Accurate estimation of tidal level using bidirectional long short-term memory recurrent neural network

The Bi-LSTM model is suggested to evaluate tidal level for short-term. Both single-step and multi-step estimations are taken into account. For the single-step estimation, the measured hourly data from four different tide stations are selected, in which the early 22 hours’ tidal data are chosen as th...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 235; p. 108765
Main Authors Bai, Long-Hu, Xu, Hang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2021
Subjects
Online AccessGet full text
ISSN0029-8018
DOI10.1016/j.oceaneng.2021.108765

Cover

Abstract The Bi-LSTM model is suggested to evaluate tidal level for short-term. Both single-step and multi-step estimations are taken into account. For the single-step estimation, the measured hourly data from four different tide stations are selected, in which the early 22 hours’ tidal data are chosen as the input and the next hour tidal levels are used as the output. The estimated results by different models are obtained and compared. It is found that the Bi-LSTM model gives the most accurate and stable results. For the multi-step estimation, the measured hourly data in Portland tide station are used, in which the early 22 hours’ tidal data are chosen as the input and the next 24, 48, 96 and 192 h tidal levels are designated as the output respectively. The estimated results by the Bi-LSTM approach are exhibited, which are found to be valid and accurate up to 192 h. Our work shows that the Bi-LSTM model has excellent capability in performing short-term tidal estimations. Few researchers have considered such tidal estimation before. It is expected that this approach can be further used to evaluate other critical time series problems involving in ocean currents and storm surges. •The Bi-LSTM deep neural network model is introduced to forecast tidal levels.•The multi-step forecast model for long-term tide forecast is developed.•The Bi-LSTM model gives the best tidal predictions as compared with traditional ones.•The dependency of traditional models on large quantities of tidal records is overcame.
AbstractList The Bi-LSTM model is suggested to evaluate tidal level for short-term. Both single-step and multi-step estimations are taken into account. For the single-step estimation, the measured hourly data from four different tide stations are selected, in which the early 22 hours’ tidal data are chosen as the input and the next hour tidal levels are used as the output. The estimated results by different models are obtained and compared. It is found that the Bi-LSTM model gives the most accurate and stable results. For the multi-step estimation, the measured hourly data in Portland tide station are used, in which the early 22 hours’ tidal data are chosen as the input and the next 24, 48, 96 and 192 h tidal levels are designated as the output respectively. The estimated results by the Bi-LSTM approach are exhibited, which are found to be valid and accurate up to 192 h. Our work shows that the Bi-LSTM model has excellent capability in performing short-term tidal estimations. Few researchers have considered such tidal estimation before. It is expected that this approach can be further used to evaluate other critical time series problems involving in ocean currents and storm surges. •The Bi-LSTM deep neural network model is introduced to forecast tidal levels.•The multi-step forecast model for long-term tide forecast is developed.•The Bi-LSTM model gives the best tidal predictions as compared with traditional ones.•The dependency of traditional models on large quantities of tidal records is overcame.
ArticleNumber 108765
Author Xu, Hang
Bai, Long-Hu
Author_xml – sequence: 1
  givenname: Long-Hu
  orcidid: 0000-0001-7511-2910
  surname: Bai
  fullname: Bai, Long-Hu
– sequence: 2
  givenname: Hang
  orcidid: 0000-0003-4176-0738
  surname: Xu
  fullname: Xu, Hang
  email: hangxu@sjtu.edu.cn
BookMark eNqFkM9OwzAMxnMYEtvgFVBeoMNJ_6USB6YJGNIkLnCOutQdGW2Ckmxob09K4cJlB9uS7e-T_ZuRibEGCblhsGDAitv9wiqsDZrdggNnsSnKIp-QKQCvEgFMXJKZ93sAKApIp6RdKnVwdUCKPui-DtoaalsadFN3tMMjdvTgtdnRrW60QzUsDBMbW_7dupAEdD3tsbfuROPCwTk0gRqMtl0s4cu6jyty0dadx-vfOidvjw-vq3WyeXl6Xi03iUoZD0nGRamgApYr0VQ5b0TBmgpazDFXfAtctDHi7WmVZ23elOmQSsEwK6HOsnRO7kZf5az3DlupdPh5Krhad5KBHDjJvfzjJAdOcuQU5cU_-aeLUNzpvPB-FGJ87qjRSa80GoUjM9lYfc7iG7YrjDs
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_114414
crossref_primary_10_1016_j_coastaleng_2024_104518
crossref_primary_10_1016_j_oceaneng_2023_115900
crossref_primary_10_1029_2024WR039054
crossref_primary_10_1016_j_oceaneng_2022_113579
crossref_primary_10_1016_j_ejrh_2024_101820
crossref_primary_10_3390_rs16152689
crossref_primary_10_1109_TGRS_2022_3186239
crossref_primary_10_1016_j_apor_2024_104289
crossref_primary_10_1016_j_oceaneng_2023_116297
crossref_primary_10_1016_j_coastaleng_2024_104532
crossref_primary_10_1016_j_oceaneng_2023_115277
crossref_primary_10_3390_electronics13244879
crossref_primary_10_1016_j_oceaneng_2023_115193
crossref_primary_10_1016_j_oceaneng_2022_113470
crossref_primary_10_1007_s13131_024_2343_6
crossref_primary_10_3390_jmse11101964
crossref_primary_10_3390_w17030386
crossref_primary_10_3389_fmars_2025_1537696
crossref_primary_10_1016_j_oceaneng_2022_112747
crossref_primary_10_1016_j_oceaneng_2024_118856
crossref_primary_10_3390_jmse11010026
crossref_primary_10_1016_j_oceaneng_2022_111947
crossref_primary_10_3390_app12010181
Cites_doi 10.1109/VTCFall.2017.8288312
10.1061/(ASCE)0733-950X(1997)123:4(158)
10.1016/j.apor.2017.11.007
10.1145/3366750.3366756
10.1111/0885-9507.00091
10.1109/BigData.2015.7364089
10.1016/S0029-8018(01)00068-3
10.1115/1.3662552
10.1109/OCEANSAP.2006.4393894
10.1109/IJCNN.2000.861302
10.1016/S0029-8018(03)00115-X
10.1109/TNN.2002.1000134
10.1016/j.neunet.2005.06.042
10.1162/neco.1997.9.8.1735
10.1162/089976600300015015
10.1038/323533a0
10.1016/j.oceaneng.2020.107013
10.1061/(ASCE)0733-950X(1999)125:4(195)
10.1016/j.apm.2005.03.020
10.1061/(ASCE)0733-950X(1996)122:5(226)
10.1109/TPAMI.2008.137
10.1016/j.proeng.2015.08.332
10.1109/TPWRS.2008.922249
10.1162/neco.1991.3.2.246
10.1109/72.279181
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2021.108765
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2021_108765
S0029801821002006
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
WUQ
~HD
ID FETCH-LOGICAL-c312t-4287c09015c8d952d861d90fe5e5c2b028f0280063954f5d73f5d7781e470a443
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Thu Apr 24 23:08:59 EDT 2025
Wed Oct 01 02:56:44 EDT 2025
Wed Dec 04 16:49:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bi-LSTM model
Tidal level
Short-term estimation
Multi-step
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-4287c09015c8d952d861d90fe5e5c2b028f0280063954f5d73f5d7781e470a443
ORCID 0000-0001-7511-2910
0000-0003-4176-0738
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2021_108765
crossref_primary_10_1016_j_oceaneng_2021_108765
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2021_108765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Gers, F.A., Schmidhuber, J., 2000. Recurrent nets that time and count, in: In IEEE Inter Conf. pp. 189–194.
Park, Sandberg (b34) 1991; 3
Rumelhart, Hinton, Williams (b37) 1986; 323
Riazi (b36) 2020; 198
Gers, Eck, Schmidhuber (b13) 2002
Foreman (b12) 2004
Rajasekaran, Thiruvenkatasamy, Lee (b35) 2006; 30
Bengio, Simard, Frasconi (b2) 1994; 5
Schureman (b38) 1958
Lee (b26) 2004; 31
Doodson (b8) 1957; 33
Huang, Kuo (b22) 2018; 18
Vaziri (b41) 1997; 123
Chen, K., Zhou, Y., Dai, F., 2015. A lstm-based method for stock returns prediction: A case study of china stock market. In: IEEE Inter Conf. pp. 2823–2824.
Deo, Chaudhari (b6) 1998; 13
Lee, Jeng (b27) 2002; 29
Huang, Zhu, Siew (b23) 2006; 70
Harris, Pore, Cummings (b20) 1965; 42
Jan, C.D., Tseng, C.M., Wang, J.S., Wang, C.M., 2006. Typhoon surge forecasting with artificial back-propagation neural networks, in: In Ocean 2006-Asia Pac. pp. 1–7.
Tsai, Lee (b40) 1999; 125
Lee, Tsai, Shieh (b28) 2006; 5
El-Diasty, Al-Harbi, Pagiatakis (b10) 2018; 70
Meena, Agrawal (b33) 2015; 116
Zhang, Zhou (b43) 2008; 23
Er, Wu, Lu, Toh (b11) 2002; 13
Li, Y., Yang, J., 2019. Hydrological time series prediction model based on attention-lstm neural network, in: 2019 2nd International Conference on Machine Learning and Machine Intelligence. pp. 1–5.
Gers, Schmidhuber, Cummins (b15) 2000; 12
Yen, Jan, Lee, Lee (b42) 1996; 122
Graves, Schmidhuber (b17) 2005; 18
Dennis, Long (b5) 1971; 41
Graves, Liwicki, Fernández, Bunke, Schmidhuber (b16) 2009; 31
Mahanty, Gupta (b31) 2004; 151
Malhotra, P., Vig, L., Shroff, G., 2015. Long short term memory networks for anomaly detection in time series. In: Proceedings, pp. 89–94.
Baird, Darwin (b1) 1885; 39
Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (b19) 2016; 28
Hochreiter, Schmidhuber (b21) 1997; 9
Liu, Zheng, Feng, Chen (b30) 2017
Graves, Schmidhuber (b18) 2005; 18
Kalman (b25) 1960; 82
Doodson (b7) 1921; 100
Du, X.S., Zhang, H.Q., Nguyen, H.V., Han, Z., 2017. Stacked lstm deep learning model for traffic prediction in vehicle-to-vehicle communication. In: IEEE Conf. pp. 1–5.
Thomson, W., 1868. Committee for the purpose of promoting the extension, improvement, and harmonic analysis of tidal observations. In: BAAS Conf. pp. 489–510.
Darwin (b4) 1892; 52
Zhang (10.1016/j.oceaneng.2021.108765_b43) 2008; 23
Riazi (10.1016/j.oceaneng.2021.108765_b36) 2020; 198
Doodson (10.1016/j.oceaneng.2021.108765_b8) 1957; 33
Graves (10.1016/j.oceaneng.2021.108765_b17) 2005; 18
Greff (10.1016/j.oceaneng.2021.108765_b19) 2016; 28
Vaziri (10.1016/j.oceaneng.2021.108765_b41) 1997; 123
Hochreiter (10.1016/j.oceaneng.2021.108765_b21) 1997; 9
Deo (10.1016/j.oceaneng.2021.108765_b6) 1998; 13
Liu (10.1016/j.oceaneng.2021.108765_b30) 2017
10.1016/j.oceaneng.2021.108765_b39
Gers (10.1016/j.oceaneng.2021.108765_b15) 2000; 12
Lee (10.1016/j.oceaneng.2021.108765_b28) 2006; 5
10.1016/j.oceaneng.2021.108765_b3
10.1016/j.oceaneng.2021.108765_b14
10.1016/j.oceaneng.2021.108765_b9
Huang (10.1016/j.oceaneng.2021.108765_b23) 2006; 70
10.1016/j.oceaneng.2021.108765_b32
Rumelhart (10.1016/j.oceaneng.2021.108765_b37) 1986; 323
Bengio (10.1016/j.oceaneng.2021.108765_b2) 1994; 5
Kalman (10.1016/j.oceaneng.2021.108765_b25) 1960; 82
Park (10.1016/j.oceaneng.2021.108765_b34) 1991; 3
Graves (10.1016/j.oceaneng.2021.108765_b16) 2009; 31
Gers (10.1016/j.oceaneng.2021.108765_b13) 2002
Darwin (10.1016/j.oceaneng.2021.108765_b4) 1892; 52
Graves (10.1016/j.oceaneng.2021.108765_b18) 2005; 18
Schureman (10.1016/j.oceaneng.2021.108765_b38) 1958
Tsai (10.1016/j.oceaneng.2021.108765_b40) 1999; 125
Yen (10.1016/j.oceaneng.2021.108765_b42) 1996; 122
Er (10.1016/j.oceaneng.2021.108765_b11) 2002; 13
Lee (10.1016/j.oceaneng.2021.108765_b26) 2004; 31
Foreman (10.1016/j.oceaneng.2021.108765_b12) 2004
Mahanty (10.1016/j.oceaneng.2021.108765_b31) 2004; 151
10.1016/j.oceaneng.2021.108765_b29
10.1016/j.oceaneng.2021.108765_b24
El-Diasty (10.1016/j.oceaneng.2021.108765_b10) 2018; 70
Huang (10.1016/j.oceaneng.2021.108765_b22) 2018; 18
Doodson (10.1016/j.oceaneng.2021.108765_b7) 1921; 100
Meena (10.1016/j.oceaneng.2021.108765_b33) 2015; 116
Dennis (10.1016/j.oceaneng.2021.108765_b5) 1971; 41
Rajasekaran (10.1016/j.oceaneng.2021.108765_b35) 2006; 30
Baird (10.1016/j.oceaneng.2021.108765_b1) 1885; 39
Lee (10.1016/j.oceaneng.2021.108765_b27) 2002; 29
Harris (10.1016/j.oceaneng.2021.108765_b20) 1965; 42
References_xml – start-page: 112
  year: 1958
  end-page: 116
  ident: b38
  article-title: Manual of harmonic analysis and prediction of tides
  publication-title: Washington: U.S. Dept. of Commerce, Coast and Geodetic Survey
– volume: 41
  start-page: 3
  year: 1971
  end-page: 11
  ident: b5
  article-title: A user’s guide to a computer program for harmonic analysis of data at tidal frequencies
  publication-title: NOAA NOS
– volume: 52
  start-page: 345
  year: 1892
  end-page: 389
  ident: b4
  article-title: On an apparatus for facilitating the reduction of tidal observations
  publication-title: Proc. R. Soc. A
– volume: 31
  start-page: 225
  year: 2004
  end-page: 238
  ident: b26
  article-title: Back-propagation neural network for long-term tidal predictions
  publication-title: Ocean Eng.
– volume: 5
  start-page: 396
  year: 2006
  end-page: 401
  ident: b28
  article-title: Applied the back-propagation neural network to predict long-term tidal level
  publication-title: J. Info Tec.
– volume: 23
  start-page: 853
  year: 2008
  end-page: 858
  ident: b43
  article-title: Rbf neural network and anfis-based short-term load forecasting approach in real-time price environment
  publication-title: IEEE Trans. Power Syst.
– volume: 100
  start-page: 305
  year: 1921
  end-page: 329
  ident: b7
  article-title: The harmonic development of the tide-generating potential
  publication-title: Proc. R. Soc. A
– volume: 82
  start-page: 35
  year: 1960
  end-page: 45
  ident: b25
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
– volume: 29
  start-page: 1003
  year: 2002
  end-page: 1022
  ident: b27
  article-title: Application of artificial neural networks in tide-forecasting
  publication-title: Ocean Eng.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b37
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: b18
  article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures
  publication-title: Neural Netw.
– reference: Chen, K., Zhou, Y., Dai, F., 2015. A lstm-based method for stock returns prediction: A case study of china stock market. In: IEEE Inter Conf. pp. 2823–2824.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b21
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 3
  start-page: 246
  year: 1991
  end-page: 257
  ident: b34
  article-title: Universal approximation using radial-basis-function networks
  publication-title: Neural Comput.
– volume: 70
  start-page: 14
  year: 2018
  end-page: 21
  ident: b10
  article-title: Hybrid harmonic analysis and wavelet network model for sea water level prediction
  publication-title: Appl. Ocean Res.
– volume: 18
  year: 2018
  ident: b22
  article-title: A deep cnn-lstm model for particulate matter (pm
  publication-title: Sensors
– volume: 122
  start-page: 226
  year: 1996
  end-page: 231
  ident: b42
  article-title: Application of kalman filter to short-term tide level prediction
  publication-title: J. Waterw. Port Coast. Ocean Eng.
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: b2
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
– start-page: 16
  year: 2004
  end-page: 18
  ident: b12
  article-title: Manual for tidal heights analysis and prediction
  publication-title: Pacific Marine Science Report
– volume: 28
  start-page: 2222
  year: 2016
  end-page: 2232
  ident: b19
  article-title: Lstm: A search space odyssey
  publication-title: IEEE Trans. Neural Netw.
– volume: 125
  start-page: 195
  year: 1999
  end-page: 202
  ident: b40
  article-title: Back-propagation neural network in tidal-level forecasting
  publication-title: J. Waterw. Port, Coas. Ocean Eng.
– volume: 39
  start-page: 135
  year: 1885
  end-page: 207
  ident: b1
  article-title: Results of the harmonic analysis of tidal observations
  publication-title: Proc. R. Soc. A
– reference: Du, X.S., Zhang, H.Q., Nguyen, H.V., Han, Z., 2017. Stacked lstm deep learning model for traffic prediction in vehicle-to-vehicle communication. In: IEEE Conf. pp. 1–5.
– volume: 42
  start-page: 95
  year: 1965
  end-page: 103
  ident: b20
  article-title: Tide and tidal current prediction by high speed digital computer
  publication-title: Int. Hydrogr. Rev.
– volume: 116
  start-page: 607
  year: 2015
  end-page: 614
  ident: b33
  article-title: Tidal level forecasting using ann
  publication-title: Proc. Eng.
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: b15
  article-title: Learning to forget: continual prediction with lstm
  publication-title: Neur Com.
– volume: 123
  start-page: 158
  year: 1997
  end-page: 162
  ident: b41
  article-title: Predicting caspian sea surface water level by ann and arima models
  publication-title: J. Waterw. Port Coast. Ocean Eng.
– volume: 31
  start-page: 855
  year: 2009
  end-page: 868
  ident: b16
  article-title: A novel connectionist system for unconstrained handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Malhotra, P., Vig, L., Shroff, G., 2015. Long short term memory networks for anomaly detection in time series. In: Proceedings, pp. 89–94.
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: b17
  article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures
  publication-title: Neural Netw.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b23
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neural Comput.
– volume: 33
  start-page: 85
  year: 1957
  end-page: 126
  ident: b8
  article-title: The analysis and prediction of tides in shallow water
  publication-title: Int. Hydrogr. Rev.
– volume: 151
  start-page: 201
  year: 2004
  end-page: 212
  ident: b31
  article-title: Application of rbf neural network to fault classification and location in transmission lines
  publication-title: IEEE Trans. Dis.
– volume: 13
  start-page: 113
  year: 1998
  end-page: 120
  ident: b6
  article-title: Tide prediction using neural networks
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
– reference: Gers, F.A., Schmidhuber, J., 2000. Recurrent nets that time and count, in: In IEEE Inter Conf. pp. 189–194.
– reference: Thomson, W., 1868. Committee for the purpose of promoting the extension, improvement, and harmonic analysis of tidal observations. In: BAAS Conf. pp. 489–510.
– reference: Jan, C.D., Tseng, C.M., Wang, J.S., Wang, C.M., 2006. Typhoon surge forecasting with artificial back-propagation neural networks, in: In Ocean 2006-Asia Pac. pp. 1–7.
– volume: 30
  start-page: 85
  year: 2006
  end-page: 103
  ident: b35
  article-title: Tidal level forecasting using functional and sequential learning neural networks
  publication-title: Appl. Math. Model
– volume: 198
  year: 2020
  ident: b36
  article-title: Accurate tide level estimation: A deep learning approach
  publication-title: Ocean Eng.
– volume: 13
  start-page: 697
  year: 2002
  end-page: 710
  ident: b11
  article-title: Face recognition with radial basis function (rbf) neural networks
  publication-title: IEEE Trans. Neural Netw.
– reference: Li, Y., Yang, J., 2019. Hydrological time series prediction model based on attention-lstm neural network, in: 2019 2nd International Conference on Machine Learning and Machine Intelligence. pp. 1–5.
– start-page: 193
  year: 2002
  end-page: 200
  ident: b13
  article-title: Applying lstm to time series predictable through time-window approaches
  publication-title: Neural Netw.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b30
  article-title: Short-term traffic flow prediction with conv-lstm
  publication-title: Signal Process. Wire Commun
– ident: 10.1016/j.oceaneng.2021.108765_b9
  doi: 10.1109/VTCFall.2017.8288312
– volume: 41
  start-page: 3
  year: 1971
  ident: 10.1016/j.oceaneng.2021.108765_b5
  article-title: A user’s guide to a computer program for harmonic analysis of data at tidal frequencies
  publication-title: NOAA NOS
– volume: 123
  start-page: 158
  year: 1997
  ident: 10.1016/j.oceaneng.2021.108765_b41
  article-title: Predicting caspian sea surface water level by ann and arima models
  publication-title: J. Waterw. Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)0733-950X(1997)123:4(158)
– volume: 100
  start-page: 305
  year: 1921
  ident: 10.1016/j.oceaneng.2021.108765_b7
  article-title: The harmonic development of the tide-generating potential
  publication-title: Proc. R. Soc. A
– volume: 70
  start-page: 14
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108765_b10
  article-title: Hybrid harmonic analysis and wavelet network model for sea water level prediction
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2017.11.007
– ident: 10.1016/j.oceaneng.2021.108765_b29
  doi: 10.1145/3366750.3366756
– ident: 10.1016/j.oceaneng.2021.108765_b39
– volume: 13
  start-page: 113
  year: 1998
  ident: 10.1016/j.oceaneng.2021.108765_b6
  article-title: Tide prediction using neural networks
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/0885-9507.00091
– volume: 42
  start-page: 95
  year: 1965
  ident: 10.1016/j.oceaneng.2021.108765_b20
  article-title: Tide and tidal current prediction by high speed digital computer
  publication-title: Int. Hydrogr. Rev.
– ident: 10.1016/j.oceaneng.2021.108765_b3
  doi: 10.1109/BigData.2015.7364089
– volume: 29
  start-page: 1003
  year: 2002
  ident: 10.1016/j.oceaneng.2021.108765_b27
  article-title: Application of artificial neural networks in tide-forecasting
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(01)00068-3
– volume: 82
  start-page: 35
  year: 1960
  ident: 10.1016/j.oceaneng.2021.108765_b25
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– ident: 10.1016/j.oceaneng.2021.108765_b24
  doi: 10.1109/OCEANSAP.2006.4393894
– ident: 10.1016/j.oceaneng.2021.108765_b14
  doi: 10.1109/IJCNN.2000.861302
– volume: 31
  start-page: 225
  year: 2004
  ident: 10.1016/j.oceaneng.2021.108765_b26
  article-title: Back-propagation neural network for long-term tidal predictions
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(03)00115-X
– volume: 18
  issue: 2220
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108765_b22
  article-title: A deep cnn-lstm model for particulate matter (pm2.5) forecasting in smart cities
  publication-title: Sensors
– volume: 13
  start-page: 697
  year: 2002
  ident: 10.1016/j.oceaneng.2021.108765_b11
  article-title: Face recognition with radial basis function (rbf) neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.1000134
– volume: 151
  start-page: 201
  year: 2004
  ident: 10.1016/j.oceaneng.2021.108765_b31
  article-title: Application of rbf neural network to fault classification and location in transmission lines
  publication-title: IEEE Trans. Dis.
– volume: 18
  start-page: 602
  year: 2005
  ident: 10.1016/j.oceaneng.2021.108765_b18
  article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
– ident: 10.1016/j.oceaneng.2021.108765_b32
– start-page: 112
  year: 1958
  ident: 10.1016/j.oceaneng.2021.108765_b38
  article-title: Manual of harmonic analysis and prediction of tides
– volume: 5
  start-page: 396
  year: 2006
  ident: 10.1016/j.oceaneng.2021.108765_b28
  article-title: Applied the back-propagation neural network to predict long-term tidal level
  publication-title: J. Info Tec.
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.oceaneng.2021.108765_b21
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 52
  start-page: 345
  year: 1892
  ident: 10.1016/j.oceaneng.2021.108765_b4
  article-title: On an apparatus for facilitating the reduction of tidal observations
  publication-title: Proc. R. Soc. A
– volume: 12
  start-page: 2451
  year: 2000
  ident: 10.1016/j.oceaneng.2021.108765_b15
  article-title: Learning to forget: continual prediction with lstm
  publication-title: Neur Com.
  doi: 10.1162/089976600300015015
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.oceaneng.2021.108765_b37
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 198
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108765_b36
  article-title: Accurate tide level estimation: A deep learning approach
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107013
– volume: 125
  start-page: 195
  year: 1999
  ident: 10.1016/j.oceaneng.2021.108765_b40
  article-title: Back-propagation neural network in tidal-level forecasting
  publication-title: J. Waterw. Port, Coas. Ocean Eng.
  doi: 10.1061/(ASCE)0733-950X(1999)125:4(195)
– start-page: 193
  year: 2002
  ident: 10.1016/j.oceaneng.2021.108765_b13
  article-title: Applying lstm to time series predictable through time-window approaches
  publication-title: Neural Netw.
– volume: 39
  start-page: 135
  year: 1885
  ident: 10.1016/j.oceaneng.2021.108765_b1
  article-title: Results of the harmonic analysis of tidal observations
  publication-title: Proc. R. Soc. A
– start-page: 16
  year: 2004
  ident: 10.1016/j.oceaneng.2021.108765_b12
  article-title: Manual for tidal heights analysis and prediction
– volume: 30
  start-page: 85
  year: 2006
  ident: 10.1016/j.oceaneng.2021.108765_b35
  article-title: Tidal level forecasting using functional and sequential learning neural networks
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2005.03.020
– volume: 122
  start-page: 226
  year: 1996
  ident: 10.1016/j.oceaneng.2021.108765_b42
  article-title: Application of kalman filter to short-term tide level prediction
  publication-title: J. Waterw. Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)0733-950X(1996)122:5(226)
– volume: 33
  start-page: 85
  year: 1957
  ident: 10.1016/j.oceaneng.2021.108765_b8
  article-title: The analysis and prediction of tides in shallow water
  publication-title: Int. Hydrogr. Rev.
– volume: 31
  start-page: 855
  year: 2009
  ident: 10.1016/j.oceaneng.2021.108765_b16
  article-title: A novel connectionist system for unconstrained handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.137
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.oceaneng.2021.108765_b23
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neural Comput.
– volume: 116
  start-page: 607
  year: 2015
  ident: 10.1016/j.oceaneng.2021.108765_b33
  article-title: Tidal level forecasting using ann
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2015.08.332
– volume: 23
  start-page: 853
  year: 2008
  ident: 10.1016/j.oceaneng.2021.108765_b43
  article-title: Rbf neural network and anfis-based short-term load forecasting approach in real-time price environment
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.922249
– volume: 28
  start-page: 2222
  year: 2016
  ident: 10.1016/j.oceaneng.2021.108765_b19
  article-title: Lstm: A search space odyssey
  publication-title: IEEE Trans. Neural Netw.
– volume: 3
  start-page: 246
  year: 1991
  ident: 10.1016/j.oceaneng.2021.108765_b34
  article-title: Universal approximation using radial-basis-function networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.246
– start-page: 1
  year: 2017
  ident: 10.1016/j.oceaneng.2021.108765_b30
  article-title: Short-term traffic flow prediction with conv-lstm
– volume: 5
  start-page: 157
  year: 1994
  ident: 10.1016/j.oceaneng.2021.108765_b2
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– volume: 18
  start-page: 602
  year: 2005
  ident: 10.1016/j.oceaneng.2021.108765_b17
  article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
SSID ssj0006603
Score 2.459379
Snippet The Bi-LSTM model is suggested to evaluate tidal level for short-term. Both single-step and multi-step estimations are taken into account. For the single-step...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108765
SubjectTerms Bi-LSTM model
Multi-step
Short-term estimation
Tidal level
Title Accurate estimation of tidal level using bidirectional long short-term memory recurrent neural network
URI https://dx.doi.org/10.1016/j.oceaneng.2021.108765
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0029-8018
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0029-8018
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0029-8018
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0029-8018
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0029-8018
  databaseCode: AKRWK
  dateStart: 19700101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvaggWhXro-zBa9pkH3kcS7FUxXqx0FtI9lFTalpqevDib3cnm2gFoQcvgSw7SzJZZr7dfPMtQrfUQFQlKXdA3sxhCY2cNI20QwIhtCQJ88qzAZ_G_mjCHqZ82kCDuhYGaJVV7LcxvYzWVUuv8mZvlWVQ40siE19DAiqiVnabsQBOMeh-_tA8fN-lNc0Dem9VCc-7JkUkucpnZp1IPKDbBZBk_kpQW0lneIyOKrSI-_aBTlBD5S10sKUh2EKHzzB6JTx9inRfiA3IP2CQz7B1iXipcZFJM9ACKEIYuO4znGb21cu9QLxYmqb3VwPGHQjW-A0YuB94DdvxIOCEQfjS9MstbfwMTYZ3L4ORU52l4AjqkcKBlZFwIfmLUEacyND3ZORqxRUXJDUoQ8NPVgAsnGkuAwqXIPQUC9yEMXqOmvkyVxcIeyygUplgIIg0cEak2kAMrVVIGVTFhm3EawfGohIah_MuFnHNKJvHteNjcHxsHd9GvW-7lZXa2GkR1d8n_jVpYpMPdthe_sP2Cu3DnaWaXaNmsd6oG4NNirRTTr4O2uvfP47GXxiL5Bk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8JAFJ4QPLgkRlEjrnPwWmhn6XIkRIIKeIGEW9POgiVYCJaDF3-787ooJiYevPQwnTdpXyfvfTP93jcI3VEDUZWk3AJ5M4tFNLDiONAW8YTQkkTMyc8GHI7c_oQ9Tvm0hrpVLQzQKsvYX8T0PFqXLe3Sm-1VkkCNLwlMfPUJqIjmsts7jBMPVmCtj2-eh-vatOJ5QPetMuF5y-SIKFXpzCwUiQN8Ow-yzG8Zaivr9I7QYQkXcad4omNUU2kD7W-JCDbQwTOMXipPnyDdEWID-g8Y9DOKwkS81DhLpBloARwhDGT3GY6T4t3zzUC8WJqmtxeDxi2I1vgVKLjveA378aDghEH50vRLC974KZr07sfdvlUepmAJ6pDMgqWRsCH7C18GnEjfdWRga8UVFyQ2MEPDX1ZALJxpLj0KF893FPPsiDF6hurpMlXnCDvMo1KZaCCINHhGxNpgDK2VTxmUxfpNxCsHhqJUGocDLxZhRSmbh5XjQ3B8WDi-idpfdqtCa-NPi6D6PuGPWROahPCH7cU_bG_Rbn88HISDh9HTJdqDOwXv7ArVs_VGXRugksU3-UT8BHRc5a4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+estimation+of+tidal+level+using+bidirectional+long+short-term+memory+recurrent+neural+network&rft.jtitle=Ocean+engineering&rft.au=Bai%2C+Long-Hu&rft.au=Xu%2C+Hang&rft.date=2021-09-01&rft.issn=0029-8018&rft.volume=235&rft.spage=108765&rft_id=info:doi/10.1016%2Fj.oceaneng.2021.108765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2021_108765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon