Hierarchical Hybrid SVM Method for Classification of Remotely Sensed Data
The focus of this work is on developing a new hierarchical hybrid Support Vector Machine (SVM) method to address the problems of classification of multi or hyper spectral remotely sensed images and provide a working technique that increases the classification accuracy while lowering the computationa...
        Saved in:
      
    
          | Published in | Journal of the Indian Society of Remote Sensing Vol. 40; no. 2; pp. 191 - 200 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        India
          Springer-Verlag
    
        01.06.2012
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0255-660X 0974-3006  | 
| DOI | 10.1007/s12524-011-0149-4 | 
Cover
| Abstract | The focus of this work is on developing a new hierarchical hybrid Support Vector Machine (SVM) method to address the problems of classification of multi or hyper spectral remotely sensed images and provide a working technique that increases the classification accuracy while lowering the computational cost and complexity of the process. The paper presents issues in analyzing large multi/hyper spectral image data sets for dimensionality reduction, coping with intra pixel spectral variations, and selection of a flexible classifier with robust learning process. Experiments conducted revealed that a computationally cheap algorithm that uses Hamming distance between the pixel vectors of different bands to eliminate redundant bands was quite effective in helping reduce the dimensionality. The paper also presents the concept of extended mathematical morphological profiles for segregating the input pixel vectors into pure or mixed categories which will enable further computational cost reductions. The proposed method’s overall classification accuracy is tested with IRS data sets and the Airborne Visible Infrared Imaging Spectroradiometer Indian Pines hyperspectral benchmark data set and presented. | 
    
|---|---|
| AbstractList | The focus of this work is on developing a new hierarchical hybrid Support Vector Machine (SVM) method to address the problems of classification of multi or hyper spectral remotely sensed images and provide a working technique that increases the classification accuracy while lowering the computational cost and complexity of the process. The paper presents issues in analyzing large multi/hyper spectral image data sets for dimensionality reduction, coping with intra pixel spectral variations, and selection of a flexible classifier with robust learning process. Experiments conducted revealed that a computationally cheap algorithm that uses Hamming distance between the pixel vectors of different bands to eliminate redundant bands was quite effective in helping reduce the dimensionality. The paper also presents the concept of extended mathematical morphological profiles for segregating the input pixel vectors into pure or mixed categories which will enable further computational cost reductions. The proposed method’s overall classification accuracy is tested with IRS data sets and the Airborne Visible Infrared Imaging Spectroradiometer Indian Pines hyperspectral benchmark data set and presented. | 
    
| Author | Sankar, G. Jai Kumar, T. Roopesh Rao, T. Ch. Malleswara  | 
    
| Author_xml | – sequence: 1 fullname: Rao, T. Ch. Malleswara – sequence: 2 fullname: Sankar, G. Jai – sequence: 3 fullname: Kumar, T. Roopesh  | 
    
| BookMark | eNp9kM1OwzAMgCM0JLbBA3AiL1Cw0yZtj2j8bNImJMYQtyhN0i1T16CkHPb2dJQTBw6WLcufLX8TMmp9awm5RrhFgPwuIuMsSwCxj6xMsjMyhjLPkhRAjPqacZ4IAR8XZBLjvm9mHNmYLObOBhX0zmnV0PmxCs7Q9fuKrmy384bWPtBZo2J0dT_ROd9SX9NXe_CdbY50bdtoDX1Qnbok57Vqor36zVOyeXp8m82T5cvzYna_THSKrEsyloEoUBdVKjjXptbAEBgTohCiEqXQaZ7XpmIac0SjSmN5kaKotDYlZ5hOCQ57dfAxBlvLz-AOKhwlgjy5kIML2buQJxcy65n8D6Nd9_NNF5Rr_iXZQMb-Sru1Qe79V2j7B_-FbgaoVl6qbXBRbtYMUAAAF3kJ6TdGDnzb | 
    
| CitedBy_id | crossref_primary_10_1088_1757_899X_983_1_012012 crossref_primary_10_1007_s12524_013_0327_7 crossref_primary_10_29252_jgit_2_3_69 crossref_primary_10_59313_jsr_a_1324375 crossref_primary_10_1007_s11042_023_17515_y crossref_primary_10_1007_s12524_014_0370_z  | 
    
| Cites_doi | 10.1007/11815921_60 10.1109/21.97458 10.1109/TGRS.2004.841417 10.1109/TGRS.2004.827257 10.1109/TIP.2005.864164 10.1109/TGRS.2004.842478 10.1613/jair.105 10.1007/978-1-4757-2440-0 10.1145/130385.130401 10.1109/ICASSP.2006.1660467 10.1017/CBO9780511801389  | 
    
| ContentType | Journal Article | 
    
| Copyright | Indian Society of Remote Sensing 2011 | 
    
| Copyright_xml | – notice: Indian Society of Remote Sensing 2011 | 
    
| DBID | FBQ AAYXX CITATION  | 
    
| DOI | 10.1007/s12524-011-0149-4 | 
    
| DatabaseName | AGRIS CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Visual Arts | 
    
| EISSN | 0974-3006 | 
    
| EndPage | 200 | 
    
| ExternalDocumentID | 10_1007_s12524_011_0149_4 US201600056790  | 
    
| GroupedDBID | -Y2 .VR 06D 0R~ 0VY 1N0 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40D 40E 5GY 5VS 67M 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AAYIU AAYQN AAYZH ABDBE ABDZT ABECU ABFTV ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACSNA ACZOJ ADHHG ADHIR ADHKG ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYQR AOCGG ARMRJ AXYYD AYFIA AYJHY B-. BA0 BDATZ CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FBQ FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGRSB GJIRD GNWQR H13 HF~ HG6 HMJXF HRMNR HZ~ IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM MA- N2Q NDZJH NF0 NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P PF0 PT4 PT5 QOK QOS R9I RHV ROL RSV S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~02 ~A9 -5A -5G -5~ -BR -EM -~C GGCAI GQ6 Z5O Z7R Z7Z AAYXX ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AGQPQ AHWEU AIXLP ATHPR CITATION  | 
    
| ID | FETCH-LOGICAL-c312t-4240681c8b3655cdfc02102266866b696c377fdb2c1711da9de58316bccd95213 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0255-660X | 
    
| IngestDate | Wed Oct 01 03:19:36 EDT 2025 Thu Apr 24 22:56:26 EDT 2025 Fri Feb 21 02:33:07 EST 2025 Thu Apr 03 09:44:40 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Support vector machine (SVM) Morphological profile operators Spectral spatial classification Edge detection Vector ordered statistics  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c312t-4240681c8b3655cdfc02102266866b696c377fdb2c1711da9de58316bccd95213 | 
    
| Notes | http://dx.doi.org/10.1007/s12524-011-0149-4 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | crossref_primary_10_1007_s12524_011_0149_4 crossref_citationtrail_10_1007_s12524_011_0149_4 springer_journals_10_1007_s12524_011_0149_4 fao_agris_US201600056790  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-06-01 | 
    
| PublicationDateYYYYMMDD | 2012-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | India | 
    
| PublicationPlace_xml | – name: India | 
    
| PublicationTitle | Journal of the Indian Society of Remote Sensing | 
    
| PublicationTitleAbbrev | J Indian Soc Remote Sens | 
    
| PublicationYear | 2012 | 
    
| Publisher | Springer-Verlag | 
    
| Publisher_xml | – name: Springer-Verlag | 
    
| References | Crammer, Singer (CR6) 2001; 2 Vapnik (CR20) 1998 Schölkopf, Smola (CR18) 2002 Allwein, Schapire, Singer (CR1) 2001; 1 CR2 Foody, Mathur (CR11) 2004; 42 Benediktsson, Plamson, Sveinsson (CR3) 2005; 43 Joachims, Scholkopf, Burges, Smola (CR13) 1998 Verszkov, Paclik (CR21) 2006; 4109 CR5 Evans, Liu (CR9) 2006; 15 Boser, Guyon, Vapnik, Haussler (CR4) 1992 Dietterich, Bakiri (CR8) 1995; 2 Peterson, Weldon (CR15) 1972 CR12 CR23 Vapnik (CR19) 1995 CR22 CR10 Kecman (CR14) 2001 Cristianini, Shawe-Taylor (CR7) 2000 Plaza, Martinez, Plaza, Perez (CR16) 2005; 43 Safavian, Landgrebe (CR17) 1991; 21 TG Dietterich (149_CR8) 1995; 2 149_CR5 T Joachims (149_CR13) 1998 WW Peterson (149_CR15) 1972 A Plaza (149_CR16) 2005; 43 VN Vapnik (149_CR19) 1995 JA Benediktsson (149_CR3) 2005; 43 K Crammer (149_CR6) 2001; 2 SR Safavian (149_CR17) 1991; 21 149_CR22 149_CR12 149_CR23 149_CR2 A Evans (149_CR9) 2006; 15 149_CR10 V Kecman (149_CR14) 2001 EL Allwein (149_CR1) 2001; 1 H Boser (149_CR4) 1992 S Verszkov (149_CR21) 2006; 4109 VN Vapnik (149_CR20) 1998 N Cristianini (149_CR7) 2000 B Schölkopf (149_CR18) 2002 GM Foody (149_CR11) 2004; 42  | 
    
| References_xml | – start-page: 144 year: 1992 end-page: 152 ident: CR4 article-title: A training algorithm for optimal margin classifiers publication-title: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory – ident: CR22 – volume: 4109 start-page: 551 year: 2006 end-page: 559 ident: CR21 article-title: Edge detection in hyperspectral imaging – multivariate statistical approacesh publication-title: Structural, Syntactic and Statistical Pattern Recognition doi: 10.1007/11815921_60 – year: 1998 ident: CR13 article-title: Making large scale SVM learning practical publication-title: Advances in Kernel methods-support vector learning – year: 2000 ident: CR7 publication-title: An introduction to support vector machines and other Kernel-based learning methods – volume: 21 start-page: 660 year: 1991 end-page: 674 ident: CR17 article-title: A survey of decision tree classifier methodology publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.97458 – ident: CR2 – ident: CR12 – volume: 2 start-page: 265 year: 2001 end-page: 292 ident: CR6 article-title: On the algorithmic implementation of multiclass kernel-based vector machines publication-title: Journal of Machine Learning Research – year: 1995 ident: CR19 publication-title: The Nature of Statistical Learning Theory – ident: CR10 – year: 1998 ident: CR20 publication-title: Statistical learning theory – volume: 43 start-page: 466 year: 2005 end-page: 479 ident: CR16 article-title: Dimensionality reduction and classification of hyperspectral image data using sequence of extended morphological transformations publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2004.841417 – volume: 42 start-page: 1335 year: 2004 end-page: 1343 ident: CR11 article-title: A relative evaluation of multiclass Image classification by support vector machines publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2004.827257 – year: 2001 ident: CR14 publication-title: Learning and soft computing — support vector machines, neural networks, fuzzy logic systems – year: 2002 ident: CR18 publication-title: Learning with Kernels - support vector machines, regularization, optimization and beyond – volume: 15 start-page: 1454 issue: 6 year: 2006 end-page: 1463 ident: CR9 article-title: A morphological gradient approach to color edge detection publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2005.864164 – ident: CR5 – volume: 1 start-page: 113 year: 2001 end-page: 141 ident: CR1 article-title: Reducing multiclass to binary: a unifying approach for margin classifiers publication-title: Journal of Machine Learning Research – volume: 2 start-page: 263 year: 1995 end-page: 286 ident: CR8 article-title: Solving multiclass learning problems via error correcting output codes publication-title: Journal of Artificial Intelligence Research – ident: CR23 – year: 1972 ident: CR15 publication-title: Error correcting codes – volume: 43 start-page: 480 issue: 3 year: 2005 end-page: 491 ident: CR3 article-title: Classification of hyperspectral data from urban areas based on extended morphological profiles publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2004.842478 – volume-title: Advances in Kernel methods-support vector learning year: 1998 ident: 149_CR13 – volume: 15 start-page: 1454 issue: 6 year: 2006 ident: 149_CR9 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2005.864164 – volume: 4109 start-page: 551 year: 2006 ident: 149_CR21 publication-title: Structural, Syntactic and Statistical Pattern Recognition doi: 10.1007/11815921_60 – volume-title: Learning with Kernels - support vector machines, regularization, optimization and beyond year: 2002 ident: 149_CR18 – volume: 43 start-page: 480 issue: 3 year: 2005 ident: 149_CR3 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2004.842478 – ident: 149_CR2 – ident: 149_CR5 – volume: 2 start-page: 265 year: 2001 ident: 149_CR6 publication-title: Journal of Machine Learning Research – volume: 21 start-page: 660 year: 1991 ident: 149_CR17 publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.97458 – volume-title: Statistical learning theory year: 1998 ident: 149_CR20 – volume: 2 start-page: 263 year: 1995 ident: 149_CR8 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.105 – volume: 42 start-page: 1335 year: 2004 ident: 149_CR11 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2004.827257 – volume: 43 start-page: 466 year: 2005 ident: 149_CR16 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2004.841417 – volume-title: The Nature of Statistical Learning Theory year: 1995 ident: 149_CR19 doi: 10.1007/978-1-4757-2440-0 – ident: 149_CR12 – start-page: 144 volume-title: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory year: 1992 ident: 149_CR4 doi: 10.1145/130385.130401 – ident: 149_CR10 doi: 10.1109/ICASSP.2006.1660467 – ident: 149_CR22 – ident: 149_CR23 – volume: 1 start-page: 113 year: 2001 ident: 149_CR1 publication-title: Journal of Machine Learning Research – volume-title: Learning and soft computing — support vector machines, neural networks, fuzzy logic systems year: 2001 ident: 149_CR14 – volume-title: Error correcting codes year: 1972 ident: 149_CR15 – volume-title: An introduction to support vector machines and other Kernel-based learning methods year: 2000 ident: 149_CR7 doi: 10.1017/CBO9780511801389  | 
    
| SSID | ssj0064512 ssj0001852324  | 
    
| Score | 1.8897325 | 
    
| Snippet | The focus of this work is on developing a new hierarchical hybrid Support Vector Machine (SVM) method to address the problems of classification of multi or... | 
    
| SourceID | crossref springer fao  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 191 | 
    
| SubjectTerms | cost effectiveness data collection Earth and Environmental Science Earth Sciences image analysis Pinus remote sensing Remote Sensing/Photogrammetry Research Article spectroradiometers support vector machines  | 
    
| Title | Hierarchical Hybrid SVM Method for Classification of Remotely Sensed Data | 
    
| URI | https://link.springer.com/article/10.1007/s12524-011-0149-4 | 
    
| Volume | 40 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 0974-3006 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064512 issn: 0255-660X databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 0974-3006 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064512 issn: 0255-660X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 0974-3006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064512 issn: 0255-660X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN7Y9qIH4zOtj2YPnjSbAMsucCTaSmzqwUpTT4RdFtOkaY3QQ_-9swvYGB-JBy5kWZL5lnkwM98gdEV1Ks7OUiLAuSBuShURnpsRj3s08AMhlOHSGz_yKHYfZmxW93EXTbV7k5I0mnrb7OYwR1dM6PDXDYjbQh2m2bzgEMdOuP2x4jPHUJBX6pi7zKQ8te9MOLdmTWrzpy2_GKdWnq6-5UeN2RkeoP3aX8RhBfAh2lHLI7Q3nRfr6m5xjEYhjua6j9iMNVngaKO7sPBkOsZjMx8ag2OKzfRLXRdkoMCrHD8pgEktNngCoazK8F1apicoHg6ebyNSz0ggktpOSVxtkX1b-oJyxmSWyyqI49znXPCAS-p5eSYcaXs2YBJkCtCxuZAyC8B001PUXq6WqoswuDIM1Cb3fYjJBPVEJi3G8pTCFnDJHrIa4SSyJhDXcywWyZb6WMszAXkmWp6J20PXn4-8VewZfy3ugsST9BW0WxJPHM19p5lKvcDqoZsGhqT-xorfNzr71-pztAuvcqryrwvULt_X6hIcjVL0USe8fxkN-uaAfQAPhsLt | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED4kzpB06CMP2H2FQ6cGDCzxIWk02qZKHGeIH3AnQqSoIqhhF7U8uL--R0pK0jQp4EGLQFHSHXX8Tnf3HcAH5kJxQZ5RjeCC8oxZqiOe00hGLIkTra3n0htcyXTML6ZiWtdxL5ts9yYk6S31XbFbKEKXMeHcX55Qvg07HP2TsAU7va_f-vd-rcQi9CTklUGWXPigp0PPVMrutAluPjbpX9vTdpEt_omQ-o3n7AWMmkeu8k1-nK5KfWp-P2Bz3PCdXsLzGoiSXrVyXsGWne_Ds8nNclWdXR5Av0fSG1eg7PulzEi6duVdZDgZkIFvPE0Q8RLfVtMlHHkdk0VBri3q387WZIg-ss3J56zMDmF89mX0KaV18wVqWBCWlLutPg5MrJkUwuSFqbxDKWMptUykYVFU5Do0QRSgspPcotoDqY3JE8QE7Aha88XctoEgRhJoj2Uco7OnWaRz0xWiyBhOgYfpQLeRuTI1M7lrkDFTd5zKTk4K5aScnBTvwMfbS35WtBz_G9xGRarsO5pNNR6GjlTPUaBGSbcDJ41iVP3xLp-e6PVGo49hNx0NLtXl-VX_DezhbcMqx-wttMpfK_sO0Uyp39er9w-EBuD- | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58gOhBfNL63IMnZWmTfSQ5FrXUR0WsLb0t2UekUNpi48F_7-wmsYgP8JBL2ExgZrPzTWbmG4TOqEvFBSYlCsAFYSm1REXMkEhENIkTpazn0us-iE6f3Q75sJxzOq-q3auUZNHT4FiaJnljZrLGovEt5KGrnnChMEsIW0arzPEkwIbuh63FT5aYh56OvDiaBeM-_elwNBGiOazSnD-J_OKolrN0-i1X6l1QewttltgRtwpjb6MlO9lBG4PR_K24O99Fdy3cGbmeYj_iZIw7764jC_cGXdz1s6IxgFTsJ2G6GiFvFjzN8JMFk9nxO-5BWGsNvkrzdA_129fPlx1SzksgmgZhTpjzznGgY0UF59pkugjohIiFUCIRmkZRZlSogygA-yTGgqUCobQ2Cbhxuo9WJtOJrSEMsIbDESriGOIzRSNldJPzLKUgAi5dR81KOVKXZOJupsVYLmiQnT4l6FM6fUpWR-efj8wKJo2_FtdA4zJ9gZNO9nuh48FzrKVR0qyji8oMsvze5r8LOvjX6lO09njVlvc3D3eHaB3eGhZVYUdoJX99s8eAP3J14vfYB0TmyIE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Hybrid+SVM+Method+for+Classification+of+Remotely+Sensed+Data&rft.jtitle=Photonirvachak+%28Dehra+Dun%29&rft.au=Rao%2C+T.+Ch.+Malleswara&rft.au=Sankar%2C+G.+Jai&rft.au=Kumar%2C+T.+Roopesh&rft.date=2012-06-01&rft.pub=Springer-Verlag&rft.issn=0255-660X&rft.volume=40&rft.issue=2&rft.spage=191&rft.epage=200&rft_id=info:doi/10.1007%2Fs12524-011-0149-4&rft.externalDocID=US201600056790 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0255-660X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0255-660X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0255-660X&client=summon |