Photo-induced absorption in the pump probe spectroscopy of single-walled carbon nanotubes

Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species, gre...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 7; pp. 542 - 546
Main Author 朱子鹏
Format Journal Article
LanguageEnglish
Published 01.07.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/7/077803

Cover

More Information
Summary:Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species, greatly facilitate the identification of the photo-induced absorption signal of one tube species. It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the E11 state. This finding prompts a new explanation for the origin of the photo-induced absorption: the transition from the ground state to a phonon coupled state near the E ii state. The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals, which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes. The finding sheds some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.
Bibliography:Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species, greatly facilitate the identification of the photo-induced absorption signal of one tube species. It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the E11 state. This finding prompts a new explanation for the origin of the photo-induced absorption: the transition from the ground state to a phonon coupled state near the E ii state. The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals, which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes. The finding sheds some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.
11-5639/O4
photo-induced absorption;ultrafast spectroscopy;carbon nanotubes
Zhu Zi-Peng College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/7/077803