Multi-objective teaching–learning evolutionary algorithm for enhancing sensor network coverage and lifetime
Coverage plays a vital role in the performance and proper functioning of wireless sensor networks. However, ensuring a network’s coverage is met numerous challenges due to sensors having limited sensing range, communication range, and energy. Many coverage problems are NP-hard, one of which is the n...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 108; p. 104554 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-1976 1873-6769 |
DOI | 10.1016/j.engappai.2021.104554 |
Cover
Abstract | Coverage plays a vital role in the performance and proper functioning of wireless sensor networks. However, ensuring a network’s coverage is met numerous challenges due to sensors having limited sensing range, communication range, and energy. Many coverage problems are NP-hard, one of which is the network coverage with lifetime problem (CTLP). As such, a number of meta-heuristic algorithms have been proposed to solve CTLP in practical scenarios. This paper proposes an approach for CTLP based on the teaching–learning based optimization algorithm (TLBO), which is often employed to address continuous optimization problems. Specifically, a discrete version of multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO) called HTLBO is proposed, employing genetic operators inspired by evolutionary computing methods. Experimental results are extensively compared to those obtained from previous approaches, namely MO-ITLBO, fast elitist non-dominated sorting genetic algorithm (NSGA-II), multi-objective differential evolution (MODE), and multi-objective evolutionary algorithm based on decomposition (MOEA/D). The evaluation shows significant improvements in different metrics, including spacing, hypervolume, non-dominated solutions, and coverage.
•We investigate the problem of optimal sensor node placement with three objectives: (i) minimize the number of deployed sensor nodes, (ii) maximize the k-coverage metric, and (iii) maximize the network lifetime.•We propose a hybrid algorithm combining teaching–learning based optimization and evolutionary computing for multi-objective sensor placement. The proposed algorithm introduces multiple teachers to improve the learners’ results in different subjects. Moreover, a learner interacts with other learners through a crossover operator.•We compare the proposed algorithm with existing methods, including MODE, MOEAD, MO-TLBO, and NSGA-II on C-metric, spacing-metric, hypervolume-metric, and non-dominated solutions metric to demonstrate its effectiveness. |
---|---|
AbstractList | Coverage plays a vital role in the performance and proper functioning of wireless sensor networks. However, ensuring a network’s coverage is met numerous challenges due to sensors having limited sensing range, communication range, and energy. Many coverage problems are NP-hard, one of which is the network coverage with lifetime problem (CTLP). As such, a number of meta-heuristic algorithms have been proposed to solve CTLP in practical scenarios. This paper proposes an approach for CTLP based on the teaching–learning based optimization algorithm (TLBO), which is often employed to address continuous optimization problems. Specifically, a discrete version of multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO) called HTLBO is proposed, employing genetic operators inspired by evolutionary computing methods. Experimental results are extensively compared to those obtained from previous approaches, namely MO-ITLBO, fast elitist non-dominated sorting genetic algorithm (NSGA-II), multi-objective differential evolution (MODE), and multi-objective evolutionary algorithm based on decomposition (MOEA/D). The evaluation shows significant improvements in different metrics, including spacing, hypervolume, non-dominated solutions, and coverage.
•We investigate the problem of optimal sensor node placement with three objectives: (i) minimize the number of deployed sensor nodes, (ii) maximize the k-coverage metric, and (iii) maximize the network lifetime.•We propose a hybrid algorithm combining teaching–learning based optimization and evolutionary computing for multi-objective sensor placement. The proposed algorithm introduces multiple teachers to improve the learners’ results in different subjects. Moreover, a learner interacts with other learners through a crossover operator.•We compare the proposed algorithm with existing methods, including MODE, MOEAD, MO-TLBO, and NSGA-II on C-metric, spacing-metric, hypervolume-metric, and non-dominated solutions metric to demonstrate its effectiveness. |
ArticleNumber | 104554 |
Author | Binh, Huynh Thi Thanh Tam, Nguyen Thi Hoang, Vu Dinh Vinh, Le Trong |
Author_xml | – sequence: 1 givenname: Nguyen Thi surname: Tam fullname: Tam, Nguyen Thi email: tamnt@vnu.edu.vn organization: University of Science, Vietnam National University, Hanoi, Viet Nam – sequence: 2 givenname: Vu Dinh surname: Hoang fullname: Hoang, Vu Dinh email: hoang.vd161728@sis.hust.edu.vn organization: Hanoi University of Science and Technology, Viet Nam – sequence: 3 givenname: Huynh Thi Thanh surname: Binh fullname: Binh, Huynh Thi Thanh email: binhht@soict.hust.edu.vn organization: Hanoi University of Science and Technology, Viet Nam – sequence: 4 givenname: Le Trong surname: Vinh fullname: Vinh, Le Trong email: vinhlt@vnu.edu.vn organization: University of Science, Vietnam National University, Hanoi, Viet Nam |
BookMark | eNqFkE1OwzAQhS1UJErhCigXSLHj2GkkFqCKP6mIDawtx5mkDqld2W4QO-7ADTkJjgobNl290dO80bzvFE2MNYDQBcFzggm_7OZgWrndSj3PcEaimTOWH6EpWRQ05QUvJ2iKS5alpCz4CTr1vsMY00XOp2jztOuDTm3VgQp6gCSAVGtt2u_Prx6kM3FMYLD9LmhrpPtIZN9ap8N6kzTWJWDW0qhxyYPx0TAQ3q17S5QdwMkWEmnqpNcNBL2BM3TcyN7D-a_O0Ovd7cvyIV093z8ub1apoiQLaUZqxXBNypotcsJ5VdMSZFZWGauiNjVmJGcUcp4DVpgCBcZBsZLH9aoAOkN8f1c5672DRmyd3sTvBcFihCY68QdNjNDEHloMXv0LKh3kWD04qfvD8et9HGK5QYMTXmkwCmrtIl9RW33oxA_ArJMn |
CitedBy_id | crossref_primary_10_1016_j_engappai_2024_109916 crossref_primary_10_1364_JOSAB_547482 crossref_primary_10_1007_s11036_024_02430_9 crossref_primary_10_1109_TCE_2024_3386909 crossref_primary_10_1016_j_eswa_2024_124878 crossref_primary_10_1016_j_eswa_2023_122568 crossref_primary_10_1016_j_adhoc_2023_103321 crossref_primary_10_1016_j_jksuci_2024_101919 crossref_primary_10_1109_ACCESS_2022_3217200 crossref_primary_10_1016_j_aej_2025_01_023 crossref_primary_10_3390_en16052285 |
Cites_doi | 10.1016/j.adhoc.2019.102037 10.1109/TCOMM.2018.2874990 10.1016/j.ins.2017.08.018 10.1016/j.ins.2019.02.059 10.2136/vzj2008.0138 10.1016/j.cor.2014.11.002 10.1109/TMC.2016.2613529 10.1007/s11276-016-1412-y 10.1007/s00521-016-2823-5 10.1016/j.engappai.2016.03.004 10.1016/j.ins.2014.05.049 10.1007/s11277-014-2094-3 10.1145/1978802.1978811 10.1016/j.asoc.2018.12.022 10.1016/j.adhoc.2020.102094 10.1016/j.engstruct.2015.10.039 10.1016/j.asoc.2017.01.021 10.1016/j.compeleceng.2015.11.009 10.1109/JPROC.2003.814918 10.1016/j.ins.2019.07.060 10.1016/j.ins.2021.06.056 10.1007/s11277-019-06741-z 10.1007/s11277-019-06935-5 10.1155/2021/8423297 10.1002/dac.4212 10.1016/j.adhoc.2021.102660 10.1145/2833258.2833299 10.1007/s11276-020-02527-5 10.1109/4235.996017 10.1109/TCYB.2013.2250955 10.1109/TEVC.2007.892759 10.3390/s20092586 10.1109/TGCN.2021.3067885 10.1109/COMST.2017.2650979 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engappai.2021.104554 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1873-6769 |
ExternalDocumentID | 10_1016_j_engappai_2021_104554 S0952197621003973 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-21dc50d19d584166bd39ea29b25bea2fd051453e464e0c03e3e56ec596841b7e3 |
IEDL.DBID | .~1 |
ISSN | 0952-1976 |
IngestDate | Tue Jul 01 01:04:03 EDT 2025 Thu Apr 24 23:06:10 EDT 2025 Fri Feb 23 02:41:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wireless underground sensor networks Network lifetime Evolutionary algorithms Load balancing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-21dc50d19d584166bd39ea29b25bea2fd051453e464e0c03e3e56ec596841b7e3 |
ParticipantIDs | crossref_primary_10_1016_j_engappai_2021_104554 crossref_citationtrail_10_1016_j_engappai_2021_104554 elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Audet, Bigeon, Cartier, Le Digabel, Salomon (b1) 2018 Wang (b35) 2011; 43 Binh, Mellouk, Binh, Loi, San, Anh (b5) 2020; 20 Binh, Hanh, Dey (b4) 2018; 30 Farshchin, Camp, Maniat (b10) 2016; 106 Gupta, Kuila, Jana (b11) 2016; 56 ZainEldin, Badawy, Elhosseini, Arafat, Abraham (b41) 2020 Tam, Dat, Lan, Binh, Swami (b32) 2021; 576 Zheng, Cai, Li, Gao (b44) 2016; 16 Saadi, Bounceur, Euler, Lounis, Bezoui, Kerkar, Pottier (b26) 2020; 111 Torshizi, Sheikhzadeh (b34) 2020; 110 Naeem, Javed, Rizwan, Abbas, Lin, Gadekallu (b21) 2021; 5 Yuan, Chen, Yao (b40) 2017; 418 Zhang, Lu, Zhang (b43) 2020; 101 Tam, Binh, Dung, Lan, Yuan, Yao (b30) 2019; 504 Li, L., Vuran, M.C., Akyildiz, I.F., 2007. Characteristics of underground channel for wireless underground sensor networks, In: Proc. Med-Hoc-Net. Vol. 7. pp. 13–15. Jaradat, Masoud, Al-Jazzar, Alia (b15) 2021; 27 Chowdhury, De (b8) 2021 Rebai, Snoussi, Hnaien, Khoukhi (b25) 2015; 59 Bogena, Huisman, Meier, Rosenbaum, Weuthen (b6) 2009; 8 Hai, Le Vinh (b12) 2017; 54 Tam, Binh, Hung, Dung (b31) 2019 Chong, Kumar (b7) 2003; 91 Harizan, Kuila (b14) 2020; 33 Yoon, Kim (b39) 2013; 43 Tam, Hai (b33) 2018; 24 Hanh, Binh, Hoai, Palaniswami (b13) 2019; 488 Nguyen, Thanh, Le (b22) 2015 Rao (b24) 2016 Khalesian, Delavar (b16) 2016; 53 Binh, Binh, Ngoc, Ly, Nghia (b2) 2019; 76 Patel, Savsani (b23) 2016; 357 Sangwan, Singh (b28) 2015; 80 Salam, Vuran (b27) 2018 Binh, Binh, Van Linh, Yu (b3) 2020 Liu, Sun, Jiang (b18) 2018; 67 Zhang, Li (b42) 2007; 11 Deb, Pratap, Agarwal, Meyarivan (b9) 2002; 6 Ly, D.T.H., Hanh, N.T., Binh, H.T.T., Nghia, N.D., 2015. An improved genetic algorithm for maximizing area coverage in Wireless Sensor Networks. In: Proceedings of the Sixth International Symposium on Information and Communication Technology. pp. 61–66. Luo, Hong, Li, Wang, Chen, Hu (b19) 2020; 98 Yetgin, Cheung, El-Hajjar, Hanzo (b38) 2017; 19 Wen, Yu (b36) 2021; 2021 Shu, Dsouza, Bhargava, de Silva (b29) 2019 Xue, Sanderson, Graves (b37) 2003 Audet (10.1016/j.engappai.2021.104554_b1) 2018 Rebai (10.1016/j.engappai.2021.104554_b25) 2015; 59 Rao (10.1016/j.engappai.2021.104554_b24) 2016 Torshizi (10.1016/j.engappai.2021.104554_b34) 2020; 110 Chowdhury (10.1016/j.engappai.2021.104554_b8) 2021 Naeem (10.1016/j.engappai.2021.104554_b21) 2021; 5 Khalesian (10.1016/j.engappai.2021.104554_b16) 2016; 53 Binh (10.1016/j.engappai.2021.104554_b5) 2020; 20 Nguyen (10.1016/j.engappai.2021.104554_b22) 2015 Liu (10.1016/j.engappai.2021.104554_b18) 2018; 67 Shu (10.1016/j.engappai.2021.104554_b29) 2019 10.1016/j.engappai.2021.104554_b17 Chong (10.1016/j.engappai.2021.104554_b7) 2003; 91 Wang (10.1016/j.engappai.2021.104554_b35) 2011; 43 Harizan (10.1016/j.engappai.2021.104554_b14) 2020; 33 Yuan (10.1016/j.engappai.2021.104554_b40) 2017; 418 Farshchin (10.1016/j.engappai.2021.104554_b10) 2016; 106 Gupta (10.1016/j.engappai.2021.104554_b11) 2016; 56 Jaradat (10.1016/j.engappai.2021.104554_b15) 2021; 27 Saadi (10.1016/j.engappai.2021.104554_b26) 2020; 111 Hanh (10.1016/j.engappai.2021.104554_b13) 2019; 488 Hai (10.1016/j.engappai.2021.104554_b12) 2017; 54 Luo (10.1016/j.engappai.2021.104554_b19) 2020; 98 Binh (10.1016/j.engappai.2021.104554_b2) 2019; 76 Binh (10.1016/j.engappai.2021.104554_b3) 2020 Sangwan (10.1016/j.engappai.2021.104554_b28) 2015; 80 Yetgin (10.1016/j.engappai.2021.104554_b38) 2017; 19 Deb (10.1016/j.engappai.2021.104554_b9) 2002; 6 Patel (10.1016/j.engappai.2021.104554_b23) 2016; 357 Yoon (10.1016/j.engappai.2021.104554_b39) 2013; 43 Zheng (10.1016/j.engappai.2021.104554_b44) 2016; 16 Tam (10.1016/j.engappai.2021.104554_b30) 2019; 504 10.1016/j.engappai.2021.104554_b20 Xue (10.1016/j.engappai.2021.104554_b37) 2003 Bogena (10.1016/j.engappai.2021.104554_b6) 2009; 8 Binh (10.1016/j.engappai.2021.104554_b4) 2018; 30 Tam (10.1016/j.engappai.2021.104554_b32) 2021; 576 Tam (10.1016/j.engappai.2021.104554_b33) 2018; 24 Zhang (10.1016/j.engappai.2021.104554_b42) 2007; 11 Tam (10.1016/j.engappai.2021.104554_b31) 2019 Zhang (10.1016/j.engappai.2021.104554_b43) 2020; 101 Wen (10.1016/j.engappai.2021.104554_b36) 2021; 2021 Salam (10.1016/j.engappai.2021.104554_b27) 2018 ZainEldin (10.1016/j.engappai.2021.104554_b41) 2020 |
References_xml | – volume: 111 start-page: 1525 year: 2020 end-page: 1543 ident: b26 article-title: Maximum lifetime target coverage in wireless sensor networks publication-title: Wirel. Pers. Commun. – volume: 80 start-page: 1475 year: 2015 end-page: 1500 ident: b28 article-title: Survey on coverage problems in wireless sensor networks publication-title: Wirel. Pers. Commun. – volume: 5 start-page: 611 year: 2021 end-page: 621 ident: b21 article-title: Dare-SEP: A hybrid approach of distance aware residual energy-efficient SEP for WSN publication-title: IEEE Trans. Green Commun. Netw. – start-page: 9 year: 2016 end-page: 39 ident: b24 article-title: Teaching-learning-based optimization algorithm publication-title: Teaching Learning Based Optimization Algorithm – volume: 16 start-page: 1787 year: 2016 end-page: 1801 ident: b44 article-title: A study on application-aware scheduling in wireless networks publication-title: IEEE Trans. Mob. Comput. – volume: 106 start-page: 355 year: 2016 end-page: 369 ident: b10 article-title: Multi-class teaching–learning-based optimization for truss design with frequency constraints publication-title: Eng. Struct. – volume: 76 start-page: 726 year: 2019 end-page: 743 ident: b2 article-title: Efficient approximation approaches to minimal exposure path problem in probabilistic coverage model for wireless sensor networks publication-title: Appl. Soft Comput. – reference: Ly, D.T.H., Hanh, N.T., Binh, H.T.T., Nghia, N.D., 2015. An improved genetic algorithm for maximizing area coverage in Wireless Sensor Networks. In: Proceedings of the Sixth International Symposium on Information and Communication Technology. pp. 61–66. – volume: 30 start-page: 2305 year: 2018 end-page: 2317 ident: b4 article-title: Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks publication-title: Neural Comput. Appl. – volume: 43 start-page: 1473 year: 2013 end-page: 1483 ident: b39 article-title: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks publication-title: IEEE Trans. Cybern. – volume: 33 year: 2020 ident: b14 article-title: Coverage and connectivity aware critical target monitoring for wireless sensor networks: Novel NSGA-II–based approach publication-title: Int. J. Commun. Syst. – volume: 576 start-page: 355 year: 2021 end-page: 373 ident: b32 article-title: Multifactorial evolutionary optimization to maximize lifetime of wireless sensor network publication-title: Inform. Sci. – volume: 59 start-page: 11 year: 2015 end-page: 21 ident: b25 article-title: Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks publication-title: Comput. Oper. Res. – volume: 20 start-page: 2586 year: 2020 ident: b5 article-title: An elite hybrid particle swarm optimization for solving minimal exposure path problem in mobile wireless sensor networks publication-title: Sensors – volume: 101 year: 2020 ident: b43 article-title: Mobile wireless sensor network lifetime maximization by using evolutionary computing methods publication-title: Ad Hoc Netw. – start-page: 1 year: 2020 end-page: 19 ident: b3 article-title: Efficient meta-heuristic approaches in solving minimal exposure path problem for heterogeneous wireless multimedia sensor networks in internet of things publication-title: Appl. Intell. – volume: 98 year: 2020 ident: b19 article-title: Maximizing network lifetime using coverage sets scheduling in wireless sensor networks publication-title: Ad Hoc Netw. – start-page: 439 year: 2019 end-page: 453 ident: b31 article-title: Prolong the network lifetime of wireless underground sensor networks by optimal relay node placement publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar) – volume: 56 start-page: 544 year: 2016 end-page: 556 ident: b11 article-title: Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks publication-title: Comput. Electr. Eng. – volume: 488 start-page: 58 year: 2019 end-page: 75 ident: b13 article-title: An efficient genetic algorithm for maximizing area coverage in wireless sensor networks publication-title: Inform. Sci. – year: 2018 ident: b1 article-title: Performance indicators in multiobjective optimization publication-title: Optimist. Online – volume: 53 start-page: 126 year: 2016 end-page: 139 ident: b16 article-title: Wireless sensors deployment optimization using a constrained Pareto-based multi-objective evolutionary approach publication-title: Eng. Appl. Artif. Intell. – start-page: 327 year: 2015 end-page: 333 ident: b22 article-title: Optimization for the sensor placement problem in 3D environments publication-title: 2015 IEEE 12th International Conference on Networking, Sensing and Control – start-page: 247 year: 2018 end-page: 285 ident: b27 article-title: Em-based wireless underground sensor networks publication-title: Underground Sensing – year: 2021 ident: b8 article-title: Energy-efficient coverage optimization in wireless sensor networks based on voronoi-glowworm swarm optimization-k-means algorithm publication-title: Ad Hoc Netw. – volume: 504 start-page: 372 year: 2019 end-page: 393 ident: b30 article-title: A hybrid clustering and evolutionary approach for wireless underground sensor network lifetime maximization publication-title: Inform. Sci. – start-page: 862 year: 2003 end-page: 869 ident: b37 article-title: Pareto-based multi-objective differential evolution publication-title: The 2003 Congress on Evolutionary Computation, 2003, Vol. 2 – volume: 418 start-page: 463 year: 2017 end-page: 479 ident: b40 article-title: Optimal relay placement for lifetime maximization in wireless underground sensor networks publication-title: Inform. Sci. – start-page: 1 year: 2020 end-page: 18 ident: b41 article-title: An improved dynamic deployment technique based-on genetic algorithm (IDDT-GA) for maximizing coverage in wireless sensor networks publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 357 start-page: 182 year: 2016 end-page: 200 ident: b23 article-title: A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO) publication-title: Inform. Sci. – volume: 54 start-page: 141 year: 2017 end-page: 149 ident: b12 article-title: Novel fuzzy clustering scheme for 3D wireless sensor networks publication-title: Appl. Soft Comput. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b42 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 755 year: 2009 end-page: 761 ident: b6 article-title: Hybrid wireless underground sensor networks: Quantification of signal attenuation in soil publication-title: Vadose Zone J. – volume: 19 start-page: 828 year: 2017 end-page: 854 ident: b38 article-title: A survey of network lifetime maximization techniques in wireless sensor networks publication-title: IEEE Commun. Surv. Tutor. – start-page: 1 year: 2019 end-page: 5 ident: b29 article-title: Using geometric centroid of voronoi diagram for coverage and lifetime optimization in mobile wireless sensor networks publication-title: 2019 IEEE Canadian Conference of Electrical and Computer Engineering – volume: 67 start-page: 1400 year: 2018 end-page: 1412 ident: b18 article-title: Joint time and energy allocation for qos-aware throughput maximization in MIMO-based wireless powered underground sensor networks publication-title: IEEE Trans. Commun. – volume: 110 start-page: 545 year: 2020 end-page: 562 ident: b34 article-title: Optimum K-coverage in wireless sensor network with no redundant node by cellular learning automata publication-title: Wirel. Pers. Commun. – volume: 24 start-page: 1477 year: 2018 end-page: 1490 ident: b33 article-title: Improving lifetime and network connections of 3D wireless sensor networks based on fuzzy clustering and particle swarm optimization publication-title: Wirel. Netw. – volume: 27 start-page: 1821 year: 2021 end-page: 1833 ident: b15 article-title: Optimal network dimensions for energy conservation in clustered 3D WSN publication-title: Wirel. Netw. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b9 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 91 start-page: 1247 year: 2003 end-page: 1256 ident: b7 article-title: Sensor networks: evolution, opportunities, and challenges publication-title: Proc. IEEE – reference: Li, L., Vuran, M.C., Akyildiz, I.F., 2007. Characteristics of underground channel for wireless underground sensor networks, In: Proc. Med-Hoc-Net. Vol. 7. pp. 13–15. – volume: 43 start-page: 1 year: 2011 end-page: 53 ident: b35 article-title: Coverage problems in sensor networks: A survey publication-title: ACM Comput. Surv. – volume: 2021 year: 2021 ident: b36 article-title: Construction of wireless underground footwork mobile training and monitoring sensor network in venues of major sports events publication-title: J. Sensors – volume: 98 year: 2020 ident: 10.1016/j.engappai.2021.104554_b19 article-title: Maximizing network lifetime using coverage sets scheduling in wireless sensor networks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2019.102037 – volume: 67 start-page: 1400 issue: 2 year: 2018 ident: 10.1016/j.engappai.2021.104554_b18 article-title: Joint time and energy allocation for qos-aware throughput maximization in MIMO-based wireless powered underground sensor networks publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2018.2874990 – volume: 418 start-page: 463 year: 2017 ident: 10.1016/j.engappai.2021.104554_b40 article-title: Optimal relay placement for lifetime maximization in wireless underground sensor networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.08.018 – volume: 488 start-page: 58 year: 2019 ident: 10.1016/j.engappai.2021.104554_b13 article-title: An efficient genetic algorithm for maximizing area coverage in wireless sensor networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.02.059 – volume: 8 start-page: 755 issue: 3 year: 2009 ident: 10.1016/j.engappai.2021.104554_b6 article-title: Hybrid wireless underground sensor networks: Quantification of signal attenuation in soil publication-title: Vadose Zone J. doi: 10.2136/vzj2008.0138 – volume: 59 start-page: 11 year: 2015 ident: 10.1016/j.engappai.2021.104554_b25 article-title: Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.11.002 – start-page: 9 year: 2016 ident: 10.1016/j.engappai.2021.104554_b24 article-title: Teaching-learning-based optimization algorithm – volume: 16 start-page: 1787 issue: 7 year: 2016 ident: 10.1016/j.engappai.2021.104554_b44 article-title: A study on application-aware scheduling in wireless networks publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2016.2613529 – start-page: 247 year: 2018 ident: 10.1016/j.engappai.2021.104554_b27 article-title: Em-based wireless underground sensor networks – start-page: 1 year: 2019 ident: 10.1016/j.engappai.2021.104554_b29 article-title: Using geometric centroid of voronoi diagram for coverage and lifetime optimization in mobile wireless sensor networks – start-page: 862 year: 2003 ident: 10.1016/j.engappai.2021.104554_b37 article-title: Pareto-based multi-objective differential evolution – volume: 24 start-page: 1477 issue: 5 year: 2018 ident: 10.1016/j.engappai.2021.104554_b33 article-title: Improving lifetime and network connections of 3D wireless sensor networks based on fuzzy clustering and particle swarm optimization publication-title: Wirel. Netw. doi: 10.1007/s11276-016-1412-y – volume: 30 start-page: 2305 issue: 7 year: 2018 ident: 10.1016/j.engappai.2021.104554_b4 article-title: Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2823-5 – volume: 53 start-page: 126 year: 2016 ident: 10.1016/j.engappai.2021.104554_b16 article-title: Wireless sensors deployment optimization using a constrained Pareto-based multi-objective evolutionary approach publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.03.004 – volume: 357 start-page: 182 year: 2016 ident: 10.1016/j.engappai.2021.104554_b23 article-title: A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO) publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.05.049 – volume: 80 start-page: 1475 issue: 4 year: 2015 ident: 10.1016/j.engappai.2021.104554_b28 article-title: Survey on coverage problems in wireless sensor networks publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-014-2094-3 – volume: 43 start-page: 1 issue: 4 year: 2011 ident: 10.1016/j.engappai.2021.104554_b35 article-title: Coverage problems in sensor networks: A survey publication-title: ACM Comput. Surv. doi: 10.1145/1978802.1978811 – volume: 76 start-page: 726 year: 2019 ident: 10.1016/j.engappai.2021.104554_b2 article-title: Efficient approximation approaches to minimal exposure path problem in probabilistic coverage model for wireless sensor networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.12.022 – volume: 101 year: 2020 ident: 10.1016/j.engappai.2021.104554_b43 article-title: Mobile wireless sensor network lifetime maximization by using evolutionary computing methods publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2020.102094 – start-page: 1 year: 2020 ident: 10.1016/j.engappai.2021.104554_b41 article-title: An improved dynamic deployment technique based-on genetic algorithm (IDDT-GA) for maximizing coverage in wireless sensor networks publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 106 start-page: 355 year: 2016 ident: 10.1016/j.engappai.2021.104554_b10 article-title: Multi-class teaching–learning-based optimization for truss design with frequency constraints publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.10.039 – volume: 54 start-page: 141 year: 2017 ident: 10.1016/j.engappai.2021.104554_b12 article-title: Novel fuzzy clustering scheme for 3D wireless sensor networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.021 – ident: 10.1016/j.engappai.2021.104554_b17 – volume: 56 start-page: 544 year: 2016 ident: 10.1016/j.engappai.2021.104554_b11 article-title: Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2015.11.009 – volume: 91 start-page: 1247 issue: 8 year: 2003 ident: 10.1016/j.engappai.2021.104554_b7 article-title: Sensor networks: evolution, opportunities, and challenges publication-title: Proc. IEEE doi: 10.1109/JPROC.2003.814918 – start-page: 439 year: 2019 ident: 10.1016/j.engappai.2021.104554_b31 article-title: Prolong the network lifetime of wireless underground sensor networks by optimal relay node placement – volume: 504 start-page: 372 year: 2019 ident: 10.1016/j.engappai.2021.104554_b30 article-title: A hybrid clustering and evolutionary approach for wireless underground sensor network lifetime maximization publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.07.060 – volume: 576 start-page: 355 year: 2021 ident: 10.1016/j.engappai.2021.104554_b32 article-title: Multifactorial evolutionary optimization to maximize lifetime of wireless sensor network publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.06.056 – volume: 110 start-page: 545 issue: 2 year: 2020 ident: 10.1016/j.engappai.2021.104554_b34 article-title: Optimum K-coverage in wireless sensor network with no redundant node by cellular learning automata publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-019-06741-z – volume: 111 start-page: 1525 issue: 3 year: 2020 ident: 10.1016/j.engappai.2021.104554_b26 article-title: Maximum lifetime target coverage in wireless sensor networks publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-019-06935-5 – volume: 2021 year: 2021 ident: 10.1016/j.engappai.2021.104554_b36 article-title: Construction of wireless underground footwork mobile training and monitoring sensor network in venues of major sports events publication-title: J. Sensors doi: 10.1155/2021/8423297 – volume: 33 issue: 4 year: 2020 ident: 10.1016/j.engappai.2021.104554_b14 article-title: Coverage and connectivity aware critical target monitoring for wireless sensor networks: Novel NSGA-II–based approach publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4212 – start-page: 327 year: 2015 ident: 10.1016/j.engappai.2021.104554_b22 article-title: Optimization for the sensor placement problem in 3D environments – year: 2018 ident: 10.1016/j.engappai.2021.104554_b1 article-title: Performance indicators in multiobjective optimization publication-title: Optimist. Online – year: 2021 ident: 10.1016/j.engappai.2021.104554_b8 article-title: Energy-efficient coverage optimization in wireless sensor networks based on voronoi-glowworm swarm optimization-k-means algorithm publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2021.102660 – ident: 10.1016/j.engappai.2021.104554_b20 doi: 10.1145/2833258.2833299 – volume: 27 start-page: 1821 issue: 3 year: 2021 ident: 10.1016/j.engappai.2021.104554_b15 article-title: Optimal network dimensions for energy conservation in clustered 3D WSN publication-title: Wirel. Netw. doi: 10.1007/s11276-020-02527-5 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.engappai.2021.104554_b9 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 43 start-page: 1473 issue: 5 year: 2013 ident: 10.1016/j.engappai.2021.104554_b39 article-title: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2250955 – start-page: 1 year: 2020 ident: 10.1016/j.engappai.2021.104554_b3 article-title: Efficient meta-heuristic approaches in solving minimal exposure path problem for heterogeneous wireless multimedia sensor networks in internet of things publication-title: Appl. Intell. – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.engappai.2021.104554_b42 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 20 start-page: 2586 issue: 9 year: 2020 ident: 10.1016/j.engappai.2021.104554_b5 article-title: An elite hybrid particle swarm optimization for solving minimal exposure path problem in mobile wireless sensor networks publication-title: Sensors doi: 10.3390/s20092586 – volume: 5 start-page: 611 issue: 2 year: 2021 ident: 10.1016/j.engappai.2021.104554_b21 article-title: Dare-SEP: A hybrid approach of distance aware residual energy-efficient SEP for WSN publication-title: IEEE Trans. Green Commun. Netw. doi: 10.1109/TGCN.2021.3067885 – volume: 19 start-page: 828 issue: 2 year: 2017 ident: 10.1016/j.engappai.2021.104554_b38 article-title: A survey of network lifetime maximization techniques in wireless sensor networks publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2650979 |
SSID | ssj0003846 |
Score | 2.3988507 |
Snippet | Coverage plays a vital role in the performance and proper functioning of wireless sensor networks. However, ensuring a network’s coverage is met numerous... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104554 |
SubjectTerms | Evolutionary algorithms Load balancing Network lifetime Wireless underground sensor networks |
Title | Multi-objective teaching–learning evolutionary algorithm for enhancing sensor network coverage and lifetime |
URI | https://dx.doi.org/10.1016/j.engappai.2021.104554 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF5KvXjxX6w_ZQ9et02yu0lzLMVSLfSgFnsLu8mmTWnT0kbBi_gOvqFP4myy0QpCD54WhhkIO7PfzpJvZhC6toTbErYjiSeYIMyTNhGQ5ZMY4kXqjmdWnLMtBm5vyO5GfFRBnbIWRtMqDfYXmJ6jtZE0zW42l0nSfIDkAI4bHGZbF5h6uuMnY56O9cbbD82DtopiHVAmWnujSnjaUOlYLJcigXeiY-vfnZyzvy-ojUune4D2TLaI28UHHaKKSo_QvskcsTmXaxCVwxlK2TGa56W1ZCGnBaThzPAmP98_zKiIMVYvJvLE6hWL2XixSrLJHEMii1U60a04QGkNL10QpAVhHIea9AkohEUa4VkSKz2e_gQNuzePnR4xsxVISG0nI44dhdyKbD_i-sejKyPqK-H40uES1jjSfdE5Vcxlygotqqjirgq574K69BQ9RdV0kaozhKnyHUABCs4FRHBlK3IBKBi8HMOW78V-DfFyQ4PQNB7X8y9mQckwmwalIwLtiKBwRA01v-2WReuNrRZ-6a_gVxAFcD9ssT3_h-0F2nV0VURO5r5E1Wz1rK4gV8lkPQ_GOtpp3_Z7A73275_6X-dt7Mo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZKGWDhH1F-PbC6TeI4aUZUURUoXWilbpGdOG2qNo3agMSCeAfekCfhnDhQJKQOTJFOd1LkO38-y9_dIXRtcKfJTUsQl9uc2K4wCYcsn0QQL0J1PDOinG3RczoD-37IhhXUKmthFK1SY3-B6Tlaa0lDr2YjjePGEyQHsN1gM5uqwNSlG2jTVmMOIKjrbz88D9osqnVAmyj1lTLhSV0mI56mPIaLomWq907G7L9PqJVTp72HdnS6iG-KP9pHFZkcoF2dOmK9MZcgKqczlLJDNMtra8lcTApMw5kmTn6-f-hZESMsX3To8cUr5tPRfBFn4xmGTBbLZKx6cYDSEq66IEgKxjgOFOsTYAjzJMTTOJJqPv0RGrRv-60O0cMVSEBNKyOWGQbMCE0vZOrl0REh9SS3PGExAd8oVI3RGZW2Y0sjMKikkjkyYJ4D6sKV9BhVk3kiTxCm0rMABih4FyDBEc3QAaSw4eoYND038mqIlQvqB7rzuBqAMfVLitnELx3hK0f4hSNqqPFtlxa9N9ZaeKW__F9R5MMBscb29B-2V2ir03_s-t273sMZ2rZUiUTO7D5H1WzxLC8gccnEZR6YX-SR7LA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+teaching%E2%80%93learning+evolutionary+algorithm+for+enhancing+sensor+network+coverage+and+lifetime&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Tam%2C+Nguyen+Thi&rft.au=Hoang%2C+Vu+Dinh&rft.au=Binh%2C+Huynh+Thi+Thanh&rft.au=Vinh%2C+Le+Trong&rft.date=2022-02-01&rft.issn=0952-1976&rft.volume=108&rft.spage=104554&rft_id=info:doi/10.1016%2Fj.engappai.2021.104554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2021_104554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |