Hierarchical Hybrid SVM Method for Classification of Remotely Sensed Data

The focus of this work is on developing a new hierarchical hybrid Support Vector Machine (SVM) method to address the problems of classification of multi or hyper spectral remotely sensed images and provide a working technique that increases the classification accuracy while lowering the computationa...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Indian Society of Remote Sensing Vol. 40; no. 2; pp. 191 - 200
Main Authors Rao, T. Ch. Malleswara, Sankar, G. Jai, Kumar, T. Roopesh
Format Journal Article
LanguageEnglish
Published India Springer-Verlag 01.06.2012
Subjects
Online AccessGet full text
ISSN0255-660X
0974-3006
DOI10.1007/s12524-011-0149-4

Cover

Abstract The focus of this work is on developing a new hierarchical hybrid Support Vector Machine (SVM) method to address the problems of classification of multi or hyper spectral remotely sensed images and provide a working technique that increases the classification accuracy while lowering the computational cost and complexity of the process. The paper presents issues in analyzing large multi/hyper spectral image data sets for dimensionality reduction, coping with intra pixel spectral variations, and selection of a flexible classifier with robust learning process. Experiments conducted revealed that a computationally cheap algorithm that uses Hamming distance between the pixel vectors of different bands to eliminate redundant bands was quite effective in helping reduce the dimensionality. The paper also presents the concept of extended mathematical morphological profiles for segregating the input pixel vectors into pure or mixed categories which will enable further computational cost reductions. The proposed method’s overall classification accuracy is tested with IRS data sets and the Airborne Visible Infrared Imaging Spectroradiometer Indian Pines hyperspectral benchmark data set and presented.
AbstractList The focus of this work is on developing a new hierarchical hybrid Support Vector Machine (SVM) method to address the problems of classification of multi or hyper spectral remotely sensed images and provide a working technique that increases the classification accuracy while lowering the computational cost and complexity of the process. The paper presents issues in analyzing large multi/hyper spectral image data sets for dimensionality reduction, coping with intra pixel spectral variations, and selection of a flexible classifier with robust learning process. Experiments conducted revealed that a computationally cheap algorithm that uses Hamming distance between the pixel vectors of different bands to eliminate redundant bands was quite effective in helping reduce the dimensionality. The paper also presents the concept of extended mathematical morphological profiles for segregating the input pixel vectors into pure or mixed categories which will enable further computational cost reductions. The proposed method’s overall classification accuracy is tested with IRS data sets and the Airborne Visible Infrared Imaging Spectroradiometer Indian Pines hyperspectral benchmark data set and presented.
Author Sankar, G. Jai
Kumar, T. Roopesh
Rao, T. Ch. Malleswara
Author_xml – sequence: 1
  fullname: Rao, T. Ch. Malleswara
– sequence: 2
  fullname: Sankar, G. Jai
– sequence: 3
  fullname: Kumar, T. Roopesh
BookMark eNp9kM1OwzAMgCM0JLbBA3AiL1Cw0yZtj2j8bNImJMYQtyhN0i1T16CkHPb2dJQTBw6WLcufLX8TMmp9awm5RrhFgPwuIuMsSwCxj6xMsjMyhjLPkhRAjPqacZ4IAR8XZBLjvm9mHNmYLObOBhX0zmnV0PmxCs7Q9fuKrmy384bWPtBZo2J0dT_ROd9SX9NXe_CdbY50bdtoDX1Qnbok57Vqor36zVOyeXp8m82T5cvzYna_THSKrEsyloEoUBdVKjjXptbAEBgTohCiEqXQaZ7XpmIac0SjSmN5kaKotDYlZ5hOCQ57dfAxBlvLz-AOKhwlgjy5kIML2buQJxcy65n8D6Nd9_NNF5Rr_iXZQMb-Sru1Qe79V2j7B_-FbgaoVl6qbXBRbtYMUAAAF3kJ6TdGDnzb
CitedBy_id crossref_primary_10_1088_1757_899X_983_1_012012
crossref_primary_10_1007_s12524_013_0327_7
crossref_primary_10_29252_jgit_2_3_69
crossref_primary_10_59313_jsr_a_1324375
crossref_primary_10_1007_s11042_023_17515_y
crossref_primary_10_1007_s12524_014_0370_z
Cites_doi 10.1007/11815921_60
10.1109/21.97458
10.1109/TGRS.2004.841417
10.1109/TGRS.2004.827257
10.1109/TIP.2005.864164
10.1109/TGRS.2004.842478
10.1613/jair.105
10.1007/978-1-4757-2440-0
10.1145/130385.130401
10.1109/ICASSP.2006.1660467
10.1017/CBO9780511801389
ContentType Journal Article
Copyright Indian Society of Remote Sensing 2011
Copyright_xml – notice: Indian Society of Remote Sensing 2011
DBID FBQ
AAYXX
CITATION
DOI 10.1007/s12524-011-0149-4
DatabaseName AGRIS
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 0974-3006
EndPage 200
ExternalDocumentID 10_1007_s12524_011_0149_4
US201600056790
GroupedDBID -Y2
.VR
06D
0R~
0VY
1N0
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
40D
40E
5GY
5VS
67M
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AAYIU
AAYQN
AAYZH
ABDBE
ABDZT
ABECU
ABFTV
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYQR
AOCGG
ARMRJ
AXYYD
AYFIA
AYJHY
B-.
BA0
BDATZ
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FBQ
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGRSB
GJIRD
GNWQR
H13
HF~
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
PF0
PT4
PT5
QOK
QOS
R9I
RHV
ROL
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~02
~A9
-5A
-5G
-5~
-BR
-EM
-~C
GGCAI
GQ6
Z5O
Z7R
Z7Z
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AGQPQ
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c312t-4240681c8b3655cdfc02102266866b696c377fdb2c1711da9de58316bccd95213
IEDL.DBID U2A
ISSN 0255-660X
IngestDate Wed Oct 01 03:19:36 EDT 2025
Thu Apr 24 22:56:26 EDT 2025
Fri Feb 21 02:33:07 EST 2025
Thu Apr 03 09:44:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Support vector machine (SVM)
Morphological profile operators
Spectral spatial classification
Edge detection
Vector ordered statistics
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-4240681c8b3655cdfc02102266866b696c377fdb2c1711da9de58316bccd95213
Notes http://dx.doi.org/10.1007/s12524-011-0149-4
PageCount 10
ParticipantIDs crossref_primary_10_1007_s12524_011_0149_4
crossref_citationtrail_10_1007_s12524_011_0149_4
springer_journals_10_1007_s12524_011_0149_4
fao_agris_US201600056790
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace India
PublicationPlace_xml – name: India
PublicationTitle Journal of the Indian Society of Remote Sensing
PublicationTitleAbbrev J Indian Soc Remote Sens
PublicationYear 2012
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
References Crammer, Singer (CR6) 2001; 2
Vapnik (CR20) 1998
Schölkopf, Smola (CR18) 2002
Allwein, Schapire, Singer (CR1) 2001; 1
CR2
Foody, Mathur (CR11) 2004; 42
Benediktsson, Plamson, Sveinsson (CR3) 2005; 43
Joachims, Scholkopf, Burges, Smola (CR13) 1998
Verszkov, Paclik (CR21) 2006; 4109
CR5
Evans, Liu (CR9) 2006; 15
Boser, Guyon, Vapnik, Haussler (CR4) 1992
Dietterich, Bakiri (CR8) 1995; 2
Peterson, Weldon (CR15) 1972
CR12
CR23
Vapnik (CR19) 1995
CR22
CR10
Kecman (CR14) 2001
Cristianini, Shawe-Taylor (CR7) 2000
Plaza, Martinez, Plaza, Perez (CR16) 2005; 43
Safavian, Landgrebe (CR17) 1991; 21
TG Dietterich (149_CR8) 1995; 2
149_CR5
T Joachims (149_CR13) 1998
WW Peterson (149_CR15) 1972
A Plaza (149_CR16) 2005; 43
VN Vapnik (149_CR19) 1995
JA Benediktsson (149_CR3) 2005; 43
K Crammer (149_CR6) 2001; 2
SR Safavian (149_CR17) 1991; 21
149_CR22
149_CR12
149_CR23
149_CR2
A Evans (149_CR9) 2006; 15
149_CR10
V Kecman (149_CR14) 2001
EL Allwein (149_CR1) 2001; 1
H Boser (149_CR4) 1992
S Verszkov (149_CR21) 2006; 4109
VN Vapnik (149_CR20) 1998
N Cristianini (149_CR7) 2000
B Schölkopf (149_CR18) 2002
GM Foody (149_CR11) 2004; 42
References_xml – start-page: 144
  year: 1992
  end-page: 152
  ident: CR4
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
– ident: CR22
– volume: 4109
  start-page: 551
  year: 2006
  end-page: 559
  ident: CR21
  article-title: Edge detection in hyperspectral imaging – multivariate statistical approacesh
  publication-title: Structural, Syntactic and Statistical Pattern Recognition
  doi: 10.1007/11815921_60
– year: 1998
  ident: CR13
  article-title: Making large scale SVM learning practical
  publication-title: Advances in Kernel methods-support vector learning
– year: 2000
  ident: CR7
  publication-title: An introduction to support vector machines and other Kernel-based learning methods
– volume: 21
  start-page: 660
  year: 1991
  end-page: 674
  ident: CR17
  article-title: A survey of decision tree classifier methodology
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.97458
– ident: CR2
– ident: CR12
– volume: 2
  start-page: 265
  year: 2001
  end-page: 292
  ident: CR6
  article-title: On the algorithmic implementation of multiclass kernel-based vector machines
  publication-title: Journal of Machine Learning Research
– year: 1995
  ident: CR19
  publication-title: The Nature of Statistical Learning Theory
– ident: CR10
– year: 1998
  ident: CR20
  publication-title: Statistical learning theory
– volume: 43
  start-page: 466
  year: 2005
  end-page: 479
  ident: CR16
  article-title: Dimensionality reduction and classification of hyperspectral image data using sequence of extended morphological transformations
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2004.841417
– volume: 42
  start-page: 1335
  year: 2004
  end-page: 1343
  ident: CR11
  article-title: A relative evaluation of multiclass Image classification by support vector machines
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2004.827257
– year: 2001
  ident: CR14
  publication-title: Learning and soft computing — support vector machines, neural networks, fuzzy logic systems
– year: 2002
  ident: CR18
  publication-title: Learning with Kernels - support vector machines, regularization, optimization and beyond
– volume: 15
  start-page: 1454
  issue: 6
  year: 2006
  end-page: 1463
  ident: CR9
  article-title: A morphological gradient approach to color edge detection
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2005.864164
– ident: CR5
– volume: 1
  start-page: 113
  year: 2001
  end-page: 141
  ident: CR1
  article-title: Reducing multiclass to binary: a unifying approach for margin classifiers
  publication-title: Journal of Machine Learning Research
– volume: 2
  start-page: 263
  year: 1995
  end-page: 286
  ident: CR8
  article-title: Solving multiclass learning problems via error correcting output codes
  publication-title: Journal of Artificial Intelligence Research
– ident: CR23
– year: 1972
  ident: CR15
  publication-title: Error correcting codes
– volume: 43
  start-page: 480
  issue: 3
  year: 2005
  end-page: 491
  ident: CR3
  article-title: Classification of hyperspectral data from urban areas based on extended morphological profiles
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2004.842478
– volume-title: Advances in Kernel methods-support vector learning
  year: 1998
  ident: 149_CR13
– volume: 15
  start-page: 1454
  issue: 6
  year: 2006
  ident: 149_CR9
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2005.864164
– volume: 4109
  start-page: 551
  year: 2006
  ident: 149_CR21
  publication-title: Structural, Syntactic and Statistical Pattern Recognition
  doi: 10.1007/11815921_60
– volume-title: Learning with Kernels - support vector machines, regularization, optimization and beyond
  year: 2002
  ident: 149_CR18
– volume: 43
  start-page: 480
  issue: 3
  year: 2005
  ident: 149_CR3
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2004.842478
– ident: 149_CR2
– ident: 149_CR5
– volume: 2
  start-page: 265
  year: 2001
  ident: 149_CR6
  publication-title: Journal of Machine Learning Research
– volume: 21
  start-page: 660
  year: 1991
  ident: 149_CR17
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.97458
– volume-title: Statistical learning theory
  year: 1998
  ident: 149_CR20
– volume: 2
  start-page: 263
  year: 1995
  ident: 149_CR8
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.105
– volume: 42
  start-page: 1335
  year: 2004
  ident: 149_CR11
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2004.827257
– volume: 43
  start-page: 466
  year: 2005
  ident: 149_CR16
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2004.841417
– volume-title: The Nature of Statistical Learning Theory
  year: 1995
  ident: 149_CR19
  doi: 10.1007/978-1-4757-2440-0
– ident: 149_CR12
– start-page: 144
  volume-title: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
  year: 1992
  ident: 149_CR4
  doi: 10.1145/130385.130401
– ident: 149_CR10
  doi: 10.1109/ICASSP.2006.1660467
– ident: 149_CR22
– ident: 149_CR23
– volume: 1
  start-page: 113
  year: 2001
  ident: 149_CR1
  publication-title: Journal of Machine Learning Research
– volume-title: Learning and soft computing — support vector machines, neural networks, fuzzy logic systems
  year: 2001
  ident: 149_CR14
– volume-title: Error correcting codes
  year: 1972
  ident: 149_CR15
– volume-title: An introduction to support vector machines and other Kernel-based learning methods
  year: 2000
  ident: 149_CR7
  doi: 10.1017/CBO9780511801389
SSID ssj0064512
ssj0001852324
Score 1.8897325
Snippet The focus of this work is on developing a new hierarchical hybrid Support Vector Machine (SVM) method to address the problems of classification of multi or...
SourceID crossref
springer
fao
SourceType Enrichment Source
Index Database
Publisher
StartPage 191
SubjectTerms cost effectiveness
data collection
Earth and Environmental Science
Earth Sciences
image analysis
Pinus
remote sensing
Remote Sensing/Photogrammetry
Research Article
spectroradiometers
support vector machines
Title Hierarchical Hybrid SVM Method for Classification of Remotely Sensed Data
URI https://link.springer.com/article/10.1007/s12524-011-0149-4
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 0974-3006
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064512
  issn: 0255-660X
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0974-3006
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064512
  issn: 0255-660X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0974-3006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064512
  issn: 0255-660X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN7Y9qIH4zOtj2YPnjSbAMsucCTaSmzqwUpTT4RdFtOkaY3QQ_-9swvYGB-JBy5kWZL5lnkwM98gdEV1Ks7OUiLAuSBuShURnpsRj3s08AMhlOHSGz_yKHYfZmxW93EXTbV7k5I0mnrb7OYwR1dM6PDXDYjbQh2m2bzgEMdOuP2x4jPHUJBX6pi7zKQ8te9MOLdmTWrzpy2_GKdWnq6-5UeN2RkeoP3aX8RhBfAh2lHLI7Q3nRfr6m5xjEYhjua6j9iMNVngaKO7sPBkOsZjMx8ag2OKzfRLXRdkoMCrHD8pgEktNngCoazK8F1apicoHg6ebyNSz0ggktpOSVxtkX1b-oJyxmSWyyqI49znXPCAS-p5eSYcaXs2YBJkCtCxuZAyC8B001PUXq6WqoswuDIM1Cb3fYjJBPVEJi3G8pTCFnDJHrIa4SSyJhDXcywWyZb6WMszAXkmWp6J20PXn4-8VewZfy3ugsST9BW0WxJPHM19p5lKvcDqoZsGhqT-xorfNzr71-pztAuvcqryrwvULt_X6hIcjVL0USe8fxkN-uaAfQAPhsLt
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED4kzpB06CMP2H2FQ6cGDCzxIWk02qZKHGeIH3AnQqSoIqhhF7U8uL--R0pK0jQp4EGLQFHSHXX8Tnf3HcAH5kJxQZ5RjeCC8oxZqiOe00hGLIkTra3n0htcyXTML6ZiWtdxL5ts9yYk6S31XbFbKEKXMeHcX55Qvg07HP2TsAU7va_f-vd-rcQi9CTklUGWXPigp0PPVMrutAluPjbpX9vTdpEt_omQ-o3n7AWMmkeu8k1-nK5KfWp-P2Bz3PCdXsLzGoiSXrVyXsGWne_Ds8nNclWdXR5Av0fSG1eg7PulzEi6duVdZDgZkIFvPE0Q8RLfVtMlHHkdk0VBri3q387WZIg-ss3J56zMDmF89mX0KaV18wVqWBCWlLutPg5MrJkUwuSFqbxDKWMptUykYVFU5Do0QRSgspPcotoDqY3JE8QE7Aha88XctoEgRhJoj2Uco7OnWaRz0xWiyBhOgYfpQLeRuTI1M7lrkDFTd5zKTk4K5aScnBTvwMfbS35WtBz_G9xGRarsO5pNNR6GjlTPUaBGSbcDJ41iVP3xLp-e6PVGo49hNx0NLtXl-VX_DezhbcMqx-wttMpfK_sO0Uyp39er9w-EBuD-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58gOhBfNL63IMnZWmTfSQ5FrXUR0WsLb0t2UekUNpi48F_7-wmsYgP8JBL2ExgZrPzTWbmG4TOqEvFBSYlCsAFYSm1REXMkEhENIkTpazn0us-iE6f3Q75sJxzOq-q3auUZNHT4FiaJnljZrLGovEt5KGrnnChMEsIW0arzPEkwIbuh63FT5aYh56OvDiaBeM-_elwNBGiOazSnD-J_OKolrN0-i1X6l1QewttltgRtwpjb6MlO9lBG4PR_K24O99Fdy3cGbmeYj_iZIw7764jC_cGXdz1s6IxgFTsJ2G6GiFvFjzN8JMFk9nxO-5BWGsNvkrzdA_129fPlx1SzksgmgZhTpjzznGgY0UF59pkugjohIiFUCIRmkZRZlSogygA-yTGgqUCobQ2Cbhxuo9WJtOJrSEMsIbDESriGOIzRSNldJPzLKUgAi5dR81KOVKXZOJupsVYLmiQnT4l6FM6fUpWR-efj8wKJo2_FtdA4zJ9gZNO9nuh48FzrKVR0qyji8oMsvze5r8LOvjX6lO09njVlvc3D3eHaB3eGhZVYUdoJX99s8eAP3J14vfYB0TmyIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Hybrid+SVM+Method+for+Classification+of+Remotely+Sensed+Data&rft.jtitle=Photonirvachak+%28Dehra+Dun%29&rft.au=Rao%2C+T.+Ch.+Malleswara&rft.au=Sankar%2C+G.+Jai&rft.au=Kumar%2C+T.+Roopesh&rft.date=2012-06-01&rft.pub=Springer-Verlag&rft.issn=0255-660X&rft.volume=40&rft.issue=2&rft.spage=191&rft.epage=200&rft_id=info:doi/10.1007%2Fs12524-011-0149-4&rft.externalDocID=US201600056790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0255-660X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0255-660X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0255-660X&client=summon