Carbohydrate or Electrolyte Rehydration Recovers Plasma Volume but Not Post-immersion Performance Compared to Water After Immersion Diuresis

ABSTRACT Introduction We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate–electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis. Methods Twelve men (24 ± 2 years; 82.4 ...

Full description

Saved in:
Bibliographic Details
Published inMilitary medicine Vol. 189; no. 7-8; pp. 1612 - 1620
Main Authors Wheelock, Courtney E, Lavoie, Elizabeth M, Stooks, Jocelyn, Schwob, Jacqueline, Hess, Hayden W, Pryor, Riana R, Hostler, David
Format Journal Article
LanguageEnglish
Published US Oxford University Press 03.07.2024
Subjects
Online AccessGet full text
ISSN0026-4075
1930-613X
1930-613X
DOI10.1093/milmed/usad379

Cover

Abstract ABSTRACT Introduction We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate–electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis. Methods Twelve men (24 ± 2 years; 82.4 ± 15.5 kg; and V̇O2max: 49.8 ± 5.1 mL · kg−1 · min−1) completed four experimental visits: a no-immersion control (CON) and three 4-h cold-water (18.0 °C) immersion trials (H2O, CHO, and CHO + E) followed by exercise in a warm environment (30 °C, 50% relative humidity). The exercise was a 60-minute loaded march (20.4 kg; 55% VO2max) followed by a 10-minute intermittent running protocol. After immersion, subjects were rehydrated with 100% of body mass loss from immersion diuresis during the ruck march. PV is reported as a percent change after immersion, after the ruck march, and after the intermittent running protocol. The intermittent running protocol distance provided an index of exercise performance. Data are reported as mean ± SD. Results After immersion, body mass loss was 2.3 ± 0.7%, 2.3 ± 0.5%, and 2.3 ± 0.6% for H2O, CHO, and CHO + E. PV loss after immersion was 19.8 ± 8.5% in H2O, 18.2 ± 7.0% in CHO, and 13.9 ± 9.3% in CHO + E, which was reduced after the ruck march to 14.7 ± 4.7% (P = .13) in H2O, 8.8 ± 8.3% (P < .01) in CHO, and 4.4 ± 10.9% (P = .02) in CHO + E. The intermittent running protocol distance was 1.4 ± 0.1 km in CON, 1.4 ± 0.2 km in H2O, 1.4 ± 0.1 km in CHO, and 1.4 ± 0.2 km in CHO + E (P = .28). Conclusions Although CHO and CHO + E better restored PV after immersion, post-immersion exercise performance was not augmented compared to H2O, highlighting that fluid replacement following immersion diuresis should focus on restoring volume lost rather than fluid constituents.
AbstractList Introduction We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate–electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis. Methods Twelve men (24 ± 2 years; 82.4 ± 15.5 kg; and V̇O2max: 49.8 ± 5.1 mL · kg−1 · min−1) completed four experimental visits: a no-immersion control (CON) and three 4-h cold-water (18.0 °C) immersion trials (H2O, CHO, and CHO + E) followed by exercise in a warm environment (30 °C, 50% relative humidity). The exercise was a 60-minute loaded march (20.4 kg; 55% VO2max) followed by a 10-minute intermittent running protocol. After immersion, subjects were rehydrated with 100% of body mass loss from immersion diuresis during the ruck march. PV is reported as a percent change after immersion, after the ruck march, and after the intermittent running protocol. The intermittent running protocol distance provided an index of exercise performance. Data are reported as mean ± SD. Results After immersion, body mass loss was 2.3 ± 0.7%, 2.3 ± 0.5%, and 2.3 ± 0.6% for H2O, CHO, and CHO + E. PV loss after immersion was 19.8 ± 8.5% in H2O, 18.2 ± 7.0% in CHO, and 13.9 ± 9.3% in CHO + E, which was reduced after the ruck march to 14.7 ± 4.7% (P = .13) in H2O, 8.8 ± 8.3% (P < .01) in CHO, and 4.4 ± 10.9% (P = .02) in CHO + E. The intermittent running protocol distance was 1.4 ± 0.1 km in CON, 1.4 ± 0.2 km in H2O, 1.4 ± 0.1 km in CHO, and 1.4 ± 0.2 km in CHO + E (P = .28). Conclusions Although CHO and CHO + E better restored PV after immersion, post-immersion exercise performance was not augmented compared to H2O, highlighting that fluid replacement following immersion diuresis should focus on restoring volume lost rather than fluid constituents.
ABSTRACT Introduction We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate–electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis. Methods Twelve men (24 ± 2 years; 82.4 ± 15.5 kg; and V̇O2max: 49.8 ± 5.1 mL · kg−1 · min−1) completed four experimental visits: a no-immersion control (CON) and three 4-h cold-water (18.0 °C) immersion trials (H2O, CHO, and CHO + E) followed by exercise in a warm environment (30 °C, 50% relative humidity). The exercise was a 60-minute loaded march (20.4 kg; 55% VO2max) followed by a 10-minute intermittent running protocol. After immersion, subjects were rehydrated with 100% of body mass loss from immersion diuresis during the ruck march. PV is reported as a percent change after immersion, after the ruck march, and after the intermittent running protocol. The intermittent running protocol distance provided an index of exercise performance. Data are reported as mean ± SD. Results After immersion, body mass loss was 2.3 ± 0.7%, 2.3 ± 0.5%, and 2.3 ± 0.6% for H2O, CHO, and CHO + E. PV loss after immersion was 19.8 ± 8.5% in H2O, 18.2 ± 7.0% in CHO, and 13.9 ± 9.3% in CHO + E, which was reduced after the ruck march to 14.7 ± 4.7% (P = .13) in H2O, 8.8 ± 8.3% (P < .01) in CHO, and 4.4 ± 10.9% (P = .02) in CHO + E. The intermittent running protocol distance was 1.4 ± 0.1 km in CON, 1.4 ± 0.2 km in H2O, 1.4 ± 0.1 km in CHO, and 1.4 ± 0.2 km in CHO + E (P = .28). Conclusions Although CHO and CHO + E better restored PV after immersion, post-immersion exercise performance was not augmented compared to H2O, highlighting that fluid replacement following immersion diuresis should focus on restoring volume lost rather than fluid constituents.
We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate-electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis. Twelve men (24 ± 2 years; 82.4 ± 15.5 kg; and V̇O2max: 49.8 ± 5.1 mL · kg-1 · min-1) completed four experimental visits: a no-immersion control (CON) and three 4-h cold-water (18.0 °C) immersion trials (H2O, CHO, and CHO + E) followed by exercise in a warm environment (30 °C, 50% relative humidity). The exercise was a 60-minute loaded march (20.4 kg; 55% VO2max) followed by a 10-minute intermittent running protocol. After immersion, subjects were rehydrated with 100% of body mass loss from immersion diuresis during the ruck march. PV is reported as a percent change after immersion, after the ruck march, and after the intermittent running protocol. The intermittent running protocol distance provided an index of exercise performance. Data are reported as mean ± SD. After immersion, body mass loss was 2.3 ± 0.7%, 2.3 ± 0.5%, and 2.3 ± 0.6% for H2O, CHO, and CHO + E. PV loss after immersion was 19.8 ± 8.5% in H2O, 18.2 ± 7.0% in CHO, and 13.9 ± 9.3% in CHO + E, which was reduced after the ruck march to 14.7 ± 4.7% (P = .13) in H2O, 8.8 ± 8.3% (P < .01) in CHO, and 4.4 ± 10.9% (P = .02) in CHO + E. The intermittent running protocol distance was 1.4 ± 0.1 km in CON, 1.4 ± 0.2 km in H2O, 1.4 ± 0.1 km in CHO, and 1.4 ± 0.2 km in CHO + E (P = .28). Although CHO and CHO + E better restored PV after immersion, post-immersion exercise performance was not augmented compared to H2O, highlighting that fluid replacement following immersion diuresis should focus on restoring volume lost rather than fluid constituents.
We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate-electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis.INTRODUCTIONWe tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate-electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis.Twelve men (24 ± 2 years; 82.4 ± 15.5 kg; and V̇O2max: 49.8 ± 5.1 mL · kg-1 · min-1) completed four experimental visits: a no-immersion control (CON) and three 4-h cold-water (18.0 °C) immersion trials (H2O, CHO, and CHO + E) followed by exercise in a warm environment (30 °C, 50% relative humidity). The exercise was a 60-minute loaded march (20.4 kg; 55% VO2max) followed by a 10-minute intermittent running protocol. After immersion, subjects were rehydrated with 100% of body mass loss from immersion diuresis during the ruck march. PV is reported as a percent change after immersion, after the ruck march, and after the intermittent running protocol. The intermittent running protocol distance provided an index of exercise performance. Data are reported as mean ± SD.METHODSTwelve men (24 ± 2 years; 82.4 ± 15.5 kg; and V̇O2max: 49.8 ± 5.1 mL · kg-1 · min-1) completed four experimental visits: a no-immersion control (CON) and three 4-h cold-water (18.0 °C) immersion trials (H2O, CHO, and CHO + E) followed by exercise in a warm environment (30 °C, 50% relative humidity). The exercise was a 60-minute loaded march (20.4 kg; 55% VO2max) followed by a 10-minute intermittent running protocol. After immersion, subjects were rehydrated with 100% of body mass loss from immersion diuresis during the ruck march. PV is reported as a percent change after immersion, after the ruck march, and after the intermittent running protocol. The intermittent running protocol distance provided an index of exercise performance. Data are reported as mean ± SD.After immersion, body mass loss was 2.3 ± 0.7%, 2.3 ± 0.5%, and 2.3 ± 0.6% for H2O, CHO, and CHO + E. PV loss after immersion was 19.8 ± 8.5% in H2O, 18.2 ± 7.0% in CHO, and 13.9 ± 9.3% in CHO + E, which was reduced after the ruck march to 14.7 ± 4.7% (P = .13) in H2O, 8.8 ± 8.3% (P < .01) in CHO, and 4.4 ± 10.9% (P = .02) in CHO + E. The intermittent running protocol distance was 1.4 ± 0.1 km in CON, 1.4 ± 0.2 km in H2O, 1.4 ± 0.1 km in CHO, and 1.4 ± 0.2 km in CHO + E (P = .28).RESULTSAfter immersion, body mass loss was 2.3 ± 0.7%, 2.3 ± 0.5%, and 2.3 ± 0.6% for H2O, CHO, and CHO + E. PV loss after immersion was 19.8 ± 8.5% in H2O, 18.2 ± 7.0% in CHO, and 13.9 ± 9.3% in CHO + E, which was reduced after the ruck march to 14.7 ± 4.7% (P = .13) in H2O, 8.8 ± 8.3% (P < .01) in CHO, and 4.4 ± 10.9% (P = .02) in CHO + E. The intermittent running protocol distance was 1.4 ± 0.1 km in CON, 1.4 ± 0.2 km in H2O, 1.4 ± 0.1 km in CHO, and 1.4 ± 0.2 km in CHO + E (P = .28).Although CHO and CHO + E better restored PV after immersion, post-immersion exercise performance was not augmented compared to H2O, highlighting that fluid replacement following immersion diuresis should focus on restoring volume lost rather than fluid constituents.CONCLUSIONSAlthough CHO and CHO + E better restored PV after immersion, post-immersion exercise performance was not augmented compared to H2O, highlighting that fluid replacement following immersion diuresis should focus on restoring volume lost rather than fluid constituents.
Author Hess, Hayden W
Lavoie, Elizabeth M
Hostler, David
Schwob, Jacqueline
Pryor, Riana R
Stooks, Jocelyn
Wheelock, Courtney E
Author_xml – sequence: 1
  givenname: Courtney E
  surname: Wheelock
  fullname: Wheelock, Courtney E
– sequence: 2
  givenname: Elizabeth M
  surname: Lavoie
  fullname: Lavoie, Elizabeth M
– sequence: 3
  givenname: Jocelyn
  surname: Stooks
  fullname: Stooks, Jocelyn
– sequence: 4
  givenname: Jacqueline
  surname: Schwob
  fullname: Schwob, Jacqueline
– sequence: 5
  givenname: Hayden W
  surname: Hess
  fullname: Hess, Hayden W
– sequence: 6
  givenname: Riana R
  surname: Pryor
  fullname: Pryor, Riana R
– sequence: 7
  givenname: David
  surname: Hostler
  fullname: Hostler, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37776545$$D View this record in MEDLINE/PubMed
BookMark eNqF0Ulr3DAUB3ARUpJJ2muORdBLc3CizVqOYZoNQjuULrkZjfxMHSxrKlmF-Q750NXgSQ699KIF_d6T0P8EHY5hBITOKLmgxPBL3w8e2sucbMuVOUALajipJOWPh2hBCJOVIKo-RicpPRFChdH0CB1zpZSsRb1Az0sb1-HXto12Ahwivh7ATTEM27L9CvNBH8ayduEPxIRXg03e4h9hyB7wOk_4c5jwKqSp6r0vYqdXELsQvR0d4GXwGxuhxVPAP8stEV91u_H-VX_qc4TUp7foTWeHBO_28yn6fnP9bXlXPXy5vV9ePVSOUzZVTHWCgXC1lhKssS2Tiumu08wooS3VSlLpakuFkM4a0tWOGmrtWshWK8X5Kfo4993E8DtDmhrfJwfDYEcIOTVMK2KMNLUu9MM_9CnkOJbXNZxSXjNqmCzq_V7ldYmj2cTe27htXv65gIsZuBhSitC9EkqaXZDNHGSzD7IUnM8FIW_-Z_8CaDqieg
Cites_doi 10.1249/00005768-198612000-00009
10.1007/s00421-016-3438-3
10.1007/BF00364467
10.1152/physrev.00038.2020
10.1007/s00421-008-0857-9
10.1152/jappl.1994.77.4.1919
10.1123/ijsnem.2013-0034
10.1123/ijsnem.21.6.480
10.1152/jappl.1974.37.2.247
10.1152/jappl.1964.19.3.531
10.1249/00005768-199103000-00008
10.1152/jappl.1974.37.5.679
10.1002/cphy.c130017
10.2170/jjphysiol.36.253
10.2165/11630550-000000000-00000
10.22462/9.10.2018.2
10.2165/00007256-198704050-00002
10.1007/s00421-008-0748-0
10.1002/cphy.c140018
10.1080/0264041031000071191
10.1186/s40101-017-0144-8
10.1097/00005768-200106000-00009
10.1111/sms.13054
10.22462/01.03.2019.2
10.2165/00007256-200737100-00006
10.1519/jsc.0000000000000310
10.1123/ijsnem.20.5.427
10.1249/mss.0000000000001176
10.1007/s40279-019-01223-5
10.1007/s40279-021-01558-y
10.1152/jappl.1998.85.5.1941
10.1097/00005768-199811000-00011
10.1152/japplphysiol.00367.2010
10.1007/s00421-018-3848-5
10.1249/00003677-199101000-00001
10.1152/jappl.1992.73.2.539
ContentType Journal Article
Copyright The Association of Military Surgeons of the United States 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2023
The Association of Military Surgeons of the United States 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Association of Military Surgeons of the United States 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2023
– notice: The Association of Military Surgeons of the United States 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
K9.
NAPCQ
7X8
DOI 10.1093/milmed/usad379
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Docstoc
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1930-613X
EndPage 1620
ExternalDocumentID 37776545
10_1093_milmed_usad379
10.1093/milmed/usad379
Genre Journal Article
GrantInformation_xml – fundername: Naval Sea Systems Command
  grantid: N00024-20-C-4307
GroupedDBID ---
.GJ
.HR
04C
0R~
123
1CY
29M
36B
48X
53G
5RE
5WD
7RV
7X7
88E
88I
8AF
8AO
8C1
8FI
8FJ
8R4
8R5
96U
AABZA
AACZT
AAJQQ
AAMOW
AAMZS
AAPGJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAUOS
AAUQX
AAVAP
AAWDT
AAWTL
ABDBF
ABDFA
ABEJV
ABGNP
ABIVO
ABJHR
ABJNI
ABKEB
ABNHQ
ABPQP
ABPTD
ABQNK
ABUWG
ABVGC
ABWST
ABXVK
ABXVV
ACBNA
ACFRR
ACGFS
ACGOD
ACIHN
ACOZV
ACUHS
ACUTJ
ACVCV
ACYHN
ACZBC
ADAES
ADBBV
ADBKU
ADGZP
ADIPN
ADLOL
ADMTO
ADNBA
ADQBN
ADQIT
ADRTK
ADVEK
ADYLA
AEAQA
AEJER
AEMQT
AENEX
AETBJ
AFAZI
AFFQV
AFFZL
AFKRA
AFOFC
AFVSF
AFXAL
AFYAG
AGINJ
AGKRT
AGMDO
AGORE
AGQXC
AGUTN
AHGBF
AHMBA
AHMMS
AICVH
AJBYB
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
APJGH
AQDSO
ATGXG
AVNTJ
AZQEC
B0M
BAYMD
BCR
BCRHZ
BCU
BEC
BENPR
BEYMZ
BHZBG
BKEYQ
BKNYI
BLC
BMSDO
BOXDG
BPHCQ
BTRTY
BVXVI
C45
CCPQU
CDBKE
DAKXR
DWQXO
EAP
EBC
EBD
EBS
ECIRT
EHN
EIHBH
EIHJH
EIS
EJD
EMB
EMI
EMK
EMOBN
ENC
ENERS
EPL
EPT
ESX
ETYVG
EX3
EYXSX
F5P
F8P
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
GAUVT
GJXCC
GNUQQ
H13
HCIFZ
HMCUK
JXSIZ
K9-
KBUDW
KOP
KSI
KSN
L7B
LOXHT
M0R
M1P
M1Q
M2M
M2P
M2Q
MBLQV
MHKGH
MJWOD
MXSPP
NAPCQ
NJ-
NOMLY
NOYVH
NVLIB
O9-
OAUYM
OBFPC
OCZFY
ODMLO
OHT
OJZSN
OK1
OPAEJ
OVD
OWPYF
OXVUA
PAFKI
PCD
PEA
PHGZM
PHGZT
PLIXB
PQQKQ
PROAC
PSQYO
PSYQQ
Q-A
Q2X
Q~Q
ROX
RUSNO
RWL
RXW
S0X
SJFOW
SJN
SV3
TAE
TEORI
THA
TMA
TUS
U5U
UAP
UKHRP
UNMZH
WH7
WOW
YADRA
YAJVU
YAYTL
YKOAZ
YXANX
ZGI
ZXP
~8M
~SN
AAYXX
CITATION
NU-
CGR
CUY
CVF
ECM
EIF
NPM
4T-
K9.
7X8
ID FETCH-LOGICAL-c312t-27f42e4c5866ea9ad26728ff829748a187616c5a1446ca90f5c191aab46d87733
ISSN 0026-4075
1930-613X
IngestDate Sun Sep 28 10:20:27 EDT 2025
Sat Jul 26 00:51:48 EDT 2025
Mon Jul 21 06:04:46 EDT 2025
Wed Oct 01 00:24:11 EDT 2025
Mon Jun 30 08:34:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Association of Military Surgeons of the United States 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-27f42e4c5866ea9ad26728ff829748a187616c5a1446ca90f5c191aab46d87733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 37776545
PQID 3113521926
PQPubID 7561
PageCount 9
ParticipantIDs proquest_miscellaneous_2870996958
proquest_journals_3113521926
pubmed_primary_37776545
crossref_primary_10_1093_milmed_usad379
oup_primary_10_1093_milmed_usad379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jul-03
PublicationDateYYYYMMDD 2024-07-03
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-03
  day: 03
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: England
– name: Oxford
PublicationTitle Military medicine
PublicationTitleAlternate Mil Med
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Deshayes (2024093000020163500_R11) 2020; 50
Ramanathan (2024093000020163500_R18) 1964; 19
Wakabayashi (2024093000020163500_R9) 2017; 36
Pendergast (2024093000020163500_R2) 2015; 5
Libert (2024093000020163500_R16) 1986; 36
Gisolfi (2024093000020163500_R25) 1998; 85
Fujimoto (2024093000020163500_R4) 2016; 116
Noakes (2024093000020163500_R21) 1991; 23
Mears (2024093000020163500_R38) 2014; 24
Shi (2024093000020163500_R22) 2017; 49
Dill (2024093000020163500_R17) 1974; 37
Jones (2024093000020163500_R8) 2018; 118
Shi (2024093000020163500_R24) 2010; 20
Murray (2024093000020163500_R13) 1987; 4
Cheuvront (2024093000020163500_R15) 2010; 109
Coggan (2024093000020163500_R29) 1991; 19
Neufer (2024093000020163500_R27) 1986; 18
Gisolfi (2024093000020163500_R26) 2001; 33
Sugiura (2024093000020163500_R32) 1998; 30
Turgeon (2024093000020163500_R41) 2012
Hess (2024093000020163500_R5) 2019; 46
Dearborn (2024093000020163500_R33) 1999; 70
Merson (2024093000020163500_R34) 2008; 103
Casa (2024093000020163500_R14) 2000; 35
Beelen (2024093000020163500_R7) 1991; 63
Rowlands (2024093000020163500_R20) 2022; 52
Torranin (2024093000020163500_R31) 1979; 19
Kenefick (2024093000020163500_R37) 2008; 104
Rowlands (2024093000020163500_R35) 2011; 21
Hess (2024093000020163500_R6) 2018; 45(5)
Periard (2024093000020163500_R10) 2021; 101
Aldous (2024093000020163500_R19) 2014; 28
Wheelock (2024093000020163500_R12) 2023
Wegmann (2024093000020163500_R36) 2012; 42
Costill (2024093000020163500_R23) 1974; 37
Nakamitsu (2024093000020163500_R3) 1994; 77
Aird (2024093000020163500_R39) 2018; 28
Johansen (2024093000020163500_R1) 1992; 73
Morris (2024093000020163500_R28) 2003; 21
Judelson (2024093000020163500_R30) 2007; 37
Cheuvront (2024093000020163500_R40) 2014; 4
References_xml – volume: 18
  start-page: 658
  issue: 6
  year: 1986
  ident: 2024093000020163500_R27
  article-title: Effects of exercise and carbohydrate composition on gastric emptying
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/00005768-198612000-00009
– volume: 116
  start-page: 1819
  issue: 9
  year: 2016
  ident: 2024093000020163500_R4
  article-title: Maximal workload but not peak oxygen uptake is decreased during immersed incremental exercise at cooler temperatures
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-016-3438-3
– volume: 63
  start-page: 387
  issue: 5
  year: 1991
  ident: 2024093000020163500_R7
  article-title: Effect of lowered muscle temperature on the physiological response to exercise in men
  publication-title: Eur J Appl Physiol Occup Physiol
  doi: 10.1007/BF00364467
– volume: 101
  start-page: 1873
  issue: 4
  year: 2021
  ident: 2024093000020163500_R10
  article-title: Exercise under heat stress: thermoregulation, hydration, performance implications and mitigation strategies
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00038.2020
– volume: 104
  start-page: 1013
  issue: 6
  year: 2008
  ident: 2024093000020163500_R37
  article-title: Effect of increased plasma osmolality on cold-induced thirst attenuation
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-008-0857-9
– volume: 77
  start-page: 1919
  issue: 4
  year: 1994
  ident: 2024093000020163500_R3
  article-title: Effect of water temperature on diuresis-natriuresis: AVP, ANP, and urodilatin during immersion in men
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/jappl.1994.77.4.1919
– volume-title: Linne & Ringsrud’s Clinical Laboratory Science: The Basics and Routine Techniques
  year: 2012
  ident: 2024093000020163500_R41
– volume: 24
  start-page: 47
  issue: 1
  year: 2014
  ident: 2024093000020163500_R38
  article-title: Voluntary water intake during and following moderate exercise in the cold
  publication-title: Int J Sport Nutr Exerc Metab
  doi: 10.1123/ijsnem.2013-0034
– volume: 21
  start-page: 480
  issue: 6
  year: 2011
  ident: 2024093000020163500_R35
  article-title: Unilateral fluid absorption and effects on peak power after ingestion of commercially available hypotonic, isotonic, and hypertonic sports drinks
  publication-title: Int J Sport Nutr Exerc Metab
  doi: 10.1123/ijsnem.21.6.480
– volume: 37
  start-page: 247
  issue: 2
  year: 1974
  ident: 2024093000020163500_R17
  article-title: Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1974.37.2.247
– volume: 19
  start-page: 531
  issue: 3
  year: 1964
  ident: 2024093000020163500_R18
  article-title: A new weighting system for mean surface temperature of the human body
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1964.19.3.531
– volume: 23
  start-page: 307
  issue: 3
  year: 1991
  ident: 2024093000020163500_R21
  article-title: The importance of volume in regulating gastric emptying
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/00005768-199103000-00008
– volume: 37
  start-page: 679
  issue: 5
  year: 1974
  ident: 2024093000020163500_R23
  article-title: Factors limiting gastric emptying during rest and exercise
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1974.37.5.679
– volume: 4
  start-page: 257
  issue: 1
  year: 2014
  ident: 2024093000020163500_R40
  article-title: Dehydration: physiology, assessment, and performance effects
  publication-title: Compr Physiol
  doi: 10.1002/cphy.c130017
– volume: 36
  start-page: 253
  issue: 2
  year: 1986
  ident: 2024093000020163500_R16
  article-title: Temperature regulation during intermittent exercise with progressive dehydration
  publication-title: Jpn J Physiol
  doi: 10.2170/jjphysiol.36.253
– volume: 42
  start-page: 545
  issue: 7
  year: 2012
  ident: 2024093000020163500_R36
  article-title: Pre-cooling and sports performance: a meta-analytical review
  publication-title: Sports Med
  doi: 10.2165/11630550-000000000-00000
– volume: 45(5)
  start-page: 495
  year: 2018
  ident: 2024093000020163500_R6
  article-title: Effect of rehydration schedule after four-hour head-out water immersion on running performance and recovery
  publication-title: Undersea Hyperb Med
  doi: 10.22462/9.10.2018.2
– volume: 4
  start-page: 322
  issue: 5
  year: 1987
  ident: 2024093000020163500_R13
  article-title: The effects of consuming carbohydrate-electrolyte beverages on gastric emptying and fluid absorption during and following exercise
  publication-title: Sports Med
  doi: 10.2165/00007256-198704050-00002
– volume: 103
  start-page: 585
  issue: 5
  year: 2008
  ident: 2024093000020163500_R34
  article-title: Rehydration with drinks differing in sodium concentration and recovery from moderate exercise-induced hypohydration in man
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-008-0748-0
– volume: 5
  start-page: 1705
  issue: 4
  year: 2015
  ident: 2024093000020163500_R2
  article-title: Human physiology in an aquatic environment
  publication-title: Compr Physiol
  doi: 10.1002/cphy.c140018
– volume: 21
  start-page: 371
  issue: 5
  year: 2003
  ident: 2024093000020163500_R28
  article-title: The influence of a 6.5% carbohydrate-electrolyte solution on performance of prolonged intermittent high-intensity running at 30 degrees C
  publication-title: J Sports Sci
  doi: 10.1080/0264041031000071191
– volume: 36
  issue: 1
  year: 2017
  ident: 2024093000020163500_R9
  article-title: Neuromuscular function during knee extension exercise after cold water immersion
  publication-title: J Physiol Anthropol
  doi: 10.1186/s40101-017-0144-8
– volume: 33
  start-page: 907
  issue: 6
  year: 2001
  ident: 2024093000020163500_R26
  article-title: Intestinal fluid absorption during exercise: role of sport drink osmolality and [Na+]
  publication-title: Med Sci Sports Exerc
  doi: 10.1097/00005768-200106000-00009
– volume: 28
  start-page: 1476
  issue: 5
  year: 2018
  ident: 2024093000020163500_R39
  article-title: Effects of fasted vs fed-state exercise on performance and post-exercise metabolism: a systematic review and meta-analysis
  publication-title: Scand J Med Sci Sports
  doi: 10.1111/sms.13054
– volume: 46
  start-page: 7
  issue: 1
  year: 2019
  ident: 2024093000020163500_R5
  article-title: Cold water submersion attenuates post-submersion aerobic performance and orthostatic tolerance irrespective of partial rehydration with water
  publication-title: Undersea Hyperb Med
  doi: 10.22462/01.03.2019.2
– volume: 37
  start-page: 907
  issue: 10
  year: 2007
  ident: 2024093000020163500_R30
  article-title: Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance?
  publication-title: Sports Med
  doi: 10.2165/00007256-200737100-00006
– volume: 35
  start-page: 212
  issue: 2
  year: 2000
  ident: 2024093000020163500_R14
  article-title: National athletic trainers’ association position statement: fluid replacement for athletes
  publication-title: J Athl Train
– volume: 28
  start-page: 1971
  issue: 7
  year: 2014
  ident: 2024093000020163500_R19
  article-title: The reliability and validity of a soccer-specific nonmotorised treadmill simulation (intermittent soccer performance test)
  publication-title: J Strength Cond Res
  doi: 10.1519/jsc.0000000000000310
– volume: 20
  start-page: 427
  issue: 5
  year: 2010
  ident: 2024093000020163500_R24
  article-title: Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis
  publication-title: Int J Sport Nutr Exerc Metab
  doi: 10.1123/ijsnem.20.5.427
– volume: 49
  start-page: 1015
  issue: 5
  year: 2017
  ident: 2024093000020163500_R22
  article-title: Effect of different osmolalities, CHO types, and [CHO] on gastric emptying in humans
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/mss.0000000000001176
– volume: 50
  start-page: 581
  issue: 3
  year: 2020
  ident: 2024093000020163500_R11
  article-title: Impact of pre-exercise hypohydration on aerobic exercise performance, peak oxygen consumption and oxygen consumption at lactate threshold: a systematic review with meta-analysis
  publication-title: Sports Med
  doi: 10.1007/s40279-019-01223-5
– volume: 52
  start-page: 349
  issue: 2
  year: 2022
  ident: 2024093000020163500_R20
  article-title: The hydrating effects of hypertonic, isotonic and hypotonic sports drinks and waters on central hydration during continuous exercise: a systematic meta-analysis and perspective
  publication-title: Sports Med
  doi: 10.1007/s40279-021-01558-y
– volume: 85
  start-page: 1941
  issue: 5
  year: 1998
  ident: 2024093000020163500_R25
  article-title: Effect of beverage osmolality on intestinal fluid absorption during exercise
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1998.85.5.1941
– volume: 30
  start-page: 1624
  issue: 11
  year: 1998
  ident: 2024093000020163500_R32
  article-title: Effect of carbohydrate ingestion on sprint performance following continuous and intermittent exercise
  publication-title: Med Sci Sports Exerc
  doi: 10.1097/00005768-199811000-00011
– volume: 109
  start-page: 1989
  issue: 6
  year: 2010
  ident: 2024093000020163500_R15
  article-title: Mechanisms of aerobic performance impairment with heat stress and dehydration
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00367.2010
– year: 2023
  ident: 2024093000020163500_R12
  article-title: Partial and complete fluid replacement maintains exercise performance in a warm environment following prolonged cold-water immersion
  publication-title: J Strength Cond Res
– volume: 118
  start-page: 1189
  issue: 6
  year: 2018
  ident: 2024093000020163500_R8
  article-title: Impairment of exercise performance following cold water immersion is not attenuated after 7 days of cold acclimation
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-018-3848-5
– volume: 19
  start-page: 1
  issue: 1
  year: 1979
  ident: 2024093000020163500_R31
  article-title: The effect of acute thermal dehydration and rapid rehydration on isometric and istonic endurance
  publication-title: J Sports Med Phys Fitness
– volume: 70
  start-page: 35
  issue: 1
  year: 1999
  ident: 2024093000020163500_R33
  article-title: Effect of glucose-water ingestion on exercise thermoregulation in men dehydrated after water immersion
  publication-title: Aviat Space Environ Med
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  ident: 2024093000020163500_R29
  article-title: Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance
  publication-title: Exerc Sport Sci Rev
  doi: 10.1249/00003677-199101000-00001
– volume: 73
  start-page: 539
  issue: 2
  year: 1992
  ident: 2024093000020163500_R1
  article-title: Plasma volume, fluid shifts, and renal responses in humans during 12 h of head-out water immersion
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/jappl.1992.73.2.539
SSID ssj0014981
Score 2.373358
Snippet ABSTRACT Introduction We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate–electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better...
We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate-electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume...
Introduction We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate–electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 1612
SubjectTerms Adult
Carbohydrates
Diuresis - drug effects
Diuresis - physiology
Electrolytes
Electrolytes - analysis
Fluid Therapy - methods
Fluid Therapy - standards
Fluid Therapy - statistics & numerical data
Humans
Immersion - physiopathology
Male
Plasma Volume - physiology
Water
Title Carbohydrate or Electrolyte Rehydration Recovers Plasma Volume but Not Post-immersion Performance Compared to Water After Immersion Diuresis
URI https://www.ncbi.nlm.nih.gov/pubmed/37776545
https://www.proquest.com/docview/3113521926
https://www.proquest.com/docview/2870996958
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1930-613X
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0014981
  issn: 0026-4075
  databaseCode: ABDBF
  dateStart: 20030801
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost International Security & Counter Terrorism Reference Center
  customDbUrl:
  eissn: 1930-613X
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0014981
  issn: 0026-4075
  databaseCode: EIS
  dateStart: 20030801
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=tsh
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZKJyFuEP_rGMggJC6qbIud2PFl160aiE1IbLC7yHZSrVLboDYZKs_Ai_FWHNtJcOkkBjdRlLhO2u_r8Tk-fwi9SXRMGdNhIMNEBRGjNFBaxUEmkgwEJR9LbaMtztjJRfT-Mr7sdH56UUtVqfb09xvzSv4HVbgGuJos2X9Atp0ULsA54AtHQBiOt8J4KBequFplptyDCSw_dj1tpqvSdGNwNwy8xsY04RemRdFyJvufrUjqq6rsnxWlbdgbTOwOthn90cslGDYh6qCifpGmoOLANhV_144-mlRgsU-WvpZ7akt_L1YbnnsQ_fm0lsCmW145B5HU5kJ8kNeFc5e0wWZ-u2MwB2qnhc6nq5bUn_TVt0K5iF8Nq9y0eV69l0EiG_dKfflMGFi0rpfKXu5EsqDGwLVdgz2ZLTxy8iDxZDDosMRbz0Nms-021wpXR2s2mc7MtvKoWsqMusY262W5_1gu2yBG576nqZshrT9_B20Rzhjpoq3B4dHhqHVpRSJx7Rvrr9hWEKX7bob9eoY1DWkt63LD-LFK0PkDdL-2XvDAUfEh6uTzR-juaY3yY_TDZyQuFthjJPYYiRtGYsdI7BiJgZEYGInXGYk9RuKGkbgssGUktozELSNxw8gn6GJ0fD48Cep-H4GmISkDwscRySMdJ4zlUsiMME6S8dhkf0cJCBPOQqZjabYwtBQH41iHIpRSRSxLOKf0KerOi3m-jTABTTvPlMgzONHqQCSMR0ozoQkLNaU99Lb5jdOvrqxLejOePfQaIPjroN0GobSWD8uUhiFYN2BBsR561d4G6W1ccnKeF9UyNWEGQjARJz30zCHbPopyzhkYODu3ftfn6N7vf9Uu6paLKn8BOnOpXtZs_AXOkMxt
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbohydrate+or+Electrolyte+Rehydration+Recovers+Plasma+Volume+but+Not+Post-immersion+Performance+Compared+to+Water+After+Immersion+Diuresis&rft.jtitle=Military+medicine&rft.au=Wheelock%2C+Courtney+E&rft.au=Lavoie%2C+Elizabeth+M&rft.au=Stooks%2C+Jocelyn&rft.au=Schwob%2C+Jacqueline&rft.date=2024-07-03&rft.issn=0026-4075&rft.eissn=1930-613X&rft.volume=189&rft.issue=7-8&rft.spage=1612&rft.epage=1620&rft_id=info:doi/10.1093%2Fmilmed%2Fusad379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_milmed_usad379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-4075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-4075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-4075&client=summon