Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems
In this paper, we propose a new metaheuristic algorithm based on Lévy flight called Lévy flight distribution (LFD) for solving real optimization problems. The LFD algorithm is inspired from the Lévy flight random walk for exploring unknown large search spaces (e.g., wireless sensor networks (WSNs)....
Saved in:
| Published in | Engineering applications of artificial intelligence Vol. 94; p. 103731 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.09.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-1976 1873-6769 |
| DOI | 10.1016/j.engappai.2020.103731 |
Cover
| Abstract | In this paper, we propose a new metaheuristic algorithm based on Lévy flight called Lévy flight distribution (LFD) for solving real optimization problems. The LFD algorithm is inspired from the Lévy flight random walk for exploring unknown large search spaces (e.g., wireless sensor networks (WSNs). To assess the performance of the LFD algorithm, various optimization test bed problems are considered, namely the congress on evolutionary computation (CEC) 2017 suite and three engineering optimization problems: tension/compression spring, the welded beam, and pressure vessel. The statistical simulation results revealed that the LFD algorithm provides better results with superior performance in most tests compared to several well-known metaheuristic algorithms such as simulated annealing (SA), differential evolution (DE), particle swarm optimization (PSO), elephant herding optimization (EHO), the genetic algorithm (GA), moth-flame optimization algorithm (MFO), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), and Harris Hawks Optimization (HHO) algorithm. Furthermore, the performance of the LFD algorithm is tested on other different optimization problems of unknown large search spaces such as the area coverage problem in WSNs. The LFD algorithm shows high performance in providing a good deployment schema than energy-efficient connected dominating set (EECDS), A3, and CDS-Rule K topology construction algorithms for solving the area coverage problem in WSNs. Eventually, the LFD algorithm performs successfully achieving a high coverage rate up to 43.16 %, while the A3, EECDS, and CDS-Rule K algorithms achieve low coverage rates up to 40 % based on network sizes used in the simulation experiments. Also, the LFD algorithm succeeded in providing a better deployment schema than A3, EECDS, and CDS-Rule K algorithms and enhancing the detection capability of WSNs by minimizing the overlap between sensor nodes and maximizing the coverage rate. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/76103-lfd. |
|---|---|
| AbstractList | In this paper, we propose a new metaheuristic algorithm based on Lévy flight called Lévy flight distribution (LFD) for solving real optimization problems. The LFD algorithm is inspired from the Lévy flight random walk for exploring unknown large search spaces (e.g., wireless sensor networks (WSNs). To assess the performance of the LFD algorithm, various optimization test bed problems are considered, namely the congress on evolutionary computation (CEC) 2017 suite and three engineering optimization problems: tension/compression spring, the welded beam, and pressure vessel. The statistical simulation results revealed that the LFD algorithm provides better results with superior performance in most tests compared to several well-known metaheuristic algorithms such as simulated annealing (SA), differential evolution (DE), particle swarm optimization (PSO), elephant herding optimization (EHO), the genetic algorithm (GA), moth-flame optimization algorithm (MFO), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), and Harris Hawks Optimization (HHO) algorithm. Furthermore, the performance of the LFD algorithm is tested on other different optimization problems of unknown large search spaces such as the area coverage problem in WSNs. The LFD algorithm shows high performance in providing a good deployment schema than energy-efficient connected dominating set (EECDS), A3, and CDS-Rule K topology construction algorithms for solving the area coverage problem in WSNs. Eventually, the LFD algorithm performs successfully achieving a high coverage rate up to 43.16 %, while the A3, EECDS, and CDS-Rule K algorithms achieve low coverage rates up to 40 % based on network sizes used in the simulation experiments. Also, the LFD algorithm succeeded in providing a better deployment schema than A3, EECDS, and CDS-Rule K algorithms and enhancing the detection capability of WSNs by minimizing the overlap between sensor nodes and maximizing the coverage rate. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/76103-lfd. |
| ArticleNumber | 103731 |
| Author | Saad, Mohammed R. Shaban, Hassan Hashim, Fatma A. Hassaballah, M. Houssein, Essam H. |
| Author_xml | – sequence: 1 givenname: Essam H. surname: Houssein fullname: Houssein, Essam H. organization: Faculty of Computers and Information, Minia University, Egypt – sequence: 2 givenname: Mohammed R. surname: Saad fullname: Saad, Mohammed R. organization: Faculty of Computers and Information, Luxor University, Luxor, Egypt – sequence: 3 givenname: Fatma A. surname: Hashim fullname: Hashim, Fatma A. organization: Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Helwan, Egypt – sequence: 4 givenname: Hassan surname: Shaban fullname: Shaban, Hassan organization: Faculty of Computers and Information, Minia University, Egypt – sequence: 5 givenname: M. surname: Hassaballah fullname: Hassaballah, M. email: m.hassaballah@svu.edu.eg organization: Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, Egypt |
| BookMark | eNqFkEFu2zAQRYkgAWInuULAC8glRYm0giwaBE1awEA3zZqgyKE9hiQKJO3CvVHP0YvFittNN17NYAbvY-bNyeUQBiDknrMFZ1x-2i5gWJtxNLgoWTkNhRL8gsz4UolCKtlckhlr6rLgjZLXZJ7SljEmlpWcEb_683t_oL7D9SZThylHbHcZw_BAn-gAP2kP2WxgF48rtNR06xAxb3rqQ6QpdHsc1vR4AA4AcerDmLHHX2bKoGMMbQd9uiVX3nQJ7v7WG_L28uXH89di9f312_PTqrCCl7ngSrbMW9d6ZRUvhauMq8tGNWrJqxqUqiwIJzy0dSW8dHXNmRPSS1ErJ-qluCGPp1wbQ0oRvLaYP07J0WCnOdOTM73V_5zpyZk-OTvi8j98jNibeDgPfj6BcHxujxB1sgiDBYcRbNYu4LmId39oj-k |
| CitedBy_id | crossref_primary_10_1007_s11277_021_08537_6 crossref_primary_10_1038_s41598_022_27144_4 crossref_primary_10_1007_s44196_023_00249_y crossref_primary_10_1016_j_asoc_2021_107942 crossref_primary_10_1016_j_renene_2024_120480 crossref_primary_10_1016_j_advengsoft_2025_103883 crossref_primary_10_1016_j_asoc_2022_109847 crossref_primary_10_1007_s40996_024_01488_5 crossref_primary_10_1016_j_matpr_2020_09_775 crossref_primary_10_1007_s00366_021_01460_1 crossref_primary_10_1007_s00521_022_07751_y crossref_primary_10_1088_1742_6596_2562_1_012005 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1016_j_compeleceng_2024_109116 crossref_primary_10_1016_j_compbiomed_2022_106239 crossref_primary_10_1016_j_eswa_2023_121715 crossref_primary_10_1007_s10577_023_09738_4 crossref_primary_10_31590_ejosat_1010813 crossref_primary_10_17714_gumusfenbil_1175548 crossref_primary_10_3390_math11163496 crossref_primary_10_1109_ACCESS_2022_3203400 crossref_primary_10_1016_j_cma_2022_114901 crossref_primary_10_1007_s10586_024_04654_6 crossref_primary_10_1016_j_iot_2023_100917 crossref_primary_10_2478_amns_2024_1419 crossref_primary_10_1016_j_jer_2023_11_024 crossref_primary_10_1016_j_eswa_2024_126315 crossref_primary_10_1016_j_eswa_2021_115936 crossref_primary_10_1108_JEDT_11_2020_0468 crossref_primary_10_1111_exsy_13306 crossref_primary_10_1002_int_23091 crossref_primary_10_1007_s00521_021_05892_0 crossref_primary_10_1016_j_aej_2022_05_018 crossref_primary_10_1080_19942060_2021_1982777 crossref_primary_10_1016_j_knosys_2022_108320 crossref_primary_10_1016_j_eswa_2021_115253 crossref_primary_10_1016_j_eswa_2021_115131 crossref_primary_10_1007_s11227_021_03943_w crossref_primary_10_1016_j_enconman_2021_115134 crossref_primary_10_1007_s00500_023_09261_y crossref_primary_10_1007_s00500_023_08446_9 crossref_primary_10_1177_01423312221140671 crossref_primary_10_1016_j_advengsoft_2023_103517 crossref_primary_10_1016_j_knosys_2023_110374 crossref_primary_10_1109_ACCESS_2024_3430970 crossref_primary_10_1109_JSEN_2024_3489623 crossref_primary_10_2174_2212797616666230719151124 crossref_primary_10_1016_j_knosys_2024_111725 crossref_primary_10_3390_math10193466 crossref_primary_10_1007_s00202_024_02402_y crossref_primary_10_3390_math11040979 crossref_primary_10_1007_s00521_023_08492_2 crossref_primary_10_1016_j_seta_2022_102744 crossref_primary_10_1016_j_jairtraman_2022_102225 crossref_primary_10_1007_s11227_024_06899_9 crossref_primary_10_1007_s42235_022_00330_w crossref_primary_10_1016_j_cherd_2024_05_037 crossref_primary_10_1007_s11227_024_06365_6 crossref_primary_10_1007_s00500_023_09561_3 crossref_primary_10_1007_s10462_022_10182_9 crossref_primary_10_1007_s00366_021_01412_9 crossref_primary_10_1007_s10489_021_02795_4 crossref_primary_10_1016_j_aej_2023_04_052 crossref_primary_10_1007_s13369_021_06307_x crossref_primary_10_1016_j_eswa_2024_125130 crossref_primary_10_1016_j_knosys_2024_111850 crossref_primary_10_3390_biomimetics8060462 crossref_primary_10_1016_j_robot_2024_104794 crossref_primary_10_3233_JIFS_201755 crossref_primary_10_1016_j_engappai_2022_105521 crossref_primary_10_1007_s11227_024_05905_4 crossref_primary_10_35429_JCT_2022_16_6_23_36 crossref_primary_10_1109_ACCESS_2021_3078585 crossref_primary_10_1007_s10586_024_04593_2 crossref_primary_10_1007_s13369_021_06321_z crossref_primary_10_1016_j_matcom_2021_08_013 crossref_primary_10_3390_diagnostics13081422 crossref_primary_10_1109_ACCESS_2021_3066135 crossref_primary_10_1109_ACCESS_2025_3547537 crossref_primary_10_1016_j_aej_2023_12_054 crossref_primary_10_1038_s41598_023_32465_z crossref_primary_10_1007_s10586_024_04382_x crossref_primary_10_1016_j_eswa_2021_115352 crossref_primary_10_1016_j_bspc_2023_105849 crossref_primary_10_1016_j_compeleceng_2024_109566 crossref_primary_10_1016_j_ijleo_2022_169692 crossref_primary_10_1364_OE_507602 crossref_primary_10_1017_S0263574724000481 crossref_primary_10_1109_LGRS_2022_3147272 crossref_primary_10_1007_s10489_023_04705_2 crossref_primary_10_1007_s11042_024_19550_9 crossref_primary_10_1007_s12205_023_0903_5 crossref_primary_10_3390_su14052998 crossref_primary_10_1007_s42235_024_00505_7 crossref_primary_10_1016_j_engappai_2024_109370 crossref_primary_10_1007_s00521_021_06726_9 crossref_primary_10_1016_j_aej_2024_02_012 crossref_primary_10_1007_s11227_023_05227_x crossref_primary_10_1142_S1469026824500123 crossref_primary_10_1016_j_engappai_2021_104309 crossref_primary_10_1016_j_dajour_2022_100043 crossref_primary_10_1016_j_engappai_2024_109202 crossref_primary_10_1016_j_swevo_2021_100868 crossref_primary_10_1142_S0219467824500244 crossref_primary_10_1177_01423312211036591 crossref_primary_10_1007_s00521_021_06580_9 crossref_primary_10_1007_s13201_022_01794_1 crossref_primary_10_3390_app142311320 crossref_primary_10_1016_j_asoc_2022_108684 crossref_primary_10_3390_biomimetics8020182 crossref_primary_10_4018_IJAMC_292514 crossref_primary_10_1016_j_knosys_2022_109215 crossref_primary_10_1016_j_engappai_2022_105622 crossref_primary_10_1007_s11235_021_00866_y crossref_primary_10_1049_cit2_12316 crossref_primary_10_1016_j_yofte_2021_102733 crossref_primary_10_1016_j_heliyon_2022_e09399 crossref_primary_10_1038_s41598_023_31876_2 crossref_primary_10_1155_2021_5511745 crossref_primary_10_1016_j_eswa_2021_115178 crossref_primary_10_1016_j_asoc_2023_110252 crossref_primary_10_1016_j_bspc_2021_103401 crossref_primary_10_1080_21642583_2024_2385310 crossref_primary_10_1016_j_asoc_2022_109081 crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_1007_s00521_022_07854_6 crossref_primary_10_24012_dumf_955645 crossref_primary_10_1016_j_eswa_2022_118618 crossref_primary_10_1007_s00034_021_01897_1 crossref_primary_10_1016_j_engappai_2022_105075 crossref_primary_10_1038_s41598_024_77523_2 crossref_primary_10_1038_s41598_024_84458_1 crossref_primary_10_3390_buildings14113583 crossref_primary_10_1038_s41598_025_86275_6 crossref_primary_10_1007_s11227_024_06651_3 crossref_primary_10_1007_s42452_020_04013_1 crossref_primary_10_1016_j_chaos_2023_113672 crossref_primary_10_1016_j_eswa_2022_119015 crossref_primary_10_3233_JIFS_234357 crossref_primary_10_1016_j_eswa_2021_116468 crossref_primary_10_1038_s41598_022_24343_x crossref_primary_10_1080_02564602_2020_1843554 crossref_primary_10_1093_jcde_qwad108 crossref_primary_10_1007_s10586_024_04368_9 crossref_primary_10_1016_j_eswa_2023_120886 crossref_primary_10_1007_s00366_020_01248_9 crossref_primary_10_1007_s10489_022_03977_4 crossref_primary_10_1016_j_compbiomed_2023_106691 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_3390_math8101821 crossref_primary_10_1007_s00366_021_01438_z crossref_primary_10_1007_s00500_023_08414_3 crossref_primary_10_3390_math11122680 crossref_primary_10_1109_ACCESS_2024_3435847 crossref_primary_10_1007_s12530_021_09402_4 crossref_primary_10_1186_s40537_025_01080_2 crossref_primary_10_1007_s00521_022_08103_6 crossref_primary_10_1007_s10586_024_04713_y crossref_primary_10_1016_j_knosys_2023_110708 crossref_primary_10_1007_s10586_024_04319_4 crossref_primary_10_1016_j_aei_2023_102004 crossref_primary_10_1016_j_eswa_2021_116235 crossref_primary_10_1515_jisys_2023_0269 crossref_primary_10_1016_j_eij_2024_100603 crossref_primary_10_3390_biomimetics9070399 crossref_primary_10_1016_j_eswa_2023_121501 crossref_primary_10_1007_s10586_024_04931_4 crossref_primary_10_1016_j_eswa_2023_121744 crossref_primary_10_1007_s12530_024_09645_x crossref_primary_10_1093_jcde_qwac003 crossref_primary_10_32604_cmc_2022_029315 crossref_primary_10_1007_s40747_021_00346_5 crossref_primary_10_1016_j_cie_2022_108032 crossref_primary_10_1007_s10489_022_03796_7 crossref_primary_10_1007_s10586_024_04410_w crossref_primary_10_1109_ACCESS_2023_3303328 crossref_primary_10_1186_s13677_024_00603_1 crossref_primary_10_1038_s41598_023_36066_8 crossref_primary_10_1007_s12065_021_00668_w crossref_primary_10_1080_21681163_2021_2024088 crossref_primary_10_1109_ACCESS_2022_3193233 crossref_primary_10_1016_j_engappai_2022_105718 crossref_primary_10_1007_s11227_024_06856_6 crossref_primary_10_1007_s11227_023_05579_4 crossref_primary_10_1007_s00354_023_00214_5 crossref_primary_10_1109_ACCESS_2024_3365700 crossref_primary_10_1016_j_est_2021_103848 crossref_primary_10_1007_s10462_025_11118_9 crossref_primary_10_1016_j_applthermaleng_2021_117427 crossref_primary_10_1007_s10489_020_01893_z crossref_primary_10_3390_math9070758 crossref_primary_10_3390_math9212771 crossref_primary_10_1016_j_matcom_2022_12_001 crossref_primary_10_37701_ts_05_2024_05 crossref_primary_10_1016_j_engappai_2023_106778 crossref_primary_10_1155_2022_4673665 crossref_primary_10_1016_j_eswa_2021_115538 crossref_primary_10_3389_fenrg_2022_941705 crossref_primary_10_1016_j_matcom_2023_10_006 crossref_primary_10_1007_s00521_021_06273_3 crossref_primary_10_1016_j_eswa_2021_114689 crossref_primary_10_1016_j_matcom_2022_08_017 crossref_primary_10_1016_j_knosys_2022_108164 crossref_primary_10_1016_j_eswa_2021_115651 crossref_primary_10_1016_j_ijepes_2022_108729 crossref_primary_10_3390_biomimetics9100583 crossref_primary_10_1007_s11227_024_06291_7 crossref_primary_10_1007_s10462_022_10233_1 crossref_primary_10_1002_er_7103 crossref_primary_10_30931_jetas_1331636 crossref_primary_10_1016_j_knosys_2022_109484 crossref_primary_10_1016_j_molliq_2024_125951 crossref_primary_10_1016_j_molliq_2024_124860 crossref_primary_10_1016_j_engappai_2022_104722 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_1016_j_eswa_2022_118644 crossref_primary_10_1007_s10489_022_04224_6 crossref_primary_10_1515_mt_2024_0187 crossref_primary_10_1016_j_apenergy_2024_122767 crossref_primary_10_1109_ACCESS_2023_3276264 crossref_primary_10_1007_s00521_024_09737_4 crossref_primary_10_1016_j_energy_2021_120386 crossref_primary_10_1109_ACCESS_2022_3197290 crossref_primary_10_1016_j_apenergy_2022_118851 crossref_primary_10_1016_j_jare_2022_01_002 crossref_primary_10_1007_s11227_023_05617_1 crossref_primary_10_1177_01423312211019633 crossref_primary_10_1007_s10462_024_10981_2 crossref_primary_10_1142_S0218001422590108 crossref_primary_10_3390_atmos14111612 crossref_primary_10_1016_j_engappai_2022_104952 crossref_primary_10_1109_ACCESS_2024_3466529 crossref_primary_10_1515_mt_2024_0515 crossref_primary_10_1016_j_cma_2023_116446 crossref_primary_10_1016_j_engstruct_2024_118376 crossref_primary_10_1007_s10845_022_02016_w crossref_primary_10_1007_s10712_021_09644_6 crossref_primary_10_1111_exsy_12992 crossref_primary_10_3390_sym12081234 crossref_primary_10_1016_j_cmpb_2021_106244 crossref_primary_10_3233_JIFS_232527 crossref_primary_10_1007_s12145_023_00963_3 crossref_primary_10_1016_j_matcom_2023_11_019 crossref_primary_10_1007_s42235_023_00357_7 crossref_primary_10_1007_s42979_023_02598_z crossref_primary_10_1007_s11235_023_01062_w crossref_primary_10_1109_ACCESS_2021_3088783 crossref_primary_10_1007_s00500_022_07410_3 crossref_primary_10_3390_math9182335 crossref_primary_10_1007_s00366_021_01371_1 crossref_primary_10_1016_j_asoc_2022_108717 crossref_primary_10_1007_s10845_021_01877_x crossref_primary_10_1016_j_est_2021_103245 crossref_primary_10_1002_cpe_8233 crossref_primary_10_1016_j_asoc_2025_113071 crossref_primary_10_1109_ACCESS_2023_3295242 crossref_primary_10_1109_ACCESS_2022_3185414 crossref_primary_10_1016_j_eswa_2024_123934 crossref_primary_10_1007_s00500_022_07215_4 crossref_primary_10_1109_TGRS_2023_3259146 crossref_primary_10_3390_fractalfract6040194 crossref_primary_10_3390_math11204363 crossref_primary_10_1007_s11277_021_08924_z crossref_primary_10_1016_j_energy_2022_124363 crossref_primary_10_1007_s10489_023_05179_y crossref_primary_10_1016_j_matcom_2023_03_007 crossref_primary_10_1080_19942060_2022_2098826 crossref_primary_10_1515_mt_2020_0091 crossref_primary_10_1016_j_eswa_2023_122200 crossref_primary_10_1007_s10489_022_03171_6 crossref_primary_10_1007_s11227_023_05618_0 crossref_primary_10_1038_s41598_024_80923_z crossref_primary_10_1109_ACCESS_2024_3365506 crossref_primary_10_2166_hydro_2023_039 crossref_primary_10_1007_s00521_022_07573_y crossref_primary_10_1177_01423312231214593 crossref_primary_10_1007_s13369_024_09702_2 crossref_primary_10_1007_s00500_021_06401_0 crossref_primary_10_1007_s42235_023_00447_6 crossref_primary_10_1080_23080477_2021_1920142 crossref_primary_10_26117_2079_6641_2022_39_2_150_174 crossref_primary_10_1007_s13369_021_06383_z crossref_primary_10_1016_j_rineng_2025_104215 crossref_primary_10_1109_ACCESS_2020_3020895 crossref_primary_10_1007_s44196_023_00320_8 crossref_primary_10_1016_j_istruc_2024_106517 crossref_primary_10_1080_02286203_2025_2478994 crossref_primary_10_1109_TNS_2023_3255892 crossref_primary_10_1515_mt_2023_0201 crossref_primary_10_1007_s40747_025_01791_2 crossref_primary_10_1016_j_eswa_2023_122335 crossref_primary_10_1007_s42235_022_00223_y crossref_primary_10_1016_j_knosys_2021_107348 crossref_primary_10_3390_math10162960 crossref_primary_10_1016_j_knosys_2023_110679 crossref_primary_10_1016_j_energy_2023_129005 crossref_primary_10_1080_14680629_2025_2479214 crossref_primary_10_1007_s12530_023_09485_1 crossref_primary_10_1109_ACCESS_2022_3157400 crossref_primary_10_1109_ACCESS_2021_3066329 crossref_primary_10_1016_j_engappai_2022_104920 crossref_primary_10_1109_TIM_2024_3436111 crossref_primary_10_1007_s10462_020_09933_3 crossref_primary_10_1007_s11831_024_10168_6 crossref_primary_10_1016_j_matcom_2023_04_027 crossref_primary_10_1029_2024JB029717 crossref_primary_10_1016_j_knosys_2021_106924 crossref_primary_10_1016_j_swevo_2024_101656 crossref_primary_10_1109_ACCESS_2020_3014309 crossref_primary_10_1007_s00521_022_06906_1 crossref_primary_10_1007_s10008_025_06253_w crossref_primary_10_1093_jcde_qwae035 crossref_primary_10_1109_ACCESS_2024_3466170 crossref_primary_10_1007_s00521_023_08287_5 crossref_primary_10_1016_j_jare_2020_10_001 crossref_primary_10_1109_ACCESS_2021_3072336 crossref_primary_10_1142_S179396232150001X crossref_primary_10_1016_j_knosys_2022_108743 crossref_primary_10_1016_j_isatra_2021_11_008 crossref_primary_10_1007_s42235_023_00469_0 crossref_primary_10_1016_j_eswa_2024_123267 crossref_primary_10_1016_j_knosys_2022_109711 crossref_primary_10_1007_s11227_024_06727_0 crossref_primary_10_1029_2023RS007744 crossref_primary_10_33187_jmsm_1115792 crossref_primary_10_1007_s42235_023_00446_7 crossref_primary_10_28925_2663_4023_2024_24_363375 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1038_s41598_024_59960_1 crossref_primary_10_2139_ssrn_4807266 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1016_j_eswa_2022_116931 crossref_primary_10_1016_j_cma_2022_115764 crossref_primary_10_1007_s40430_022_04008_6 crossref_primary_10_1007_s00521_024_10694_1 crossref_primary_10_1038_s41598_024_71581_2 crossref_primary_10_1007_s10489_023_05073_7 crossref_primary_10_22399_ijcesen_489 |
| Cites_doi | 10.1007/s00500-016-2282-z 10.1016/j.ins.2009.03.004 10.1016/j.asoc.2012.05.018 10.1016/j.asoc.2012.11.048 10.3390/S7112907 10.1016/j.engappai.2020.103541 10.1016/j.engappai.2019.103330 10.1016/j.asoc.2017.11.043 10.1016/j.engappai.2018.04.021 10.1016/j.knosys.2018.08.030 10.1038/scientificamerican0792-66 10.1007/s10462-012-9342-2 10.1016/j.advengsoft.2017.01.004 10.1016/j.asoc.2018.06.028 10.1109/ACCESS.2017.2695498 10.1016/j.knosys.2015.07.006 10.1016/j.engappai.2018.03.003 10.1016/j.engappai.2017.01.013 10.1109/ACCESS.2020.2968981 10.1115/1.2919393 10.1016/j.engappai.2018.04.012 10.1007/s10462-012-9328-0 10.1016/j.eswa.2019.03.043 10.1109/TPDS.2006.103 10.1007/s00521-016-2823-5 10.2307/3001968 10.1007/s11721-008-0021-5 10.1016/j.eswa.2011.03.053 10.1016/j.advengsoft.2017.05.014 10.1007/s00158-003-0368-6 10.1016/j.ins.2013.02.041 10.1016/j.engappai.2017.11.003 10.1016/j.compchemeng.2019.106656 10.1016/j.engappai.2019.01.001 10.1016/j.asoc.2015.03.035 10.1016/j.engappai.2019.103249 10.1016/j.ins.2014.09.031 10.1109/4235.585893 10.1016/j.jocs.2018.10.002 10.1016/S0045-7825(01)00323-1 10.1016/j.asoc.2017.06.044 10.1016/j.swevo.2018.01.001 10.1007/s00500-017-2810-5 10.1016/j.future.2019.07.015 10.1109/TEVC.2010.2059031 10.1007/s10462-017-9605-z 10.1109/TCYB.2013.2250955 10.1016/j.future.2019.02.028 10.1007/s10044-018-0695-2 10.1016/j.ins.2014.03.003 10.1016/j.engappai.2019.103294 10.1109/TEVC.2018.2878536 10.1061/(ASCE)0733-9496(1994)120:4(423) 10.1007/s00707-012-0745-6 10.1016/j.advengsoft.2016.01.008 10.1016/j.asoc.2018.11.033 10.1016/j.ins.2018.03.008 10.1016/j.cnsns.2015.05.027 10.1016/j.swevo.2019.03.008 10.1016/j.engappai.2016.10.014 10.1109/79.543973 10.1016/j.knosys.2019.105190 10.1016/S0166-3615(99)00046-9 10.1007/s00521-015-1920-1 10.1109/MCI.2006.329691 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2020.103731 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2020_103731 S0952197620301482 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-176b0fcdbf7c7123d4ad5297978145e774ce3d3feb543f6d5510d36f6357d3583 |
| IEDL.DBID | .~1 |
| ISSN | 0952-1976 |
| IngestDate | Thu Apr 24 22:54:05 EDT 2025 Sat Oct 25 05:09:37 EDT 2025 Fri Feb 23 02:46:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Engineering optimization problems Lévy flight distribution Wireless sensor networks Global optimization Metaheuristic Evolutionary computation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-176b0fcdbf7c7123d4ad5297978145e774ce3d3feb543f6d5510d36f6357d3583 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2020_103731 crossref_primary_10_1016_j_engappai_2020_103731 elsevier_sciencedirect_doi_10_1016_j_engappai_2020_103731 |
| PublicationCentury | 2000 |
| PublicationDate | September 2020 2020-09-00 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Heidari, Pahlavani (b30) 2017; 60 Krishnanand, Ghose (b40) 2009; 3 Neshat, Sepidnam, Sargolzaei, Toosi (b55) 2014; 42 Liao, Kao, Li (b43) 2011; 38 Kaur, Awasthi, Sangal, Dhiman (b38) 2020; 90 Truong, Li, Xu (b68) 2013; 13 Das, Suganthan (b14) 2010; 15 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b29) 2019; 97 Emary, Zawbaa (b20) 2019; 22 Hayyolalam, Kazem (b28) 2020; 87 Zhao, Wang, Zhang (b84) 2019; 163 Ouyang, Gao, Kong, Zou, Li (b58) 2015; 265 Etminaniesfahani, Ghanbarzadeh, Marashi (b22) 2018; 74 Houssein, Saad, Hussain, Zhu, Shaban, Hassaballah (b33) 2020; 8 Rashedi, Nezamabadi-Pour, Saryazdi (b60) 2009; 179 Wightman, Labrador (b71) 2008 Yang, Cui, Xiao, Gandomi, Karamanoglu (b78) 2013 Bonabeau, Marco, Dorigo, Théraulaz, Theraulaz (b7) 1999 Mirjalili (b50) 2015; 89 Kaveh, Share, Moslehi (b39) 2013; 224 Tang, Man, Kwong, He (b67) 1996; 13 Wilcoxon (b73) 1945; 1 Eberhart, Kennedy (b18) 1995 Mortazavi, Toğan, Nuhoğlu (b54) 2018; 71 Emary, Zawbaa, Sharawi (b21) 2019; 75 Houssein, Hosney, Oliva, Mohamed, Hassaballah (b32) 2020; 133 Çelik (b9) 2020; 87 Gupta, Jha (b26) 2018; 68 Mirjalili (b51) 2016; 27 Dorigo, Birattari, Stutzle (b17) 2006; 1 Dhiman, Kumar (b15) 2017; 114 Javidy, Hatamlou, Mirjalili (b35) 2015; 32 Shadravan, Naji, Bardsiri (b62) 2019; 80 Coello (b12) 2000; 41 Kannan, Kramer (b36) 1994; 116 Simpson, Dandy, Murphy (b65) 1994; 120 Yiyue, Hongmei, Hengyang (b80) 2012 Amoretti (b4) 2014; 274 Yang, Deb, Zhao, Fong, He (b79) 2018; 22 Ahmed, Houssein, Hassanien, Taha, Hassanien (b2) 2019 Cheraghalipour, Hajiaghaei-Keshteli, Paydar (b11) 2018; 72 Dinkar, Deep (b16) 2018; 29 Saremi, Mirjalili, Lewis (b61) 2017; 105 Gupta, Deep (b25) 2019; 44 Wang, Deb, Coelho (b70) 2015 Holland (b31) 1992; 267 Hussain, Salleh, Cheng, Shi (b34) 2019; 52 Marler, Arora (b49) 2004; 26 Yoon, Kim (b81) 2013; 43 LaTorre, Muelas, Peña (b42) 2015; 316 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b27) 2019; 101 Simon (b64) 2013 Langdon, Poli (b41) 2013 Liu, Wang, Liu, Zeng, Bell (b45) 2018; 23 Wolpert (b74) 1997; 1 Back (b5) 1996 Xu, Chen, Heidari, Luo, Zhang, Zhao, Li (b77) 2019; 129 Ojha, Abraham, Snášel (b56) 2017; 60 Moghdani, Salimifard (b53) 2018; 64 Mann, Singh (b48) 2017; 57 Okulewicz, Mańdziuk (b57) 2019; 48 Ab Wahab, Nefti-Meziani, Atyabi (b1) 2015; 10 Ramezani, Lotfi (b59) 2013; 13 Mirjalili, Lewis (b52) 2016; 95 Zhang, Xie, Hu, Shao, Chen (b83) 2018; 71 Eberhart, Kennedy (b19) 1995 Van Laarhoven, Aarts (b69) 1987 Magdziarz, Szczotka (b47) 2016; 30 Wightman, Labrador (b72) 2009 Yuanyuan, Jia, Yanxiang (b82) 2006 Wu, Cardei, Dai, Yang (b75) 2006; 17 Ly, Hanh, Binh, Nghia (b46) 2015 Boussaïd, Lepagnot, Siarry (b8) 2013; 237 Guo, Yue, Yang, Liu, Liu (b24) 2017; 21 Ling, Zhou, Luo (b44) 2017; 5 Sulaiman, Mustaffa, Saari, Daniyal (b66) 2020; 87 Binh, Hanh, Dey (b6) 2018; 30 Shen, Chen, Sun (b63) 2006 Chen, Li, Sun (b10) 2007; 7 Coello (b13) 2002; 191 Ali, Awad, Reynolds, Suganthan (b3) 2018; 447 Wu, Mallipeddi, Suganthan (b76) 2017 Karaboga, Gorkemli, Ozturk, Karaboga (b37) 2014; 42 Faramarzi, Heidarinejad, Stephens, Mirjalili (b23) 2020; 191 Hashim (10.1016/j.engappai.2020.103731_b27) 2019; 101 Mirjalili (10.1016/j.engappai.2020.103731_b51) 2016; 27 Wightman (10.1016/j.engappai.2020.103731_b72) 2009 Eberhart (10.1016/j.engappai.2020.103731_b18) 1995 Simon (10.1016/j.engappai.2020.103731_b64) 2013 Back (10.1016/j.engappai.2020.103731_b5) 1996 Yiyue (10.1016/j.engappai.2020.103731_b80) 2012 Yuanyuan (10.1016/j.engappai.2020.103731_b82) 2006 Ramezani (10.1016/j.engappai.2020.103731_b59) 2013; 13 Ly (10.1016/j.engappai.2020.103731_b46) 2015 Emary (10.1016/j.engappai.2020.103731_b21) 2019; 75 Holland (10.1016/j.engappai.2020.103731_b31) 1992; 267 Coello (10.1016/j.engappai.2020.103731_b13) 2002; 191 Van Laarhoven (10.1016/j.engappai.2020.103731_b69) 1987 Ling (10.1016/j.engappai.2020.103731_b44) 2017; 5 Simpson (10.1016/j.engappai.2020.103731_b65) 1994; 120 Yang (10.1016/j.engappai.2020.103731_b78) 2013 Langdon (10.1016/j.engappai.2020.103731_b41) 2013 Emary (10.1016/j.engappai.2020.103731_b20) 2019; 22 LaTorre (10.1016/j.engappai.2020.103731_b42) 2015; 316 Wilcoxon (10.1016/j.engappai.2020.103731_b73) 1945; 1 Zhao (10.1016/j.engappai.2020.103731_b84) 2019; 163 Mortazavi (10.1016/j.engappai.2020.103731_b54) 2018; 71 Yoon (10.1016/j.engappai.2020.103731_b81) 2013; 43 Magdziarz (10.1016/j.engappai.2020.103731_b47) 2016; 30 Neshat (10.1016/j.engappai.2020.103731_b55) 2014; 42 Binh (10.1016/j.engappai.2020.103731_b6) 2018; 30 Tang (10.1016/j.engappai.2020.103731_b67) 1996; 13 Eberhart (10.1016/j.engappai.2020.103731_b19) 1995 Moghdani (10.1016/j.engappai.2020.103731_b53) 2018; 64 Shadravan (10.1016/j.engappai.2020.103731_b62) 2019; 80 Shen (10.1016/j.engappai.2020.103731_b63) 2006 Mirjalili (10.1016/j.engappai.2020.103731_b50) 2015; 89 Dhiman (10.1016/j.engappai.2020.103731_b15) 2017; 114 Rashedi (10.1016/j.engappai.2020.103731_b60) 2009; 179 Ahmed (10.1016/j.engappai.2020.103731_b2) 2019 Ouyang (10.1016/j.engappai.2020.103731_b58) 2015; 265 Çelik (10.1016/j.engappai.2020.103731_b9) 2020; 87 Wang (10.1016/j.engappai.2020.103731_b70) 2015 Kaveh (10.1016/j.engappai.2020.103731_b39) 2013; 224 Zhang (10.1016/j.engappai.2020.103731_b83) 2018; 71 Boussaïd (10.1016/j.engappai.2020.103731_b8) 2013; 237 Chen (10.1016/j.engappai.2020.103731_b10) 2007; 7 Mirjalili (10.1016/j.engappai.2020.103731_b52) 2016; 95 Hayyolalam (10.1016/j.engappai.2020.103731_b28) 2020; 87 Heidari (10.1016/j.engappai.2020.103731_b29) 2019; 97 Cheraghalipour (10.1016/j.engappai.2020.103731_b11) 2018; 72 Mann (10.1016/j.engappai.2020.103731_b48) 2017; 57 Yang (10.1016/j.engappai.2020.103731_b79) 2018; 22 Ab Wahab (10.1016/j.engappai.2020.103731_b1) 2015; 10 Dinkar (10.1016/j.engappai.2020.103731_b16) 2018; 29 Sulaiman (10.1016/j.engappai.2020.103731_b66) 2020; 87 Marler (10.1016/j.engappai.2020.103731_b49) 2004; 26 Houssein (10.1016/j.engappai.2020.103731_b32) 2020; 133 Dorigo (10.1016/j.engappai.2020.103731_b17) 2006; 1 Kannan (10.1016/j.engappai.2020.103731_b36) 1994; 116 Krishnanand (10.1016/j.engappai.2020.103731_b40) 2009; 3 Etminaniesfahani (10.1016/j.engappai.2020.103731_b22) 2018; 74 Karaboga (10.1016/j.engappai.2020.103731_b37) 2014; 42 Gupta (10.1016/j.engappai.2020.103731_b25) 2019; 44 Xu (10.1016/j.engappai.2020.103731_b77) 2019; 129 Okulewicz (10.1016/j.engappai.2020.103731_b57) 2019; 48 Wightman (10.1016/j.engappai.2020.103731_b71) 2008 Bonabeau (10.1016/j.engappai.2020.103731_b7) 1999 Amoretti (10.1016/j.engappai.2020.103731_b4) 2014; 274 Coello (10.1016/j.engappai.2020.103731_b12) 2000; 41 Wu (10.1016/j.engappai.2020.103731_b76) 2017 Javidy (10.1016/j.engappai.2020.103731_b35) 2015; 32 Faramarzi (10.1016/j.engappai.2020.103731_b23) 2020; 191 Kaur (10.1016/j.engappai.2020.103731_b38) 2020; 90 Das (10.1016/j.engappai.2020.103731_b14) 2010; 15 Liu (10.1016/j.engappai.2020.103731_b45) 2018; 23 Saremi (10.1016/j.engappai.2020.103731_b61) 2017; 105 Wu (10.1016/j.engappai.2020.103731_b75) 2006; 17 Heidari (10.1016/j.engappai.2020.103731_b30) 2017; 60 Gupta (10.1016/j.engappai.2020.103731_b26) 2018; 68 Houssein (10.1016/j.engappai.2020.103731_b33) 2020; 8 Hussain (10.1016/j.engappai.2020.103731_b34) 2019; 52 Wolpert (10.1016/j.engappai.2020.103731_b74) 1997; 1 Ali (10.1016/j.engappai.2020.103731_b3) 2018; 447 Truong (10.1016/j.engappai.2020.103731_b68) 2013; 13 Ojha (10.1016/j.engappai.2020.103731_b56) 2017; 60 Guo (10.1016/j.engappai.2020.103731_b24) 2017; 21 Liao (10.1016/j.engappai.2020.103731_b43) 2011; 38 |
| References_xml | – volume: 68 start-page: 101 year: 2018 end-page: 109 ident: b26 article-title: Integrated clustering and routing protocol for wireless sensor networks using cuckoo and harmony search based metaheuristic techniques publication-title: Eng. Appl. Artif. Intell. – volume: 26 start-page: 369 year: 2004 end-page: 395 ident: b49 article-title: Survey of multi-objective optimization methods for engineering publication-title: Struct. Multidiscip. Optim. – start-page: 7 year: 1987 end-page: 15 ident: b69 article-title: Simulated annealing publication-title: Simulated Annealing: Theory and Applications – volume: 52 start-page: 2191 year: 2019 end-page: 2233 ident: b34 article-title: Metaheuristic research: A comprehensive survey publication-title: Artif. Intell. Rev. – volume: 447 start-page: 12 year: 2018 end-page: 35 ident: b3 article-title: A balanced fuzzy cultural algorithm with a modified Lévy flight search for real parameter optimization publication-title: Inform. Sci. – volume: 44 start-page: 101 year: 2019 end-page: 112 ident: b25 article-title: A novel random walk grey wolf optimizer publication-title: Swarm Evol. Comput. – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b61 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Adv. Eng. Softw. – volume: 1 start-page: 467 year: 1997 end-page: 482 ident: b74 article-title: No free lunch theorem for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b52 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 114 start-page: 48 year: 2017 end-page: 70 ident: b15 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. – volume: 15 start-page: 4 year: 2010 end-page: 31 ident: b14 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2008 end-page: 6 ident: b71 article-title: A3: A topology construction algorithm for wireless sensor networks publication-title: IEEE Global Telecommunications Conference – volume: 74 start-page: 1 year: 2018 end-page: 9 ident: b22 article-title: Fibonacci indicator algorithm: A novel tool for complex optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b27 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. – volume: 8 start-page: 19381 year: 2020 end-page: 19397 ident: b33 article-title: Optimal sink node placement in large scale wireless sensor networks based on harris’ hawk optimization algorithm publication-title: IEEE Access – volume: 90 start-page: 103541 year: 2020 ident: b38 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. – volume: 87 start-page: 103249 year: 2020 ident: b28 article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – year: 2013 ident: b64 article-title: Evolutionary Optimization Algorithms – volume: 42 start-page: 21 year: 2014 end-page: 57 ident: b37 article-title: A comprehensive survey: Artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. – volume: 30 start-page: 5 year: 2016 end-page: 14 ident: b47 article-title: Quenched trap model for Lévy flights publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 60 start-page: 97 year: 2017 end-page: 116 ident: b56 article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research publication-title: Eng. Appl. Artif. Intell. – year: 2013 ident: b41 article-title: Foundations of Genetic Programming – year: 2017 ident: b76 article-title: Problem Definitions and Evaluation Criteria for the CEC2017 Competition on Constrained Real-Parameter Optimization – year: 2013 ident: b78 article-title: Swarm Intelligence and Bio-Inspired Computation: Theory and Applications – volume: 316 start-page: 517 year: 2015 end-page: 549 ident: b42 article-title: A comprehensive comparison of large scale global optimizers publication-title: Inform. Sci. – volume: 71 start-page: 242 year: 2018 end-page: 254 ident: b83 article-title: A hybrid DPSO with Lévy flight for scheduling MIMO radar tasks publication-title: Appl. Soft Comput. – volume: 71 start-page: 275 year: 2018 end-page: 292 ident: b54 article-title: Interactive search algorithm: A new hybrid metaheuristic optimization algorithm publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2015 end-page: 5 ident: b70 article-title: Elephant herding optimization publication-title: International Symposium on Computational and Business Intelligence – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: b36 article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. – volume: 72 start-page: 393 year: 2018 end-page: 414 ident: b11 article-title: Tree growth algorithm (TGA): A novel approach for solving optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 265 start-page: 533 year: 2015 end-page: 556 ident: b58 article-title: Teaching-learning based optimization with global crossover for global optimization problems publication-title: Appl. Math. Comput. – volume: 29 start-page: 119 year: 2018 end-page: 141 ident: b16 article-title: An efficient opposition based Lévy flight antlion optimizer for optimization problems publication-title: J. Comput. Sci. – volume: 13 start-page: 22 year: 1996 end-page: 37 ident: b67 article-title: Genetic algorithms and their applications publication-title: IEEE Signal Process. Mag. – start-page: 26 year: 2009 ident: b72 article-title: Atarraya: A simulation tool to teach and research topology control algorithms for wireless sensor networks publication-title: International Conference on Simulation Tools and Techniques – volume: 3 start-page: 87 year: 2009 end-page: 124 ident: b40 article-title: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions publication-title: Swarm Intell. – start-page: 90 year: 2012 end-page: 94 ident: b80 article-title: Wireless sensor network deployment using an optimized artificial fish swarm algorithm publication-title: International Conference on Computer Science and Electronics Engineering, Vol. 2 – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: b12 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. – volume: 42 start-page: 965 year: 2014 end-page: 997 ident: b55 article-title: Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications publication-title: Artif. Intell. Rev. – volume: 80 start-page: 20 year: 2019 end-page: 34 ident: b62 article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 129 start-page: 135 year: 2019 end-page: 155 ident: b77 article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks publication-title: Expert Syst. Appl. – volume: 163 start-page: 283 year: 2019 end-page: 304 ident: b84 article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem publication-title: Knowl.-Based Syst. – volume: 57 start-page: 142 year: 2017 end-page: 152 ident: b48 article-title: Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks publication-title: Eng. Appl. Artif. Intell. – volume: 43 start-page: 1473 year: 2013 end-page: 1483 ident: b81 article-title: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks publication-title: IEEE Trans. Cybern. – volume: 13 start-page: 1774 year: 2013 end-page: 1780 ident: b68 article-title: Chemical reaction optimization with greedy strategy for the 0–1 knapsack problem publication-title: Appl. Soft Comput. – start-page: 1942 year: 1995 end-page: 1948 ident: b19 article-title: Particle swarm optimization publication-title: IEEE International Conference on Neural Networks, Vol. 4 – volume: 13 start-page: 2837 year: 2013 end-page: 2856 ident: b59 article-title: Social-based algorithm (SBA) publication-title: Appl. Soft Comput. – start-page: 1 year: 2019 end-page: 17 ident: b2 article-title: Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm publication-title: Telecommun. Syst. – year: 1999 ident: b7 article-title: Swarm Intelligence: FrOm Natural to Artificial Systems. 1 – year: 1996 ident: b5 article-title: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b31 article-title: Genetic algorithms publication-title: Sci. Am. – volume: 17 start-page: 851 year: 2006 end-page: 864 ident: b75 article-title: Extended dominating set and its applications in ad hoc networks using cooperative communication publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 22 start-page: 857 year: 2019 end-page: 876 ident: b20 article-title: Feature selection via Lèvy antlion optimization publication-title: Pattern Anal. Appl. – volume: 32 start-page: 72 year: 2015 end-page: 79 ident: b35 article-title: Ions motion algorithm for solving optimization problems publication-title: Appl. Soft Comput. – volume: 21 start-page: 7393 year: 2017 end-page: 7404 ident: b24 article-title: Enhancing social emotional optimization algorithm using local search publication-title: Soft Comput. – start-page: 61 year: 2015 end-page: 66 ident: b46 article-title: An improved genetic algorithm for maximizing area coverage in wireless sensor networks publication-title: International Symposium on Information and Communication Technology – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b60 article-title: GSA: A gravitational search algorithm publication-title: Inform. Sci. – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b17 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: b73 article-title: Individual comparisons by ranking methods publication-title: Biom. Bull. – volume: 5 start-page: 6168 year: 2017 end-page: 6186 ident: b44 article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization publication-title: IEEE Access – volume: 133 start-page: 106656 year: 2020 ident: b32 article-title: A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery publication-title: Comput. Chem. Eng. – volume: 274 start-page: 1 year: 2014 end-page: 16 ident: b4 article-title: Evolutionary strategies for ultra-large-scale autonomic systems publication-title: Inform. Sci. – volume: 237 start-page: 82 year: 2013 end-page: 117 ident: b8 article-title: A survey on optimization metaheuristics publication-title: Inform. Sci. – volume: 191 start-page: 1245 year: 2002 end-page: 1287 ident: b13 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 39 year: 1995 end-page: 43 ident: b18 article-title: A new optimizer using particle swarm theory publication-title: International Symposium on Micro Machine and Human Science – volume: 224 start-page: 85 year: 2013 end-page: 107 ident: b39 article-title: Magnetic charged system search: A new meta-heuristic algorithm for optimization publication-title: Acta Mech. – volume: 23 start-page: 632 year: 2018 end-page: 644 ident: b45 article-title: A novel particle swarm optimization approach for patient clustering from emergency departments publication-title: IEEE Trans. Evol. Comput. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b29 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – volume: 10 year: 2015 ident: b1 article-title: A comprehensive review of swarm optimization algorithms publication-title: PLoS One – volume: 22 start-page: 5923 year: 2018 end-page: 5933 ident: b79 article-title: Swarm intelligence: Past, present and future publication-title: Soft Comput. – volume: 120 start-page: 423 year: 1994 end-page: 443 ident: b65 article-title: Genetic algorithms compared to other techniques for pipe optimization publication-title: J. Water Resour. Plan. Manage. – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b51 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. – volume: 64 start-page: 161 year: 2018 end-page: 185 ident: b53 article-title: Volleyball premier league algorithm publication-title: Appl. Soft Comput. – volume: 7 start-page: 2907 year: 2007 end-page: 2919 ident: b10 article-title: Novel deployment schemes for mobile sensor networks publication-title: Sensors – volume: 87 start-page: 103294 year: 2020 ident: b9 article-title: A powerful variant of symbiotic organisms search algorithm for global optimization publication-title: Eng. Appl. Artif. Intell. – start-page: 3480 year: 2006 end-page: 3484 ident: b63 article-title: Grid scan: A simple and effective approach for coverage issue in wireless sensor networks publication-title: IEEE International Conference on Communications, Vol. 8 – volume: 48 start-page: 44 year: 2019 end-page: 61 ident: b57 article-title: A metaheuristic approach to solve dynamic vehicle routing problem in continuous search space publication-title: Swarm Evol. Comput. – start-page: 797 year: 2006 end-page: 802 ident: b82 article-title: Energy efficient distributed connected dominating sets construction in wireless sensor networks publication-title: International Conference on Wireless Communications and Mobile Computing – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b50 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 30 start-page: 2305 year: 2018 end-page: 2317 ident: b6 article-title: Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks publication-title: Neural Comput. Appl. – volume: 60 start-page: 115 year: 2017 end-page: 134 ident: b30 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl. Soft Comput. – volume: 75 start-page: 775 year: 2019 end-page: 789 ident: b21 article-title: Impact of Lèvy flight on modern meta-heuristic optimizers publication-title: Appl. Soft Comput. – volume: 191 start-page: 105190 year: 2020 ident: b23 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl.-Based Syst. – volume: 38 start-page: 12180 year: 2011 end-page: 12188 ident: b43 article-title: A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks publication-title: Expert Syst. Appl. – volume: 87 start-page: 103330 year: 2020 ident: b66 article-title: Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 21 start-page: 7393 issue: 24 year: 2017 ident: 10.1016/j.engappai.2020.103731_b24 article-title: Enhancing social emotional optimization algorithm using local search publication-title: Soft Comput. doi: 10.1007/s00500-016-2282-z – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.engappai.2020.103731_b60 article-title: GSA: A gravitational search algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 13 start-page: 2837 issue: 5 year: 2013 ident: 10.1016/j.engappai.2020.103731_b59 article-title: Social-based algorithm (SBA) publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.05.018 – volume: 13 start-page: 1774 issue: 4 year: 2013 ident: 10.1016/j.engappai.2020.103731_b68 article-title: Chemical reaction optimization with greedy strategy for the 0–1 knapsack problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.048 – year: 1996 ident: 10.1016/j.engappai.2020.103731_b5 – volume: 7 start-page: 2907 issue: 11 year: 2007 ident: 10.1016/j.engappai.2020.103731_b10 article-title: Novel deployment schemes for mobile sensor networks publication-title: Sensors doi: 10.3390/S7112907 – volume: 90 start-page: 103541 year: 2020 ident: 10.1016/j.engappai.2020.103731_b38 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – start-page: 797 year: 2006 ident: 10.1016/j.engappai.2020.103731_b82 article-title: Energy efficient distributed connected dominating sets construction in wireless sensor networks – volume: 87 start-page: 103330 year: 2020 ident: 10.1016/j.engappai.2020.103731_b66 article-title: Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103330 – volume: 64 start-page: 161 year: 2018 ident: 10.1016/j.engappai.2020.103731_b53 article-title: Volleyball premier league algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – volume: 72 start-page: 393 year: 2018 ident: 10.1016/j.engappai.2020.103731_b11 article-title: Tree growth algorithm (TGA): A novel approach for solving optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.021 – volume: 163 start-page: 283 year: 2019 ident: 10.1016/j.engappai.2020.103731_b84 article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.08.030 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.engappai.2020.103731_b31 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 42 start-page: 965 issue: 4 year: 2014 ident: 10.1016/j.engappai.2020.103731_b55 article-title: Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9342-2 – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.engappai.2020.103731_b61 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – start-page: 61 year: 2015 ident: 10.1016/j.engappai.2020.103731_b46 article-title: An improved genetic algorithm for maximizing area coverage in wireless sensor networks – volume: 71 start-page: 242 year: 2018 ident: 10.1016/j.engappai.2020.103731_b83 article-title: A hybrid DPSO with Lévy flight for scheduling MIMO radar tasks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.06.028 – volume: 5 start-page: 6168 year: 2017 ident: 10.1016/j.engappai.2020.103731_b44 article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2695498 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.engappai.2020.103731_b50 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 71 start-page: 275 year: 2018 ident: 10.1016/j.engappai.2020.103731_b54 article-title: Interactive search algorithm: A new hybrid metaheuristic optimization algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.03.003 – volume: 60 start-page: 97 year: 2017 ident: 10.1016/j.engappai.2020.103731_b56 article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.01.013 – volume: 8 start-page: 19381 year: 2020 ident: 10.1016/j.engappai.2020.103731_b33 article-title: Optimal sink node placement in large scale wireless sensor networks based on harris’ hawk optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968981 – start-page: 26 year: 2009 ident: 10.1016/j.engappai.2020.103731_b72 article-title: Atarraya: A simulation tool to teach and research topology control algorithms for wireless sensor networks – volume: 116 start-page: 405 issue: 2 year: 1994 ident: 10.1016/j.engappai.2020.103731_b36 article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – volume: 74 start-page: 1 year: 2018 ident: 10.1016/j.engappai.2020.103731_b22 article-title: Fibonacci indicator algorithm: A novel tool for complex optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.012 – volume: 42 start-page: 21 issue: 1 year: 2014 ident: 10.1016/j.engappai.2020.103731_b37 article-title: A comprehensive survey: Artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9328-0 – year: 2017 ident: 10.1016/j.engappai.2020.103731_b76 – volume: 129 start-page: 135 year: 2019 ident: 10.1016/j.engappai.2020.103731_b77 article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.043 – volume: 17 start-page: 851 issue: 8 year: 2006 ident: 10.1016/j.engappai.2020.103731_b75 article-title: Extended dominating set and its applications in ad hoc networks using cooperative communication publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2006.103 – volume: 30 start-page: 2305 issue: 7 year: 2018 ident: 10.1016/j.engappai.2020.103731_b6 article-title: Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2823-5 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.engappai.2020.103731_b73 article-title: Individual comparisons by ranking methods publication-title: Biom. Bull. doi: 10.2307/3001968 – volume: 3 start-page: 87 issue: 2 year: 2009 ident: 10.1016/j.engappai.2020.103731_b40 article-title: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions publication-title: Swarm Intell. doi: 10.1007/s11721-008-0021-5 – volume: 38 start-page: 12180 issue: 10 year: 2011 ident: 10.1016/j.engappai.2020.103731_b43 article-title: A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.03.053 – start-page: 1 year: 2019 ident: 10.1016/j.engappai.2020.103731_b2 article-title: Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm publication-title: Telecommun. Syst. – volume: 114 start-page: 48 year: 2017 ident: 10.1016/j.engappai.2020.103731_b15 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.05.014 – volume: 26 start-page: 369 issue: 6 year: 2004 ident: 10.1016/j.engappai.2020.103731_b49 article-title: Survey of multi-objective optimization methods for engineering publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-003-0368-6 – volume: 237 start-page: 82 year: 2013 ident: 10.1016/j.engappai.2020.103731_b8 article-title: A survey on optimization metaheuristics publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.02.041 – volume: 68 start-page: 101 year: 2018 ident: 10.1016/j.engappai.2020.103731_b26 article-title: Integrated clustering and routing protocol for wireless sensor networks using cuckoo and harmony search based metaheuristic techniques publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.11.003 – volume: 133 start-page: 106656 year: 2020 ident: 10.1016/j.engappai.2020.103731_b32 article-title: A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106656 – volume: 80 start-page: 20 year: 2019 ident: 10.1016/j.engappai.2020.103731_b62 article-title: The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.01.001 – year: 2013 ident: 10.1016/j.engappai.2020.103731_b64 – start-page: 90 year: 2012 ident: 10.1016/j.engappai.2020.103731_b80 article-title: Wireless sensor network deployment using an optimized artificial fish swarm algorithm – volume: 32 start-page: 72 year: 2015 ident: 10.1016/j.engappai.2020.103731_b35 article-title: Ions motion algorithm for solving optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.035 – volume: 265 start-page: 533 year: 2015 ident: 10.1016/j.engappai.2020.103731_b58 article-title: Teaching-learning based optimization with global crossover for global optimization problems publication-title: Appl. Math. Comput. – start-page: 39 year: 1995 ident: 10.1016/j.engappai.2020.103731_b18 article-title: A new optimizer using particle swarm theory – volume: 87 start-page: 103249 year: 2020 ident: 10.1016/j.engappai.2020.103731_b28 article-title: Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103249 – start-page: 1 year: 2008 ident: 10.1016/j.engappai.2020.103731_b71 article-title: A3: A topology construction algorithm for wireless sensor networks – volume: 316 start-page: 517 year: 2015 ident: 10.1016/j.engappai.2020.103731_b42 article-title: A comprehensive comparison of large scale global optimizers publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.09.031 – volume: 1 start-page: 467 issue: 1 year: 1997 ident: 10.1016/j.engappai.2020.103731_b74 article-title: No free lunch theorem for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 29 start-page: 119 year: 2018 ident: 10.1016/j.engappai.2020.103731_b16 article-title: An efficient opposition based Lévy flight antlion optimizer for optimization problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.10.002 – start-page: 1 year: 2015 ident: 10.1016/j.engappai.2020.103731_b70 article-title: Elephant herding optimization – volume: 191 start-page: 1245 issue: 11–12 year: 2002 ident: 10.1016/j.engappai.2020.103731_b13 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(01)00323-1 – volume: 60 start-page: 115 year: 2017 ident: 10.1016/j.engappai.2020.103731_b30 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.044 – volume: 44 start-page: 101 year: 2019 ident: 10.1016/j.engappai.2020.103731_b25 article-title: A novel random walk grey wolf optimizer publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.01.001 – volume: 22 start-page: 5923 issue: 18 year: 2018 ident: 10.1016/j.engappai.2020.103731_b79 article-title: Swarm intelligence: Past, present and future publication-title: Soft Comput. doi: 10.1007/s00500-017-2810-5 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.engappai.2020.103731_b27 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 15 start-page: 4 issue: 1 year: 2010 ident: 10.1016/j.engappai.2020.103731_b14 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – volume: 52 start-page: 2191 issue: 4 year: 2019 ident: 10.1016/j.engappai.2020.103731_b34 article-title: Metaheuristic research: A comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9605-z – volume: 43 start-page: 1473 issue: 5 year: 2013 ident: 10.1016/j.engappai.2020.103731_b81 article-title: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2250955 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.engappai.2020.103731_b29 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 22 start-page: 857 issue: 3 year: 2019 ident: 10.1016/j.engappai.2020.103731_b20 article-title: Feature selection via Lèvy antlion optimization publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-018-0695-2 – volume: 274 start-page: 1 year: 2014 ident: 10.1016/j.engappai.2020.103731_b4 article-title: Evolutionary strategies for ultra-large-scale autonomic systems publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.03.003 – start-page: 7 year: 1987 ident: 10.1016/j.engappai.2020.103731_b69 article-title: Simulated annealing – volume: 87 start-page: 103294 year: 2020 ident: 10.1016/j.engappai.2020.103731_b9 article-title: A powerful variant of symbiotic organisms search algorithm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103294 – volume: 23 start-page: 632 issue: 4 year: 2018 ident: 10.1016/j.engappai.2020.103731_b45 article-title: A novel particle swarm optimization approach for patient clustering from emergency departments publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2878536 – year: 2013 ident: 10.1016/j.engappai.2020.103731_b78 – year: 1999 ident: 10.1016/j.engappai.2020.103731_b7 – volume: 120 start-page: 423 issue: 4 year: 1994 ident: 10.1016/j.engappai.2020.103731_b65 article-title: Genetic algorithms compared to other techniques for pipe optimization publication-title: J. Water Resour. Plan. Manage. doi: 10.1061/(ASCE)0733-9496(1994)120:4(423) – volume: 224 start-page: 85 issue: 1 year: 2013 ident: 10.1016/j.engappai.2020.103731_b39 article-title: Magnetic charged system search: A new meta-heuristic algorithm for optimization publication-title: Acta Mech. doi: 10.1007/s00707-012-0745-6 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.engappai.2020.103731_b52 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – start-page: 3480 year: 2006 ident: 10.1016/j.engappai.2020.103731_b63 article-title: Grid scan: A simple and effective approach for coverage issue in wireless sensor networks – year: 2013 ident: 10.1016/j.engappai.2020.103731_b41 – volume: 75 start-page: 775 year: 2019 ident: 10.1016/j.engappai.2020.103731_b21 article-title: Impact of Lèvy flight on modern meta-heuristic optimizers publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.033 – volume: 447 start-page: 12 year: 2018 ident: 10.1016/j.engappai.2020.103731_b3 article-title: A balanced fuzzy cultural algorithm with a modified Lévy flight search for real parameter optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.03.008 – volume: 30 start-page: 5 issue: 1–3 year: 2016 ident: 10.1016/j.engappai.2020.103731_b47 article-title: Quenched trap model for Lévy flights publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2015.05.027 – volume: 48 start-page: 44 year: 2019 ident: 10.1016/j.engappai.2020.103731_b57 article-title: A metaheuristic approach to solve dynamic vehicle routing problem in continuous search space publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.03.008 – volume: 57 start-page: 142 year: 2017 ident: 10.1016/j.engappai.2020.103731_b48 article-title: Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.10.014 – volume: 13 start-page: 22 issue: 6 year: 1996 ident: 10.1016/j.engappai.2020.103731_b67 article-title: Genetic algorithms and their applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543973 – volume: 191 start-page: 105190 year: 2020 ident: 10.1016/j.engappai.2020.103731_b23 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105190 – start-page: 1942 year: 1995 ident: 10.1016/j.engappai.2020.103731_b19 article-title: Particle swarm optimization – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.engappai.2020.103731_b1 article-title: A comprehensive review of swarm optimization algorithms publication-title: PLoS One – volume: 41 start-page: 113 issue: 2 year: 2000 ident: 10.1016/j.engappai.2020.103731_b12 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 10.1016/j.engappai.2020.103731_b51 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.engappai.2020.103731_b17 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 |
| SSID | ssj0003846 |
| Score | 2.6763976 |
| Snippet | In this paper, we propose a new metaheuristic algorithm based on Lévy flight called Lévy flight distribution (LFD) for solving real optimization problems. The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103731 |
| SubjectTerms | Engineering optimization problems Evolutionary computation Global optimization Lévy flight distribution Metaheuristic Wireless sensor networks |
| Title | Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems |
| URI | https://dx.doi.org/10.1016/j.engappai.2020.103731 |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWqcuHCjihL5QPXtElsZ-FWVVSFQg9ARW-RHdttqm5qUyQu_A_fwY9hJw4tElIPnKJYHinybM_RzBsArmNHSscLqMUxQxamJLQYFULZMvIZYUwirPudH7teu4fv-6RfAs2iF0aXVZrYn8f0LFqblbo5zfo8SerPChwod1POnF0LAh2HMfb1FIPax7rMAwV5s47abOndG13Co5qYDuh8ThN1T3Tz_nPk_J2gNpJO6wDsGbQIG_kHHYKSmB6BfYMcofHLpVoqhjMUa8dAPnx9vr1DOda3b8g1P64ZbXUDG1CBaTgRKR2KVU7VDOl4MFsk6XACFYyFyiL1nwYo1nSFcKaiy8S0bUIziGZ5Anqt25dm2zJDFawYOW6qCSGZLWPOpB_7Km1xTDlxQz_jviJCocFYII6kYAQj6XGFqGyOPKl56zgiAToF5elsKs4A9FBMXRSSQPgcO3ZAbUfEQrrCtT1XhqgCSHGSUWwYx_Xgi3FUlJaNokIDkdZAlGugAuo_cvOcc2OrRFgoKvplPZFKDFtkz_8hewF29Vtec3YJyuliJa4USElZNbPCKthp3HXaXf3sPL12vgH0wOuW |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWqcoALO6KsPnBNm8RxFm5VRVWg7YVW6i2yY7uLuqlNkbjwP3wHP8a4cShISD1wdTyS5RnPvIlm3iB0lzhKOX7ILOFxYnmMRhZnUoItk4BTzhXxdL9zq-03ut5Tj_YKqJb3wuiySuP7M5--9tZmpWJuszIfDisvAA7gucFjXqcFIfjhHY-6gc7Ayu-bOg8SZt06sNvS23-0CY_Kctpn8zkbQqLoZg3oxPk7Qv2IOvVDtG_gIq5mJzpCBTk9RgcGOmLzMJewlE9nyNdOkGp-fry-YTXW6TcWmiDXzLa6x1UMaBpPZMoGcpVxNWM27s8Ww3QwwYBjMZik_tWA5YavEM_AvUxM3yY2k2iWp6hbf-jUGpaZqmAlxHFTzQjJbZUIroIkgLglPCaoGwVr8isqAQ4mkgiiJKceUb4ASGUL4itNXCcIDckZKk5nU3mOsE8S5pKIhjIQnmOHzHZkIpUrXdt3VURKiOY3GSeGclxPvhjHeW3ZKM41EGsNxJkGSqjyLTfPSDe2SkS5ouJf5hNDZNgie_EP2Vu02-i0mnHzsf18ifb0l6wA7QoV08VKXgNiSfnN2iK_ABWl64g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L%C3%A9vy+flight+distribution%3A+A+new+metaheuristic+algorithm+for+solving+engineering+optimization+problems&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Houssein%2C+Essam+H.&rft.au=Saad%2C+Mohammed+R.&rft.au=Hashim%2C+Fatma+A.&rft.au=Shaban%2C+Hassan&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=94&rft_id=info:doi/10.1016%2Fj.engappai.2020.103731&rft.externalDocID=S0952197620301482 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |