Multi-objective teaching–learning evolutionary algorithm for enhancing sensor network coverage and lifetime

Coverage plays a vital role in the performance and proper functioning of wireless sensor networks. However, ensuring a network’s coverage is met numerous challenges due to sensors having limited sensing range, communication range, and energy. Many coverage problems are NP-hard, one of which is the n...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 108; p. 104554
Main Authors Tam, Nguyen Thi, Hoang, Vu Dinh, Binh, Huynh Thi Thanh, Vinh, Le Trong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2022
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2021.104554

Cover

Abstract Coverage plays a vital role in the performance and proper functioning of wireless sensor networks. However, ensuring a network’s coverage is met numerous challenges due to sensors having limited sensing range, communication range, and energy. Many coverage problems are NP-hard, one of which is the network coverage with lifetime problem (CTLP). As such, a number of meta-heuristic algorithms have been proposed to solve CTLP in practical scenarios. This paper proposes an approach for CTLP based on the teaching–learning based optimization algorithm (TLBO), which is often employed to address continuous optimization problems. Specifically, a discrete version of multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO) called HTLBO is proposed, employing genetic operators inspired by evolutionary computing methods. Experimental results are extensively compared to those obtained from previous approaches, namely MO-ITLBO, fast elitist non-dominated sorting genetic algorithm (NSGA-II), multi-objective differential evolution (MODE), and multi-objective evolutionary algorithm based on decomposition (MOEA/D). The evaluation shows significant improvements in different metrics, including spacing, hypervolume, non-dominated solutions, and coverage. •We investigate the problem of optimal sensor node placement with three objectives: (i) minimize the number of deployed sensor nodes, (ii) maximize the k-coverage metric, and (iii) maximize the network lifetime.•We propose a hybrid algorithm combining teaching–learning based optimization and evolutionary computing for multi-objective sensor placement. The proposed algorithm introduces multiple teachers to improve the learners’ results in different subjects. Moreover, a learner interacts with other learners through a crossover operator.•We compare the proposed algorithm with existing methods, including MODE, MOEAD, MO-TLBO, and NSGA-II on C-metric, spacing-metric, hypervolume-metric, and non-dominated solutions metric to demonstrate its effectiveness.
AbstractList Coverage plays a vital role in the performance and proper functioning of wireless sensor networks. However, ensuring a network’s coverage is met numerous challenges due to sensors having limited sensing range, communication range, and energy. Many coverage problems are NP-hard, one of which is the network coverage with lifetime problem (CTLP). As such, a number of meta-heuristic algorithms have been proposed to solve CTLP in practical scenarios. This paper proposes an approach for CTLP based on the teaching–learning based optimization algorithm (TLBO), which is often employed to address continuous optimization problems. Specifically, a discrete version of multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO) called HTLBO is proposed, employing genetic operators inspired by evolutionary computing methods. Experimental results are extensively compared to those obtained from previous approaches, namely MO-ITLBO, fast elitist non-dominated sorting genetic algorithm (NSGA-II), multi-objective differential evolution (MODE), and multi-objective evolutionary algorithm based on decomposition (MOEA/D). The evaluation shows significant improvements in different metrics, including spacing, hypervolume, non-dominated solutions, and coverage. •We investigate the problem of optimal sensor node placement with three objectives: (i) minimize the number of deployed sensor nodes, (ii) maximize the k-coverage metric, and (iii) maximize the network lifetime.•We propose a hybrid algorithm combining teaching–learning based optimization and evolutionary computing for multi-objective sensor placement. The proposed algorithm introduces multiple teachers to improve the learners’ results in different subjects. Moreover, a learner interacts with other learners through a crossover operator.•We compare the proposed algorithm with existing methods, including MODE, MOEAD, MO-TLBO, and NSGA-II on C-metric, spacing-metric, hypervolume-metric, and non-dominated solutions metric to demonstrate its effectiveness.
ArticleNumber 104554
Author Binh, Huynh Thi Thanh
Tam, Nguyen Thi
Hoang, Vu Dinh
Vinh, Le Trong
Author_xml – sequence: 1
  givenname: Nguyen Thi
  surname: Tam
  fullname: Tam, Nguyen Thi
  email: tamnt@vnu.edu.vn
  organization: University of Science, Vietnam National University, Hanoi, Viet Nam
– sequence: 2
  givenname: Vu Dinh
  surname: Hoang
  fullname: Hoang, Vu Dinh
  email: hoang.vd161728@sis.hust.edu.vn
  organization: Hanoi University of Science and Technology, Viet Nam
– sequence: 3
  givenname: Huynh Thi Thanh
  surname: Binh
  fullname: Binh, Huynh Thi Thanh
  email: binhht@soict.hust.edu.vn
  organization: Hanoi University of Science and Technology, Viet Nam
– sequence: 4
  givenname: Le Trong
  surname: Vinh
  fullname: Vinh, Le Trong
  email: vinhlt@vnu.edu.vn
  organization: University of Science, Vietnam National University, Hanoi, Viet Nam
BookMark eNqFkE1OwzAQhS1UJErhCigXSLHj2GkkFqCKP6mIDawtx5mkDqld2W4QO-7ADTkJjgobNl290dO80bzvFE2MNYDQBcFzggm_7OZgWrndSj3PcEaimTOWH6EpWRQ05QUvJ2iKS5alpCz4CTr1vsMY00XOp2jztOuDTm3VgQp6gCSAVGtt2u_Prx6kM3FMYLD9LmhrpPtIZN9ap8N6kzTWJWDW0qhxyYPx0TAQ3q17S5QdwMkWEmnqpNcNBL2BM3TcyN7D-a_O0Ovd7cvyIV093z8ub1apoiQLaUZqxXBNypotcsJ5VdMSZFZWGauiNjVmJGcUcp4DVpgCBcZBsZLH9aoAOkN8f1c5672DRmyd3sTvBcFihCY68QdNjNDEHloMXv0LKh3kWD04qfvD8et9HGK5QYMTXmkwCmrtIl9RW33oxA_ArJMn
CitedBy_id crossref_primary_10_1016_j_engappai_2024_109916
crossref_primary_10_1364_JOSAB_547482
crossref_primary_10_1007_s11036_024_02430_9
crossref_primary_10_1109_TCE_2024_3386909
crossref_primary_10_1016_j_eswa_2024_124878
crossref_primary_10_1016_j_eswa_2023_122568
crossref_primary_10_1016_j_adhoc_2023_103321
crossref_primary_10_1016_j_jksuci_2024_101919
crossref_primary_10_1109_ACCESS_2022_3217200
crossref_primary_10_1016_j_aej_2025_01_023
crossref_primary_10_3390_en16052285
Cites_doi 10.1016/j.adhoc.2019.102037
10.1109/TCOMM.2018.2874990
10.1016/j.ins.2017.08.018
10.1016/j.ins.2019.02.059
10.2136/vzj2008.0138
10.1016/j.cor.2014.11.002
10.1109/TMC.2016.2613529
10.1007/s11276-016-1412-y
10.1007/s00521-016-2823-5
10.1016/j.engappai.2016.03.004
10.1016/j.ins.2014.05.049
10.1007/s11277-014-2094-3
10.1145/1978802.1978811
10.1016/j.asoc.2018.12.022
10.1016/j.adhoc.2020.102094
10.1016/j.engstruct.2015.10.039
10.1016/j.asoc.2017.01.021
10.1016/j.compeleceng.2015.11.009
10.1109/JPROC.2003.814918
10.1016/j.ins.2019.07.060
10.1016/j.ins.2021.06.056
10.1007/s11277-019-06741-z
10.1007/s11277-019-06935-5
10.1155/2021/8423297
10.1002/dac.4212
10.1016/j.adhoc.2021.102660
10.1145/2833258.2833299
10.1007/s11276-020-02527-5
10.1109/4235.996017
10.1109/TCYB.2013.2250955
10.1109/TEVC.2007.892759
10.3390/s20092586
10.1109/TGCN.2021.3067885
10.1109/COMST.2017.2650979
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2021.104554
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2021_104554
S0952197621003973
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c312t-21dc50d19d584166bd39ea29b25bea2fd051453e464e0c03e3e56ec596841b7e3
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Tue Jul 01 01:04:03 EDT 2025
Thu Apr 24 23:06:10 EDT 2025
Fri Feb 23 02:41:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wireless underground sensor networks
Network lifetime
Evolutionary algorithms
Load balancing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-21dc50d19d584166bd39ea29b25bea2fd051453e464e0c03e3e56ec596841b7e3
ParticipantIDs crossref_primary_10_1016_j_engappai_2021_104554
crossref_citationtrail_10_1016_j_engappai_2021_104554
elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Audet, Bigeon, Cartier, Le Digabel, Salomon (b1) 2018
Wang (b35) 2011; 43
Binh, Mellouk, Binh, Loi, San, Anh (b5) 2020; 20
Binh, Hanh, Dey (b4) 2018; 30
Farshchin, Camp, Maniat (b10) 2016; 106
Gupta, Kuila, Jana (b11) 2016; 56
ZainEldin, Badawy, Elhosseini, Arafat, Abraham (b41) 2020
Tam, Dat, Lan, Binh, Swami (b32) 2021; 576
Zheng, Cai, Li, Gao (b44) 2016; 16
Saadi, Bounceur, Euler, Lounis, Bezoui, Kerkar, Pottier (b26) 2020; 111
Torshizi, Sheikhzadeh (b34) 2020; 110
Naeem, Javed, Rizwan, Abbas, Lin, Gadekallu (b21) 2021; 5
Yuan, Chen, Yao (b40) 2017; 418
Zhang, Lu, Zhang (b43) 2020; 101
Tam, Binh, Dung, Lan, Yuan, Yao (b30) 2019; 504
Li, L., Vuran, M.C., Akyildiz, I.F., 2007. Characteristics of underground channel for wireless underground sensor networks, In: Proc. Med-Hoc-Net. Vol. 7. pp. 13–15.
Jaradat, Masoud, Al-Jazzar, Alia (b15) 2021; 27
Chowdhury, De (b8) 2021
Rebai, Snoussi, Hnaien, Khoukhi (b25) 2015; 59
Bogena, Huisman, Meier, Rosenbaum, Weuthen (b6) 2009; 8
Hai, Le Vinh (b12) 2017; 54
Tam, Binh, Hung, Dung (b31) 2019
Chong, Kumar (b7) 2003; 91
Harizan, Kuila (b14) 2020; 33
Yoon, Kim (b39) 2013; 43
Tam, Hai (b33) 2018; 24
Hanh, Binh, Hoai, Palaniswami (b13) 2019; 488
Nguyen, Thanh, Le (b22) 2015
Rao (b24) 2016
Khalesian, Delavar (b16) 2016; 53
Binh, Binh, Ngoc, Ly, Nghia (b2) 2019; 76
Patel, Savsani (b23) 2016; 357
Sangwan, Singh (b28) 2015; 80
Salam, Vuran (b27) 2018
Binh, Binh, Van Linh, Yu (b3) 2020
Liu, Sun, Jiang (b18) 2018; 67
Zhang, Li (b42) 2007; 11
Deb, Pratap, Agarwal, Meyarivan (b9) 2002; 6
Ly, D.T.H., Hanh, N.T., Binh, H.T.T., Nghia, N.D., 2015. An improved genetic algorithm for maximizing area coverage in Wireless Sensor Networks. In: Proceedings of the Sixth International Symposium on Information and Communication Technology. pp. 61–66.
Luo, Hong, Li, Wang, Chen, Hu (b19) 2020; 98
Yetgin, Cheung, El-Hajjar, Hanzo (b38) 2017; 19
Wen, Yu (b36) 2021; 2021
Shu, Dsouza, Bhargava, de Silva (b29) 2019
Xue, Sanderson, Graves (b37) 2003
Audet (10.1016/j.engappai.2021.104554_b1) 2018
Rebai (10.1016/j.engappai.2021.104554_b25) 2015; 59
Rao (10.1016/j.engappai.2021.104554_b24) 2016
Torshizi (10.1016/j.engappai.2021.104554_b34) 2020; 110
Chowdhury (10.1016/j.engappai.2021.104554_b8) 2021
Naeem (10.1016/j.engappai.2021.104554_b21) 2021; 5
Khalesian (10.1016/j.engappai.2021.104554_b16) 2016; 53
Binh (10.1016/j.engappai.2021.104554_b5) 2020; 20
Nguyen (10.1016/j.engappai.2021.104554_b22) 2015
Liu (10.1016/j.engappai.2021.104554_b18) 2018; 67
Shu (10.1016/j.engappai.2021.104554_b29) 2019
10.1016/j.engappai.2021.104554_b17
Chong (10.1016/j.engappai.2021.104554_b7) 2003; 91
Wang (10.1016/j.engappai.2021.104554_b35) 2011; 43
Harizan (10.1016/j.engappai.2021.104554_b14) 2020; 33
Yuan (10.1016/j.engappai.2021.104554_b40) 2017; 418
Farshchin (10.1016/j.engappai.2021.104554_b10) 2016; 106
Gupta (10.1016/j.engappai.2021.104554_b11) 2016; 56
Jaradat (10.1016/j.engappai.2021.104554_b15) 2021; 27
Saadi (10.1016/j.engappai.2021.104554_b26) 2020; 111
Hanh (10.1016/j.engappai.2021.104554_b13) 2019; 488
Hai (10.1016/j.engappai.2021.104554_b12) 2017; 54
Luo (10.1016/j.engappai.2021.104554_b19) 2020; 98
Binh (10.1016/j.engappai.2021.104554_b2) 2019; 76
Binh (10.1016/j.engappai.2021.104554_b3) 2020
Sangwan (10.1016/j.engappai.2021.104554_b28) 2015; 80
Yetgin (10.1016/j.engappai.2021.104554_b38) 2017; 19
Deb (10.1016/j.engappai.2021.104554_b9) 2002; 6
Patel (10.1016/j.engappai.2021.104554_b23) 2016; 357
Yoon (10.1016/j.engappai.2021.104554_b39) 2013; 43
Zheng (10.1016/j.engappai.2021.104554_b44) 2016; 16
Tam (10.1016/j.engappai.2021.104554_b30) 2019; 504
10.1016/j.engappai.2021.104554_b20
Xue (10.1016/j.engappai.2021.104554_b37) 2003
Bogena (10.1016/j.engappai.2021.104554_b6) 2009; 8
Binh (10.1016/j.engappai.2021.104554_b4) 2018; 30
Tam (10.1016/j.engappai.2021.104554_b32) 2021; 576
Tam (10.1016/j.engappai.2021.104554_b33) 2018; 24
Zhang (10.1016/j.engappai.2021.104554_b42) 2007; 11
Tam (10.1016/j.engappai.2021.104554_b31) 2019
Zhang (10.1016/j.engappai.2021.104554_b43) 2020; 101
Wen (10.1016/j.engappai.2021.104554_b36) 2021; 2021
Salam (10.1016/j.engappai.2021.104554_b27) 2018
ZainEldin (10.1016/j.engappai.2021.104554_b41) 2020
References_xml – volume: 111
  start-page: 1525
  year: 2020
  end-page: 1543
  ident: b26
  article-title: Maximum lifetime target coverage in wireless sensor networks
  publication-title: Wirel. Pers. Commun.
– volume: 80
  start-page: 1475
  year: 2015
  end-page: 1500
  ident: b28
  article-title: Survey on coverage problems in wireless sensor networks
  publication-title: Wirel. Pers. Commun.
– volume: 5
  start-page: 611
  year: 2021
  end-page: 621
  ident: b21
  article-title: Dare-SEP: A hybrid approach of distance aware residual energy-efficient SEP for WSN
  publication-title: IEEE Trans. Green Commun. Netw.
– start-page: 9
  year: 2016
  end-page: 39
  ident: b24
  article-title: Teaching-learning-based optimization algorithm
  publication-title: Teaching Learning Based Optimization Algorithm
– volume: 16
  start-page: 1787
  year: 2016
  end-page: 1801
  ident: b44
  article-title: A study on application-aware scheduling in wireless networks
  publication-title: IEEE Trans. Mob. Comput.
– volume: 106
  start-page: 355
  year: 2016
  end-page: 369
  ident: b10
  article-title: Multi-class teaching–learning-based optimization for truss design with frequency constraints
  publication-title: Eng. Struct.
– volume: 76
  start-page: 726
  year: 2019
  end-page: 743
  ident: b2
  article-title: Efficient approximation approaches to minimal exposure path problem in probabilistic coverage model for wireless sensor networks
  publication-title: Appl. Soft Comput.
– reference: Ly, D.T.H., Hanh, N.T., Binh, H.T.T., Nghia, N.D., 2015. An improved genetic algorithm for maximizing area coverage in Wireless Sensor Networks. In: Proceedings of the Sixth International Symposium on Information and Communication Technology. pp. 61–66.
– volume: 30
  start-page: 2305
  year: 2018
  end-page: 2317
  ident: b4
  article-title: Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks
  publication-title: Neural Comput. Appl.
– volume: 43
  start-page: 1473
  year: 2013
  end-page: 1483
  ident: b39
  article-title: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks
  publication-title: IEEE Trans. Cybern.
– volume: 33
  year: 2020
  ident: b14
  article-title: Coverage and connectivity aware critical target monitoring for wireless sensor networks: Novel NSGA-II–based approach
  publication-title: Int. J. Commun. Syst.
– volume: 576
  start-page: 355
  year: 2021
  end-page: 373
  ident: b32
  article-title: Multifactorial evolutionary optimization to maximize lifetime of wireless sensor network
  publication-title: Inform. Sci.
– volume: 59
  start-page: 11
  year: 2015
  end-page: 21
  ident: b25
  article-title: Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks
  publication-title: Comput. Oper. Res.
– volume: 20
  start-page: 2586
  year: 2020
  ident: b5
  article-title: An elite hybrid particle swarm optimization for solving minimal exposure path problem in mobile wireless sensor networks
  publication-title: Sensors
– volume: 101
  year: 2020
  ident: b43
  article-title: Mobile wireless sensor network lifetime maximization by using evolutionary computing methods
  publication-title: Ad Hoc Netw.
– start-page: 1
  year: 2020
  end-page: 19
  ident: b3
  article-title: Efficient meta-heuristic approaches in solving minimal exposure path problem for heterogeneous wireless multimedia sensor networks in internet of things
  publication-title: Appl. Intell.
– volume: 98
  year: 2020
  ident: b19
  article-title: Maximizing network lifetime using coverage sets scheduling in wireless sensor networks
  publication-title: Ad Hoc Netw.
– start-page: 439
  year: 2019
  end-page: 453
  ident: b31
  article-title: Prolong the network lifetime of wireless underground sensor networks by optimal relay node placement
  publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar)
– volume: 56
  start-page: 544
  year: 2016
  end-page: 556
  ident: b11
  article-title: Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks
  publication-title: Comput. Electr. Eng.
– volume: 488
  start-page: 58
  year: 2019
  end-page: 75
  ident: b13
  article-title: An efficient genetic algorithm for maximizing area coverage in wireless sensor networks
  publication-title: Inform. Sci.
– year: 2018
  ident: b1
  article-title: Performance indicators in multiobjective optimization
  publication-title: Optimist. Online
– volume: 53
  start-page: 126
  year: 2016
  end-page: 139
  ident: b16
  article-title: Wireless sensors deployment optimization using a constrained Pareto-based multi-objective evolutionary approach
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 327
  year: 2015
  end-page: 333
  ident: b22
  article-title: Optimization for the sensor placement problem in 3D environments
  publication-title: 2015 IEEE 12th International Conference on Networking, Sensing and Control
– start-page: 247
  year: 2018
  end-page: 285
  ident: b27
  article-title: Em-based wireless underground sensor networks
  publication-title: Underground Sensing
– year: 2021
  ident: b8
  article-title: Energy-efficient coverage optimization in wireless sensor networks based on voronoi-glowworm swarm optimization-k-means algorithm
  publication-title: Ad Hoc Netw.
– volume: 504
  start-page: 372
  year: 2019
  end-page: 393
  ident: b30
  article-title: A hybrid clustering and evolutionary approach for wireless underground sensor network lifetime maximization
  publication-title: Inform. Sci.
– start-page: 862
  year: 2003
  end-page: 869
  ident: b37
  article-title: Pareto-based multi-objective differential evolution
  publication-title: The 2003 Congress on Evolutionary Computation, 2003, Vol. 2
– volume: 418
  start-page: 463
  year: 2017
  end-page: 479
  ident: b40
  article-title: Optimal relay placement for lifetime maximization in wireless underground sensor networks
  publication-title: Inform. Sci.
– start-page: 1
  year: 2020
  end-page: 18
  ident: b41
  article-title: An improved dynamic deployment technique based-on genetic algorithm (IDDT-GA) for maximizing coverage in wireless sensor networks
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 357
  start-page: 182
  year: 2016
  end-page: 200
  ident: b23
  article-title: A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO)
  publication-title: Inform. Sci.
– volume: 54
  start-page: 141
  year: 2017
  end-page: 149
  ident: b12
  article-title: Novel fuzzy clustering scheme for 3D wireless sensor networks
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b42
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 755
  year: 2009
  end-page: 761
  ident: b6
  article-title: Hybrid wireless underground sensor networks: Quantification of signal attenuation in soil
  publication-title: Vadose Zone J.
– volume: 19
  start-page: 828
  year: 2017
  end-page: 854
  ident: b38
  article-title: A survey of network lifetime maximization techniques in wireless sensor networks
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 1
  year: 2019
  end-page: 5
  ident: b29
  article-title: Using geometric centroid of voronoi diagram for coverage and lifetime optimization in mobile wireless sensor networks
  publication-title: 2019 IEEE Canadian Conference of Electrical and Computer Engineering
– volume: 67
  start-page: 1400
  year: 2018
  end-page: 1412
  ident: b18
  article-title: Joint time and energy allocation for qos-aware throughput maximization in MIMO-based wireless powered underground sensor networks
  publication-title: IEEE Trans. Commun.
– volume: 110
  start-page: 545
  year: 2020
  end-page: 562
  ident: b34
  article-title: Optimum K-coverage in wireless sensor network with no redundant node by cellular learning automata
  publication-title: Wirel. Pers. Commun.
– volume: 24
  start-page: 1477
  year: 2018
  end-page: 1490
  ident: b33
  article-title: Improving lifetime and network connections of 3D wireless sensor networks based on fuzzy clustering and particle swarm optimization
  publication-title: Wirel. Netw.
– volume: 27
  start-page: 1821
  year: 2021
  end-page: 1833
  ident: b15
  article-title: Optimal network dimensions for energy conservation in clustered 3D WSN
  publication-title: Wirel. Netw.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b9
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 91
  start-page: 1247
  year: 2003
  end-page: 1256
  ident: b7
  article-title: Sensor networks: evolution, opportunities, and challenges
  publication-title: Proc. IEEE
– reference: Li, L., Vuran, M.C., Akyildiz, I.F., 2007. Characteristics of underground channel for wireless underground sensor networks, In: Proc. Med-Hoc-Net. Vol. 7. pp. 13–15.
– volume: 43
  start-page: 1
  year: 2011
  end-page: 53
  ident: b35
  article-title: Coverage problems in sensor networks: A survey
  publication-title: ACM Comput. Surv.
– volume: 2021
  year: 2021
  ident: b36
  article-title: Construction of wireless underground footwork mobile training and monitoring sensor network in venues of major sports events
  publication-title: J. Sensors
– volume: 98
  year: 2020
  ident: 10.1016/j.engappai.2021.104554_b19
  article-title: Maximizing network lifetime using coverage sets scheduling in wireless sensor networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2019.102037
– volume: 67
  start-page: 1400
  issue: 2
  year: 2018
  ident: 10.1016/j.engappai.2021.104554_b18
  article-title: Joint time and energy allocation for qos-aware throughput maximization in MIMO-based wireless powered underground sensor networks
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2018.2874990
– volume: 418
  start-page: 463
  year: 2017
  ident: 10.1016/j.engappai.2021.104554_b40
  article-title: Optimal relay placement for lifetime maximization in wireless underground sensor networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.08.018
– volume: 488
  start-page: 58
  year: 2019
  ident: 10.1016/j.engappai.2021.104554_b13
  article-title: An efficient genetic algorithm for maximizing area coverage in wireless sensor networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.02.059
– volume: 8
  start-page: 755
  issue: 3
  year: 2009
  ident: 10.1016/j.engappai.2021.104554_b6
  article-title: Hybrid wireless underground sensor networks: Quantification of signal attenuation in soil
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2008.0138
– volume: 59
  start-page: 11
  year: 2015
  ident: 10.1016/j.engappai.2021.104554_b25
  article-title: Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2014.11.002
– start-page: 9
  year: 2016
  ident: 10.1016/j.engappai.2021.104554_b24
  article-title: Teaching-learning-based optimization algorithm
– volume: 16
  start-page: 1787
  issue: 7
  year: 2016
  ident: 10.1016/j.engappai.2021.104554_b44
  article-title: A study on application-aware scheduling in wireless networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2016.2613529
– start-page: 247
  year: 2018
  ident: 10.1016/j.engappai.2021.104554_b27
  article-title: Em-based wireless underground sensor networks
– start-page: 1
  year: 2019
  ident: 10.1016/j.engappai.2021.104554_b29
  article-title: Using geometric centroid of voronoi diagram for coverage and lifetime optimization in mobile wireless sensor networks
– start-page: 862
  year: 2003
  ident: 10.1016/j.engappai.2021.104554_b37
  article-title: Pareto-based multi-objective differential evolution
– volume: 24
  start-page: 1477
  issue: 5
  year: 2018
  ident: 10.1016/j.engappai.2021.104554_b33
  article-title: Improving lifetime and network connections of 3D wireless sensor networks based on fuzzy clustering and particle swarm optimization
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-016-1412-y
– volume: 30
  start-page: 2305
  issue: 7
  year: 2018
  ident: 10.1016/j.engappai.2021.104554_b4
  article-title: Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2823-5
– volume: 53
  start-page: 126
  year: 2016
  ident: 10.1016/j.engappai.2021.104554_b16
  article-title: Wireless sensors deployment optimization using a constrained Pareto-based multi-objective evolutionary approach
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.03.004
– volume: 357
  start-page: 182
  year: 2016
  ident: 10.1016/j.engappai.2021.104554_b23
  article-title: A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO)
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.05.049
– volume: 80
  start-page: 1475
  issue: 4
  year: 2015
  ident: 10.1016/j.engappai.2021.104554_b28
  article-title: Survey on coverage problems in wireless sensor networks
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-014-2094-3
– volume: 43
  start-page: 1
  issue: 4
  year: 2011
  ident: 10.1016/j.engappai.2021.104554_b35
  article-title: Coverage problems in sensor networks: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1978802.1978811
– volume: 76
  start-page: 726
  year: 2019
  ident: 10.1016/j.engappai.2021.104554_b2
  article-title: Efficient approximation approaches to minimal exposure path problem in probabilistic coverage model for wireless sensor networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.12.022
– volume: 101
  year: 2020
  ident: 10.1016/j.engappai.2021.104554_b43
  article-title: Mobile wireless sensor network lifetime maximization by using evolutionary computing methods
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2020.102094
– start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2021.104554_b41
  article-title: An improved dynamic deployment technique based-on genetic algorithm (IDDT-GA) for maximizing coverage in wireless sensor networks
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 106
  start-page: 355
  year: 2016
  ident: 10.1016/j.engappai.2021.104554_b10
  article-title: Multi-class teaching–learning-based optimization for truss design with frequency constraints
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.10.039
– volume: 54
  start-page: 141
  year: 2017
  ident: 10.1016/j.engappai.2021.104554_b12
  article-title: Novel fuzzy clustering scheme for 3D wireless sensor networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.021
– ident: 10.1016/j.engappai.2021.104554_b17
– volume: 56
  start-page: 544
  year: 2016
  ident: 10.1016/j.engappai.2021.104554_b11
  article-title: Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2015.11.009
– volume: 91
  start-page: 1247
  issue: 8
  year: 2003
  ident: 10.1016/j.engappai.2021.104554_b7
  article-title: Sensor networks: evolution, opportunities, and challenges
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2003.814918
– start-page: 439
  year: 2019
  ident: 10.1016/j.engappai.2021.104554_b31
  article-title: Prolong the network lifetime of wireless underground sensor networks by optimal relay node placement
– volume: 504
  start-page: 372
  year: 2019
  ident: 10.1016/j.engappai.2021.104554_b30
  article-title: A hybrid clustering and evolutionary approach for wireless underground sensor network lifetime maximization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.07.060
– volume: 576
  start-page: 355
  year: 2021
  ident: 10.1016/j.engappai.2021.104554_b32
  article-title: Multifactorial evolutionary optimization to maximize lifetime of wireless sensor network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.06.056
– volume: 110
  start-page: 545
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2021.104554_b34
  article-title: Optimum K-coverage in wireless sensor network with no redundant node by cellular learning automata
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-019-06741-z
– volume: 111
  start-page: 1525
  issue: 3
  year: 2020
  ident: 10.1016/j.engappai.2021.104554_b26
  article-title: Maximum lifetime target coverage in wireless sensor networks
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-019-06935-5
– volume: 2021
  year: 2021
  ident: 10.1016/j.engappai.2021.104554_b36
  article-title: Construction of wireless underground footwork mobile training and monitoring sensor network in venues of major sports events
  publication-title: J. Sensors
  doi: 10.1155/2021/8423297
– volume: 33
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2021.104554_b14
  article-title: Coverage and connectivity aware critical target monitoring for wireless sensor networks: Novel NSGA-II–based approach
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4212
– start-page: 327
  year: 2015
  ident: 10.1016/j.engappai.2021.104554_b22
  article-title: Optimization for the sensor placement problem in 3D environments
– year: 2018
  ident: 10.1016/j.engappai.2021.104554_b1
  article-title: Performance indicators in multiobjective optimization
  publication-title: Optimist. Online
– year: 2021
  ident: 10.1016/j.engappai.2021.104554_b8
  article-title: Energy-efficient coverage optimization in wireless sensor networks based on voronoi-glowworm swarm optimization-k-means algorithm
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2021.102660
– ident: 10.1016/j.engappai.2021.104554_b20
  doi: 10.1145/2833258.2833299
– volume: 27
  start-page: 1821
  issue: 3
  year: 2021
  ident: 10.1016/j.engappai.2021.104554_b15
  article-title: Optimal network dimensions for energy conservation in clustered 3D WSN
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-020-02527-5
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.engappai.2021.104554_b9
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 43
  start-page: 1473
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2021.104554_b39
  article-title: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2250955
– start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2021.104554_b3
  article-title: Efficient meta-heuristic approaches in solving minimal exposure path problem for heterogeneous wireless multimedia sensor networks in internet of things
  publication-title: Appl. Intell.
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.engappai.2021.104554_b42
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 20
  start-page: 2586
  issue: 9
  year: 2020
  ident: 10.1016/j.engappai.2021.104554_b5
  article-title: An elite hybrid particle swarm optimization for solving minimal exposure path problem in mobile wireless sensor networks
  publication-title: Sensors
  doi: 10.3390/s20092586
– volume: 5
  start-page: 611
  issue: 2
  year: 2021
  ident: 10.1016/j.engappai.2021.104554_b21
  article-title: Dare-SEP: A hybrid approach of distance aware residual energy-efficient SEP for WSN
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2021.3067885
– volume: 19
  start-page: 828
  issue: 2
  year: 2017
  ident: 10.1016/j.engappai.2021.104554_b38
  article-title: A survey of network lifetime maximization techniques in wireless sensor networks
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2650979
SSID ssj0003846
Score 2.3988507
Snippet Coverage plays a vital role in the performance and proper functioning of wireless sensor networks. However, ensuring a network’s coverage is met numerous...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104554
SubjectTerms Evolutionary algorithms
Load balancing
Network lifetime
Wireless underground sensor networks
Title Multi-objective teaching–learning evolutionary algorithm for enhancing sensor network coverage and lifetime
URI https://dx.doi.org/10.1016/j.engappai.2021.104554
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF5KvXjxX6w_ZQ9et02yu0lzLMVSLfSgFnsLu8mmTWnT0kbBi_gOvqFP4myy0QpCD54WhhkIO7PfzpJvZhC6toTbErYjiSeYIMyTNhGQ5ZMY4kXqjmdWnLMtBm5vyO5GfFRBnbIWRtMqDfYXmJ6jtZE0zW42l0nSfIDkAI4bHGZbF5h6uuMnY56O9cbbD82DtopiHVAmWnujSnjaUOlYLJcigXeiY-vfnZyzvy-ojUune4D2TLaI28UHHaKKSo_QvskcsTmXaxCVwxlK2TGa56W1ZCGnBaThzPAmP98_zKiIMVYvJvLE6hWL2XixSrLJHEMii1U60a04QGkNL10QpAVhHIea9AkohEUa4VkSKz2e_gQNuzePnR4xsxVISG0nI44dhdyKbD_i-sejKyPqK-H40uES1jjSfdE5Vcxlygotqqjirgq574K69BQ9RdV0kaozhKnyHUABCs4FRHBlK3IBKBi8HMOW78V-DfFyQ4PQNB7X8y9mQckwmwalIwLtiKBwRA01v-2WReuNrRZ-6a_gVxAFcD9ssT3_h-0F2nV0VURO5r5E1Wz1rK4gV8lkPQ_GOtpp3_Z7A73275_6X-dt7Mo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZKGWDhH1F-PbC6TeI4aUZUURUoXWilbpGdOG2qNo3agMSCeAfekCfhnDhQJKQOTJFOd1LkO38-y9_dIXRtcKfJTUsQl9uc2K4wCYcsn0QQL0J1PDOinG3RczoD-37IhhXUKmthFK1SY3-B6Tlaa0lDr2YjjePGEyQHsN1gM5uqwNSlG2jTVmMOIKjrbz88D9osqnVAmyj1lTLhSV0mI56mPIaLomWq907G7L9PqJVTp72HdnS6iG-KP9pHFZkcoF2dOmK9MZcgKqczlLJDNMtra8lcTApMw5kmTn6-f-hZESMsX3To8cUr5tPRfBFn4xmGTBbLZKx6cYDSEq66IEgKxjgOFOsTYAjzJMTTOJJqPv0RGrRv-60O0cMVSEBNKyOWGQbMCE0vZOrl0REh9SS3PGExAd8oVI3RGZW2Y0sjMKikkjkyYJ4D6sKV9BhVk3kiTxCm0rMABih4FyDBEc3QAaSw4eoYND038mqIlQvqB7rzuBqAMfVLitnELx3hK0f4hSNqqPFtlxa9N9ZaeKW__F9R5MMBscb29B-2V2ir03_s-t273sMZ2rZUiUTO7D5H1WzxLC8gccnEZR6YX-SR7LA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+teaching%E2%80%93learning+evolutionary+algorithm+for+enhancing+sensor+network+coverage+and+lifetime&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Tam%2C+Nguyen+Thi&rft.au=Hoang%2C+Vu+Dinh&rft.au=Binh%2C+Huynh+Thi+Thanh&rft.au=Vinh%2C+Le+Trong&rft.date=2022-02-01&rft.issn=0952-1976&rft.volume=108&rft.spage=104554&rft_id=info:doi/10.1016%2Fj.engappai.2021.104554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2021_104554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon