |
GroupedDBID | -SA -S~ 123 1JI 4.4 5B3 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 CW9 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 IJHAN IOP IZVLO LAP N5L N9A P2P PJBAE Q-- R4D RIN RNS RO9 ROL RPA SY9 U1G U5K W28 AAYXX AEINN CITATION |
ID | FETCH-LOGICAL-c312t-4ab5c7f85493dcdfac6751f5618e4629deda20a38adcbf4bcd6e6d88ef26cbe43 |
IEDL.DBID | IOP |
ISSN | 1009-0630 |
IngestDate | Thu Apr 24 23:13:27 EDT 2025 Thu Aug 07 15:32:50 EDT 2025 Tue Jun 03 22:14:08 EDT 2025 Tue Jun 03 22:14:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-4ab5c7f85493dcdfac6751f5618e4629deda20a38adcbf4bcd6e6d88ef26cbe43 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1088_2058_6272_ad5fe6 crossref_citationtrail_10_1088_2058_6272_ad5fe6 iop_journals_10_1088_2058_6272_ad5fe6 |
PublicationCentury | 2000 |
PublicationDate | 20240901 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240901 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Plasma science & technology |
PublicationTitleAlternate | Plasma Sci. Technol |
PublicationYear | 2024 |
Publisher | Plasma Science and Technology |
Publisher_xml | – name: Plasma Science and Technology |
References | Yu (pst_26_9_094008_bib13) 2016; 23 Akishev (pst_26_9_094008_bib30) 2011; 20 Pekárek (pst_26_9_094008_bib7) 2020; 53 Lisovskiy (pst_26_9_094008_bib39) 2010; 43 Yuan (pst_26_9_094008_bib14) 2017; 19 Teranishi (pst_26_9_094008_bib28) 2009; 18 Tabaie (pst_26_9_094008_bib42) 2020; 182 Liu (pst_26_9_094008_bib37) 2010; 19 Luo (pst_26_9_094008_bib25) 2017; 45 Gou (pst_26_9_094008_bib8) 2023; 212 Jiang (pst_26_9_094008_bib16) 2021; 23 Li (pst_26_9_094008_bib45) 2013; 15 Shcherbanev (pst_26_9_094008_bib1) 2019; 28 Mitsuhashi (pst_26_9_094008_bib47) 2021; 30 Ma (pst_26_9_094008_bib22) 2021; 54 Zhang (pst_26_9_094008_bib18) 2019; 125 Wang (pst_26_9_094008_bib34) 2021; 30 Zhao (pst_26_9_094008_bib11) 2023; 43 pst_26_9_094008_bib44 Liu (pst_26_9_094008_bib35) 2014; 47 Barjasteh (pst_26_9_094008_bib40) 2016; 23 Yoshida (pst_26_9_094008_bib9) 2019; 55 Liu (pst_26_9_094008_bib38) 2023; 25 Liu (pst_26_9_094008_bib36) 2021; 129 Li (pst_26_9_094008_bib10) 2023; 30 Ambrico (pst_26_9_094008_bib48) 2010; 43 Suzuki (pst_26_9_094008_bib31) 2015; 24 Liu (pst_26_9_094008_bib27) 2023; 32 Xu (pst_26_9_094008_bib32) 2013; 20 Pan (pst_26_9_094008_bib15) 2015; 43 Liu (pst_26_9_094008_bib17) 2023; 209 Lee (pst_26_9_094008_bib41) 2005; 12 Zhang (pst_26_9_094008_bib33) 2023; 25 Zhang (pst_26_9_094008_bib49) 2019; 24 Bian (pst_26_9_094008_bib23) 2018; 124 Krawczyk (pst_26_9_094008_bib6) 2023; 16 Niu (pst_26_9_094008_bib5) 2017; 156 Fan (pst_26_9_094008_bib19) 2020; 27 Wang (pst_26_9_094008_bib29) 2012; 32 Li (pst_26_9_094008_bib50) 2022; 31 Ozkan (pst_26_9_094008_bib26) 2016; 25 Cui (pst_26_9_094008_bib2) 2021; 23 Moussaoui (pst_26_9_094008_bib4) 2017; 87 Ran (pst_26_9_094008_bib24) 2021; 49 Yao (pst_26_9_094008_bib21) 2023; 122 Guo (pst_26_9_094008_bib20) 2020; 27 Nawaz (pst_26_9_094008_bib12) 2023; 237 Siasko (pst_26_9_094008_bib43) 2023; 30 Dedrick (pst_26_9_094008_bib46) 2011; 44 Xu (pst_26_9_094008_bib3) 2023; 207 |
References_xml | – volume: 30 start-page: 66291 year: 2023 ident: pst_26_9_094008_bib10 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-27125-8 – volume: 27 start-page: 083508 year: 2020 ident: pst_26_9_094008_bib19 publication-title: Phys. Plasmas doi: 10.1063/5.0007662 – volume: 24 start-page: 055016 year: 2015 ident: pst_26_9_094008_bib31 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/24/5/055016 – volume: 43 start-page: 385203 year: 2010 ident: pst_26_9_094008_bib39 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/38/385203 – volume: 87 start-page: 102 year: 2017 ident: pst_26_9_094008_bib4 publication-title: J. Electrostat. doi: 10.1016/j.elstat.2017.04.005 – volume: 28 start-page: 065013 year: 2019 ident: pst_26_9_094008_bib1 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/ab2230 – volume: 44 start-page: 205202 year: 2011 ident: pst_26_9_094008_bib46 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/20/205202 – volume: 209 start-page: 111793 year: 2023 ident: pst_26_9_094008_bib17 publication-title: Vacuum doi: 10.1016/j.vacuum.2022.111793 – volume: 207 start-page: 111688 year: 2023 ident: pst_26_9_094008_bib3 publication-title: Vacuum doi: 10.1016/j.vacuum.2022.111688 – volume: 24 start-page: 3933 year: 2019 ident: pst_26_9_094008_bib49 publication-title: Molecules doi: 10.3390/molecules24213933 – volume: 43 start-page: 1567 year: 2023 ident: pst_26_9_094008_bib11 publication-title: Plasma Chem. Plasma Process. doi: 10.1007/s11090-023-10384-1 – volume: 30 start-page: 075009 year: 2021 ident: pst_26_9_094008_bib34 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/abfbc6 – volume: 15 start-page: 776 year: 2013 ident: pst_26_9_094008_bib45 publication-title: Plasma Sci. Technol. doi: 10.1088/1009-0630/15/8/11 – volume: 122 start-page: 082905 year: 2023 ident: pst_26_9_094008_bib21 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0139247 – volume: 45 start-page: 749 year: 2017 ident: pst_26_9_094008_bib25 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2017.2679210 – volume: 25 start-page: 114004 year: 2023 ident: pst_26_9_094008_bib33 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/acd83c – volume: 20 start-page: 024005 year: 2011 ident: pst_26_9_094008_bib30 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/20/2/024005 – volume: 237 start-page: 117015 year: 2023 ident: pst_26_9_094008_bib12 publication-title: Environ. Res. doi: 10.1016/j.envres.2023.117015 – volume: 30 start-page: 033701 year: 2023 ident: pst_26_9_094008_bib43 publication-title: Phys. Plasmas doi: 10.1063/5.0135329 – volume: 23 start-page: 023510 year: 2016 ident: pst_26_9_094008_bib13 publication-title: Phys. Plasmas doi: 10.1063/1.4942225 – volume: 20 start-page: 083515 year: 2013 ident: pst_26_9_094008_bib32 publication-title: Phys. Plasmas doi: 10.1063/1.4819258 – volume: 19 start-page: 125401 year: 2017 ident: pst_26_9_094008_bib14 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/aa8766 – volume: 125 start-page: 113301 year: 2019 ident: pst_26_9_094008_bib18 publication-title: J. Appl. Phys. doi: 10.1063/1.5052697 – volume: 54 start-page: 505204 year: 2021 ident: pst_26_9_094008_bib22 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ac22d5 – volume: 53 start-page: 275203 year: 2020 ident: pst_26_9_094008_bib7 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ab831f – volume: 32 start-page: 1189 year: 2012 ident: pst_26_9_094008_bib29 publication-title: Plasma Chem. Plasma Process. doi: 10.1007/s11090-012-9399-3 – volume: 156 start-page: 310 year: 2017 ident: pst_26_9_094008_bib5 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.09.013 – volume: 19 start-page: 045017 year: 2010 ident: pst_26_9_094008_bib37 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/19/4/045017 – volume: 18 start-page: 045011 year: 2009 ident: pst_26_9_094008_bib28 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/18/4/045011 – volume: 129 start-page: 033302 year: 2021 ident: pst_26_9_094008_bib36 publication-title: J. Appl. Phys. doi: 10.1063/5.0031220 – volume: 23 start-page: 033506 year: 2016 ident: pst_26_9_094008_bib40 publication-title: Phys. Plasmas doi: 10.1063/1.4943407 – volume: 31 start-page: 055016 year: 2022 ident: pst_26_9_094008_bib50 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/ac676e – volume: 43 start-page: 325201 year: 2010 ident: pst_26_9_094008_bib48 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/32/325201 – volume: 47 start-page: 252003 year: 2014 ident: pst_26_9_094008_bib35 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/47/25/252003 – volume: 212 start-page: 112047 year: 2023 ident: pst_26_9_094008_bib8 publication-title: Vacuum doi: 10.1016/j.vacuum.2023.112047 – volume: 25 start-page: 104001 year: 2023 ident: pst_26_9_094008_bib38 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/acd529 – volume: 12 start-page: 073501 year: 2005 ident: pst_26_9_094008_bib41 publication-title: Phys. Plasmas doi: 10.1063/1.1935407 – volume: 55 start-page: 5261 year: 2019 ident: pst_26_9_094008_bib9 publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2019.2924879 – volume: 27 start-page: 023519 year: 2020 ident: pst_26_9_094008_bib20 publication-title: Phys. Plasmas doi: 10.1063/1.5117885 – volume: 32 start-page: 025011 year: 2023 ident: pst_26_9_094008_bib27 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/acb816 – volume: 16 start-page: 2973 year: 2023 ident: pst_26_9_094008_bib6 publication-title: Materials doi: 10.3390/ma16082973 – volume: 23 start-page: 075402 year: 2021 ident: pst_26_9_094008_bib2 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/abf9fd – volume: 49 start-page: 214 year: 2021 ident: pst_26_9_094008_bib24 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2020.3043580 – volume: 124 start-page: 183301 year: 2018 ident: pst_26_9_094008_bib23 publication-title: J. Appl. Phys. doi: 10.1063/1.5049463 – volume: 25 start-page: 045016 year: 2016 ident: pst_26_9_094008_bib26 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/25/4/045016 – volume: 30 start-page: 04LT02 year: 2021 ident: pst_26_9_094008_bib47 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/abefa7 – volume: 182 start-page: 109761 year: 2020 ident: pst_26_9_094008_bib42 publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109761 – volume: 43 start-page: 557 year: 2015 ident: pst_26_9_094008_bib15 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2014.2385877 – ident: pst_26_9_094008_bib44 – volume: 23 start-page: 125404 year: 2021 ident: pst_26_9_094008_bib16 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/ac2b11 |
SSID | ssj0054983 ssib023363536 |
Score | 2.356083 |
Snippet | Dielectric barrier discharge (DBD) is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure, and the dielectric... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 94008 |
SubjectTerms | dielectric barrier discharge dielectric material discharge characteristics uniformity |
Title | Effect of dielectric material on the uniformity of nanosecond pulsed dielectric barrier discharge |
URI | https://iopscience.iop.org/article/10.1088/2058-6272/ad5fe6 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66InjxLa4vctCDh67dNElTPIkoIvg4KHgQQp4galt2uxd_vZNNV3ZFRLyUHmbSMHl908x8g9AhzQzPaWoS2PdoQo0tYEnBwwtLteLMsn7Id7655VeP9PqJPc2h069cmKput_4evEai4GjCNiBOgLvORMJJTk6UZd7xebSQhUpKIXvv7n6yDYPfI2J0ffj7z7O0vaP8qYWZM2kevjt1xFyuoOdJ52JkyWtv1Oie-fjG2_jP3q-i5RZ64rMouobmXLmOFschoGa4gVQkMsaVx_YlVsd5MRgA7XiO4qrEgBXxqAypXO-A3YNgqcpqGFxqi-sRHLJ2WlWrQSiHh0Pib-Bjcpvo8fLi4fwqaQswJCbrkyahSjOTewG2zKyxXsG4sr4HyCUc5aSwziqSqkwoa7Sn2ljuuBXCecKNdjTbQp2yKt02wiwvwJVMC8JsCoKFBqWCFU5Q4bM-zbvoZDIE0rTs5KFIxpsc35ILIYPhZDCcjIbrouMvjToyc_wiewTjIdvlOfxFDs_I1cNGEi4LGVgGUyFr63f-2NQuWiKAf2I42h7qNIOR2wf80uiD8Tz9BHAQ6gk |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELZ4iNM1PO90vF1AQZHdrGM7TomAFW8oQKIzfkroIInYbHO__sZxFgFCCIkmSjF24hk_vpFnvkFoh2aG5zQ1Cex7NKHGFrCk4OGFpVpxZtkg5DtfXPLjW3p6x-66OqdtLkxVd1t_D14jUXBUYRcQJ8BdZyLhJCd9ZZl3vF9bP41mWcbysDJPrq4nWzH4PiJG2IcbAJ6l3T3lR728OZem4duvjpnhArqf_GCMLvnbGze6Z_694278xggW0XwHQfF-FF9CU65cRnNtKKgZrSAVCY1x5bF9iFVyHgwGYNvOVVyVGDAjHpchpesJMHwQLFVZjYJrbXE9hsPWvm6q1XMoi4dDAnDgZXK_0O3w6ObgOOkKMSQmG5AmoUozk3sB-syssV6BfdnAA_QSjnJSWGcVSVUmlDXaU20sd9wK4TzhRjua_UYzZVW6PwizvACXMi0IsykIFhoaFaxwggqfDWi-ivoTM0jTsZSHYhmPsr0tF0IG5cmgPBmVt4r2XlrUkaHjE9ldsInslunoEzn8Rq4eNZJwWcjANpgKCfZa-2JX2-jH9eFQnp9cnq2jnwQgUYxQ20AzzfPYbQKkafRWO23_AzU973M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+dielectric+material+on+the+uniformity+of+nanosecond+pulsed+dielectric+barrier+discharge&rft.jtitle=Plasma+science+%26+technology&rft.au=ZHOU%2C+Wenhao&rft.au=ZHANG%2C+Dongxuan&rft.au=DUAN%2C+Xiaohui&rft.au=ZHU%2C+Xi&rft.date=2024-09-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=26&rft.issue=9&rft_id=info:doi/10.1088%2F2058-6272%2Fad5fe6&rft.externalDocID=pstad5fe6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon |