Towards an interpretable data-driven switch placement model in electric power distribution systems: An explainable artificial intelligence-based approach
The fault management process is facilitated by equipping power distribution systems with automated devices, especially remote-controlled switches (RCSs). Although RCS plays a key role in improving the system's reliability, it imposes significant investment, installation, and maintenance costs....
Saved in:
| Published in | Engineering applications of artificial intelligence Vol. 129; p. 107637 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-1976 1873-6769 |
| DOI | 10.1016/j.engappai.2023.107637 |
Cover
| Abstract | The fault management process is facilitated by equipping power distribution systems with automated devices, especially remote-controlled switches (RCSs). Although RCS plays a key role in improving the system's reliability, it imposes significant investment, installation, and maintenance costs. Hence, RCSs should be optimally located in distribution feeders for the highest profit. In previous works, reliability-oriented mathematical optimization models have been formulated to reach this goal. However, the number of test solutions exponentially grows with the problem size to find the globally optimal solution. This paper uses machine learning to propose a scalable and easy-to-implement model for optimal switch placement in real power distribution systems. At first, the features of candidate points for installing RCSs are introduced. Then, a learning model is applied to deeply explore the relationship between these features and optimal locations for installing RCSs. After training, the learning-based surrogate model directly determines the optimal RCS placement strategy in real power distribution systems by leveraging knowledge gained from past experiences. Simulation results demonstrate that the proposed surrogate model is approximately 29 times faster than the integer programming-based mathematical model, without a significant loss of accuracy, when implemented on a modified 11 kV network connected to Bus 4 of the Roy Billiton test system. This paper also employs explainable artificial intelligence (XAI) tools to select the most important features, where the Hamming loss is decreased by approximately 5%. |
|---|---|
| AbstractList | The fault management process is facilitated by equipping power distribution systems with automated devices, especially remote-controlled switches (RCSs). Although RCS plays a key role in improving the system's reliability, it imposes significant investment, installation, and maintenance costs. Hence, RCSs should be optimally located in distribution feeders for the highest profit. In previous works, reliability-oriented mathematical optimization models have been formulated to reach this goal. However, the number of test solutions exponentially grows with the problem size to find the globally optimal solution. This paper uses machine learning to propose a scalable and easy-to-implement model for optimal switch placement in real power distribution systems. At first, the features of candidate points for installing RCSs are introduced. Then, a learning model is applied to deeply explore the relationship between these features and optimal locations for installing RCSs. After training, the learning-based surrogate model directly determines the optimal RCS placement strategy in real power distribution systems by leveraging knowledge gained from past experiences. Simulation results demonstrate that the proposed surrogate model is approximately 29 times faster than the integer programming-based mathematical model, without a significant loss of accuracy, when implemented on a modified 11 kV network connected to Bus 4 of the Roy Billiton test system. This paper also employs explainable artificial intelligence (XAI) tools to select the most important features, where the Hamming loss is decreased by approximately 5%. |
| ArticleNumber | 107637 |
| Author | Rastegar, Mohammad Ebrahimi, Mehrdad |
| Author_xml | – sequence: 1 givenname: Mehrdad orcidid: 0000-0002-3432-5482 surname: Ebrahimi fullname: Ebrahimi, Mehrdad – sequence: 2 givenname: Mohammad orcidid: 0000-0001-9056-6769 surname: Rastegar fullname: Rastegar, Mohammad email: mohammadrastegar@shirazu.ac.ir |
| BookMark | eNqFkE1uHCEQRlHkSBk7uULEBXoCzTQMURaxrPxYspSNs0bVUG3XiKFbQDzxUXJbM55kk41XqFC9r_S9c3aW5oSMvZdiLYXUH3ZrTHewLEDrXvSqfRqtzCu2klujOm20PWMrYYe-k9boN-y8lJ0QQm03esX-3M4HyKFwSJxSxbxkrDBG5AEqdCHTAyZeDlT9PV8ieNxjqnw_B4wN4BjR10yeL_MBMw9U2jT-qjQ36rFU3JeP_LLt_W4wpedkyJUm8gTx-WSMdIfJYzdCwcBbkzyDv3_LXk8QC777-16wn1-_3F59725-fLu-urzpvJJ97TZgRzGFoR-E9Sgn44fBwGZAizBYqdu8DWoyU9hK5Y0drBLeG62DCmrURl2wT6dcn-dSMk7OU4VjgZqBopPCHTW7nfun2R01u5Pmhuv_8CXTHvLjy-DnE4it3ANhdsXT0UOg3Jy6MNNLEU-nIaLK |
| CitedBy_id | crossref_primary_10_1016_j_coal_2025_104699 crossref_primary_10_1016_j_engappai_2025_110137 |
| Cites_doi | 10.1109/ACCESS.2021.3051338 10.1109/TPWRS.2021.3060891 10.1049/stg2.12017 10.1016/j.ress.2021.108075 10.1049/iet-gtd.2019.1733 10.1049/iet-gtd.2018.5470 10.1109/TIA.2021.3053516 10.1109/TPWRS.2021.3104754 10.1007/978-3-030-44544-7 10.1109/ACCESS.2020.3009827 10.1109/TII.2017.2773572 10.1049/gtd2.12164 10.1016/j.engappai.2021.104504 10.9734/JSRR/2013/3167 10.1109/TPWRS.2021.3069443 10.3906/elk-1806-130 10.1109/59.76730 10.1109/TSG.2016.2609680 10.1109/ACCESS.2019.2938193 10.1016/j.gloei.2020.01.002 10.1109/TPWRS.2022.3150023 10.1016/j.epsr.2016.05.012 10.1007/s00521-021-06619-x 10.35833/MPCE.2020.000522 10.1007/s10489-016-0810-2 10.1016/j.engappai.2019.103372 10.1109/TPWRS.2022.3142957 10.1109/TPWRS.2020.3001919 10.3390/app10010299 10.1109/TSG.2021.3092405 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2023.107637 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2023_107637 S0952197623018213 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-4a9b0fd52509ce1f7c557a45e9ea59167c58d3f7fd813c795930cc766d3d3b673 |
| IEDL.DBID | .~1 |
| ISSN | 0952-1976 |
| IngestDate | Sat Oct 25 05:36:55 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Sat Feb 24 15:48:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Automation Convolutional neural network Explainable artificial intelligence Data-driven Distribution power system Switch placement |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-4a9b0fd52509ce1f7c557a45e9ea59167c58d3f7fd813c795930cc766d3d3b673 |
| ORCID | 0000-0001-9056-6769 0000-0002-3432-5482 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2023_107637 crossref_primary_10_1016_j_engappai_2023_107637 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_107637 |
| PublicationCentury | 2000 |
| PublicationDate | March 2024 2024-03-00 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hasan, Kargarian, Mohammadi (bib16) 2021; 57 Lin (bib27) 2020; 10 Yan, Xu (bib37) 2021; 104 Yan, Xu (bib36) 2022 Yin (bib39) 2020; 14 Fan (bib10) 2021; 9 Cerliani (bib5) 2021 Liu (bib28) 2021 Reichl, Schmidthaler, Schneider, F. (bib3) 2013; 2 Gholizadeh (bib14) 2022; 217 Mohammadi, Sahraei-Ardakani, Trakas, Hatziargyriou (bib29) 2021; 36 Li, Li, Liu (bib26) 2016; 45 Denadai (bib8) 2018 Jadhav (bib21) 2021 Yin (bib38) 2020; 88 Vaish, Dwivedi, Tewari, Tripathi (bib34) 2021; 106 Alam, Pant, Das (bib1) 2016; 140 Billinton, Sjarief (bib4) 1991; 6 Izadi, Safdarian, Moeini-Aghtaie, Lehtonen (bib20) 2019; 7 Lei (bib25) 2021; 36 Zhou (bib41) 2020; 8 Izadi, Farajollahi, Safdarian (bib19) 2019; 13 Nooney (bib30) 2018 Lagos, Hatziargyriou (bib24) 2021; 36 Safari, Haghifam, Zangiabadi (bib31) 2021; 15 Wang (bib35) 2022; 37 Saha (bib32) 2018 Iberapa company (bib18) 2013 Tan (bib33) 2019; 2 Dalal, Gilboa, Mannor, Wehenke (bib7) 2018 Cramer (bib6) 1970 Heidari (bib17) 2018; 14 El Bourakadi, Yahyaouy, Boumhidi (bib9) 2022; 34 Fanucchi (bib11) 2019; 20 Hasan, Kargarian (bib15) 2022; 37 Zhu, Fu, Su, Yang (bib42) 2022 Jooshaki (bib22) 2020; 8 Jooshaki (bib23) 2021; 12 Amohadi, Fotuhi-Firuzabad (bib2) 2019; 27 Georgilakis, Arsoniadis, Apostolopoulos, Nikolaidis (bib13) 2021; 4 Zhang (bib40) 2021 Farajollahi, Fotuhi-Firuzabad, Safdarian (bib12) 2018; 9 Yin (10.1016/j.engappai.2023.107637_bib39) 2020; 14 Yin (10.1016/j.engappai.2023.107637_bib38) 2020; 88 Cerliani (10.1016/j.engappai.2023.107637_bib5) 2021 Fanucchi (10.1016/j.engappai.2023.107637_bib11) 2019; 20 Farajollahi (10.1016/j.engappai.2023.107637_bib12) 2018; 9 Jooshaki (10.1016/j.engappai.2023.107637_bib22) 2020; 8 Hasan (10.1016/j.engappai.2023.107637_bib16) 2021; 57 Denadai (10.1016/j.engappai.2023.107637_bib8) 2018 Vaish (10.1016/j.engappai.2023.107637_bib34) 2021; 106 Izadi (10.1016/j.engappai.2023.107637_bib20) 2019; 7 Lei (10.1016/j.engappai.2023.107637_bib25) 2021; 36 Reichl (10.1016/j.engappai.2023.107637_bib3) 2013; 2 Fan (10.1016/j.engappai.2023.107637_bib10) 2021; 9 Jooshaki (10.1016/j.engappai.2023.107637_bib23) 2021; 12 Li (10.1016/j.engappai.2023.107637_bib26) 2016; 45 Zhu (10.1016/j.engappai.2023.107637_bib42) 2022 Lin (10.1016/j.engappai.2023.107637_bib27) 2020; 10 Nooney (10.1016/j.engappai.2023.107637_bib30) 2018 Cramer (10.1016/j.engappai.2023.107637_bib6) 1970 Heidari (10.1016/j.engappai.2023.107637_bib17) 2018; 14 Mohammadi (10.1016/j.engappai.2023.107637_bib29) 2021; 36 Safari (10.1016/j.engappai.2023.107637_bib31) 2021; 15 Georgilakis (10.1016/j.engappai.2023.107637_bib13) 2021; 4 Hasan (10.1016/j.engappai.2023.107637_bib15) 2022; 37 Liu (10.1016/j.engappai.2023.107637_bib28) 2021 El Bourakadi (10.1016/j.engappai.2023.107637_bib9) 2022; 34 Wang (10.1016/j.engappai.2023.107637_bib35) 2022; 37 Yan (10.1016/j.engappai.2023.107637_bib37) 2021; 104 Iberapa company (10.1016/j.engappai.2023.107637_bib18) 2013 Tan (10.1016/j.engappai.2023.107637_bib33) 2019; 2 Billinton (10.1016/j.engappai.2023.107637_bib4) 1991; 6 Izadi (10.1016/j.engappai.2023.107637_bib19) 2019; 13 Yan (10.1016/j.engappai.2023.107637_bib36) 2022 Amohadi (10.1016/j.engappai.2023.107637_bib2) 2019; 27 Alam (10.1016/j.engappai.2023.107637_bib1) 2016; 140 Gholizadeh (10.1016/j.engappai.2023.107637_bib14) 2022; 217 Saha (10.1016/j.engappai.2023.107637_bib32) 2018 Zhou (10.1016/j.engappai.2023.107637_bib41) 2020; 8 Dalal (10.1016/j.engappai.2023.107637_bib7) 2018 Lagos (10.1016/j.engappai.2023.107637_bib24) 2021; 36 Zhang (10.1016/j.engappai.2023.107637_bib40) 2021 Jadhav (10.1016/j.engappai.2023.107637_bib21) 2021 |
| References_xml | – volume: 140 start-page: 619 year: 2016 end-page: 630 ident: bib1 article-title: Switch and recloser placement in distribution system considering uncertainties in loads, failure rates and repair rates publication-title: Elec. Power Syst. Res. – volume: 9 start-page: 2259 year: 2018 end-page: 2267 ident: bib12 article-title: Deployment of fault indicator in distribution networks: a MIP-based approach publication-title: IEEE Trans. Smart Grid – volume: 88 year: 2020 ident: bib38 article-title: A review of machine learning for new generation smart dispatch in power systems publication-title: Eng. Appl. Artif. Intell. – year: 2018 ident: bib30 article-title: Deep Dive into Multi-Label Classification – year: 2018 ident: bib8 article-title: Interpretability of Deep Learning Models – volume: 36 start-page: 346 year: 2021 end-page: 354 ident: bib25 article-title: Data-driven optimal power flow: a physics-informed machine learning approach publication-title: IEEE Trans. Power Syst. – volume: 20 year: 2019 ident: bib11 article-title: Enhancing power distribution feeders restoration with a probabilistic crew dispatch method: case studies using historical data from a Brazilian power distribution company publication-title: Int. J. Emerg. Elec. Power Syst. – volume: 7 start-page: 122827 year: 2019 end-page: 122837 ident: bib20 article-title: Optimal placement of protective and controlling devices in electric power distribution systems: a mip model publication-title: IEEE Access – year: 2021 ident: bib21 article-title: Evaluation Metrics for Multi-Label Classification – volume: 34 start-page: 4643 year: 2022 end-page: 4659 ident: bib9 article-title: Improved extreme learning machine with AutoEncoder and particle swarm optimization for short-term wind power prediction publication-title: Neural Comput. Appl. – volume: 37 start-page: 3495 year: 2022 end-page: 3505 ident: bib15 article-title: Topology-aware learning assisted branch and ramp constraints screening for dynamic economic dispatch publication-title: IEEE Trans. Power Syst. – volume: 37 start-page: 1577 year: 2022 end-page: 1590 ident: bib35 article-title: Flexible joint planning of sectionalizing switches and tie lines among distribution feeders publication-title: IEEE Trans. Power Syst. – volume: 14 start-page: 1952 year: 2018 end-page: 1961 ident: bib17 article-title: Mixed-integer nonlinear programming formulation for distribution networks reliability optimization publication-title: IEEE Trans. Ind. Inf. – volume: 36 start-page: 4699 year: 2021 end-page: 4711 ident: bib24 article-title: Data-driven frequency dynamic unit commitment for island systems with high RES penetration publication-title: IEEE Trans. Power Syst. – volume: 13 start-page: 3264 year: 2019 end-page: 3271 ident: bib19 article-title: Optimal deployment of remote‐controlled switches in distribution networks considering laterals publication-title: IET Gener., Transm. Distrib. – volume: 36 start-page: 5131 year: 2021 end-page: 5142 ident: bib29 article-title: Machine learning assisted stochastic unit commitment during hurricanes with predictable line outages publication-title: IEEE Trans. Power Syst. – volume: 15 start-page: 2176 year: 2021 end-page: 2190 ident: bib31 article-title: A hybrid method for recloser and sectionalizer placement in distribution networks considering protection coordination, fault type and equipment malfunction publication-title: IET Gener., Transm. Distrib. – volume: 14 start-page: 2450 year: 2020 end-page: 2463 ident: bib39 article-title: Data-driven approach for real-time distribution network reconfiguration publication-title: IET Gener., Transm. Distrib. – year: 2018 ident: bib32 article-title: A Comprehensive Guide to Convolutional Neural Networks – volume: 106 year: 2021 ident: bib34 article-title: Machine learning applications in power system fault diagnosis: research advancements and perspectives publication-title: Eng. Appl. Artif. Intell. – volume: 104 year: 2021 ident: bib37 article-title: Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems publication-title: Eng. Appl. Artif. Intell. – volume: 12 start-page: 4740 year: 2021 end-page: 4751 ident: bib23 article-title: An MILP model for optimal placement of sectionalizing switches and tie lines in distribution networks with complex topologies publication-title: IEEE Trans. Smart Grid – start-page: 251 year: 2022 end-page: 256 ident: bib42 article-title: A Photovoltaic Power Forecasting Method Based on EEMD-Kmeans-ALO-LSTM. Hangzhou, China, 7th Asia Conference on Power and Electrical Engineering – volume: 2 start-page: 249 year: 2013 end-page: 276 ident: bib3 article-title: Power outage cost evaluation: reasoning, methods and an application publication-title: J. Sci. Res. Rep. – year: 2021 ident: bib40 article-title: Encoding frequency constraints in preventive unit commitment using deep learning with region-of-interest active sampling publication-title: IEEE Trans. Power Syst. – year: 2013 ident: bib18 article-title: SF6 Load Break Switch Remote Controlled – volume: 57 start-page: 1325 year: 2021 end-page: 1334 ident: bib16 article-title: Hybrid learning aided inactive constraints filtering algorithm to enhance AC OPF solution time publication-title: IEEE Trans. Ind. Appl. – volume: 8 start-page: 130967 year: 2020 end-page: 130978 ident: bib22 article-title: Reliability-oriented electricity distribution system switch and tie line optimization publication-title: IEEE Access – volume: 8 start-page: 1128 year: 2020 end-page: 1139 ident: bib41 article-title: A data-driven method for fast AC optimal power flow solutions via deep reinforcement learning publication-title: Journal of Modern Power Systems and Clean Energy – year: 2022 ident: bib36 article-title: A hybrid data-driven method for fast solution of security-constrained optimal power flow publication-title: IEEE Trans. Power Syst. – year: 2021 ident: bib5 article-title: SHAP for Feature Selection and HyperParameter Tuning – year: 1970 ident: bib6 article-title: Random Variables and Probability Distributions. s.L – volume: 217 year: 2022 ident: bib14 article-title: Optimal placement of fuses and switches in active distribution networks using value-based MINLP publication-title: Reliab. Eng. Syst. Saf. – start-page: 1 year: 2018 end-page: 7 ident: bib7 article-title: Unit Commitment Using Nearest Neighbor as a Short-Term Proxy – volume: 9 start-page: 69905 year: 2021 end-page: 69912 ident: bib10 article-title: Multi-objective optimal configuration of multiple switchgear considering distribution network fault reconfiguration publication-title: IEEE Access – year: 2021 ident: bib28 article-title: Explicit data-driven small-signal stability constrained optimal power flow publication-title: IEEE Trans. Power Syst. – volume: 10 start-page: 299 year: 2020 ident: bib27 article-title: Optimal placement of multiple feeder terminal units using intelligent algorithms publication-title: Appl. Sci. – volume: 27 start-page: 181 year: 2019 end-page: 196 ident: bib2 article-title: Optimal placement of switching and protection devices in radial distribution networks to enhance system reliability using the AHP-PSO method publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 6 start-page: 813 year: 1991 end-page: 820 ident: bib4 article-title: A reliability test system for educational purposes-basic distribution system data and results publication-title: IEEE Trans. Power Syst. – volume: 4 start-page: 397 year: 2021 end-page: 413 ident: bib13 article-title: Optimal allocation of protection and control devices in smart distribution systems: models, methods, and future research publication-title: IET Smart Grid – volume: 45 start-page: 1166 year: 2016 end-page: 1178 ident: bib26 article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting publication-title: Appl. Intell. – volume: 2 start-page: 489 year: 2019 end-page: 495 ident: bib33 article-title: Repulsive firefly algorithm-based optimal switching device placement in power distribution systems publication-title: Global Energy Interconnection – volume: 9 start-page: 69905 year: 2021 ident: 10.1016/j.engappai.2023.107637_bib10 article-title: Multi-objective optimal configuration of multiple switchgear considering distribution network fault reconfiguration publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051338 – volume: 36 start-page: 4699 issue: 5 year: 2021 ident: 10.1016/j.engappai.2023.107637_bib24 article-title: Data-driven frequency dynamic unit commitment for island systems with high RES penetration publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2021.3060891 – volume: 4 start-page: 397 issue: 4 year: 2021 ident: 10.1016/j.engappai.2023.107637_bib13 article-title: Optimal allocation of protection and control devices in smart distribution systems: models, methods, and future research publication-title: IET Smart Grid doi: 10.1049/stg2.12017 – year: 2018 ident: 10.1016/j.engappai.2023.107637_bib8 – year: 2018 ident: 10.1016/j.engappai.2023.107637_bib32 – start-page: 251 year: 2022 ident: 10.1016/j.engappai.2023.107637_bib42 – volume: 217 year: 2022 ident: 10.1016/j.engappai.2023.107637_bib14 article-title: Optimal placement of fuses and switches in active distribution networks using value-based MINLP publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.108075 – volume: 14 start-page: 2450 issue: 13 year: 2020 ident: 10.1016/j.engappai.2023.107637_bib39 article-title: Data-driven approach for real-time distribution network reconfiguration publication-title: IET Gener., Transm. Distrib. doi: 10.1049/iet-gtd.2019.1733 – volume: 13 start-page: 3264 issue: 15 year: 2019 ident: 10.1016/j.engappai.2023.107637_bib19 article-title: Optimal deployment of remote‐controlled switches in distribution networks considering laterals publication-title: IET Gener., Transm. Distrib. doi: 10.1049/iet-gtd.2018.5470 – volume: 57 start-page: 1325 issue: 2 year: 2021 ident: 10.1016/j.engappai.2023.107637_bib16 article-title: Hybrid learning aided inactive constraints filtering algorithm to enhance AC OPF solution time publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2021.3053516 – year: 2013 ident: 10.1016/j.engappai.2023.107637_bib18 – volume: 37 start-page: 1577 issue: 2 year: 2022 ident: 10.1016/j.engappai.2023.107637_bib35 article-title: Flexible joint planning of sectionalizing switches and tie lines among distribution feeders publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2021.3104754 – year: 2021 ident: 10.1016/j.engappai.2023.107637_bib40 article-title: Encoding frequency constraints in preventive unit commitment using deep learning with region-of-interest active sampling publication-title: IEEE Trans. Power Syst. doi: 10.1007/978-3-030-44544-7 – volume: 8 start-page: 130967 year: 2020 ident: 10.1016/j.engappai.2023.107637_bib22 article-title: Reliability-oriented electricity distribution system switch and tie line optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009827 – volume: 14 start-page: 1952 issue: 5 year: 2018 ident: 10.1016/j.engappai.2023.107637_bib17 article-title: Mixed-integer nonlinear programming formulation for distribution networks reliability optimization publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2773572 – volume: 15 start-page: 2176 issue: 15 year: 2021 ident: 10.1016/j.engappai.2023.107637_bib31 article-title: A hybrid method for recloser and sectionalizer placement in distribution networks considering protection coordination, fault type and equipment malfunction publication-title: IET Gener., Transm. Distrib. doi: 10.1049/gtd2.12164 – volume: 106 year: 2021 ident: 10.1016/j.engappai.2023.107637_bib34 article-title: Machine learning applications in power system fault diagnosis: research advancements and perspectives publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104504 – year: 2021 ident: 10.1016/j.engappai.2023.107637_bib5 – volume: 2 start-page: 249 issue: 1 year: 2013 ident: 10.1016/j.engappai.2023.107637_bib3 article-title: Power outage cost evaluation: reasoning, methods and an application publication-title: J. Sci. Res. Rep. doi: 10.9734/JSRR/2013/3167 – year: 1970 ident: 10.1016/j.engappai.2023.107637_bib6 – year: 2021 ident: 10.1016/j.engappai.2023.107637_bib21 – volume: 36 start-page: 5131 issue: 6 year: 2021 ident: 10.1016/j.engappai.2023.107637_bib29 article-title: Machine learning assisted stochastic unit commitment during hurricanes with predictable line outages publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2021.3069443 – volume: 27 start-page: 181 issue: 1 year: 2019 ident: 10.1016/j.engappai.2023.107637_bib2 article-title: Optimal placement of switching and protection devices in radial distribution networks to enhance system reliability using the AHP-PSO method publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1806-130 – volume: 6 start-page: 813 issue: 2 year: 1991 ident: 10.1016/j.engappai.2023.107637_bib4 article-title: A reliability test system for educational purposes-basic distribution system data and results publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.76730 – volume: 9 start-page: 2259 issue: 3 year: 2018 ident: 10.1016/j.engappai.2023.107637_bib12 article-title: Deployment of fault indicator in distribution networks: a MIP-based approach publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2609680 – volume: 7 start-page: 122827 year: 2019 ident: 10.1016/j.engappai.2023.107637_bib20 article-title: Optimal placement of protective and controlling devices in electric power distribution systems: a mip model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2938193 – volume: 2 start-page: 489 issue: 6 year: 2019 ident: 10.1016/j.engappai.2023.107637_bib33 article-title: Repulsive firefly algorithm-based optimal switching device placement in power distribution systems publication-title: Global Energy Interconnection doi: 10.1016/j.gloei.2020.01.002 – year: 2022 ident: 10.1016/j.engappai.2023.107637_bib36 article-title: A hybrid data-driven method for fast solution of security-constrained optimal power flow publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2022.3150023 – volume: 140 start-page: 619 year: 2016 ident: 10.1016/j.engappai.2023.107637_bib1 article-title: Switch and recloser placement in distribution system considering uncertainties in loads, failure rates and repair rates publication-title: Elec. Power Syst. Res. doi: 10.1016/j.epsr.2016.05.012 – volume: 104 year: 2021 ident: 10.1016/j.engappai.2023.107637_bib37 article-title: Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems publication-title: Eng. Appl. Artif. Intell. – year: 2021 ident: 10.1016/j.engappai.2023.107637_bib28 article-title: Explicit data-driven small-signal stability constrained optimal power flow publication-title: IEEE Trans. Power Syst. – volume: 34 start-page: 4643 issue: 6 year: 2022 ident: 10.1016/j.engappai.2023.107637_bib9 article-title: Improved extreme learning machine with AutoEncoder and particle swarm optimization for short-term wind power prediction publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06619-x – volume: 8 start-page: 1128 issue: 6 year: 2020 ident: 10.1016/j.engappai.2023.107637_bib41 article-title: A data-driven method for fast AC optimal power flow solutions via deep reinforcement learning publication-title: Journal of Modern Power Systems and Clean Energy doi: 10.35833/MPCE.2020.000522 – volume: 45 start-page: 1166 year: 2016 ident: 10.1016/j.engappai.2023.107637_bib26 article-title: A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting publication-title: Appl. Intell. doi: 10.1007/s10489-016-0810-2 – volume: 20 issue: 3 year: 2019 ident: 10.1016/j.engappai.2023.107637_bib11 article-title: Enhancing power distribution feeders restoration with a probabilistic crew dispatch method: case studies using historical data from a Brazilian power distribution company publication-title: Int. J. Emerg. Elec. Power Syst. – volume: 88 year: 2020 ident: 10.1016/j.engappai.2023.107637_bib38 article-title: A review of machine learning for new generation smart dispatch in power systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103372 – volume: 37 start-page: 3495 issue: 5 year: 2022 ident: 10.1016/j.engappai.2023.107637_bib15 article-title: Topology-aware learning assisted branch and ramp constraints screening for dynamic economic dispatch publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2022.3142957 – volume: 36 start-page: 346 issue: 1 year: 2021 ident: 10.1016/j.engappai.2023.107637_bib25 article-title: Data-driven optimal power flow: a physics-informed machine learning approach publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3001919 – volume: 10 start-page: 299 issue: 1 year: 2020 ident: 10.1016/j.engappai.2023.107637_bib27 article-title: Optimal placement of multiple feeder terminal units using intelligent algorithms publication-title: Appl. Sci. doi: 10.3390/app10010299 – year: 2018 ident: 10.1016/j.engappai.2023.107637_bib30 – start-page: 1 year: 2018 ident: 10.1016/j.engappai.2023.107637_bib7 – volume: 12 start-page: 4740 issue: 6 year: 2021 ident: 10.1016/j.engappai.2023.107637_bib23 article-title: An MILP model for optimal placement of sectionalizing switches and tie lines in distribution networks with complex topologies publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2021.3092405 |
| SSID | ssj0003846 |
| Score | 2.431084 |
| Snippet | The fault management process is facilitated by equipping power distribution systems with automated devices, especially remote-controlled switches (RCSs).... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107637 |
| SubjectTerms | Automation Convolutional neural network Data-driven Deep learning Distribution power system Explainable artificial intelligence Switch placement |
| Title | Towards an interpretable data-driven switch placement model in electric power distribution systems: An explainable artificial intelligence-based approach |
| URI | https://dx.doi.org/10.1016/j.engappai.2023.107637 |
| Volume | 129 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFy--xTc5eM3utkmbxtsiyuqiB91FbyVNUqlILe6Knvwf_lsnTbKuIHjwVBIybclkHrTfzIfQseGpSKXhhJmoIBBvNZGRpgSSUYi-Sui05Yy8uk4HY3Z5n9wvoNNQC2Nhld73O5_eems_0_W72W2qqnsLyQGYGxgznNEsbplrGeOWxaDz8Q3zoJkr1oHFxK6eqxJ-7Jj6QTaNrDqWRBwmwdj47wFqLuicr6EVny3ivnuhdbRg6g206jNH7O1yAlOBnCHMbaLPUQuInWBZ42qGLCyeDLagUKJfrJvDk7cK1IZbZJb9TohbZhwQwI4fp1K4sTxqWNsGu54bC7v2z5MT3Id17yDsKrCw3TjXkaJ9ZGj1SWyo1Di0L99C4_Oz0emAeB4GomgUTwmTouiV2v4AFcpEJVdJwiVLjDAygfQSxpmmJS91FlFlyctpTymepppqWqScbqPF-rk2OwhLBjeAHLBkJmalNlLynuGxyUScSpGJXZSEzc-Vb1JuuTKe8oBGe8yD0nKrtNwpbRd1Z3KNa9Pxp4QIus1_HLgcYskfsnv_kN1HyzBiDsZ2gBanL6_mEPKaaXHUHtwjtNS_GA6u7XV4czf8Arcm_d8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGGDhjXjjgdVtEztxzIYQqEDLQpHYIsd2UBAKES2Cif_Bv-Uc2wUkJAbGXHxJ5PP5Lsl39yF0ZHgqUmk4YSYqCMRbTWSkKYFkFKKvEjptOSNH1-ngll3eJXcddBpqYSys0u_9bk9vd2sv6fnZ7DVV1buB5ADcDZwZ1mgWW-baeZbE3L6Bdd-_cB40c9U6MJrY4d_KhB-6pr6XTSOrrmURByF4G_89Qn2LOucraMmni_jEPdEq6ph6DS371BF7x5yAKLAzBNk6-hi3iNgJljWuZtDC4tFgiwol-tnuc3jyWoHdcAvNsh8KcUuNAwrYEeRUCjeWSA1r22HXk2Nh1_95coxPYNwbKLsSLGxnzrWkaG8Zen0SGys1Dv3LN9Dt-dn4dEA8EQNRNIqnhElR9Ett_4AKZaKSqyThkiVGGJlAfgnHmaYlL3UWUWXZy2lfKZ6mmmpapJxuorn6qTZbCEsGF4AksGQmZqU2UvK-4bHJRJxKkYltlITJz5XvUm7JMh7zAEd7yIPRcmu03BltG_Vmeo3r0_Gnhgi2zX-suByCyR-6O__QPUQLg_FomA8vrq920SKcYQ7Ttofmps8vZh-SnGlx0C7iT5k5_dE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+an+interpretable+data-driven+switch+placement+model+in+electric+power+distribution+systems%3A+An+explainable+artificial+intelligence-based+approach&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Ebrahimi%2C+Mehrdad&rft.au=Rastegar%2C+Mohammad&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=129&rft_id=info:doi/10.1016%2Fj.engappai.2023.107637&rft.externalDocID=S0952197623018213 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |