Accurate estimation of tidal level using bidirectional long short-term memory recurrent neural network
The Bi-LSTM model is suggested to evaluate tidal level for short-term. Both single-step and multi-step estimations are taken into account. For the single-step estimation, the measured hourly data from four different tide stations are selected, in which the early 22 hours’ tidal data are chosen as th...
Saved in:
| Published in | Ocean engineering Vol. 235; p. 108765 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.09.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0029-8018 |
| DOI | 10.1016/j.oceaneng.2021.108765 |
Cover
| Abstract | The Bi-LSTM model is suggested to evaluate tidal level for short-term. Both single-step and multi-step estimations are taken into account. For the single-step estimation, the measured hourly data from four different tide stations are selected, in which the early 22 hours’ tidal data are chosen as the input and the next hour tidal levels are used as the output. The estimated results by different models are obtained and compared. It is found that the Bi-LSTM model gives the most accurate and stable results. For the multi-step estimation, the measured hourly data in Portland tide station are used, in which the early 22 hours’ tidal data are chosen as the input and the next 24, 48, 96 and 192 h tidal levels are designated as the output respectively. The estimated results by the Bi-LSTM approach are exhibited, which are found to be valid and accurate up to 192 h. Our work shows that the Bi-LSTM model has excellent capability in performing short-term tidal estimations. Few researchers have considered such tidal estimation before. It is expected that this approach can be further used to evaluate other critical time series problems involving in ocean currents and storm surges.
•The Bi-LSTM deep neural network model is introduced to forecast tidal levels.•The multi-step forecast model for long-term tide forecast is developed.•The Bi-LSTM model gives the best tidal predictions as compared with traditional ones.•The dependency of traditional models on large quantities of tidal records is overcame. |
|---|---|
| AbstractList | The Bi-LSTM model is suggested to evaluate tidal level for short-term. Both single-step and multi-step estimations are taken into account. For the single-step estimation, the measured hourly data from four different tide stations are selected, in which the early 22 hours’ tidal data are chosen as the input and the next hour tidal levels are used as the output. The estimated results by different models are obtained and compared. It is found that the Bi-LSTM model gives the most accurate and stable results. For the multi-step estimation, the measured hourly data in Portland tide station are used, in which the early 22 hours’ tidal data are chosen as the input and the next 24, 48, 96 and 192 h tidal levels are designated as the output respectively. The estimated results by the Bi-LSTM approach are exhibited, which are found to be valid and accurate up to 192 h. Our work shows that the Bi-LSTM model has excellent capability in performing short-term tidal estimations. Few researchers have considered such tidal estimation before. It is expected that this approach can be further used to evaluate other critical time series problems involving in ocean currents and storm surges.
•The Bi-LSTM deep neural network model is introduced to forecast tidal levels.•The multi-step forecast model for long-term tide forecast is developed.•The Bi-LSTM model gives the best tidal predictions as compared with traditional ones.•The dependency of traditional models on large quantities of tidal records is overcame. |
| ArticleNumber | 108765 |
| Author | Xu, Hang Bai, Long-Hu |
| Author_xml | – sequence: 1 givenname: Long-Hu orcidid: 0000-0001-7511-2910 surname: Bai fullname: Bai, Long-Hu – sequence: 2 givenname: Hang orcidid: 0000-0003-4176-0738 surname: Xu fullname: Xu, Hang email: hangxu@sjtu.edu.cn |
| BookMark | eNqFkM9OwzAMxnMYEtvgFVBeoMNJ_6USB6YJGNIkLnCOutQdGW2Ckmxob09K4cJlB9uS7e-T_ZuRibEGCblhsGDAitv9wiqsDZrdggNnsSnKIp-QKQCvEgFMXJKZ93sAKApIp6RdKnVwdUCKPui-DtoaalsadFN3tMMjdvTgtdnRrW60QzUsDBMbW_7dupAEdD3tsbfuROPCwTk0gRqMtl0s4cu6jyty0dadx-vfOidvjw-vq3WyeXl6Xi03iUoZD0nGRamgApYr0VQ5b0TBmgpazDFXfAtctDHi7WmVZ23elOmQSsEwK6HOsnRO7kZf5az3DlupdPh5Krhad5KBHDjJvfzjJAdOcuQU5cU_-aeLUNzpvPB-FGJ87qjRSa80GoUjM9lYfc7iG7YrjDs |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_114414 crossref_primary_10_1016_j_coastaleng_2024_104518 crossref_primary_10_1016_j_oceaneng_2023_115900 crossref_primary_10_1029_2024WR039054 crossref_primary_10_1016_j_oceaneng_2022_113579 crossref_primary_10_1016_j_ejrh_2024_101820 crossref_primary_10_3390_rs16152689 crossref_primary_10_1109_TGRS_2022_3186239 crossref_primary_10_1016_j_apor_2024_104289 crossref_primary_10_1016_j_oceaneng_2023_116297 crossref_primary_10_1016_j_coastaleng_2024_104532 crossref_primary_10_1016_j_oceaneng_2023_115277 crossref_primary_10_3390_electronics13244879 crossref_primary_10_1016_j_oceaneng_2023_115193 crossref_primary_10_1016_j_oceaneng_2022_113470 crossref_primary_10_1007_s13131_024_2343_6 crossref_primary_10_3390_jmse11101964 crossref_primary_10_3390_w17030386 crossref_primary_10_3389_fmars_2025_1537696 crossref_primary_10_1016_j_oceaneng_2022_112747 crossref_primary_10_1016_j_oceaneng_2024_118856 crossref_primary_10_3390_jmse11010026 crossref_primary_10_1016_j_oceaneng_2022_111947 crossref_primary_10_3390_app12010181 |
| Cites_doi | 10.1109/VTCFall.2017.8288312 10.1061/(ASCE)0733-950X(1997)123:4(158) 10.1016/j.apor.2017.11.007 10.1145/3366750.3366756 10.1111/0885-9507.00091 10.1109/BigData.2015.7364089 10.1016/S0029-8018(01)00068-3 10.1115/1.3662552 10.1109/OCEANSAP.2006.4393894 10.1109/IJCNN.2000.861302 10.1016/S0029-8018(03)00115-X 10.1109/TNN.2002.1000134 10.1016/j.neunet.2005.06.042 10.1162/neco.1997.9.8.1735 10.1162/089976600300015015 10.1038/323533a0 10.1016/j.oceaneng.2020.107013 10.1061/(ASCE)0733-950X(1999)125:4(195) 10.1016/j.apm.2005.03.020 10.1061/(ASCE)0733-950X(1996)122:5(226) 10.1109/TPAMI.2008.137 10.1016/j.proeng.2015.08.332 10.1109/TPWRS.2008.922249 10.1162/neco.1991.3.2.246 10.1109/72.279181 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2021.108765 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| ExternalDocumentID | 10_1016_j_oceaneng_2021_108765 S0029801821002006 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SEW WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-4287c09015c8d952d861d90fe5e5c2b028f0280063954f5d73f5d7781e470a443 |
| IEDL.DBID | .~1 |
| ISSN | 0029-8018 |
| IngestDate | Thu Apr 24 23:08:59 EDT 2025 Wed Oct 01 02:56:44 EDT 2025 Wed Dec 04 16:49:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bi-LSTM model Tidal level Short-term estimation Multi-step |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-4287c09015c8d952d861d90fe5e5c2b028f0280063954f5d73f5d7781e470a443 |
| ORCID | 0000-0001-7511-2910 0000-0003-4176-0738 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2021_108765 crossref_primary_10_1016_j_oceaneng_2021_108765 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2021_108765 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 2021-09-00 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – sequence: 0 name: Elsevier Ltd |
| References | Gers, F.A., Schmidhuber, J., 2000. Recurrent nets that time and count, in: In IEEE Inter Conf. pp. 189–194. Park, Sandberg (b34) 1991; 3 Rumelhart, Hinton, Williams (b37) 1986; 323 Riazi (b36) 2020; 198 Gers, Eck, Schmidhuber (b13) 2002 Foreman (b12) 2004 Rajasekaran, Thiruvenkatasamy, Lee (b35) 2006; 30 Bengio, Simard, Frasconi (b2) 1994; 5 Schureman (b38) 1958 Lee (b26) 2004; 31 Doodson (b8) 1957; 33 Huang, Kuo (b22) 2018; 18 Vaziri (b41) 1997; 123 Chen, K., Zhou, Y., Dai, F., 2015. A lstm-based method for stock returns prediction: A case study of china stock market. In: IEEE Inter Conf. pp. 2823–2824. Deo, Chaudhari (b6) 1998; 13 Lee, Jeng (b27) 2002; 29 Huang, Zhu, Siew (b23) 2006; 70 Harris, Pore, Cummings (b20) 1965; 42 Jan, C.D., Tseng, C.M., Wang, J.S., Wang, C.M., 2006. Typhoon surge forecasting with artificial back-propagation neural networks, in: In Ocean 2006-Asia Pac. pp. 1–7. Tsai, Lee (b40) 1999; 125 Lee, Tsai, Shieh (b28) 2006; 5 El-Diasty, Al-Harbi, Pagiatakis (b10) 2018; 70 Meena, Agrawal (b33) 2015; 116 Zhang, Zhou (b43) 2008; 23 Er, Wu, Lu, Toh (b11) 2002; 13 Li, Y., Yang, J., 2019. Hydrological time series prediction model based on attention-lstm neural network, in: 2019 2nd International Conference on Machine Learning and Machine Intelligence. pp. 1–5. Gers, Schmidhuber, Cummins (b15) 2000; 12 Yen, Jan, Lee, Lee (b42) 1996; 122 Graves, Schmidhuber (b17) 2005; 18 Dennis, Long (b5) 1971; 41 Graves, Liwicki, Fernández, Bunke, Schmidhuber (b16) 2009; 31 Mahanty, Gupta (b31) 2004; 151 Malhotra, P., Vig, L., Shroff, G., 2015. Long short term memory networks for anomaly detection in time series. In: Proceedings, pp. 89–94. Baird, Darwin (b1) 1885; 39 Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (b19) 2016; 28 Hochreiter, Schmidhuber (b21) 1997; 9 Liu, Zheng, Feng, Chen (b30) 2017 Graves, Schmidhuber (b18) 2005; 18 Kalman (b25) 1960; 82 Doodson (b7) 1921; 100 Du, X.S., Zhang, H.Q., Nguyen, H.V., Han, Z., 2017. Stacked lstm deep learning model for traffic prediction in vehicle-to-vehicle communication. In: IEEE Conf. pp. 1–5. Thomson, W., 1868. Committee for the purpose of promoting the extension, improvement, and harmonic analysis of tidal observations. In: BAAS Conf. pp. 489–510. Darwin (b4) 1892; 52 Zhang (10.1016/j.oceaneng.2021.108765_b43) 2008; 23 Riazi (10.1016/j.oceaneng.2021.108765_b36) 2020; 198 Doodson (10.1016/j.oceaneng.2021.108765_b8) 1957; 33 Graves (10.1016/j.oceaneng.2021.108765_b17) 2005; 18 Greff (10.1016/j.oceaneng.2021.108765_b19) 2016; 28 Vaziri (10.1016/j.oceaneng.2021.108765_b41) 1997; 123 Hochreiter (10.1016/j.oceaneng.2021.108765_b21) 1997; 9 Deo (10.1016/j.oceaneng.2021.108765_b6) 1998; 13 Liu (10.1016/j.oceaneng.2021.108765_b30) 2017 10.1016/j.oceaneng.2021.108765_b39 Gers (10.1016/j.oceaneng.2021.108765_b15) 2000; 12 Lee (10.1016/j.oceaneng.2021.108765_b28) 2006; 5 10.1016/j.oceaneng.2021.108765_b3 10.1016/j.oceaneng.2021.108765_b14 10.1016/j.oceaneng.2021.108765_b9 Huang (10.1016/j.oceaneng.2021.108765_b23) 2006; 70 10.1016/j.oceaneng.2021.108765_b32 Rumelhart (10.1016/j.oceaneng.2021.108765_b37) 1986; 323 Bengio (10.1016/j.oceaneng.2021.108765_b2) 1994; 5 Kalman (10.1016/j.oceaneng.2021.108765_b25) 1960; 82 Park (10.1016/j.oceaneng.2021.108765_b34) 1991; 3 Graves (10.1016/j.oceaneng.2021.108765_b16) 2009; 31 Gers (10.1016/j.oceaneng.2021.108765_b13) 2002 Darwin (10.1016/j.oceaneng.2021.108765_b4) 1892; 52 Graves (10.1016/j.oceaneng.2021.108765_b18) 2005; 18 Schureman (10.1016/j.oceaneng.2021.108765_b38) 1958 Tsai (10.1016/j.oceaneng.2021.108765_b40) 1999; 125 Yen (10.1016/j.oceaneng.2021.108765_b42) 1996; 122 Er (10.1016/j.oceaneng.2021.108765_b11) 2002; 13 Lee (10.1016/j.oceaneng.2021.108765_b26) 2004; 31 Foreman (10.1016/j.oceaneng.2021.108765_b12) 2004 Mahanty (10.1016/j.oceaneng.2021.108765_b31) 2004; 151 10.1016/j.oceaneng.2021.108765_b29 10.1016/j.oceaneng.2021.108765_b24 El-Diasty (10.1016/j.oceaneng.2021.108765_b10) 2018; 70 Huang (10.1016/j.oceaneng.2021.108765_b22) 2018; 18 Doodson (10.1016/j.oceaneng.2021.108765_b7) 1921; 100 Meena (10.1016/j.oceaneng.2021.108765_b33) 2015; 116 Dennis (10.1016/j.oceaneng.2021.108765_b5) 1971; 41 Rajasekaran (10.1016/j.oceaneng.2021.108765_b35) 2006; 30 Baird (10.1016/j.oceaneng.2021.108765_b1) 1885; 39 Lee (10.1016/j.oceaneng.2021.108765_b27) 2002; 29 Harris (10.1016/j.oceaneng.2021.108765_b20) 1965; 42 |
| References_xml | – start-page: 112 year: 1958 end-page: 116 ident: b38 article-title: Manual of harmonic analysis and prediction of tides publication-title: Washington: U.S. Dept. of Commerce, Coast and Geodetic Survey – volume: 41 start-page: 3 year: 1971 end-page: 11 ident: b5 article-title: A user’s guide to a computer program for harmonic analysis of data at tidal frequencies publication-title: NOAA NOS – volume: 52 start-page: 345 year: 1892 end-page: 389 ident: b4 article-title: On an apparatus for facilitating the reduction of tidal observations publication-title: Proc. R. Soc. A – volume: 31 start-page: 225 year: 2004 end-page: 238 ident: b26 article-title: Back-propagation neural network for long-term tidal predictions publication-title: Ocean Eng. – volume: 5 start-page: 396 year: 2006 end-page: 401 ident: b28 article-title: Applied the back-propagation neural network to predict long-term tidal level publication-title: J. Info Tec. – volume: 23 start-page: 853 year: 2008 end-page: 858 ident: b43 article-title: Rbf neural network and anfis-based short-term load forecasting approach in real-time price environment publication-title: IEEE Trans. Power Syst. – volume: 100 start-page: 305 year: 1921 end-page: 329 ident: b7 article-title: The harmonic development of the tide-generating potential publication-title: Proc. R. Soc. A – volume: 82 start-page: 35 year: 1960 end-page: 45 ident: b25 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. – volume: 29 start-page: 1003 year: 2002 end-page: 1022 ident: b27 article-title: Application of artificial neural networks in tide-forecasting publication-title: Ocean Eng. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b37 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 18 start-page: 602 year: 2005 end-page: 610 ident: b18 article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures publication-title: Neural Netw. – reference: Chen, K., Zhou, Y., Dai, F., 2015. A lstm-based method for stock returns prediction: A case study of china stock market. In: IEEE Inter Conf. pp. 2823–2824. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b21 article-title: Long short-term memory publication-title: Neural Comput. – volume: 3 start-page: 246 year: 1991 end-page: 257 ident: b34 article-title: Universal approximation using radial-basis-function networks publication-title: Neural Comput. – volume: 70 start-page: 14 year: 2018 end-page: 21 ident: b10 article-title: Hybrid harmonic analysis and wavelet network model for sea water level prediction publication-title: Appl. Ocean Res. – volume: 18 year: 2018 ident: b22 article-title: A deep cnn-lstm model for particulate matter (pm publication-title: Sensors – volume: 122 start-page: 226 year: 1996 end-page: 231 ident: b42 article-title: Application of kalman filter to short-term tide level prediction publication-title: J. Waterw. Port Coast. Ocean Eng. – volume: 5 start-page: 157 year: 1994 end-page: 166 ident: b2 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. – start-page: 16 year: 2004 end-page: 18 ident: b12 article-title: Manual for tidal heights analysis and prediction publication-title: Pacific Marine Science Report – volume: 28 start-page: 2222 year: 2016 end-page: 2232 ident: b19 article-title: Lstm: A search space odyssey publication-title: IEEE Trans. Neural Netw. – volume: 125 start-page: 195 year: 1999 end-page: 202 ident: b40 article-title: Back-propagation neural network in tidal-level forecasting publication-title: J. Waterw. Port, Coas. Ocean Eng. – volume: 39 start-page: 135 year: 1885 end-page: 207 ident: b1 article-title: Results of the harmonic analysis of tidal observations publication-title: Proc. R. Soc. A – reference: Du, X.S., Zhang, H.Q., Nguyen, H.V., Han, Z., 2017. Stacked lstm deep learning model for traffic prediction in vehicle-to-vehicle communication. In: IEEE Conf. pp. 1–5. – volume: 42 start-page: 95 year: 1965 end-page: 103 ident: b20 article-title: Tide and tidal current prediction by high speed digital computer publication-title: Int. Hydrogr. Rev. – volume: 116 start-page: 607 year: 2015 end-page: 614 ident: b33 article-title: Tidal level forecasting using ann publication-title: Proc. Eng. – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: b15 article-title: Learning to forget: continual prediction with lstm publication-title: Neur Com. – volume: 123 start-page: 158 year: 1997 end-page: 162 ident: b41 article-title: Predicting caspian sea surface water level by ann and arima models publication-title: J. Waterw. Port Coast. Ocean Eng. – volume: 31 start-page: 855 year: 2009 end-page: 868 ident: b16 article-title: A novel connectionist system for unconstrained handwriting recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Malhotra, P., Vig, L., Shroff, G., 2015. Long short term memory networks for anomaly detection in time series. In: Proceedings, pp. 89–94. – volume: 18 start-page: 602 year: 2005 end-page: 610 ident: b17 article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures publication-title: Neural Netw. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b23 article-title: Extreme learning machine: Theory and applications publication-title: Neural Comput. – volume: 33 start-page: 85 year: 1957 end-page: 126 ident: b8 article-title: The analysis and prediction of tides in shallow water publication-title: Int. Hydrogr. Rev. – volume: 151 start-page: 201 year: 2004 end-page: 212 ident: b31 article-title: Application of rbf neural network to fault classification and location in transmission lines publication-title: IEEE Trans. Dis. – volume: 13 start-page: 113 year: 1998 end-page: 120 ident: b6 article-title: Tide prediction using neural networks publication-title: Comput. Aided Civ. Infrastruct. Eng. – reference: Gers, F.A., Schmidhuber, J., 2000. Recurrent nets that time and count, in: In IEEE Inter Conf. pp. 189–194. – reference: Thomson, W., 1868. Committee for the purpose of promoting the extension, improvement, and harmonic analysis of tidal observations. In: BAAS Conf. pp. 489–510. – reference: Jan, C.D., Tseng, C.M., Wang, J.S., Wang, C.M., 2006. Typhoon surge forecasting with artificial back-propagation neural networks, in: In Ocean 2006-Asia Pac. pp. 1–7. – volume: 30 start-page: 85 year: 2006 end-page: 103 ident: b35 article-title: Tidal level forecasting using functional and sequential learning neural networks publication-title: Appl. Math. Model – volume: 198 year: 2020 ident: b36 article-title: Accurate tide level estimation: A deep learning approach publication-title: Ocean Eng. – volume: 13 start-page: 697 year: 2002 end-page: 710 ident: b11 article-title: Face recognition with radial basis function (rbf) neural networks publication-title: IEEE Trans. Neural Netw. – reference: Li, Y., Yang, J., 2019. Hydrological time series prediction model based on attention-lstm neural network, in: 2019 2nd International Conference on Machine Learning and Machine Intelligence. pp. 1–5. – start-page: 193 year: 2002 end-page: 200 ident: b13 article-title: Applying lstm to time series predictable through time-window approaches publication-title: Neural Netw. – start-page: 1 year: 2017 end-page: 6 ident: b30 article-title: Short-term traffic flow prediction with conv-lstm publication-title: Signal Process. Wire Commun – ident: 10.1016/j.oceaneng.2021.108765_b9 doi: 10.1109/VTCFall.2017.8288312 – volume: 41 start-page: 3 year: 1971 ident: 10.1016/j.oceaneng.2021.108765_b5 article-title: A user’s guide to a computer program for harmonic analysis of data at tidal frequencies publication-title: NOAA NOS – volume: 123 start-page: 158 year: 1997 ident: 10.1016/j.oceaneng.2021.108765_b41 article-title: Predicting caspian sea surface water level by ann and arima models publication-title: J. Waterw. Port Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(1997)123:4(158) – volume: 100 start-page: 305 year: 1921 ident: 10.1016/j.oceaneng.2021.108765_b7 article-title: The harmonic development of the tide-generating potential publication-title: Proc. R. Soc. A – volume: 70 start-page: 14 year: 2018 ident: 10.1016/j.oceaneng.2021.108765_b10 article-title: Hybrid harmonic analysis and wavelet network model for sea water level prediction publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2017.11.007 – ident: 10.1016/j.oceaneng.2021.108765_b29 doi: 10.1145/3366750.3366756 – ident: 10.1016/j.oceaneng.2021.108765_b39 – volume: 13 start-page: 113 year: 1998 ident: 10.1016/j.oceaneng.2021.108765_b6 article-title: Tide prediction using neural networks publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/0885-9507.00091 – volume: 42 start-page: 95 year: 1965 ident: 10.1016/j.oceaneng.2021.108765_b20 article-title: Tide and tidal current prediction by high speed digital computer publication-title: Int. Hydrogr. Rev. – ident: 10.1016/j.oceaneng.2021.108765_b3 doi: 10.1109/BigData.2015.7364089 – volume: 29 start-page: 1003 year: 2002 ident: 10.1016/j.oceaneng.2021.108765_b27 article-title: Application of artificial neural networks in tide-forecasting publication-title: Ocean Eng. doi: 10.1016/S0029-8018(01)00068-3 – volume: 82 start-page: 35 year: 1960 ident: 10.1016/j.oceaneng.2021.108765_b25 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – ident: 10.1016/j.oceaneng.2021.108765_b24 doi: 10.1109/OCEANSAP.2006.4393894 – ident: 10.1016/j.oceaneng.2021.108765_b14 doi: 10.1109/IJCNN.2000.861302 – volume: 31 start-page: 225 year: 2004 ident: 10.1016/j.oceaneng.2021.108765_b26 article-title: Back-propagation neural network for long-term tidal predictions publication-title: Ocean Eng. doi: 10.1016/S0029-8018(03)00115-X – volume: 18 issue: 2220 year: 2018 ident: 10.1016/j.oceaneng.2021.108765_b22 article-title: A deep cnn-lstm model for particulate matter (pm2.5) forecasting in smart cities publication-title: Sensors – volume: 13 start-page: 697 year: 2002 ident: 10.1016/j.oceaneng.2021.108765_b11 article-title: Face recognition with radial basis function (rbf) neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2002.1000134 – volume: 151 start-page: 201 year: 2004 ident: 10.1016/j.oceaneng.2021.108765_b31 article-title: Application of rbf neural network to fault classification and location in transmission lines publication-title: IEEE Trans. Dis. – volume: 18 start-page: 602 year: 2005 ident: 10.1016/j.oceaneng.2021.108765_b18 article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 – ident: 10.1016/j.oceaneng.2021.108765_b32 – start-page: 112 year: 1958 ident: 10.1016/j.oceaneng.2021.108765_b38 article-title: Manual of harmonic analysis and prediction of tides – volume: 5 start-page: 396 year: 2006 ident: 10.1016/j.oceaneng.2021.108765_b28 article-title: Applied the back-propagation neural network to predict long-term tidal level publication-title: J. Info Tec. – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.oceaneng.2021.108765_b21 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 52 start-page: 345 year: 1892 ident: 10.1016/j.oceaneng.2021.108765_b4 article-title: On an apparatus for facilitating the reduction of tidal observations publication-title: Proc. R. Soc. A – volume: 12 start-page: 2451 year: 2000 ident: 10.1016/j.oceaneng.2021.108765_b15 article-title: Learning to forget: continual prediction with lstm publication-title: Neur Com. doi: 10.1162/089976600300015015 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.oceaneng.2021.108765_b37 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 198 year: 2020 ident: 10.1016/j.oceaneng.2021.108765_b36 article-title: Accurate tide level estimation: A deep learning approach publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107013 – volume: 125 start-page: 195 year: 1999 ident: 10.1016/j.oceaneng.2021.108765_b40 article-title: Back-propagation neural network in tidal-level forecasting publication-title: J. Waterw. Port, Coas. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(1999)125:4(195) – start-page: 193 year: 2002 ident: 10.1016/j.oceaneng.2021.108765_b13 article-title: Applying lstm to time series predictable through time-window approaches publication-title: Neural Netw. – volume: 39 start-page: 135 year: 1885 ident: 10.1016/j.oceaneng.2021.108765_b1 article-title: Results of the harmonic analysis of tidal observations publication-title: Proc. R. Soc. A – start-page: 16 year: 2004 ident: 10.1016/j.oceaneng.2021.108765_b12 article-title: Manual for tidal heights analysis and prediction – volume: 30 start-page: 85 year: 2006 ident: 10.1016/j.oceaneng.2021.108765_b35 article-title: Tidal level forecasting using functional and sequential learning neural networks publication-title: Appl. Math. Model doi: 10.1016/j.apm.2005.03.020 – volume: 122 start-page: 226 year: 1996 ident: 10.1016/j.oceaneng.2021.108765_b42 article-title: Application of kalman filter to short-term tide level prediction publication-title: J. Waterw. Port Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(1996)122:5(226) – volume: 33 start-page: 85 year: 1957 ident: 10.1016/j.oceaneng.2021.108765_b8 article-title: The analysis and prediction of tides in shallow water publication-title: Int. Hydrogr. Rev. – volume: 31 start-page: 855 year: 2009 ident: 10.1016/j.oceaneng.2021.108765_b16 article-title: A novel connectionist system for unconstrained handwriting recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.137 – volume: 70 start-page: 489 year: 2006 ident: 10.1016/j.oceaneng.2021.108765_b23 article-title: Extreme learning machine: Theory and applications publication-title: Neural Comput. – volume: 116 start-page: 607 year: 2015 ident: 10.1016/j.oceaneng.2021.108765_b33 article-title: Tidal level forecasting using ann publication-title: Proc. Eng. doi: 10.1016/j.proeng.2015.08.332 – volume: 23 start-page: 853 year: 2008 ident: 10.1016/j.oceaneng.2021.108765_b43 article-title: Rbf neural network and anfis-based short-term load forecasting approach in real-time price environment publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2008.922249 – volume: 28 start-page: 2222 year: 2016 ident: 10.1016/j.oceaneng.2021.108765_b19 article-title: Lstm: A search space odyssey publication-title: IEEE Trans. Neural Netw. – volume: 3 start-page: 246 year: 1991 ident: 10.1016/j.oceaneng.2021.108765_b34 article-title: Universal approximation using radial-basis-function networks publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.246 – start-page: 1 year: 2017 ident: 10.1016/j.oceaneng.2021.108765_b30 article-title: Short-term traffic flow prediction with conv-lstm – volume: 5 start-page: 157 year: 1994 ident: 10.1016/j.oceaneng.2021.108765_b2 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – volume: 18 start-page: 602 year: 2005 ident: 10.1016/j.oceaneng.2021.108765_b17 article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 |
| SSID | ssj0006603 |
| Score | 2.459379 |
| Snippet | The Bi-LSTM model is suggested to evaluate tidal level for short-term. Both single-step and multi-step estimations are taken into account. For the single-step... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108765 |
| SubjectTerms | Bi-LSTM model Multi-step Short-term estimation Tidal level |
| Title | Accurate estimation of tidal level using bidirectional long short-term memory recurrent neural network |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2021.108765 |
| Volume | 235 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0029-8018 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0029-8018 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0029-8018 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0029-8018 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0029-8018 databaseCode: AKRWK dateStart: 19700101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvaggWhXro-zBa9pkH3kcS7FUxXqx0FtI9lFTalpqevDib3cnm2gFoQcvgSw7SzJZZr7dfPMtQrfUQFQlKXdA3sxhCY2cNI20QwIhtCQJ88qzAZ_G_mjCHqZ82kCDuhYGaJVV7LcxvYzWVUuv8mZvlWVQ40siE19DAiqiVnabsQBOMeh-_tA8fN-lNc0Dem9VCc-7JkUkucpnZp1IPKDbBZBk_kpQW0lneIyOKrSI-_aBTlBD5S10sKUh2EKHzzB6JTx9inRfiA3IP2CQz7B1iXipcZFJM9ACKEIYuO4znGb21cu9QLxYmqb3VwPGHQjW-A0YuB94DdvxIOCEQfjS9MstbfwMTYZ3L4ORU52l4AjqkcKBlZFwIfmLUEacyND3ZORqxRUXJDUoQ8NPVgAsnGkuAwqXIPQUC9yEMXqOmvkyVxcIeyygUplgIIg0cEak2kAMrVVIGVTFhm3EawfGohIah_MuFnHNKJvHteNjcHxsHd9GvW-7lZXa2GkR1d8n_jVpYpMPdthe_sP2Cu3DnaWaXaNmsd6oG4NNirRTTr4O2uvfP47GXxiL5Bk |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8JAFJ4QPLgkRlEjrnPwWmhn6XIkRIIKeIGEW9POgiVYCJaDF3-787ooJiYevPQwnTdpXyfvfTP93jcI3VEDUZWk3AJ5M4tFNLDiONAW8YTQkkTMyc8GHI7c_oQ9Tvm0hrpVLQzQKsvYX8T0PFqXLe3Sm-1VkkCNLwlMfPUJqIjmsts7jBMPVmCtj2-eh-vatOJ5QPetMuF5y-SIKFXpzCwUiQN8Ow-yzG8Zaivr9I7QYQkXcad4omNUU2kD7W-JCDbQwTOMXipPnyDdEWID-g8Y9DOKwkS81DhLpBloARwhDGT3GY6T4t3zzUC8WJqmtxeDxi2I1vgVKLjveA378aDghEH50vRLC974KZr07sfdvlUepmAJ6pDMgqWRsCH7C18GnEjfdWRga8UVFyQ2MEPDX1ZALJxpLj0KF893FPPsiDF6hurpMlXnCDvMo1KZaCCINHhGxNpgDK2VTxmUxfpNxCsHhqJUGocDLxZhRSmbh5XjQ3B8WDi-idpfdqtCa-NPi6D6PuGPWROahPCH7cU_bG_Rbn88HISDh9HTJdqDOwXv7ArVs_VGXRugksU3-UT8BHRc5a4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+estimation+of+tidal+level+using+bidirectional+long+short-term+memory+recurrent+neural+network&rft.jtitle=Ocean+engineering&rft.au=Bai%2C+Long-Hu&rft.au=Xu%2C+Hang&rft.date=2021-09-01&rft.issn=0029-8018&rft.volume=235&rft.spage=108765&rft_id=info:doi/10.1016%2Fj.oceaneng.2021.108765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2021_108765 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |