Towards an interpretable data-driven switch placement model in electric power distribution systems: An explainable artificial intelligence-based approach

The fault management process is facilitated by equipping power distribution systems with automated devices, especially remote-controlled switches (RCSs). Although RCS plays a key role in improving the system's reliability, it imposes significant investment, installation, and maintenance costs....

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 129; p. 107637
Main Authors Ebrahimi, Mehrdad, Rastegar, Mohammad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2023.107637

Cover

Abstract The fault management process is facilitated by equipping power distribution systems with automated devices, especially remote-controlled switches (RCSs). Although RCS plays a key role in improving the system's reliability, it imposes significant investment, installation, and maintenance costs. Hence, RCSs should be optimally located in distribution feeders for the highest profit. In previous works, reliability-oriented mathematical optimization models have been formulated to reach this goal. However, the number of test solutions exponentially grows with the problem size to find the globally optimal solution. This paper uses machine learning to propose a scalable and easy-to-implement model for optimal switch placement in real power distribution systems. At first, the features of candidate points for installing RCSs are introduced. Then, a learning model is applied to deeply explore the relationship between these features and optimal locations for installing RCSs. After training, the learning-based surrogate model directly determines the optimal RCS placement strategy in real power distribution systems by leveraging knowledge gained from past experiences. Simulation results demonstrate that the proposed surrogate model is approximately 29 times faster than the integer programming-based mathematical model, without a significant loss of accuracy, when implemented on a modified 11 kV network connected to Bus 4 of the Roy Billiton test system. This paper also employs explainable artificial intelligence (XAI) tools to select the most important features, where the Hamming loss is decreased by approximately 5%.
AbstractList The fault management process is facilitated by equipping power distribution systems with automated devices, especially remote-controlled switches (RCSs). Although RCS plays a key role in improving the system's reliability, it imposes significant investment, installation, and maintenance costs. Hence, RCSs should be optimally located in distribution feeders for the highest profit. In previous works, reliability-oriented mathematical optimization models have been formulated to reach this goal. However, the number of test solutions exponentially grows with the problem size to find the globally optimal solution. This paper uses machine learning to propose a scalable and easy-to-implement model for optimal switch placement in real power distribution systems. At first, the features of candidate points for installing RCSs are introduced. Then, a learning model is applied to deeply explore the relationship between these features and optimal locations for installing RCSs. After training, the learning-based surrogate model directly determines the optimal RCS placement strategy in real power distribution systems by leveraging knowledge gained from past experiences. Simulation results demonstrate that the proposed surrogate model is approximately 29 times faster than the integer programming-based mathematical model, without a significant loss of accuracy, when implemented on a modified 11 kV network connected to Bus 4 of the Roy Billiton test system. This paper also employs explainable artificial intelligence (XAI) tools to select the most important features, where the Hamming loss is decreased by approximately 5%.
ArticleNumber 107637
Author Rastegar, Mohammad
Ebrahimi, Mehrdad
Author_xml – sequence: 1
  givenname: Mehrdad
  orcidid: 0000-0002-3432-5482
  surname: Ebrahimi
  fullname: Ebrahimi, Mehrdad
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0001-9056-6769
  surname: Rastegar
  fullname: Rastegar, Mohammad
  email: mohammadrastegar@shirazu.ac.ir
BookMark eNqFkE1uHCEQRlHkSBk7uULEBXoCzTQMURaxrPxYspSNs0bVUG3XiKFbQDzxUXJbM55kk41XqFC9r_S9c3aW5oSMvZdiLYXUH3ZrTHewLEDrXvSqfRqtzCu2klujOm20PWMrYYe-k9boN-y8lJ0QQm03esX-3M4HyKFwSJxSxbxkrDBG5AEqdCHTAyZeDlT9PV8ieNxjqnw_B4wN4BjR10yeL_MBMw9U2jT-qjQ36rFU3JeP_LLt_W4wpedkyJUm8gTx-WSMdIfJYzdCwcBbkzyDv3_LXk8QC777-16wn1-_3F59725-fLu-urzpvJJ97TZgRzGFoR-E9Sgn44fBwGZAizBYqdu8DWoyU9hK5Y0drBLeG62DCmrURl2wT6dcn-dSMk7OU4VjgZqBopPCHTW7nfun2R01u5Pmhuv_8CXTHvLjy-DnE4it3ANhdsXT0UOg3Jy6MNNLEU-nIaLK
CitedBy_id crossref_primary_10_1016_j_coal_2025_104699
crossref_primary_10_1016_j_engappai_2025_110137
Cites_doi 10.1109/ACCESS.2021.3051338
10.1109/TPWRS.2021.3060891
10.1049/stg2.12017
10.1016/j.ress.2021.108075
10.1049/iet-gtd.2019.1733
10.1049/iet-gtd.2018.5470
10.1109/TIA.2021.3053516
10.1109/TPWRS.2021.3104754
10.1007/978-3-030-44544-7
10.1109/ACCESS.2020.3009827
10.1109/TII.2017.2773572
10.1049/gtd2.12164
10.1016/j.engappai.2021.104504
10.9734/JSRR/2013/3167
10.1109/TPWRS.2021.3069443
10.3906/elk-1806-130
10.1109/59.76730
10.1109/TSG.2016.2609680
10.1109/ACCESS.2019.2938193
10.1016/j.gloei.2020.01.002
10.1109/TPWRS.2022.3150023
10.1016/j.epsr.2016.05.012
10.1007/s00521-021-06619-x
10.35833/MPCE.2020.000522
10.1007/s10489-016-0810-2
10.1016/j.engappai.2019.103372
10.1109/TPWRS.2022.3142957
10.1109/TPWRS.2020.3001919
10.3390/app10010299
10.1109/TSG.2021.3092405
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.107637
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2023_107637
S0952197623018213
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-4a9b0fd52509ce1f7c557a45e9ea59167c58d3f7fd813c795930cc766d3d3b673
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Sat Oct 25 05:36:55 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Sat Feb 24 15:48:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Automation
Convolutional neural network
Explainable artificial intelligence
Data-driven
Distribution power system
Switch placement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-4a9b0fd52509ce1f7c557a45e9ea59167c58d3f7fd813c795930cc766d3d3b673
ORCID 0000-0001-9056-6769
0000-0002-3432-5482
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2023_107637
crossref_primary_10_1016_j_engappai_2023_107637
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_107637
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hasan, Kargarian, Mohammadi (bib16) 2021; 57
Lin (bib27) 2020; 10
Yan, Xu (bib37) 2021; 104
Yan, Xu (bib36) 2022
Yin (bib39) 2020; 14
Fan (bib10) 2021; 9
Cerliani (bib5) 2021
Liu (bib28) 2021
Reichl, Schmidthaler, Schneider, F. (bib3) 2013; 2
Gholizadeh (bib14) 2022; 217
Mohammadi, Sahraei-Ardakani, Trakas, Hatziargyriou (bib29) 2021; 36
Li, Li, Liu (bib26) 2016; 45
Denadai (bib8) 2018
Jadhav (bib21) 2021
Yin (bib38) 2020; 88
Vaish, Dwivedi, Tewari, Tripathi (bib34) 2021; 106
Alam, Pant, Das (bib1) 2016; 140
Billinton, Sjarief (bib4) 1991; 6
Izadi, Safdarian, Moeini-Aghtaie, Lehtonen (bib20) 2019; 7
Lei (bib25) 2021; 36
Zhou (bib41) 2020; 8
Izadi, Farajollahi, Safdarian (bib19) 2019; 13
Nooney (bib30) 2018
Lagos, Hatziargyriou (bib24) 2021; 36
Safari, Haghifam, Zangiabadi (bib31) 2021; 15
Wang (bib35) 2022; 37
Saha (bib32) 2018
Iberapa company (bib18) 2013
Tan (bib33) 2019; 2
Dalal, Gilboa, Mannor, Wehenke (bib7) 2018
Cramer (bib6) 1970
Heidari (bib17) 2018; 14
El Bourakadi, Yahyaouy, Boumhidi (bib9) 2022; 34
Fanucchi (bib11) 2019; 20
Hasan, Kargarian (bib15) 2022; 37
Zhu, Fu, Su, Yang (bib42) 2022
Jooshaki (bib22) 2020; 8
Jooshaki (bib23) 2021; 12
Amohadi, Fotuhi-Firuzabad (bib2) 2019; 27
Georgilakis, Arsoniadis, Apostolopoulos, Nikolaidis (bib13) 2021; 4
Zhang (bib40) 2021
Farajollahi, Fotuhi-Firuzabad, Safdarian (bib12) 2018; 9
Yin (10.1016/j.engappai.2023.107637_bib39) 2020; 14
Yin (10.1016/j.engappai.2023.107637_bib38) 2020; 88
Cerliani (10.1016/j.engappai.2023.107637_bib5) 2021
Fanucchi (10.1016/j.engappai.2023.107637_bib11) 2019; 20
Farajollahi (10.1016/j.engappai.2023.107637_bib12) 2018; 9
Jooshaki (10.1016/j.engappai.2023.107637_bib22) 2020; 8
Hasan (10.1016/j.engappai.2023.107637_bib16) 2021; 57
Denadai (10.1016/j.engappai.2023.107637_bib8) 2018
Vaish (10.1016/j.engappai.2023.107637_bib34) 2021; 106
Izadi (10.1016/j.engappai.2023.107637_bib20) 2019; 7
Lei (10.1016/j.engappai.2023.107637_bib25) 2021; 36
Reichl (10.1016/j.engappai.2023.107637_bib3) 2013; 2
Fan (10.1016/j.engappai.2023.107637_bib10) 2021; 9
Jooshaki (10.1016/j.engappai.2023.107637_bib23) 2021; 12
Li (10.1016/j.engappai.2023.107637_bib26) 2016; 45
Zhu (10.1016/j.engappai.2023.107637_bib42) 2022
Lin (10.1016/j.engappai.2023.107637_bib27) 2020; 10
Nooney (10.1016/j.engappai.2023.107637_bib30) 2018
Cramer (10.1016/j.engappai.2023.107637_bib6) 1970
Heidari (10.1016/j.engappai.2023.107637_bib17) 2018; 14
Mohammadi (10.1016/j.engappai.2023.107637_bib29) 2021; 36
Safari (10.1016/j.engappai.2023.107637_bib31) 2021; 15
Georgilakis (10.1016/j.engappai.2023.107637_bib13) 2021; 4
Hasan (10.1016/j.engappai.2023.107637_bib15) 2022; 37
Liu (10.1016/j.engappai.2023.107637_bib28) 2021
El Bourakadi (10.1016/j.engappai.2023.107637_bib9) 2022; 34
Wang (10.1016/j.engappai.2023.107637_bib35) 2022; 37
Yan (10.1016/j.engappai.2023.107637_bib37) 2021; 104
Iberapa company (10.1016/j.engappai.2023.107637_bib18) 2013
Tan (10.1016/j.engappai.2023.107637_bib33) 2019; 2
Billinton (10.1016/j.engappai.2023.107637_bib4) 1991; 6
Izadi (10.1016/j.engappai.2023.107637_bib19) 2019; 13
Yan (10.1016/j.engappai.2023.107637_bib36) 2022
Amohadi (10.1016/j.engappai.2023.107637_bib2) 2019; 27
Alam (10.1016/j.engappai.2023.107637_bib1) 2016; 140
Gholizadeh (10.1016/j.engappai.2023.107637_bib14) 2022; 217
Saha (10.1016/j.engappai.2023.107637_bib32) 2018
Zhou (10.1016/j.engappai.2023.107637_bib41) 2020; 8
Dalal (10.1016/j.engappai.2023.107637_bib7) 2018
Lagos (10.1016/j.engappai.2023.107637_bib24) 2021; 36
Zhang (10.1016/j.engappai.2023.107637_bib40) 2021
Jadhav (10.1016/j.engappai.2023.107637_bib21) 2021
References_xml – volume: 140
  start-page: 619
  year: 2016
  end-page: 630
  ident: bib1
  article-title: Switch and recloser placement in distribution system considering uncertainties in loads, failure rates and repair rates
  publication-title: Elec. Power Syst. Res.
– volume: 9
  start-page: 2259
  year: 2018
  end-page: 2267
  ident: bib12
  article-title: Deployment of fault indicator in distribution networks: a MIP-based approach
  publication-title: IEEE Trans. Smart Grid
– volume: 88
  year: 2020
  ident: bib38
  article-title: A review of machine learning for new generation smart dispatch in power systems
  publication-title: Eng. Appl. Artif. Intell.
– year: 2018
  ident: bib30
  article-title: Deep Dive into Multi-Label Classification
– year: 2018
  ident: bib8
  article-title: Interpretability of Deep Learning Models
– volume: 36
  start-page: 346
  year: 2021
  end-page: 354
  ident: bib25
  article-title: Data-driven optimal power flow: a physics-informed machine learning approach
  publication-title: IEEE Trans. Power Syst.
– volume: 20
  year: 2019
  ident: bib11
  article-title: Enhancing power distribution feeders restoration with a probabilistic crew dispatch method: case studies using historical data from a Brazilian power distribution company
  publication-title: Int. J. Emerg. Elec. Power Syst.
– volume: 7
  start-page: 122827
  year: 2019
  end-page: 122837
  ident: bib20
  article-title: Optimal placement of protective and controlling devices in electric power distribution systems: a mip model
  publication-title: IEEE Access
– year: 2021
  ident: bib21
  article-title: Evaluation Metrics for Multi-Label Classification
– volume: 34
  start-page: 4643
  year: 2022
  end-page: 4659
  ident: bib9
  article-title: Improved extreme learning machine with AutoEncoder and particle swarm optimization for short-term wind power prediction
  publication-title: Neural Comput. Appl.
– volume: 37
  start-page: 3495
  year: 2022
  end-page: 3505
  ident: bib15
  article-title: Topology-aware learning assisted branch and ramp constraints screening for dynamic economic dispatch
  publication-title: IEEE Trans. Power Syst.
– volume: 37
  start-page: 1577
  year: 2022
  end-page: 1590
  ident: bib35
  article-title: Flexible joint planning of sectionalizing switches and tie lines among distribution feeders
  publication-title: IEEE Trans. Power Syst.
– volume: 14
  start-page: 1952
  year: 2018
  end-page: 1961
  ident: bib17
  article-title: Mixed-integer nonlinear programming formulation for distribution networks reliability optimization
  publication-title: IEEE Trans. Ind. Inf.
– volume: 36
  start-page: 4699
  year: 2021
  end-page: 4711
  ident: bib24
  article-title: Data-driven frequency dynamic unit commitment for island systems with high RES penetration
  publication-title: IEEE Trans. Power Syst.
– volume: 13
  start-page: 3264
  year: 2019
  end-page: 3271
  ident: bib19
  article-title: Optimal deployment of remote‐controlled switches in distribution networks considering laterals
  publication-title: IET Gener., Transm. Distrib.
– volume: 36
  start-page: 5131
  year: 2021
  end-page: 5142
  ident: bib29
  article-title: Machine learning assisted stochastic unit commitment during hurricanes with predictable line outages
  publication-title: IEEE Trans. Power Syst.
– volume: 15
  start-page: 2176
  year: 2021
  end-page: 2190
  ident: bib31
  article-title: A hybrid method for recloser and sectionalizer placement in distribution networks considering protection coordination, fault type and equipment malfunction
  publication-title: IET Gener., Transm. Distrib.
– volume: 14
  start-page: 2450
  year: 2020
  end-page: 2463
  ident: bib39
  article-title: Data-driven approach for real-time distribution network reconfiguration
  publication-title: IET Gener., Transm. Distrib.
– year: 2018
  ident: bib32
  article-title: A Comprehensive Guide to Convolutional Neural Networks
– volume: 106
  year: 2021
  ident: bib34
  article-title: Machine learning applications in power system fault diagnosis: research advancements and perspectives
  publication-title: Eng. Appl. Artif. Intell.
– volume: 104
  year: 2021
  ident: bib37
  article-title: Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 12
  start-page: 4740
  year: 2021
  end-page: 4751
  ident: bib23
  article-title: An MILP model for optimal placement of sectionalizing switches and tie lines in distribution networks with complex topologies
  publication-title: IEEE Trans. Smart Grid
– start-page: 251
  year: 2022
  end-page: 256
  ident: bib42
  article-title: A Photovoltaic Power Forecasting Method Based on EEMD-Kmeans-ALO-LSTM. Hangzhou, China, 7th Asia Conference on Power and Electrical Engineering
– volume: 2
  start-page: 249
  year: 2013
  end-page: 276
  ident: bib3
  article-title: Power outage cost evaluation: reasoning, methods and an application
  publication-title: J. Sci. Res. Rep.
– year: 2021
  ident: bib40
  article-title: Encoding frequency constraints in preventive unit commitment using deep learning with region-of-interest active sampling
  publication-title: IEEE Trans. Power Syst.
– year: 2013
  ident: bib18
  article-title: SF6 Load Break Switch Remote Controlled
– volume: 57
  start-page: 1325
  year: 2021
  end-page: 1334
  ident: bib16
  article-title: Hybrid learning aided inactive constraints filtering algorithm to enhance AC OPF solution time
  publication-title: IEEE Trans. Ind. Appl.
– volume: 8
  start-page: 130967
  year: 2020
  end-page: 130978
  ident: bib22
  article-title: Reliability-oriented electricity distribution system switch and tie line optimization
  publication-title: IEEE Access
– volume: 8
  start-page: 1128
  year: 2020
  end-page: 1139
  ident: bib41
  article-title: A data-driven method for fast AC optimal power flow solutions via deep reinforcement learning
  publication-title: Journal of Modern Power Systems and Clean Energy
– year: 2022
  ident: bib36
  article-title: A hybrid data-driven method for fast solution of security-constrained optimal power flow
  publication-title: IEEE Trans. Power Syst.
– year: 2021
  ident: bib5
  article-title: SHAP for Feature Selection and HyperParameter Tuning
– year: 1970
  ident: bib6
  article-title: Random Variables and Probability Distributions. s.L
– volume: 217
  year: 2022
  ident: bib14
  article-title: Optimal placement of fuses and switches in active distribution networks using value-based MINLP
  publication-title: Reliab. Eng. Syst. Saf.
– start-page: 1
  year: 2018
  end-page: 7
  ident: bib7
  article-title: Unit Commitment Using Nearest Neighbor as a Short-Term Proxy
– volume: 9
  start-page: 69905
  year: 2021
  end-page: 69912
  ident: bib10
  article-title: Multi-objective optimal configuration of multiple switchgear considering distribution network fault reconfiguration
  publication-title: IEEE Access
– year: 2021
  ident: bib28
  article-title: Explicit data-driven small-signal stability constrained optimal power flow
  publication-title: IEEE Trans. Power Syst.
– volume: 10
  start-page: 299
  year: 2020
  ident: bib27
  article-title: Optimal placement of multiple feeder terminal units using intelligent algorithms
  publication-title: Appl. Sci.
– volume: 27
  start-page: 181
  year: 2019
  end-page: 196
  ident: bib2
  article-title: Optimal placement of switching and protection devices in radial distribution networks to enhance system reliability using the AHP-PSO method
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– volume: 6
  start-page: 813
  year: 1991
  end-page: 820
  ident: bib4
  article-title: A reliability test system for educational purposes-basic distribution system data and results
  publication-title: IEEE Trans. Power Syst.
– volume: 4
  start-page: 397
  year: 2021
  end-page: 413
  ident: bib13
  article-title: Optimal allocation of protection and control devices in smart distribution systems: models, methods, and future research
  publication-title: IET Smart Grid
– volume: 45
  start-page: 1166
  year: 2016
  end-page: 1178
  ident: bib26
  article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting
  publication-title: Appl. Intell.
– volume: 2
  start-page: 489
  year: 2019
  end-page: 495
  ident: bib33
  article-title: Repulsive firefly algorithm-based optimal switching device placement in power distribution systems
  publication-title: Global Energy Interconnection
– volume: 9
  start-page: 69905
  year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib10
  article-title: Multi-objective optimal configuration of multiple switchgear considering distribution network fault reconfiguration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051338
– volume: 36
  start-page: 4699
  issue: 5
  year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib24
  article-title: Data-driven frequency dynamic unit commitment for island systems with high RES penetration
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3060891
– volume: 4
  start-page: 397
  issue: 4
  year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib13
  article-title: Optimal allocation of protection and control devices in smart distribution systems: models, methods, and future research
  publication-title: IET Smart Grid
  doi: 10.1049/stg2.12017
– year: 2018
  ident: 10.1016/j.engappai.2023.107637_bib8
– year: 2018
  ident: 10.1016/j.engappai.2023.107637_bib32
– start-page: 251
  year: 2022
  ident: 10.1016/j.engappai.2023.107637_bib42
– volume: 217
  year: 2022
  ident: 10.1016/j.engappai.2023.107637_bib14
  article-title: Optimal placement of fuses and switches in active distribution networks using value-based MINLP
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108075
– volume: 14
  start-page: 2450
  issue: 13
  year: 2020
  ident: 10.1016/j.engappai.2023.107637_bib39
  article-title: Data-driven approach for real-time distribution network reconfiguration
  publication-title: IET Gener., Transm. Distrib.
  doi: 10.1049/iet-gtd.2019.1733
– volume: 13
  start-page: 3264
  issue: 15
  year: 2019
  ident: 10.1016/j.engappai.2023.107637_bib19
  article-title: Optimal deployment of remote‐controlled switches in distribution networks considering laterals
  publication-title: IET Gener., Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.5470
– volume: 57
  start-page: 1325
  issue: 2
  year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib16
  article-title: Hybrid learning aided inactive constraints filtering algorithm to enhance AC OPF solution time
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2021.3053516
– year: 2013
  ident: 10.1016/j.engappai.2023.107637_bib18
– volume: 37
  start-page: 1577
  issue: 2
  year: 2022
  ident: 10.1016/j.engappai.2023.107637_bib35
  article-title: Flexible joint planning of sectionalizing switches and tie lines among distribution feeders
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3104754
– year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib40
  article-title: Encoding frequency constraints in preventive unit commitment using deep learning with region-of-interest active sampling
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1007/978-3-030-44544-7
– volume: 8
  start-page: 130967
  year: 2020
  ident: 10.1016/j.engappai.2023.107637_bib22
  article-title: Reliability-oriented electricity distribution system switch and tie line optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009827
– volume: 14
  start-page: 1952
  issue: 5
  year: 2018
  ident: 10.1016/j.engappai.2023.107637_bib17
  article-title: Mixed-integer nonlinear programming formulation for distribution networks reliability optimization
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2773572
– volume: 15
  start-page: 2176
  issue: 15
  year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib31
  article-title: A hybrid method for recloser and sectionalizer placement in distribution networks considering protection coordination, fault type and equipment malfunction
  publication-title: IET Gener., Transm. Distrib.
  doi: 10.1049/gtd2.12164
– volume: 106
  year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib34
  article-title: Machine learning applications in power system fault diagnosis: research advancements and perspectives
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104504
– year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib5
– volume: 2
  start-page: 249
  issue: 1
  year: 2013
  ident: 10.1016/j.engappai.2023.107637_bib3
  article-title: Power outage cost evaluation: reasoning, methods and an application
  publication-title: J. Sci. Res. Rep.
  doi: 10.9734/JSRR/2013/3167
– year: 1970
  ident: 10.1016/j.engappai.2023.107637_bib6
– year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib21
– volume: 36
  start-page: 5131
  issue: 6
  year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib29
  article-title: Machine learning assisted stochastic unit commitment during hurricanes with predictable line outages
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3069443
– volume: 27
  start-page: 181
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2023.107637_bib2
  article-title: Optimal placement of switching and protection devices in radial distribution networks to enhance system reliability using the AHP-PSO method
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1806-130
– volume: 6
  start-page: 813
  issue: 2
  year: 1991
  ident: 10.1016/j.engappai.2023.107637_bib4
  article-title: A reliability test system for educational purposes-basic distribution system data and results
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.76730
– volume: 9
  start-page: 2259
  issue: 3
  year: 2018
  ident: 10.1016/j.engappai.2023.107637_bib12
  article-title: Deployment of fault indicator in distribution networks: a MIP-based approach
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2609680
– volume: 7
  start-page: 122827
  year: 2019
  ident: 10.1016/j.engappai.2023.107637_bib20
  article-title: Optimal placement of protective and controlling devices in electric power distribution systems: a mip model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938193
– volume: 2
  start-page: 489
  issue: 6
  year: 2019
  ident: 10.1016/j.engappai.2023.107637_bib33
  article-title: Repulsive firefly algorithm-based optimal switching device placement in power distribution systems
  publication-title: Global Energy Interconnection
  doi: 10.1016/j.gloei.2020.01.002
– year: 2022
  ident: 10.1016/j.engappai.2023.107637_bib36
  article-title: A hybrid data-driven method for fast solution of security-constrained optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2022.3150023
– volume: 140
  start-page: 619
  year: 2016
  ident: 10.1016/j.engappai.2023.107637_bib1
  article-title: Switch and recloser placement in distribution system considering uncertainties in loads, failure rates and repair rates
  publication-title: Elec. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.05.012
– volume: 104
  year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib37
  article-title: Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems
  publication-title: Eng. Appl. Artif. Intell.
– year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib28
  article-title: Explicit data-driven small-signal stability constrained optimal power flow
  publication-title: IEEE Trans. Power Syst.
– volume: 34
  start-page: 4643
  issue: 6
  year: 2022
  ident: 10.1016/j.engappai.2023.107637_bib9
  article-title: Improved extreme learning machine with AutoEncoder and particle swarm optimization for short-term wind power prediction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06619-x
– volume: 8
  start-page: 1128
  issue: 6
  year: 2020
  ident: 10.1016/j.engappai.2023.107637_bib41
  article-title: A data-driven method for fast AC optimal power flow solutions via deep reinforcement learning
  publication-title: Journal of Modern Power Systems and Clean Energy
  doi: 10.35833/MPCE.2020.000522
– volume: 45
  start-page: 1166
  year: 2016
  ident: 10.1016/j.engappai.2023.107637_bib26
  article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-016-0810-2
– volume: 20
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2023.107637_bib11
  article-title: Enhancing power distribution feeders restoration with a probabilistic crew dispatch method: case studies using historical data from a Brazilian power distribution company
  publication-title: Int. J. Emerg. Elec. Power Syst.
– volume: 88
  year: 2020
  ident: 10.1016/j.engappai.2023.107637_bib38
  article-title: A review of machine learning for new generation smart dispatch in power systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103372
– volume: 37
  start-page: 3495
  issue: 5
  year: 2022
  ident: 10.1016/j.engappai.2023.107637_bib15
  article-title: Topology-aware learning assisted branch and ramp constraints screening for dynamic economic dispatch
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2022.3142957
– volume: 36
  start-page: 346
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib25
  article-title: Data-driven optimal power flow: a physics-informed machine learning approach
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3001919
– volume: 10
  start-page: 299
  issue: 1
  year: 2020
  ident: 10.1016/j.engappai.2023.107637_bib27
  article-title: Optimal placement of multiple feeder terminal units using intelligent algorithms
  publication-title: Appl. Sci.
  doi: 10.3390/app10010299
– year: 2018
  ident: 10.1016/j.engappai.2023.107637_bib30
– start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2023.107637_bib7
– volume: 12
  start-page: 4740
  issue: 6
  year: 2021
  ident: 10.1016/j.engappai.2023.107637_bib23
  article-title: An MILP model for optimal placement of sectionalizing switches and tie lines in distribution networks with complex topologies
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2021.3092405
SSID ssj0003846
Score 2.431084
Snippet The fault management process is facilitated by equipping power distribution systems with automated devices, especially remote-controlled switches (RCSs)....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107637
SubjectTerms Automation
Convolutional neural network
Data-driven
Deep learning
Distribution power system
Explainable artificial intelligence
Switch placement
Title Towards an interpretable data-driven switch placement model in electric power distribution systems: An explainable artificial intelligence-based approach
URI https://dx.doi.org/10.1016/j.engappai.2023.107637
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFy--xTc5eM3utkmbxtsiyuqiB91FbyVNUqlILe6Knvwf_lsnTbKuIHjwVBIybclkHrTfzIfQseGpSKXhhJmoIBBvNZGRpgSSUYi-Sui05Yy8uk4HY3Z5n9wvoNNQC2Nhld73O5_eems_0_W72W2qqnsLyQGYGxgznNEsbplrGeOWxaDz8Q3zoJkr1oHFxK6eqxJ-7Jj6QTaNrDqWRBwmwdj47wFqLuicr6EVny3ivnuhdbRg6g206jNH7O1yAlOBnCHMbaLPUQuInWBZ42qGLCyeDLagUKJfrJvDk7cK1IZbZJb9TohbZhwQwI4fp1K4sTxqWNsGu54bC7v2z5MT3Id17yDsKrCw3TjXkaJ9ZGj1SWyo1Di0L99C4_Oz0emAeB4GomgUTwmTouiV2v4AFcpEJVdJwiVLjDAygfQSxpmmJS91FlFlyctpTymepppqWqScbqPF-rk2OwhLBjeAHLBkJmalNlLynuGxyUScSpGJXZSEzc-Vb1JuuTKe8oBGe8yD0nKrtNwpbRd1Z3KNa9Pxp4QIus1_HLgcYskfsnv_kN1HyzBiDsZ2gBanL6_mEPKaaXHUHtwjtNS_GA6u7XV4czf8Arcm_d8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGGDhjXjjgdVtEztxzIYQqEDLQpHYIsd2UBAKES2Cif_Bv-Uc2wUkJAbGXHxJ5PP5Lsl39yF0ZHgqUmk4YSYqCMRbTWSkKYFkFKKvEjptOSNH1-ngll3eJXcddBpqYSys0u_9bk9vd2sv6fnZ7DVV1buB5ADcDZwZ1mgWW-baeZbE3L6Bdd-_cB40c9U6MJrY4d_KhB-6pr6XTSOrrmURByF4G_89Qn2LOucraMmni_jEPdEq6ph6DS371BF7x5yAKLAzBNk6-hi3iNgJljWuZtDC4tFgiwol-tnuc3jyWoHdcAvNsh8KcUuNAwrYEeRUCjeWSA1r22HXk2Nh1_95coxPYNwbKLsSLGxnzrWkaG8Zen0SGys1Dv3LN9Dt-dn4dEA8EQNRNIqnhElR9Ett_4AKZaKSqyThkiVGGJlAfgnHmaYlL3UWUWXZy2lfKZ6mmmpapJxuorn6qTZbCEsGF4AksGQmZqU2UvK-4bHJRJxKkYltlITJz5XvUm7JMh7zAEd7yIPRcmu03BltG_Vmeo3r0_Gnhgi2zX-suByCyR-6O__QPUQLg_FomA8vrq920SKcYQ7Ttofmps8vZh-SnGlx0C7iT5k5_dE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+an+interpretable+data-driven+switch+placement+model+in+electric+power+distribution+systems%3A+An+explainable+artificial+intelligence-based+approach&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Ebrahimi%2C+Mehrdad&rft.au=Rastegar%2C+Mohammad&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=129&rft_id=info:doi/10.1016%2Fj.engappai.2023.107637&rft.externalDocID=S0952197623018213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon