Effect of dielectric material on the uniformity of nanosecond pulsed dielectric barrier discharge

Dielectric barrier discharge (DBD) is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure, and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity. In this work, the uniformity and...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 26; no. 9; pp. 94008 - 94016
Main Authors ZHOU, Wenhao, ZHANG, Dongxuan, DUAN, Xiaohui, ZHU, Xi, LIU, Feng, FANG, Zhi
Format Journal Article
LanguageEnglish
Published Plasma Science and Technology 01.09.2024
Subjects
Online AccessGet full text
ISSN1009-0630
2058-6272
DOI10.1088/2058-6272/ad5fe6

Cover

Abstract Dielectric barrier discharge (DBD) is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure, and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity. In this work, the uniformity and discharge characteristics of the nanosecond (ns) pulsed DBD with dielectric barrier layers made of alumina, quartz glass, polycarbonate (PC), and polypropylene (PP) are investigated via discharge image observation, voltage-current waveform measurement and optical emission spectral diagnosis. Through analyzing discharge image by gray value standard deviation method, the discharge uniformity is quantitatively calculated. The effects of the space electric field intensity, the electron density ( N e ), and the space reactive species on the uniformity are studied with quantifying the gap voltage U g and the discharge current I g , analyzing the recorded optical emission spectra, and simulating the temporal distribution of N e with a one-dimensional fluid model. It is found that as the relative permittivity of the dielectric materials increases, the space electric field intensity is enhanced, which results in a higher N e and electron temperature ( T e ). Therefore, an appropriate value of space electric field intensity can promote electron avalanches, resulting in uniform and stable plasma by the merging of electron avalanches. However, an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field, which reduce the discharge uniformity. The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity. The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity, and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform, stable, and reactive plasma sources.
AbstractList Dielectric barrier discharge (DBD) is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure, and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity. In this work, the uniformity and discharge characteristics of the nanosecond (ns) pulsed DBD with dielectric barrier layers made of alumina, quartz glass, polycarbonate (PC), and polypropylene (PP) are investigated via discharge image observation, voltage-current waveform measurement and optical emission spectral diagnosis. Through analyzing discharge image by gray value standard deviation method, the discharge uniformity is quantitatively calculated. The effects of the space electric field intensity, the electron density ( N e ), and the space reactive species on the uniformity are studied with quantifying the gap voltage U g and the discharge current I g , analyzing the recorded optical emission spectra, and simulating the temporal distribution of N e with a one-dimensional fluid model. It is found that as the relative permittivity of the dielectric materials increases, the space electric field intensity is enhanced, which results in a higher N e and electron temperature ( T e ). Therefore, an appropriate value of space electric field intensity can promote electron avalanches, resulting in uniform and stable plasma by the merging of electron avalanches. However, an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field, which reduce the discharge uniformity. The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity. The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity, and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform, stable, and reactive plasma sources.
Author ZHOU, Wenhao
DUAN, Xiaohui
ZHU, Xi
LIU, Feng
ZHANG, Dongxuan
FANG, Zhi
Author_xml – sequence: 1
  givenname: Wenhao
  surname: ZHOU
  fullname: ZHOU, Wenhao
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China
– sequence: 2
  givenname: Dongxuan
  surname: ZHANG
  fullname: ZHANG, Dongxuan
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China
– sequence: 3
  givenname: Xiaohui
  surname: DUAN
  fullname: DUAN, Xiaohui
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China
– sequence: 4
  givenname: Xi
  surname: ZHU
  fullname: ZHU, Xi
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China
– sequence: 5
  givenname: Feng
  surname: LIU
  fullname: LIU, Feng
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China
– sequence: 6
  givenname: Zhi
  surname: FANG
  fullname: FANG, Zhi
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, People’s Republic of China
BookMark eNp9kL1PwzAQxS1UJNrCzpiNhVDHSVxnRFX5kCqxwGxd7DN1ldqR7Q7970lUhBACpjs9vd_T3ZuRifMOCbku6F1BhVgwWoucsyVbgK4N8jMy_ZImZFpQ2uSUl_SCzGLcUVpXjSinBNbGoEqZN5m22A1rsCrbQ8Jgocu8y9IWs4Ozxoe9TcfR6MD5iMo7nfWHLqL-jrYQgsUwSFFtIbzjJTk3MLiuPuecvD2sX1dP-ebl8Xl1v8lVWbCUV9DWamnEcFeplTag-LIuTM0LgRVnjUYNjEIpQKvWVK3SHLkWAg3jqsWqnBN6ylXBxxjQyD7YPYSjLKgcK5JjH3LsQ54qGhD-A1E2QbLepQC2-w-8OYHW93LnD8ENn8k-Jsm4bCRtKkqF7LUZnLe_OP8M_gAW-oyc
CitedBy_id crossref_primary_10_3390_nano14231922
crossref_primary_10_1016_j_cej_2025_160485
Cites_doi 10.1007/s11356-023-27125-8
10.1063/5.0007662
10.1088/0963-0252/24/5/055016
10.1088/0022-3727/43/38/385203
10.1016/j.elstat.2017.04.005
10.1088/1361-6595/ab2230
10.1088/0022-3727/44/20/205202
10.1016/j.vacuum.2022.111793
10.1016/j.vacuum.2022.111688
10.3390/molecules24213933
10.1007/s11090-023-10384-1
10.1088/1361-6595/abfbc6
10.1088/1009-0630/15/8/11
10.1063/5.0139247
10.1109/TPS.2017.2679210
10.1088/2058-6272/acd83c
10.1088/0963-0252/20/2/024005
10.1016/j.envres.2023.117015
10.1063/5.0135329
10.1063/1.4942225
10.1063/1.4819258
10.1088/2058-6272/aa8766
10.1063/1.5052697
10.1088/1361-6463/ac22d5
10.1088/1361-6463/ab831f
10.1007/s11090-012-9399-3
10.1016/j.fuproc.2016.09.013
10.1088/0963-0252/19/4/045017
10.1088/0963-0252/18/4/045011
10.1063/5.0031220
10.1063/1.4943407
10.1088/1361-6595/ac676e
10.1088/0022-3727/43/32/325201
10.1088/0022-3727/47/25/252003
10.1016/j.vacuum.2023.112047
10.1088/2058-6272/acd529
10.1063/1.1935407
10.1109/TIA.2019.2924879
10.1063/1.5117885
10.1088/1361-6595/acb816
10.3390/ma16082973
10.1088/2058-6272/abf9fd
10.1109/TPS.2020.3043580
10.1063/1.5049463
10.1088/0963-0252/25/4/045016
10.1088/1361-6595/abefa7
10.1016/j.vacuum.2020.109761
10.1109/TPS.2014.2385877
10.1088/2058-6272/ac2b11
ContentType Journal Article
Copyright 2024 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China
Copyright_xml – notice: 2024 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing Printed in China
DBID AAYXX
CITATION
DOI 10.1088/2058-6272/ad5fe6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-6272
ExternalDocumentID 10_1088_2058_6272_ad5fe6
pstad5fe6
GroupedDBID -SA
-S~
123
1JI
4.4
5B3
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
IJHAN
IOP
IZVLO
LAP
N5L
N9A
P2P
PJBAE
Q--
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
W28
AAYXX
AEINN
CITATION
ID FETCH-LOGICAL-c312t-4ab5c7f85493dcdfac6751f5618e4629deda20a38adcbf4bcd6e6d88ef26cbe43
IEDL.DBID IOP
ISSN 1009-0630
IngestDate Thu Apr 24 23:13:27 EDT 2025
Thu Aug 07 15:32:50 EDT 2025
Tue Jun 03 22:14:08 EDT 2025
Tue Jun 03 22:14:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-4ab5c7f85493dcdfac6751f5618e4629deda20a38adcbf4bcd6e6d88ef26cbe43
PageCount 9
ParticipantIDs crossref_primary_10_1088_2058_6272_ad5fe6
crossref_citationtrail_10_1088_2058_6272_ad5fe6
iop_journals_10_1088_2058_6272_ad5fe6
PublicationCentury 2000
PublicationDate 20240901
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240901
  day: 01
PublicationDecade 2020
PublicationTitle Plasma science & technology
PublicationTitleAlternate Plasma Sci. Technol
PublicationYear 2024
Publisher Plasma Science and Technology
Publisher_xml – name: Plasma Science and Technology
References Yu (pst_26_9_094008_bib13) 2016; 23
Akishev (pst_26_9_094008_bib30) 2011; 20
Pekárek (pst_26_9_094008_bib7) 2020; 53
Lisovskiy (pst_26_9_094008_bib39) 2010; 43
Yuan (pst_26_9_094008_bib14) 2017; 19
Teranishi (pst_26_9_094008_bib28) 2009; 18
Tabaie (pst_26_9_094008_bib42) 2020; 182
Liu (pst_26_9_094008_bib37) 2010; 19
Luo (pst_26_9_094008_bib25) 2017; 45
Gou (pst_26_9_094008_bib8) 2023; 212
Jiang (pst_26_9_094008_bib16) 2021; 23
Li (pst_26_9_094008_bib45) 2013; 15
Shcherbanev (pst_26_9_094008_bib1) 2019; 28
Mitsuhashi (pst_26_9_094008_bib47) 2021; 30
Ma (pst_26_9_094008_bib22) 2021; 54
Zhang (pst_26_9_094008_bib18) 2019; 125
Wang (pst_26_9_094008_bib34) 2021; 30
Zhao (pst_26_9_094008_bib11) 2023; 43
pst_26_9_094008_bib44
Liu (pst_26_9_094008_bib35) 2014; 47
Barjasteh (pst_26_9_094008_bib40) 2016; 23
Yoshida (pst_26_9_094008_bib9) 2019; 55
Liu (pst_26_9_094008_bib38) 2023; 25
Liu (pst_26_9_094008_bib36) 2021; 129
Li (pst_26_9_094008_bib10) 2023; 30
Ambrico (pst_26_9_094008_bib48) 2010; 43
Suzuki (pst_26_9_094008_bib31) 2015; 24
Liu (pst_26_9_094008_bib27) 2023; 32
Xu (pst_26_9_094008_bib32) 2013; 20
Pan (pst_26_9_094008_bib15) 2015; 43
Liu (pst_26_9_094008_bib17) 2023; 209
Lee (pst_26_9_094008_bib41) 2005; 12
Zhang (pst_26_9_094008_bib33) 2023; 25
Zhang (pst_26_9_094008_bib49) 2019; 24
Bian (pst_26_9_094008_bib23) 2018; 124
Krawczyk (pst_26_9_094008_bib6) 2023; 16
Niu (pst_26_9_094008_bib5) 2017; 156
Fan (pst_26_9_094008_bib19) 2020; 27
Wang (pst_26_9_094008_bib29) 2012; 32
Li (pst_26_9_094008_bib50) 2022; 31
Ozkan (pst_26_9_094008_bib26) 2016; 25
Cui (pst_26_9_094008_bib2) 2021; 23
Moussaoui (pst_26_9_094008_bib4) 2017; 87
Ran (pst_26_9_094008_bib24) 2021; 49
Yao (pst_26_9_094008_bib21) 2023; 122
Guo (pst_26_9_094008_bib20) 2020; 27
Nawaz (pst_26_9_094008_bib12) 2023; 237
Siasko (pst_26_9_094008_bib43) 2023; 30
Dedrick (pst_26_9_094008_bib46) 2011; 44
Xu (pst_26_9_094008_bib3) 2023; 207
References_xml – volume: 30
  start-page: 66291
  year: 2023
  ident: pst_26_9_094008_bib10
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-27125-8
– volume: 27
  start-page: 083508
  year: 2020
  ident: pst_26_9_094008_bib19
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0007662
– volume: 24
  start-page: 055016
  year: 2015
  ident: pst_26_9_094008_bib31
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/24/5/055016
– volume: 43
  start-page: 385203
  year: 2010
  ident: pst_26_9_094008_bib39
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/38/385203
– volume: 87
  start-page: 102
  year: 2017
  ident: pst_26_9_094008_bib4
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2017.04.005
– volume: 28
  start-page: 065013
  year: 2019
  ident: pst_26_9_094008_bib1
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/ab2230
– volume: 44
  start-page: 205202
  year: 2011
  ident: pst_26_9_094008_bib46
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/20/205202
– volume: 209
  start-page: 111793
  year: 2023
  ident: pst_26_9_094008_bib17
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2022.111793
– volume: 207
  start-page: 111688
  year: 2023
  ident: pst_26_9_094008_bib3
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2022.111688
– volume: 24
  start-page: 3933
  year: 2019
  ident: pst_26_9_094008_bib49
  publication-title: Molecules
  doi: 10.3390/molecules24213933
– volume: 43
  start-page: 1567
  year: 2023
  ident: pst_26_9_094008_bib11
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-023-10384-1
– volume: 30
  start-page: 075009
  year: 2021
  ident: pst_26_9_094008_bib34
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/abfbc6
– volume: 15
  start-page: 776
  year: 2013
  ident: pst_26_9_094008_bib45
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/1009-0630/15/8/11
– volume: 122
  start-page: 082905
  year: 2023
  ident: pst_26_9_094008_bib21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0139247
– volume: 45
  start-page: 749
  year: 2017
  ident: pst_26_9_094008_bib25
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2017.2679210
– volume: 25
  start-page: 114004
  year: 2023
  ident: pst_26_9_094008_bib33
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/acd83c
– volume: 20
  start-page: 024005
  year: 2011
  ident: pst_26_9_094008_bib30
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/20/2/024005
– volume: 237
  start-page: 117015
  year: 2023
  ident: pst_26_9_094008_bib12
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2023.117015
– volume: 30
  start-page: 033701
  year: 2023
  ident: pst_26_9_094008_bib43
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0135329
– volume: 23
  start-page: 023510
  year: 2016
  ident: pst_26_9_094008_bib13
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4942225
– volume: 20
  start-page: 083515
  year: 2013
  ident: pst_26_9_094008_bib32
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4819258
– volume: 19
  start-page: 125401
  year: 2017
  ident: pst_26_9_094008_bib14
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/aa8766
– volume: 125
  start-page: 113301
  year: 2019
  ident: pst_26_9_094008_bib18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5052697
– volume: 54
  start-page: 505204
  year: 2021
  ident: pst_26_9_094008_bib22
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ac22d5
– volume: 53
  start-page: 275203
  year: 2020
  ident: pst_26_9_094008_bib7
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab831f
– volume: 32
  start-page: 1189
  year: 2012
  ident: pst_26_9_094008_bib29
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-012-9399-3
– volume: 156
  start-page: 310
  year: 2017
  ident: pst_26_9_094008_bib5
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.09.013
– volume: 19
  start-page: 045017
  year: 2010
  ident: pst_26_9_094008_bib37
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/19/4/045017
– volume: 18
  start-page: 045011
  year: 2009
  ident: pst_26_9_094008_bib28
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/18/4/045011
– volume: 129
  start-page: 033302
  year: 2021
  ident: pst_26_9_094008_bib36
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0031220
– volume: 23
  start-page: 033506
  year: 2016
  ident: pst_26_9_094008_bib40
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4943407
– volume: 31
  start-page: 055016
  year: 2022
  ident: pst_26_9_094008_bib50
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/ac676e
– volume: 43
  start-page: 325201
  year: 2010
  ident: pst_26_9_094008_bib48
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/32/325201
– volume: 47
  start-page: 252003
  year: 2014
  ident: pst_26_9_094008_bib35
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/25/252003
– volume: 212
  start-page: 112047
  year: 2023
  ident: pst_26_9_094008_bib8
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2023.112047
– volume: 25
  start-page: 104001
  year: 2023
  ident: pst_26_9_094008_bib38
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/acd529
– volume: 12
  start-page: 073501
  year: 2005
  ident: pst_26_9_094008_bib41
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1935407
– volume: 55
  start-page: 5261
  year: 2019
  ident: pst_26_9_094008_bib9
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2924879
– volume: 27
  start-page: 023519
  year: 2020
  ident: pst_26_9_094008_bib20
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5117885
– volume: 32
  start-page: 025011
  year: 2023
  ident: pst_26_9_094008_bib27
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/acb816
– volume: 16
  start-page: 2973
  year: 2023
  ident: pst_26_9_094008_bib6
  publication-title: Materials
  doi: 10.3390/ma16082973
– volume: 23
  start-page: 075402
  year: 2021
  ident: pst_26_9_094008_bib2
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/abf9fd
– volume: 49
  start-page: 214
  year: 2021
  ident: pst_26_9_094008_bib24
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2020.3043580
– volume: 124
  start-page: 183301
  year: 2018
  ident: pst_26_9_094008_bib23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5049463
– volume: 25
  start-page: 045016
  year: 2016
  ident: pst_26_9_094008_bib26
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/25/4/045016
– volume: 30
  start-page: 04LT02
  year: 2021
  ident: pst_26_9_094008_bib47
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/abefa7
– volume: 182
  start-page: 109761
  year: 2020
  ident: pst_26_9_094008_bib42
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2020.109761
– volume: 43
  start-page: 557
  year: 2015
  ident: pst_26_9_094008_bib15
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2014.2385877
– ident: pst_26_9_094008_bib44
– volume: 23
  start-page: 125404
  year: 2021
  ident: pst_26_9_094008_bib16
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/ac2b11
SSID ssj0054983
ssib023363536
Score 2.356083
Snippet Dielectric barrier discharge (DBD) is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure, and the dielectric...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 94008
SubjectTerms dielectric barrier discharge
dielectric material
discharge characteristics
uniformity
Title Effect of dielectric material on the uniformity of nanosecond pulsed dielectric barrier discharge
URI https://iopscience.iop.org/article/10.1088/2058-6272/ad5fe6
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66InjxLa4vctCDh67dNElTPIkoIvg4KHgQQp4galt2uxd_vZNNV3ZFRLyUHmbSMHl908x8g9AhzQzPaWoS2PdoQo0tYEnBwwtLteLMsn7Id7655VeP9PqJPc2h069cmKput_4evEai4GjCNiBOgLvORMJJTk6UZd7xebSQhUpKIXvv7n6yDYPfI2J0ffj7z7O0vaP8qYWZM2kevjt1xFyuoOdJ52JkyWtv1Oie-fjG2_jP3q-i5RZ64rMouobmXLmOFschoGa4gVQkMsaVx_YlVsd5MRgA7XiO4qrEgBXxqAypXO-A3YNgqcpqGFxqi-sRHLJ2WlWrQSiHh0Pib-Bjcpvo8fLi4fwqaQswJCbrkyahSjOTewG2zKyxXsG4sr4HyCUc5aSwziqSqkwoa7Sn2ljuuBXCecKNdjTbQp2yKt02wiwvwJVMC8JsCoKFBqWCFU5Q4bM-zbvoZDIE0rTs5KFIxpsc35ILIYPhZDCcjIbrouMvjToyc_wiewTjIdvlOfxFDs_I1cNGEi4LGVgGUyFr63f-2NQuWiKAf2I42h7qNIOR2wf80uiD8Tz9BHAQ6gk
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELZ4iNM1PO90vF1AQZHdrGM7TomAFW8oQKIzfkroIInYbHO__sZxFgFCCIkmSjF24hk_vpFnvkFoh2aG5zQ1Cex7NKHGFrCk4OGFpVpxZtkg5DtfXPLjW3p6x-66OqdtLkxVd1t_D14jUXBUYRcQJ8BdZyLhJCd9ZZl3vF9bP41mWcbysDJPrq4nWzH4PiJG2IcbAJ6l3T3lR728OZem4duvjpnhArqf_GCMLvnbGze6Z_694278xggW0XwHQfF-FF9CU65cRnNtKKgZrSAVCY1x5bF9iFVyHgwGYNvOVVyVGDAjHpchpesJMHwQLFVZjYJrbXE9hsPWvm6q1XMoi4dDAnDgZXK_0O3w6ObgOOkKMSQmG5AmoUozk3sB-syssV6BfdnAA_QSjnJSWGcVSVUmlDXaU20sd9wK4TzhRjua_UYzZVW6PwizvACXMi0IsykIFhoaFaxwggqfDWi-ivoTM0jTsZSHYhmPsr0tF0IG5cmgPBmVt4r2XlrUkaHjE9ldsInslunoEzn8Rq4eNZJwWcjANpgKCfZa-2JX2-jH9eFQnp9cnq2jnwQgUYxQ20AzzfPYbQKkafRWO23_AzU973M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+dielectric+material+on+the+uniformity+of+nanosecond+pulsed+dielectric+barrier+discharge&rft.jtitle=Plasma+science+%26+technology&rft.au=ZHOU%2C+Wenhao&rft.au=ZHANG%2C+Dongxuan&rft.au=DUAN%2C+Xiaohui&rft.au=ZHU%2C+Xi&rft.date=2024-09-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=26&rft.issue=9&rft_id=info:doi/10.1088%2F2058-6272%2Fad5fe6&rft.externalDocID=pstad5fe6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon