Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems

In this paper, we propose a new metaheuristic algorithm based on Lévy flight called Lévy flight distribution (LFD) for solving real optimization problems. The LFD algorithm is inspired from the Lévy flight random walk for exploring unknown large search spaces (e.g., wireless sensor networks (WSNs)....

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 94; p. 103731
Main Authors Houssein, Essam H., Saad, Mohammed R., Hashim, Fatma A., Shaban, Hassan, Hassaballah, M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2020.103731

Cover

Abstract In this paper, we propose a new metaheuristic algorithm based on Lévy flight called Lévy flight distribution (LFD) for solving real optimization problems. The LFD algorithm is inspired from the Lévy flight random walk for exploring unknown large search spaces (e.g., wireless sensor networks (WSNs). To assess the performance of the LFD algorithm, various optimization test bed problems are considered, namely the congress on evolutionary computation (CEC) 2017 suite and three engineering optimization problems: tension/compression spring, the welded beam, and pressure vessel. The statistical simulation results revealed that the LFD algorithm provides better results with superior performance in most tests compared to several well-known metaheuristic algorithms such as simulated annealing (SA), differential evolution (DE), particle swarm optimization (PSO), elephant herding optimization (EHO), the genetic algorithm (GA), moth-flame optimization algorithm (MFO), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), and Harris Hawks Optimization (HHO) algorithm. Furthermore, the performance of the LFD algorithm is tested on other different optimization problems of unknown large search spaces such as the area coverage problem in WSNs. The LFD algorithm shows high performance in providing a good deployment schema than energy-efficient connected dominating set (EECDS), A3, and CDS-Rule K topology construction algorithms for solving the area coverage problem in WSNs. Eventually, the LFD algorithm performs successfully achieving a high coverage rate up to 43.16 %, while the A3, EECDS, and CDS-Rule K algorithms achieve low coverage rates up to 40 % based on network sizes used in the simulation experiments. Also, the LFD algorithm succeeded in providing a better deployment schema than A3, EECDS, and CDS-Rule K algorithms and enhancing the detection capability of WSNs by minimizing the overlap between sensor nodes and maximizing the coverage rate. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/76103-lfd.
AbstractList In this paper, we propose a new metaheuristic algorithm based on Lévy flight called Lévy flight distribution (LFD) for solving real optimization problems. The LFD algorithm is inspired from the Lévy flight random walk for exploring unknown large search spaces (e.g., wireless sensor networks (WSNs). To assess the performance of the LFD algorithm, various optimization test bed problems are considered, namely the congress on evolutionary computation (CEC) 2017 suite and three engineering optimization problems: tension/compression spring, the welded beam, and pressure vessel. The statistical simulation results revealed that the LFD algorithm provides better results with superior performance in most tests compared to several well-known metaheuristic algorithms such as simulated annealing (SA), differential evolution (DE), particle swarm optimization (PSO), elephant herding optimization (EHO), the genetic algorithm (GA), moth-flame optimization algorithm (MFO), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), and Harris Hawks Optimization (HHO) algorithm. Furthermore, the performance of the LFD algorithm is tested on other different optimization problems of unknown large search spaces such as the area coverage problem in WSNs. The LFD algorithm shows high performance in providing a good deployment schema than energy-efficient connected dominating set (EECDS), A3, and CDS-Rule K topology construction algorithms for solving the area coverage problem in WSNs. Eventually, the LFD algorithm performs successfully achieving a high coverage rate up to 43.16 %, while the A3, EECDS, and CDS-Rule K algorithms achieve low coverage rates up to 40 % based on network sizes used in the simulation experiments. Also, the LFD algorithm succeeded in providing a better deployment schema than A3, EECDS, and CDS-Rule K algorithms and enhancing the detection capability of WSNs by minimizing the overlap between sensor nodes and maximizing the coverage rate. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/76103-lfd.
ArticleNumber 103731
Author Saad, Mohammed R.
Shaban, Hassan
Hashim, Fatma A.
Hassaballah, M.
Houssein, Essam H.
Author_xml – sequence: 1
  givenname: Essam H.
  surname: Houssein
  fullname: Houssein, Essam H.
  organization: Faculty of Computers and Information, Minia University, Egypt
– sequence: 2
  givenname: Mohammed R.
  surname: Saad
  fullname: Saad, Mohammed R.
  organization: Faculty of Computers and Information, Luxor University, Luxor, Egypt
– sequence: 3
  givenname: Fatma A.
  surname: Hashim
  fullname: Hashim, Fatma A.
  organization: Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Helwan, Egypt
– sequence: 4
  givenname: Hassan
  surname: Shaban
  fullname: Shaban, Hassan
  organization: Faculty of Computers and Information, Minia University, Egypt
– sequence: 5
  givenname: M.
  surname: Hassaballah
  fullname: Hassaballah, M.
  email: m.hassaballah@svu.edu.eg
  organization: Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, Egypt
BookMark eNqFkEFu2zAQRYkgAWInuULAC8glRYm0giwaBE1awEA3zZqgyKE9hiQKJO3CvVHP0YvFittNN17NYAbvY-bNyeUQBiDknrMFZ1x-2i5gWJtxNLgoWTkNhRL8gsz4UolCKtlckhlr6rLgjZLXZJ7SljEmlpWcEb_683t_oL7D9SZThylHbHcZw_BAn-gAP2kP2WxgF48rtNR06xAxb3rqQ6QpdHsc1vR4AA4AcerDmLHHX2bKoGMMbQd9uiVX3nQJ7v7WG_L28uXH89di9f312_PTqrCCl7ngSrbMW9d6ZRUvhauMq8tGNWrJqxqUqiwIJzy0dSW8dHXNmRPSS1ErJ-qluCGPp1wbQ0oRvLaYP07J0WCnOdOTM73V_5zpyZk-OTvi8j98jNibeDgPfj6BcHxujxB1sgiDBYcRbNYu4LmId39oj-k
CitedBy_id crossref_primary_10_1007_s11277_021_08537_6
crossref_primary_10_1038_s41598_022_27144_4
crossref_primary_10_1007_s44196_023_00249_y
crossref_primary_10_1016_j_asoc_2021_107942
crossref_primary_10_1016_j_renene_2024_120480
crossref_primary_10_1016_j_advengsoft_2025_103883
crossref_primary_10_1016_j_asoc_2022_109847
crossref_primary_10_1007_s40996_024_01488_5
crossref_primary_10_1016_j_matpr_2020_09_775
crossref_primary_10_1007_s00366_021_01460_1
crossref_primary_10_1007_s00521_022_07751_y
crossref_primary_10_1088_1742_6596_2562_1_012005
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_1016_j_compeleceng_2024_109116
crossref_primary_10_1016_j_compbiomed_2022_106239
crossref_primary_10_1016_j_eswa_2023_121715
crossref_primary_10_1007_s10577_023_09738_4
crossref_primary_10_31590_ejosat_1010813
crossref_primary_10_17714_gumusfenbil_1175548
crossref_primary_10_3390_math11163496
crossref_primary_10_1109_ACCESS_2022_3203400
crossref_primary_10_1016_j_cma_2022_114901
crossref_primary_10_1007_s10586_024_04654_6
crossref_primary_10_1016_j_iot_2023_100917
crossref_primary_10_2478_amns_2024_1419
crossref_primary_10_1016_j_jer_2023_11_024
crossref_primary_10_1016_j_eswa_2024_126315
crossref_primary_10_1016_j_eswa_2021_115936
crossref_primary_10_1108_JEDT_11_2020_0468
crossref_primary_10_1111_exsy_13306
crossref_primary_10_1002_int_23091
crossref_primary_10_1007_s00521_021_05892_0
crossref_primary_10_1016_j_aej_2022_05_018
crossref_primary_10_1080_19942060_2021_1982777
crossref_primary_10_1016_j_knosys_2022_108320
crossref_primary_10_1016_j_eswa_2021_115253
crossref_primary_10_1016_j_eswa_2021_115131
crossref_primary_10_1007_s11227_021_03943_w
crossref_primary_10_1016_j_enconman_2021_115134
crossref_primary_10_1007_s00500_023_09261_y
crossref_primary_10_1007_s00500_023_08446_9
crossref_primary_10_1177_01423312221140671
crossref_primary_10_1016_j_advengsoft_2023_103517
crossref_primary_10_1016_j_knosys_2023_110374
crossref_primary_10_1109_ACCESS_2024_3430970
crossref_primary_10_1109_JSEN_2024_3489623
crossref_primary_10_2174_2212797616666230719151124
crossref_primary_10_1016_j_knosys_2024_111725
crossref_primary_10_3390_math10193466
crossref_primary_10_1007_s00202_024_02402_y
crossref_primary_10_3390_math11040979
crossref_primary_10_1007_s00521_023_08492_2
crossref_primary_10_1016_j_seta_2022_102744
crossref_primary_10_1016_j_jairtraman_2022_102225
crossref_primary_10_1007_s11227_024_06899_9
crossref_primary_10_1007_s42235_022_00330_w
crossref_primary_10_1016_j_cherd_2024_05_037
crossref_primary_10_1007_s11227_024_06365_6
crossref_primary_10_1007_s00500_023_09561_3
crossref_primary_10_1007_s10462_022_10182_9
crossref_primary_10_1007_s00366_021_01412_9
crossref_primary_10_1007_s10489_021_02795_4
crossref_primary_10_1016_j_aej_2023_04_052
crossref_primary_10_1007_s13369_021_06307_x
crossref_primary_10_1016_j_eswa_2024_125130
crossref_primary_10_1016_j_knosys_2024_111850
crossref_primary_10_3390_biomimetics8060462
crossref_primary_10_1016_j_robot_2024_104794
crossref_primary_10_3233_JIFS_201755
crossref_primary_10_1016_j_engappai_2022_105521
crossref_primary_10_1007_s11227_024_05905_4
crossref_primary_10_35429_JCT_2022_16_6_23_36
crossref_primary_10_1109_ACCESS_2021_3078585
crossref_primary_10_1007_s10586_024_04593_2
crossref_primary_10_1007_s13369_021_06321_z
crossref_primary_10_1016_j_matcom_2021_08_013
crossref_primary_10_3390_diagnostics13081422
crossref_primary_10_1109_ACCESS_2021_3066135
crossref_primary_10_1109_ACCESS_2025_3547537
crossref_primary_10_1016_j_aej_2023_12_054
crossref_primary_10_1038_s41598_023_32465_z
crossref_primary_10_1007_s10586_024_04382_x
crossref_primary_10_1016_j_eswa_2021_115352
crossref_primary_10_1016_j_bspc_2023_105849
crossref_primary_10_1016_j_compeleceng_2024_109566
crossref_primary_10_1016_j_ijleo_2022_169692
crossref_primary_10_1364_OE_507602
crossref_primary_10_1017_S0263574724000481
crossref_primary_10_1109_LGRS_2022_3147272
crossref_primary_10_1007_s10489_023_04705_2
crossref_primary_10_1007_s11042_024_19550_9
crossref_primary_10_1007_s12205_023_0903_5
crossref_primary_10_3390_su14052998
crossref_primary_10_1007_s42235_024_00505_7
crossref_primary_10_1016_j_engappai_2024_109370
crossref_primary_10_1007_s00521_021_06726_9
crossref_primary_10_1016_j_aej_2024_02_012
crossref_primary_10_1007_s11227_023_05227_x
crossref_primary_10_1142_S1469026824500123
crossref_primary_10_1016_j_engappai_2021_104309
crossref_primary_10_1016_j_dajour_2022_100043
crossref_primary_10_1016_j_engappai_2024_109202
crossref_primary_10_1016_j_swevo_2021_100868
crossref_primary_10_1142_S0219467824500244
crossref_primary_10_1177_01423312211036591
crossref_primary_10_1007_s00521_021_06580_9
crossref_primary_10_1007_s13201_022_01794_1
crossref_primary_10_3390_app142311320
crossref_primary_10_1016_j_asoc_2022_108684
crossref_primary_10_3390_biomimetics8020182
crossref_primary_10_4018_IJAMC_292514
crossref_primary_10_1016_j_knosys_2022_109215
crossref_primary_10_1016_j_engappai_2022_105622
crossref_primary_10_1007_s11235_021_00866_y
crossref_primary_10_1049_cit2_12316
crossref_primary_10_1016_j_yofte_2021_102733
crossref_primary_10_1016_j_heliyon_2022_e09399
crossref_primary_10_1038_s41598_023_31876_2
crossref_primary_10_1155_2021_5511745
crossref_primary_10_1016_j_eswa_2021_115178
crossref_primary_10_1016_j_asoc_2023_110252
crossref_primary_10_1016_j_bspc_2021_103401
crossref_primary_10_1080_21642583_2024_2385310
crossref_primary_10_1016_j_asoc_2022_109081
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_1007_s00521_022_07854_6
crossref_primary_10_24012_dumf_955645
crossref_primary_10_1016_j_eswa_2022_118618
crossref_primary_10_1007_s00034_021_01897_1
crossref_primary_10_1016_j_engappai_2022_105075
crossref_primary_10_1038_s41598_024_77523_2
crossref_primary_10_1038_s41598_024_84458_1
crossref_primary_10_3390_buildings14113583
crossref_primary_10_1038_s41598_025_86275_6
crossref_primary_10_1007_s11227_024_06651_3
crossref_primary_10_1007_s42452_020_04013_1
crossref_primary_10_1016_j_chaos_2023_113672
crossref_primary_10_1016_j_eswa_2022_119015
crossref_primary_10_3233_JIFS_234357
crossref_primary_10_1016_j_eswa_2021_116468
crossref_primary_10_1038_s41598_022_24343_x
crossref_primary_10_1080_02564602_2020_1843554
crossref_primary_10_1093_jcde_qwad108
crossref_primary_10_1007_s10586_024_04368_9
crossref_primary_10_1016_j_eswa_2023_120886
crossref_primary_10_1007_s00366_020_01248_9
crossref_primary_10_1007_s10489_022_03977_4
crossref_primary_10_1016_j_compbiomed_2023_106691
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_3390_math8101821
crossref_primary_10_1007_s00366_021_01438_z
crossref_primary_10_1007_s00500_023_08414_3
crossref_primary_10_3390_math11122680
crossref_primary_10_1109_ACCESS_2024_3435847
crossref_primary_10_1007_s12530_021_09402_4
crossref_primary_10_1186_s40537_025_01080_2
crossref_primary_10_1007_s00521_022_08103_6
crossref_primary_10_1007_s10586_024_04713_y
crossref_primary_10_1016_j_knosys_2023_110708
crossref_primary_10_1007_s10586_024_04319_4
crossref_primary_10_1016_j_aei_2023_102004
crossref_primary_10_1016_j_eswa_2021_116235
crossref_primary_10_1515_jisys_2023_0269
crossref_primary_10_1016_j_eij_2024_100603
crossref_primary_10_3390_biomimetics9070399
crossref_primary_10_1016_j_eswa_2023_121501
crossref_primary_10_1007_s10586_024_04931_4
crossref_primary_10_1016_j_eswa_2023_121744
crossref_primary_10_1007_s12530_024_09645_x
crossref_primary_10_1093_jcde_qwac003
crossref_primary_10_32604_cmc_2022_029315
crossref_primary_10_1007_s40747_021_00346_5
crossref_primary_10_1016_j_cie_2022_108032
crossref_primary_10_1007_s10489_022_03796_7
crossref_primary_10_1007_s10586_024_04410_w
crossref_primary_10_1109_ACCESS_2023_3303328
crossref_primary_10_1186_s13677_024_00603_1
crossref_primary_10_1038_s41598_023_36066_8
crossref_primary_10_1007_s12065_021_00668_w
crossref_primary_10_1080_21681163_2021_2024088
crossref_primary_10_1109_ACCESS_2022_3193233
crossref_primary_10_1016_j_engappai_2022_105718
crossref_primary_10_1007_s11227_024_06856_6
crossref_primary_10_1007_s11227_023_05579_4
crossref_primary_10_1007_s00354_023_00214_5
crossref_primary_10_1109_ACCESS_2024_3365700
crossref_primary_10_1016_j_est_2021_103848
crossref_primary_10_1007_s10462_025_11118_9
crossref_primary_10_1016_j_applthermaleng_2021_117427
crossref_primary_10_1007_s10489_020_01893_z
crossref_primary_10_3390_math9070758
crossref_primary_10_3390_math9212771
crossref_primary_10_1016_j_matcom_2022_12_001
crossref_primary_10_37701_ts_05_2024_05
crossref_primary_10_1016_j_engappai_2023_106778
crossref_primary_10_1155_2022_4673665
crossref_primary_10_1016_j_eswa_2021_115538
crossref_primary_10_3389_fenrg_2022_941705
crossref_primary_10_1016_j_matcom_2023_10_006
crossref_primary_10_1007_s00521_021_06273_3
crossref_primary_10_1016_j_eswa_2021_114689
crossref_primary_10_1016_j_matcom_2022_08_017
crossref_primary_10_1016_j_knosys_2022_108164
crossref_primary_10_1016_j_eswa_2021_115651
crossref_primary_10_1016_j_ijepes_2022_108729
crossref_primary_10_3390_biomimetics9100583
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1007_s10462_022_10233_1
crossref_primary_10_1002_er_7103
crossref_primary_10_30931_jetas_1331636
crossref_primary_10_1016_j_knosys_2022_109484
crossref_primary_10_1016_j_molliq_2024_125951
crossref_primary_10_1016_j_molliq_2024_124860
crossref_primary_10_1016_j_engappai_2022_104722
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_1016_j_eswa_2022_118644
crossref_primary_10_1007_s10489_022_04224_6
crossref_primary_10_1515_mt_2024_0187
crossref_primary_10_1016_j_apenergy_2024_122767
crossref_primary_10_1109_ACCESS_2023_3276264
crossref_primary_10_1007_s00521_024_09737_4
crossref_primary_10_1016_j_energy_2021_120386
crossref_primary_10_1109_ACCESS_2022_3197290
crossref_primary_10_1016_j_apenergy_2022_118851
crossref_primary_10_1016_j_jare_2022_01_002
crossref_primary_10_1007_s11227_023_05617_1
crossref_primary_10_1177_01423312211019633
crossref_primary_10_1007_s10462_024_10981_2
crossref_primary_10_1142_S0218001422590108
crossref_primary_10_3390_atmos14111612
crossref_primary_10_1016_j_engappai_2022_104952
crossref_primary_10_1109_ACCESS_2024_3466529
crossref_primary_10_1515_mt_2024_0515
crossref_primary_10_1016_j_cma_2023_116446
crossref_primary_10_1016_j_engstruct_2024_118376
crossref_primary_10_1007_s10845_022_02016_w
crossref_primary_10_1007_s10712_021_09644_6
crossref_primary_10_1111_exsy_12992
crossref_primary_10_3390_sym12081234
crossref_primary_10_1016_j_cmpb_2021_106244
crossref_primary_10_3233_JIFS_232527
crossref_primary_10_1007_s12145_023_00963_3
crossref_primary_10_1016_j_matcom_2023_11_019
crossref_primary_10_1007_s42235_023_00357_7
crossref_primary_10_1007_s42979_023_02598_z
crossref_primary_10_1007_s11235_023_01062_w
crossref_primary_10_1109_ACCESS_2021_3088783
crossref_primary_10_1007_s00500_022_07410_3
crossref_primary_10_3390_math9182335
crossref_primary_10_1007_s00366_021_01371_1
crossref_primary_10_1016_j_asoc_2022_108717
crossref_primary_10_1007_s10845_021_01877_x
crossref_primary_10_1016_j_est_2021_103245
crossref_primary_10_1002_cpe_8233
crossref_primary_10_1016_j_asoc_2025_113071
crossref_primary_10_1109_ACCESS_2023_3295242
crossref_primary_10_1109_ACCESS_2022_3185414
crossref_primary_10_1016_j_eswa_2024_123934
crossref_primary_10_1007_s00500_022_07215_4
crossref_primary_10_1109_TGRS_2023_3259146
crossref_primary_10_3390_fractalfract6040194
crossref_primary_10_3390_math11204363
crossref_primary_10_1007_s11277_021_08924_z
crossref_primary_10_1016_j_energy_2022_124363
crossref_primary_10_1007_s10489_023_05179_y
crossref_primary_10_1016_j_matcom_2023_03_007
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_1515_mt_2020_0091
crossref_primary_10_1016_j_eswa_2023_122200
crossref_primary_10_1007_s10489_022_03171_6
crossref_primary_10_1007_s11227_023_05618_0
crossref_primary_10_1038_s41598_024_80923_z
crossref_primary_10_1109_ACCESS_2024_3365506
crossref_primary_10_2166_hydro_2023_039
crossref_primary_10_1007_s00521_022_07573_y
crossref_primary_10_1177_01423312231214593
crossref_primary_10_1007_s13369_024_09702_2
crossref_primary_10_1007_s00500_021_06401_0
crossref_primary_10_1007_s42235_023_00447_6
crossref_primary_10_1080_23080477_2021_1920142
crossref_primary_10_26117_2079_6641_2022_39_2_150_174
crossref_primary_10_1007_s13369_021_06383_z
crossref_primary_10_1016_j_rineng_2025_104215
crossref_primary_10_1109_ACCESS_2020_3020895
crossref_primary_10_1007_s44196_023_00320_8
crossref_primary_10_1016_j_istruc_2024_106517
crossref_primary_10_1080_02286203_2025_2478994
crossref_primary_10_1109_TNS_2023_3255892
crossref_primary_10_1515_mt_2023_0201
crossref_primary_10_1007_s40747_025_01791_2
crossref_primary_10_1016_j_eswa_2023_122335
crossref_primary_10_1007_s42235_022_00223_y
crossref_primary_10_1016_j_knosys_2021_107348
crossref_primary_10_3390_math10162960
crossref_primary_10_1016_j_knosys_2023_110679
crossref_primary_10_1016_j_energy_2023_129005
crossref_primary_10_1080_14680629_2025_2479214
crossref_primary_10_1007_s12530_023_09485_1
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1109_ACCESS_2021_3066329
crossref_primary_10_1016_j_engappai_2022_104920
crossref_primary_10_1109_TIM_2024_3436111
crossref_primary_10_1007_s10462_020_09933_3
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1016_j_matcom_2023_04_027
crossref_primary_10_1029_2024JB029717
crossref_primary_10_1016_j_knosys_2021_106924
crossref_primary_10_1016_j_swevo_2024_101656
crossref_primary_10_1109_ACCESS_2020_3014309
crossref_primary_10_1007_s00521_022_06906_1
crossref_primary_10_1007_s10008_025_06253_w
crossref_primary_10_1093_jcde_qwae035
crossref_primary_10_1109_ACCESS_2024_3466170
crossref_primary_10_1007_s00521_023_08287_5
crossref_primary_10_1016_j_jare_2020_10_001
crossref_primary_10_1109_ACCESS_2021_3072336
crossref_primary_10_1142_S179396232150001X
crossref_primary_10_1016_j_knosys_2022_108743
crossref_primary_10_1016_j_isatra_2021_11_008
crossref_primary_10_1007_s42235_023_00469_0
crossref_primary_10_1016_j_eswa_2024_123267
crossref_primary_10_1016_j_knosys_2022_109711
crossref_primary_10_1007_s11227_024_06727_0
crossref_primary_10_1029_2023RS007744
crossref_primary_10_33187_jmsm_1115792
crossref_primary_10_1007_s42235_023_00446_7
crossref_primary_10_28925_2663_4023_2024_24_363375
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1038_s41598_024_59960_1
crossref_primary_10_2139_ssrn_4807266
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1016_j_eswa_2022_116931
crossref_primary_10_1016_j_cma_2022_115764
crossref_primary_10_1007_s40430_022_04008_6
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1038_s41598_024_71581_2
crossref_primary_10_1007_s10489_023_05073_7
crossref_primary_10_22399_ijcesen_489
Cites_doi 10.1007/s00500-016-2282-z
10.1016/j.ins.2009.03.004
10.1016/j.asoc.2012.05.018
10.1016/j.asoc.2012.11.048
10.3390/S7112907
10.1016/j.engappai.2020.103541
10.1016/j.engappai.2019.103330
10.1016/j.asoc.2017.11.043
10.1016/j.engappai.2018.04.021
10.1016/j.knosys.2018.08.030
10.1038/scientificamerican0792-66
10.1007/s10462-012-9342-2
10.1016/j.advengsoft.2017.01.004
10.1016/j.asoc.2018.06.028
10.1109/ACCESS.2017.2695498
10.1016/j.knosys.2015.07.006
10.1016/j.engappai.2018.03.003
10.1016/j.engappai.2017.01.013
10.1109/ACCESS.2020.2968981
10.1115/1.2919393
10.1016/j.engappai.2018.04.012
10.1007/s10462-012-9328-0
10.1016/j.eswa.2019.03.043
10.1109/TPDS.2006.103
10.1007/s00521-016-2823-5
10.2307/3001968
10.1007/s11721-008-0021-5
10.1016/j.eswa.2011.03.053
10.1016/j.advengsoft.2017.05.014
10.1007/s00158-003-0368-6
10.1016/j.ins.2013.02.041
10.1016/j.engappai.2017.11.003
10.1016/j.compchemeng.2019.106656
10.1016/j.engappai.2019.01.001
10.1016/j.asoc.2015.03.035
10.1016/j.engappai.2019.103249
10.1016/j.ins.2014.09.031
10.1109/4235.585893
10.1016/j.jocs.2018.10.002
10.1016/S0045-7825(01)00323-1
10.1016/j.asoc.2017.06.044
10.1016/j.swevo.2018.01.001
10.1007/s00500-017-2810-5
10.1016/j.future.2019.07.015
10.1109/TEVC.2010.2059031
10.1007/s10462-017-9605-z
10.1109/TCYB.2013.2250955
10.1016/j.future.2019.02.028
10.1007/s10044-018-0695-2
10.1016/j.ins.2014.03.003
10.1016/j.engappai.2019.103294
10.1109/TEVC.2018.2878536
10.1061/(ASCE)0733-9496(1994)120:4(423)
10.1007/s00707-012-0745-6
10.1016/j.advengsoft.2016.01.008
10.1016/j.asoc.2018.11.033
10.1016/j.ins.2018.03.008
10.1016/j.cnsns.2015.05.027
10.1016/j.swevo.2019.03.008
10.1016/j.engappai.2016.10.014
10.1109/79.543973
10.1016/j.knosys.2019.105190
10.1016/S0166-3615(99)00046-9
10.1007/s00521-015-1920-1
10.1109/MCI.2006.329691
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2020.103731
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2020_103731
S0952197620301482
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-176b0fcdbf7c7123d4ad5297978145e774ce3d3feb543f6d5510d36f6357d3583
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Thu Apr 24 22:54:05 EDT 2025
Sat Oct 25 05:09:37 EDT 2025
Fri Feb 23 02:46:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Engineering optimization problems
Lévy flight distribution
Wireless sensor networks
Global optimization
Metaheuristic
Evolutionary computation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-176b0fcdbf7c7123d4ad5297978145e774ce3d3feb543f6d5510d36f6357d3583
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2020_103731
crossref_primary_10_1016_j_engappai_2020_103731
elsevier_sciencedirect_doi_10_1016_j_engappai_2020_103731
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Heidari, Pahlavani (b30) 2017; 60
Krishnanand, Ghose (b40) 2009; 3
Neshat, Sepidnam, Sargolzaei, Toosi (b55) 2014; 42
Liao, Kao, Li (b43) 2011; 38
Kaur, Awasthi, Sangal, Dhiman (b38) 2020; 90
Truong, Li, Xu (b68) 2013; 13
Das, Suganthan (b14) 2010; 15
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b29) 2019; 97
Emary, Zawbaa (b20) 2019; 22
Hayyolalam, Kazem (b28) 2020; 87
Zhao, Wang, Zhang (b84) 2019; 163
Ouyang, Gao, Kong, Zou, Li (b58) 2015; 265
Etminaniesfahani, Ghanbarzadeh, Marashi (b22) 2018; 74
Houssein, Saad, Hussain, Zhu, Shaban, Hassaballah (b33) 2020; 8
Rashedi, Nezamabadi-Pour, Saryazdi (b60) 2009; 179
Wightman, Labrador (b71) 2008
Yang, Cui, Xiao, Gandomi, Karamanoglu (b78) 2013
Bonabeau, Marco, Dorigo, Théraulaz, Theraulaz (b7) 1999
Mirjalili (b50) 2015; 89
Kaveh, Share, Moslehi (b39) 2013; 224
Tang, Man, Kwong, He (b67) 1996; 13
Wilcoxon (b73) 1945; 1
Eberhart, Kennedy (b18) 1995
Mortazavi, Toğan, Nuhoğlu (b54) 2018; 71
Emary, Zawbaa, Sharawi (b21) 2019; 75
Houssein, Hosney, Oliva, Mohamed, Hassaballah (b32) 2020; 133
Çelik (b9) 2020; 87
Gupta, Jha (b26) 2018; 68
Mirjalili (b51) 2016; 27
Dorigo, Birattari, Stutzle (b17) 2006; 1
Dhiman, Kumar (b15) 2017; 114
Javidy, Hatamlou, Mirjalili (b35) 2015; 32
Shadravan, Naji, Bardsiri (b62) 2019; 80
Coello (b12) 2000; 41
Kannan, Kramer (b36) 1994; 116
Simpson, Dandy, Murphy (b65) 1994; 120
Yiyue, Hongmei, Hengyang (b80) 2012
Amoretti (b4) 2014; 274
Yang, Deb, Zhao, Fong, He (b79) 2018; 22
Ahmed, Houssein, Hassanien, Taha, Hassanien (b2) 2019
Cheraghalipour, Hajiaghaei-Keshteli, Paydar (b11) 2018; 72
Dinkar, Deep (b16) 2018; 29
Saremi, Mirjalili, Lewis (b61) 2017; 105
Gupta, Deep (b25) 2019; 44
Wang, Deb, Coelho (b70) 2015
Holland (b31) 1992; 267
Hussain, Salleh, Cheng, Shi (b34) 2019; 52
Marler, Arora (b49) 2004; 26
Yoon, Kim (b81) 2013; 43
LaTorre, Muelas, Peña (b42) 2015; 316
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b27) 2019; 101
Simon (b64) 2013
Langdon, Poli (b41) 2013
Liu, Wang, Liu, Zeng, Bell (b45) 2018; 23
Wolpert (b74) 1997; 1
Back (b5) 1996
Xu, Chen, Heidari, Luo, Zhang, Zhao, Li (b77) 2019; 129
Ojha, Abraham, Snášel (b56) 2017; 60
Moghdani, Salimifard (b53) 2018; 64
Mann, Singh (b48) 2017; 57
Okulewicz, Mańdziuk (b57) 2019; 48
Ab Wahab, Nefti-Meziani, Atyabi (b1) 2015; 10
Ramezani, Lotfi (b59) 2013; 13
Mirjalili, Lewis (b52) 2016; 95
Zhang, Xie, Hu, Shao, Chen (b83) 2018; 71
Eberhart, Kennedy (b19) 1995
Van Laarhoven, Aarts (b69) 1987
Magdziarz, Szczotka (b47) 2016; 30
Wightman, Labrador (b72) 2009
Yuanyuan, Jia, Yanxiang (b82) 2006
Wu, Cardei, Dai, Yang (b75) 2006; 17
Ly, Hanh, Binh, Nghia (b46) 2015
Boussaïd, Lepagnot, Siarry (b8) 2013; 237
Guo, Yue, Yang, Liu, Liu (b24) 2017; 21
Ling, Zhou, Luo (b44) 2017; 5
Sulaiman, Mustaffa, Saari, Daniyal (b66) 2020; 87
Binh, Hanh, Dey (b6) 2018; 30
Shen, Chen, Sun (b63) 2006
Chen, Li, Sun (b10) 2007; 7
Coello (b13) 2002; 191
Ali, Awad, Reynolds, Suganthan (b3) 2018; 447
Wu, Mallipeddi, Suganthan (b76) 2017
Karaboga, Gorkemli, Ozturk, Karaboga (b37) 2014; 42
Faramarzi, Heidarinejad, Stephens, Mirjalili (b23) 2020; 191
Hashim (10.1016/j.engappai.2020.103731_b27) 2019; 101
Mirjalili (10.1016/j.engappai.2020.103731_b51) 2016; 27
Wightman (10.1016/j.engappai.2020.103731_b72) 2009
Eberhart (10.1016/j.engappai.2020.103731_b18) 1995
Simon (10.1016/j.engappai.2020.103731_b64) 2013
Back (10.1016/j.engappai.2020.103731_b5) 1996
Yiyue (10.1016/j.engappai.2020.103731_b80) 2012
Yuanyuan (10.1016/j.engappai.2020.103731_b82) 2006
Ramezani (10.1016/j.engappai.2020.103731_b59) 2013; 13
Ly (10.1016/j.engappai.2020.103731_b46) 2015
Emary (10.1016/j.engappai.2020.103731_b21) 2019; 75
Holland (10.1016/j.engappai.2020.103731_b31) 1992; 267
Coello (10.1016/j.engappai.2020.103731_b13) 2002; 191
Van Laarhoven (10.1016/j.engappai.2020.103731_b69) 1987
Ling (10.1016/j.engappai.2020.103731_b44) 2017; 5
Simpson (10.1016/j.engappai.2020.103731_b65) 1994; 120
Yang (10.1016/j.engappai.2020.103731_b78) 2013
Langdon (10.1016/j.engappai.2020.103731_b41) 2013
Emary (10.1016/j.engappai.2020.103731_b20) 2019; 22
LaTorre (10.1016/j.engappai.2020.103731_b42) 2015; 316
Wilcoxon (10.1016/j.engappai.2020.103731_b73) 1945; 1
Zhao (10.1016/j.engappai.2020.103731_b84) 2019; 163
Mortazavi (10.1016/j.engappai.2020.103731_b54) 2018; 71
Yoon (10.1016/j.engappai.2020.103731_b81) 2013; 43
Magdziarz (10.1016/j.engappai.2020.103731_b47) 2016; 30
Neshat (10.1016/j.engappai.2020.103731_b55) 2014; 42
Binh (10.1016/j.engappai.2020.103731_b6) 2018; 30
Tang (10.1016/j.engappai.2020.103731_b67) 1996; 13
Eberhart (10.1016/j.engappai.2020.103731_b19) 1995
Moghdani (10.1016/j.engappai.2020.103731_b53) 2018; 64
Shadravan (10.1016/j.engappai.2020.103731_b62) 2019; 80
Shen (10.1016/j.engappai.2020.103731_b63) 2006
Mirjalili (10.1016/j.engappai.2020.103731_b50) 2015; 89
Dhiman (10.1016/j.engappai.2020.103731_b15) 2017; 114
Rashedi (10.1016/j.engappai.2020.103731_b60) 2009; 179
Ahmed (10.1016/j.engappai.2020.103731_b2) 2019
Ouyang (10.1016/j.engappai.2020.103731_b58) 2015; 265
Çelik (10.1016/j.engappai.2020.103731_b9) 2020; 87
Wang (10.1016/j.engappai.2020.103731_b70) 2015
Kaveh (10.1016/j.engappai.2020.103731_b39) 2013; 224
Zhang (10.1016/j.engappai.2020.103731_b83) 2018; 71
Boussaïd (10.1016/j.engappai.2020.103731_b8) 2013; 237
Chen (10.1016/j.engappai.2020.103731_b10) 2007; 7
Mirjalili (10.1016/j.engappai.2020.103731_b52) 2016; 95
Hayyolalam (10.1016/j.engappai.2020.103731_b28) 2020; 87
Heidari (10.1016/j.engappai.2020.103731_b29) 2019; 97
Cheraghalipour (10.1016/j.engappai.2020.103731_b11) 2018; 72
Mann (10.1016/j.engappai.2020.103731_b48) 2017; 57
Yang (10.1016/j.engappai.2020.103731_b79) 2018; 22
Ab Wahab (10.1016/j.engappai.2020.103731_b1) 2015; 10
Dinkar (10.1016/j.engappai.2020.103731_b16) 2018; 29
Sulaiman (10.1016/j.engappai.2020.103731_b66) 2020; 87
Marler (10.1016/j.engappai.2020.103731_b49) 2004; 26
Houssein (10.1016/j.engappai.2020.103731_b32) 2020; 133
Dorigo (10.1016/j.engappai.2020.103731_b17) 2006; 1
Kannan (10.1016/j.engappai.2020.103731_b36) 1994; 116
Krishnanand (10.1016/j.engappai.2020.103731_b40) 2009; 3
Etminaniesfahani (10.1016/j.engappai.2020.103731_b22) 2018; 74
Karaboga (10.1016/j.engappai.2020.103731_b37) 2014; 42
Gupta (10.1016/j.engappai.2020.103731_b25) 2019; 44
Xu (10.1016/j.engappai.2020.103731_b77) 2019; 129
Okulewicz (10.1016/j.engappai.2020.103731_b57) 2019; 48
Wightman (10.1016/j.engappai.2020.103731_b71) 2008
Bonabeau (10.1016/j.engappai.2020.103731_b7) 1999
Amoretti (10.1016/j.engappai.2020.103731_b4) 2014; 274
Coello (10.1016/j.engappai.2020.103731_b12) 2000; 41
Wu (10.1016/j.engappai.2020.103731_b76) 2017
Javidy (10.1016/j.engappai.2020.103731_b35) 2015; 32
Faramarzi (10.1016/j.engappai.2020.103731_b23) 2020; 191
Kaur (10.1016/j.engappai.2020.103731_b38) 2020; 90
Das (10.1016/j.engappai.2020.103731_b14) 2010; 15
Liu (10.1016/j.engappai.2020.103731_b45) 2018; 23
Saremi (10.1016/j.engappai.2020.103731_b61) 2017; 105
Wu (10.1016/j.engappai.2020.103731_b75) 2006; 17
Heidari (10.1016/j.engappai.2020.103731_b30) 2017; 60
Gupta (10.1016/j.engappai.2020.103731_b26) 2018; 68
Houssein (10.1016/j.engappai.2020.103731_b33) 2020; 8
Hussain (10.1016/j.engappai.2020.103731_b34) 2019; 52
Wolpert (10.1016/j.engappai.2020.103731_b74) 1997; 1
Ali (10.1016/j.engappai.2020.103731_b3) 2018; 447
Truong (10.1016/j.engappai.2020.103731_b68) 2013; 13
Ojha (10.1016/j.engappai.2020.103731_b56) 2017; 60
Guo (10.1016/j.engappai.2020.103731_b24) 2017; 21
Liao (10.1016/j.engappai.2020.103731_b43) 2011; 38
References_xml – volume: 68
  start-page: 101
  year: 2018
  end-page: 109
  ident: b26
  article-title: Integrated clustering and routing protocol for wireless sensor networks using cuckoo and harmony search based metaheuristic techniques
  publication-title: Eng. Appl. Artif. Intell.
– volume: 26
  start-page: 369
  year: 2004
  end-page: 395
  ident: b49
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct. Multidiscip. Optim.
– start-page: 7
  year: 1987
  end-page: 15
  ident: b69
  article-title: Simulated annealing
  publication-title: Simulated Annealing: Theory and Applications
– volume: 52
  start-page: 2191
  year: 2019
  end-page: 2233
  ident: b34
  article-title: Metaheuristic research: A comprehensive survey
  publication-title: Artif. Intell. Rev.
– volume: 447
  start-page: 12
  year: 2018
  end-page: 35
  ident: b3
  article-title: A balanced fuzzy cultural algorithm with a modified Lévy flight search for real parameter optimization
  publication-title: Inform. Sci.
– volume: 44
  start-page: 101
  year: 2019
  end-page: 112
  ident: b25
  article-title: A novel random walk grey wolf optimizer
  publication-title: Swarm Evol. Comput.
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b61
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Adv. Eng. Softw.
– volume: 1
  start-page: 467
  year: 1997
  end-page: 482
  ident: b74
  article-title: No free lunch theorem for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b52
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  ident: b15
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
– volume: 15
  start-page: 4
  year: 2010
  end-page: 31
  ident: b14
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2008
  end-page: 6
  ident: b71
  article-title: A3: A topology construction algorithm for wireless sensor networks
  publication-title: IEEE Global Telecommunications Conference
– volume: 74
  start-page: 1
  year: 2018
  end-page: 9
  ident: b22
  article-title: Fibonacci indicator algorithm: A novel tool for complex optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b27
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
– volume: 8
  start-page: 19381
  year: 2020
  end-page: 19397
  ident: b33
  article-title: Optimal sink node placement in large scale wireless sensor networks based on harris’ hawk optimization algorithm
  publication-title: IEEE Access
– volume: 90
  start-page: 103541
  year: 2020
  ident: b38
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 87
  start-page: 103249
  year: 2020
  ident: b28
  article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– year: 2013
  ident: b64
  article-title: Evolutionary Optimization Algorithms
– volume: 42
  start-page: 21
  year: 2014
  end-page: 57
  ident: b37
  article-title: A comprehensive survey: Artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
– volume: 30
  start-page: 5
  year: 2016
  end-page: 14
  ident: b47
  article-title: Quenched trap model for Lévy flights
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 60
  start-page: 97
  year: 2017
  end-page: 116
  ident: b56
  article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research
  publication-title: Eng. Appl. Artif. Intell.
– year: 2013
  ident: b41
  article-title: Foundations of Genetic Programming
– year: 2017
  ident: b76
  article-title: Problem Definitions and Evaluation Criteria for the CEC2017 Competition on Constrained Real-Parameter Optimization
– year: 2013
  ident: b78
  article-title: Swarm Intelligence and Bio-Inspired Computation: Theory and Applications
– volume: 316
  start-page: 517
  year: 2015
  end-page: 549
  ident: b42
  article-title: A comprehensive comparison of large scale global optimizers
  publication-title: Inform. Sci.
– volume: 71
  start-page: 242
  year: 2018
  end-page: 254
  ident: b83
  article-title: A hybrid DPSO with Lévy flight for scheduling MIMO radar tasks
  publication-title: Appl. Soft Comput.
– volume: 71
  start-page: 275
  year: 2018
  end-page: 292
  ident: b54
  article-title: Interactive search algorithm: A new hybrid metaheuristic optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2015
  end-page: 5
  ident: b70
  article-title: Elephant herding optimization
  publication-title: International Symposium on Computational and Business Intelligence
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: b36
  article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
– volume: 72
  start-page: 393
  year: 2018
  end-page: 414
  ident: b11
  article-title: Tree growth algorithm (TGA): A novel approach for solving optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 265
  start-page: 533
  year: 2015
  end-page: 556
  ident: b58
  article-title: Teaching-learning based optimization with global crossover for global optimization problems
  publication-title: Appl. Math. Comput.
– volume: 29
  start-page: 119
  year: 2018
  end-page: 141
  ident: b16
  article-title: An efficient opposition based Lévy flight antlion optimizer for optimization problems
  publication-title: J. Comput. Sci.
– volume: 13
  start-page: 22
  year: 1996
  end-page: 37
  ident: b67
  article-title: Genetic algorithms and their applications
  publication-title: IEEE Signal Process. Mag.
– start-page: 26
  year: 2009
  ident: b72
  article-title: Atarraya: A simulation tool to teach and research topology control algorithms for wireless sensor networks
  publication-title: International Conference on Simulation Tools and Techniques
– volume: 3
  start-page: 87
  year: 2009
  end-page: 124
  ident: b40
  article-title: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions
  publication-title: Swarm Intell.
– start-page: 90
  year: 2012
  end-page: 94
  ident: b80
  article-title: Wireless sensor network deployment using an optimized artificial fish swarm algorithm
  publication-title: International Conference on Computer Science and Electronics Engineering, Vol. 2
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: b12
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
– volume: 42
  start-page: 965
  year: 2014
  end-page: 997
  ident: b55
  article-title: Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications
  publication-title: Artif. Intell. Rev.
– volume: 80
  start-page: 20
  year: 2019
  end-page: 34
  ident: b62
  article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 129
  start-page: 135
  year: 2019
  end-page: 155
  ident: b77
  article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
  publication-title: Expert Syst. Appl.
– volume: 163
  start-page: 283
  year: 2019
  end-page: 304
  ident: b84
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowl.-Based Syst.
– volume: 57
  start-page: 142
  year: 2017
  end-page: 152
  ident: b48
  article-title: Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks
  publication-title: Eng. Appl. Artif. Intell.
– volume: 43
  start-page: 1473
  year: 2013
  end-page: 1483
  ident: b81
  article-title: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks
  publication-title: IEEE Trans. Cybern.
– volume: 13
  start-page: 1774
  year: 2013
  end-page: 1780
  ident: b68
  article-title: Chemical reaction optimization with greedy strategy for the 0–1 knapsack problem
  publication-title: Appl. Soft Comput.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b19
  article-title: Particle swarm optimization
  publication-title: IEEE International Conference on Neural Networks, Vol. 4
– volume: 13
  start-page: 2837
  year: 2013
  end-page: 2856
  ident: b59
  article-title: Social-based algorithm (SBA)
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2019
  end-page: 17
  ident: b2
  article-title: Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm
  publication-title: Telecommun. Syst.
– year: 1999
  ident: b7
  article-title: Swarm Intelligence: FrOm Natural to Artificial Systems. 1
– year: 1996
  ident: b5
  article-title: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b31
  article-title: Genetic algorithms
  publication-title: Sci. Am.
– volume: 17
  start-page: 851
  year: 2006
  end-page: 864
  ident: b75
  article-title: Extended dominating set and its applications in ad hoc networks using cooperative communication
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 22
  start-page: 857
  year: 2019
  end-page: 876
  ident: b20
  article-title: Feature selection via Lèvy antlion optimization
  publication-title: Pattern Anal. Appl.
– volume: 32
  start-page: 72
  year: 2015
  end-page: 79
  ident: b35
  article-title: Ions motion algorithm for solving optimization problems
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 7393
  year: 2017
  end-page: 7404
  ident: b24
  article-title: Enhancing social emotional optimization algorithm using local search
  publication-title: Soft Comput.
– start-page: 61
  year: 2015
  end-page: 66
  ident: b46
  article-title: An improved genetic algorithm for maximizing area coverage in wireless sensor networks
  publication-title: International Symposium on Information and Communication Technology
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b60
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform. Sci.
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b17
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: b73
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
– volume: 5
  start-page: 6168
  year: 2017
  end-page: 6186
  ident: b44
  article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization
  publication-title: IEEE Access
– volume: 133
  start-page: 106656
  year: 2020
  ident: b32
  article-title: A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery
  publication-title: Comput. Chem. Eng.
– volume: 274
  start-page: 1
  year: 2014
  end-page: 16
  ident: b4
  article-title: Evolutionary strategies for ultra-large-scale autonomic systems
  publication-title: Inform. Sci.
– volume: 237
  start-page: 82
  year: 2013
  end-page: 117
  ident: b8
  article-title: A survey on optimization metaheuristics
  publication-title: Inform. Sci.
– volume: 191
  start-page: 1245
  year: 2002
  end-page: 1287
  ident: b13
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 39
  year: 1995
  end-page: 43
  ident: b18
  article-title: A new optimizer using particle swarm theory
  publication-title: International Symposium on Micro Machine and Human Science
– volume: 224
  start-page: 85
  year: 2013
  end-page: 107
  ident: b39
  article-title: Magnetic charged system search: A new meta-heuristic algorithm for optimization
  publication-title: Acta Mech.
– volume: 23
  start-page: 632
  year: 2018
  end-page: 644
  ident: b45
  article-title: A novel particle swarm optimization approach for patient clustering from emergency departments
  publication-title: IEEE Trans. Evol. Comput.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b29
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 10
  year: 2015
  ident: b1
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
– volume: 22
  start-page: 5923
  year: 2018
  end-page: 5933
  ident: b79
  article-title: Swarm intelligence: Past, present and future
  publication-title: Soft Comput.
– volume: 120
  start-page: 423
  year: 1994
  end-page: 443
  ident: b65
  article-title: Genetic algorithms compared to other techniques for pipe optimization
  publication-title: J. Water Resour. Plan. Manage.
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b51
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
– volume: 64
  start-page: 161
  year: 2018
  end-page: 185
  ident: b53
  article-title: Volleyball premier league algorithm
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 2907
  year: 2007
  end-page: 2919
  ident: b10
  article-title: Novel deployment schemes for mobile sensor networks
  publication-title: Sensors
– volume: 87
  start-page: 103294
  year: 2020
  ident: b9
  article-title: A powerful variant of symbiotic organisms search algorithm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 3480
  year: 2006
  end-page: 3484
  ident: b63
  article-title: Grid scan: A simple and effective approach for coverage issue in wireless sensor networks
  publication-title: IEEE International Conference on Communications, Vol. 8
– volume: 48
  start-page: 44
  year: 2019
  end-page: 61
  ident: b57
  article-title: A metaheuristic approach to solve dynamic vehicle routing problem in continuous search space
  publication-title: Swarm Evol. Comput.
– start-page: 797
  year: 2006
  end-page: 802
  ident: b82
  article-title: Energy efficient distributed connected dominating sets construction in wireless sensor networks
  publication-title: International Conference on Wireless Communications and Mobile Computing
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b50
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 30
  start-page: 2305
  year: 2018
  end-page: 2317
  ident: b6
  article-title: Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks
  publication-title: Neural Comput. Appl.
– volume: 60
  start-page: 115
  year: 2017
  end-page: 134
  ident: b30
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl. Soft Comput.
– volume: 75
  start-page: 775
  year: 2019
  end-page: 789
  ident: b21
  article-title: Impact of Lèvy flight on modern meta-heuristic optimizers
  publication-title: Appl. Soft Comput.
– volume: 191
  start-page: 105190
  year: 2020
  ident: b23
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 38
  start-page: 12180
  year: 2011
  end-page: 12188
  ident: b43
  article-title: A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks
  publication-title: Expert Syst. Appl.
– volume: 87
  start-page: 103330
  year: 2020
  ident: b66
  article-title: Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 21
  start-page: 7393
  issue: 24
  year: 2017
  ident: 10.1016/j.engappai.2020.103731_b24
  article-title: Enhancing social emotional optimization algorithm using local search
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2282-z
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.engappai.2020.103731_b60
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 13
  start-page: 2837
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2020.103731_b59
  article-title: Social-based algorithm (SBA)
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.018
– volume: 13
  start-page: 1774
  issue: 4
  year: 2013
  ident: 10.1016/j.engappai.2020.103731_b68
  article-title: Chemical reaction optimization with greedy strategy for the 0–1 knapsack problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.048
– year: 1996
  ident: 10.1016/j.engappai.2020.103731_b5
– volume: 7
  start-page: 2907
  issue: 11
  year: 2007
  ident: 10.1016/j.engappai.2020.103731_b10
  article-title: Novel deployment schemes for mobile sensor networks
  publication-title: Sensors
  doi: 10.3390/S7112907
– volume: 90
  start-page: 103541
  year: 2020
  ident: 10.1016/j.engappai.2020.103731_b38
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– start-page: 797
  year: 2006
  ident: 10.1016/j.engappai.2020.103731_b82
  article-title: Energy efficient distributed connected dominating sets construction in wireless sensor networks
– volume: 87
  start-page: 103330
  year: 2020
  ident: 10.1016/j.engappai.2020.103731_b66
  article-title: Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103330
– volume: 64
  start-page: 161
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b53
  article-title: Volleyball premier league algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.043
– volume: 72
  start-page: 393
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b11
  article-title: Tree growth algorithm (TGA): A novel approach for solving optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.021
– volume: 163
  start-page: 283
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b84
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.030
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.engappai.2020.103731_b31
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 42
  start-page: 965
  issue: 4
  year: 2014
  ident: 10.1016/j.engappai.2020.103731_b55
  article-title: Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9342-2
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.engappai.2020.103731_b61
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– start-page: 61
  year: 2015
  ident: 10.1016/j.engappai.2020.103731_b46
  article-title: An improved genetic algorithm for maximizing area coverage in wireless sensor networks
– volume: 71
  start-page: 242
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b83
  article-title: A hybrid DPSO with Lévy flight for scheduling MIMO radar tasks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.06.028
– volume: 5
  start-page: 6168
  year: 2017
  ident: 10.1016/j.engappai.2020.103731_b44
  article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2695498
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.engappai.2020.103731_b50
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 71
  start-page: 275
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b54
  article-title: Interactive search algorithm: A new hybrid metaheuristic optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.03.003
– volume: 60
  start-page: 97
  year: 2017
  ident: 10.1016/j.engappai.2020.103731_b56
  article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.013
– volume: 8
  start-page: 19381
  year: 2020
  ident: 10.1016/j.engappai.2020.103731_b33
  article-title: Optimal sink node placement in large scale wireless sensor networks based on harris’ hawk optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968981
– start-page: 26
  year: 2009
  ident: 10.1016/j.engappai.2020.103731_b72
  article-title: Atarraya: A simulation tool to teach and research topology control algorithms for wireless sensor networks
– volume: 116
  start-page: 405
  issue: 2
  year: 1994
  ident: 10.1016/j.engappai.2020.103731_b36
  article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– volume: 74
  start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b22
  article-title: Fibonacci indicator algorithm: A novel tool for complex optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.012
– volume: 42
  start-page: 21
  issue: 1
  year: 2014
  ident: 10.1016/j.engappai.2020.103731_b37
  article-title: A comprehensive survey: Artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– year: 2017
  ident: 10.1016/j.engappai.2020.103731_b76
– volume: 129
  start-page: 135
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b77
  article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.043
– volume: 17
  start-page: 851
  issue: 8
  year: 2006
  ident: 10.1016/j.engappai.2020.103731_b75
  article-title: Extended dominating set and its applications in ad hoc networks using cooperative communication
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2006.103
– volume: 30
  start-page: 2305
  issue: 7
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b6
  article-title: Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2823-5
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.engappai.2020.103731_b73
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
  doi: 10.2307/3001968
– volume: 3
  start-page: 87
  issue: 2
  year: 2009
  ident: 10.1016/j.engappai.2020.103731_b40
  article-title: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-008-0021-5
– volume: 38
  start-page: 12180
  issue: 10
  year: 2011
  ident: 10.1016/j.engappai.2020.103731_b43
  article-title: A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.03.053
– start-page: 1
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b2
  article-title: Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm
  publication-title: Telecommun. Syst.
– volume: 114
  start-page: 48
  year: 2017
  ident: 10.1016/j.engappai.2020.103731_b15
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 26
  start-page: 369
  issue: 6
  year: 2004
  ident: 10.1016/j.engappai.2020.103731_b49
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-003-0368-6
– volume: 237
  start-page: 82
  year: 2013
  ident: 10.1016/j.engappai.2020.103731_b8
  article-title: A survey on optimization metaheuristics
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.02.041
– volume: 68
  start-page: 101
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b26
  article-title: Integrated clustering and routing protocol for wireless sensor networks using cuckoo and harmony search based metaheuristic techniques
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.11.003
– volume: 133
  start-page: 106656
  year: 2020
  ident: 10.1016/j.engappai.2020.103731_b32
  article-title: A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106656
– volume: 80
  start-page: 20
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b62
  article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.01.001
– year: 2013
  ident: 10.1016/j.engappai.2020.103731_b64
– start-page: 90
  year: 2012
  ident: 10.1016/j.engappai.2020.103731_b80
  article-title: Wireless sensor network deployment using an optimized artificial fish swarm algorithm
– volume: 32
  start-page: 72
  year: 2015
  ident: 10.1016/j.engappai.2020.103731_b35
  article-title: Ions motion algorithm for solving optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.035
– volume: 265
  start-page: 533
  year: 2015
  ident: 10.1016/j.engappai.2020.103731_b58
  article-title: Teaching-learning based optimization with global crossover for global optimization problems
  publication-title: Appl. Math. Comput.
– start-page: 39
  year: 1995
  ident: 10.1016/j.engappai.2020.103731_b18
  article-title: A new optimizer using particle swarm theory
– volume: 87
  start-page: 103249
  year: 2020
  ident: 10.1016/j.engappai.2020.103731_b28
  article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103249
– start-page: 1
  year: 2008
  ident: 10.1016/j.engappai.2020.103731_b71
  article-title: A3: A topology construction algorithm for wireless sensor networks
– volume: 316
  start-page: 517
  year: 2015
  ident: 10.1016/j.engappai.2020.103731_b42
  article-title: A comprehensive comparison of large scale global optimizers
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.09.031
– volume: 1
  start-page: 467
  issue: 1
  year: 1997
  ident: 10.1016/j.engappai.2020.103731_b74
  article-title: No free lunch theorem for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 29
  start-page: 119
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b16
  article-title: An efficient opposition based Lévy flight antlion optimizer for optimization problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.10.002
– start-page: 1
  year: 2015
  ident: 10.1016/j.engappai.2020.103731_b70
  article-title: Elephant herding optimization
– volume: 191
  start-page: 1245
  issue: 11–12
  year: 2002
  ident: 10.1016/j.engappai.2020.103731_b13
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(01)00323-1
– volume: 60
  start-page: 115
  year: 2017
  ident: 10.1016/j.engappai.2020.103731_b30
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.044
– volume: 44
  start-page: 101
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b25
  article-title: A novel random walk grey wolf optimizer
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.01.001
– volume: 22
  start-page: 5923
  issue: 18
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b79
  article-title: Swarm intelligence: Past, present and future
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2810-5
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b27
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– volume: 15
  start-page: 4
  issue: 1
  year: 2010
  ident: 10.1016/j.engappai.2020.103731_b14
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– volume: 52
  start-page: 2191
  issue: 4
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b34
  article-title: Metaheuristic research: A comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9605-z
– volume: 43
  start-page: 1473
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2020.103731_b81
  article-title: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2250955
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b29
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 22
  start-page: 857
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b20
  article-title: Feature selection via Lèvy antlion optimization
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-018-0695-2
– volume: 274
  start-page: 1
  year: 2014
  ident: 10.1016/j.engappai.2020.103731_b4
  article-title: Evolutionary strategies for ultra-large-scale autonomic systems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.03.003
– start-page: 7
  year: 1987
  ident: 10.1016/j.engappai.2020.103731_b69
  article-title: Simulated annealing
– volume: 87
  start-page: 103294
  year: 2020
  ident: 10.1016/j.engappai.2020.103731_b9
  article-title: A powerful variant of symbiotic organisms search algorithm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103294
– volume: 23
  start-page: 632
  issue: 4
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b45
  article-title: A novel particle swarm optimization approach for patient clustering from emergency departments
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2878536
– year: 2013
  ident: 10.1016/j.engappai.2020.103731_b78
– year: 1999
  ident: 10.1016/j.engappai.2020.103731_b7
– volume: 120
  start-page: 423
  issue: 4
  year: 1994
  ident: 10.1016/j.engappai.2020.103731_b65
  article-title: Genetic algorithms compared to other techniques for pipe optimization
  publication-title: J. Water Resour. Plan. Manage.
  doi: 10.1061/(ASCE)0733-9496(1994)120:4(423)
– volume: 224
  start-page: 85
  issue: 1
  year: 2013
  ident: 10.1016/j.engappai.2020.103731_b39
  article-title: Magnetic charged system search: A new meta-heuristic algorithm for optimization
  publication-title: Acta Mech.
  doi: 10.1007/s00707-012-0745-6
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.engappai.2020.103731_b52
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– start-page: 3480
  year: 2006
  ident: 10.1016/j.engappai.2020.103731_b63
  article-title: Grid scan: A simple and effective approach for coverage issue in wireless sensor networks
– year: 2013
  ident: 10.1016/j.engappai.2020.103731_b41
– volume: 75
  start-page: 775
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b21
  article-title: Impact of Lèvy flight on modern meta-heuristic optimizers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.033
– volume: 447
  start-page: 12
  year: 2018
  ident: 10.1016/j.engappai.2020.103731_b3
  article-title: A balanced fuzzy cultural algorithm with a modified Lévy flight search for real parameter optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.03.008
– volume: 30
  start-page: 5
  issue: 1–3
  year: 2016
  ident: 10.1016/j.engappai.2020.103731_b47
  article-title: Quenched trap model for Lévy flights
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2015.05.027
– volume: 48
  start-page: 44
  year: 2019
  ident: 10.1016/j.engappai.2020.103731_b57
  article-title: A metaheuristic approach to solve dynamic vehicle routing problem in continuous search space
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.03.008
– volume: 57
  start-page: 142
  year: 2017
  ident: 10.1016/j.engappai.2020.103731_b48
  article-title: Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.10.014
– volume: 13
  start-page: 22
  issue: 6
  year: 1996
  ident: 10.1016/j.engappai.2020.103731_b67
  article-title: Genetic algorithms and their applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543973
– volume: 191
  start-page: 105190
  year: 2020
  ident: 10.1016/j.engappai.2020.103731_b23
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105190
– start-page: 1942
  year: 1995
  ident: 10.1016/j.engappai.2020.103731_b19
  article-title: Particle swarm optimization
– volume: 10
  issue: 5
  year: 2015
  ident: 10.1016/j.engappai.2020.103731_b1
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 10.1016/j.engappai.2020.103731_b12
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 10.1016/j.engappai.2020.103731_b51
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.engappai.2020.103731_b17
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
SSID ssj0003846
Score 2.6763976
Snippet In this paper, we propose a new metaheuristic algorithm based on Lévy flight called Lévy flight distribution (LFD) for solving real optimization problems. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103731
SubjectTerms Engineering optimization problems
Evolutionary computation
Global optimization
Lévy flight distribution
Metaheuristic
Wireless sensor networks
Title Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems
URI https://dx.doi.org/10.1016/j.engappai.2020.103731
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWqcuHCjihL5QPXtElsZ-FWVVSFQg9ARW-RHdttqm5qUyQu_A_fwY9hJw4tElIPnKJYHinybM_RzBsArmNHSscLqMUxQxamJLQYFULZMvIZYUwirPudH7teu4fv-6RfAs2iF0aXVZrYn8f0LFqblbo5zfo8SerPChwod1POnF0LAh2HMfb1FIPax7rMAwV5s47abOndG13Co5qYDuh8ThN1T3Tz_nPk_J2gNpJO6wDsGbQIG_kHHYKSmB6BfYMcofHLpVoqhjMUa8dAPnx9vr1DOda3b8g1P64ZbXUDG1CBaTgRKR2KVU7VDOl4MFsk6XACFYyFyiL1nwYo1nSFcKaiy8S0bUIziGZ5Anqt25dm2zJDFawYOW6qCSGZLWPOpB_7Km1xTDlxQz_jviJCocFYII6kYAQj6XGFqGyOPKl56zgiAToF5elsKs4A9FBMXRSSQPgcO3ZAbUfEQrrCtT1XhqgCSHGSUWwYx_Xgi3FUlJaNokIDkdZAlGugAuo_cvOcc2OrRFgoKvplPZFKDFtkz_8hewF29Vtec3YJyuliJa4USElZNbPCKthp3HXaXf3sPL12vgH0wOuW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWqcoALO6KsPnBNm8RxFm5VRVWg7YVW6i2yY7uLuqlNkbjwP3wHP8a4cShISD1wdTyS5RnPvIlm3iB0lzhKOX7ILOFxYnmMRhZnUoItk4BTzhXxdL9zq-03ut5Tj_YKqJb3wuiySuP7M5--9tZmpWJuszIfDisvAA7gucFjXqcFIfjhHY-6gc7Ayu-bOg8SZt06sNvS23-0CY_Kctpn8zkbQqLoZg3oxPk7Qv2IOvVDtG_gIq5mJzpCBTk9RgcGOmLzMJewlE9nyNdOkGp-fry-YTXW6TcWmiDXzLa6x1UMaBpPZMoGcpVxNWM27s8Ww3QwwYBjMZik_tWA5YavEM_AvUxM3yY2k2iWp6hbf-jUGpaZqmAlxHFTzQjJbZUIroIkgLglPCaoGwVr8isqAQ4mkgiiJKceUb4ASGUL4itNXCcIDckZKk5nU3mOsE8S5pKIhjIQnmOHzHZkIpUrXdt3VURKiOY3GSeGclxPvhjHeW3ZKM41EGsNxJkGSqjyLTfPSDe2SkS5ouJf5hNDZNgie_EP2Vu02-i0mnHzsf18ifb0l6wA7QoV08VKXgNiSfnN2iK_ABWl64g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L%C3%A9vy+flight+distribution%3A+A+new+metaheuristic+algorithm+for+solving+engineering+optimization+problems&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Houssein%2C+Essam+H.&rft.au=Saad%2C+Mohammed+R.&rft.au=Hashim%2C+Fatma+A.&rft.au=Shaban%2C+Hassan&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=94&rft_id=info:doi/10.1016%2Fj.engappai.2020.103731&rft.externalDocID=S0952197620301482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon