Analysis and applications of a frequency selective surface via a random distribution method
A novel frequency selective surface (FSS) for reducing radar cross section (RCS) is proposed in this paper. This FSS is based on the random distribution method, so it can be called random surface. In this paper, the stacked patches serving as periodic elements are employed for RCS reduction. Previou...
Saved in:
Published in | Chinese physics B Vol. 23; no. 4; pp. 582 - 588 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.04.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/23/4/047802 |
Cover
Summary: | A novel frequency selective surface (FSS) for reducing radar cross section (RCS) is proposed in this paper. This FSS is based on the random distribution method, so it can be called random surface. In this paper, the stacked patches serving as periodic elements are employed for RCS reduction. Previous work has demonstrated the efficiency by utilizing the microstrip patches, especially for the reflectarray. First, the relevant theory of the method is described. Then a sample of a three-layer variable-sized stacked patch random surface with a dimension of 260 mm x 260 mm is simulated, fabricated, and measured in order to demonstrate the validity of the proposed design. For the normal incidence, the 8-dB RCS reduction can be achieved both by the simulation and the measurement in 8 GHz-13 GHz. The oblique incidence of 30° is also investigated, in which the 7-dB RCS reduction can be obtained in a frequency range of 8 GHz-14 GHz. |
---|---|
Bibliography: | frequency selective surface, stacked patches, random surface, radar cross section reduction A novel frequency selective surface (FSS) for reducing radar cross section (RCS) is proposed in this paper. This FSS is based on the random distribution method, so it can be called random surface. In this paper, the stacked patches serving as periodic elements are employed for RCS reduction. Previous work has demonstrated the efficiency by utilizing the microstrip patches, especially for the reflectarray. First, the relevant theory of the method is described. Then a sample of a three-layer variable-sized stacked patch random surface with a dimension of 260 mm x 260 mm is simulated, fabricated, and measured in order to demonstrate the validity of the proposed design. For the normal incidence, the 8-dB RCS reduction can be achieved both by the simulation and the measurement in 8 GHz-13 GHz. The oblique incidence of 30° is also investigated, in which the 7-dB RCS reduction can be obtained in a frequency range of 8 GHz-14 GHz. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/23/4/047802 |