Robust probit linear mixed models for longitudinal binary data
In this paper, we propose Bayesian analysis methods dealing with longitudinal data involving repeated binary outcomes on subjects with dropouts. The proposed Bayesian methods implement probit models with random effects to capture heterogeneity and hypersphere decomposition to model the correlation m...
Saved in:
Published in | Biometrical journal Vol. 64; no. 7; pp. 1307 - 1324 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley - VCH Verlag GmbH & Co. KGaA
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0323-3847 1521-4036 |
DOI | 10.1002/bimj.202100246 |
Cover
Abstract | In this paper, we propose Bayesian analysis methods dealing with longitudinal data involving repeated binary outcomes on subjects with dropouts. The proposed Bayesian methods implement probit models with random effects to capture heterogeneity and hypersphere decomposition to model the correlation matrix for serial correlation of repeated responses. We investigate the model robustness against misspecifications of the probit models along with techniques to handle missing data. The parameters of the proposed models are estimated by implementing an Markov chain Monte Carlo (MCMC) algorithm, and simulations were performed to provide a comparison with other models and validate the choice of prior distributions. The simulations show that when suitable correlation structures are specified, the proposed approach improves estimation of the regression parameters in terms of the mean percent relative error and the mean squared error. Finally, two real data examples are provided to illustrate the proposed approach. |
---|---|
AbstractList | In this paper, we propose Bayesian analysis methods dealing with longitudinal data involving repeated binary outcomes on subjects with dropouts. The proposed Bayesian methods implement probit models with random effects to capture heterogeneity and hypersphere decomposition to model the correlation matrix for serial correlation of repeated responses. We investigate the model robustness against misspecifications of the probit models along with techniques to handle missing data. The parameters of the proposed models are estimated by implementing an Markov chain Monte Carlo (MCMC) algorithm, and simulations were performed to provide a comparison with other models and validate the choice of prior distributions. The simulations show that when suitable correlation structures are specified, the proposed approach improves estimation of the regression parameters in terms of the mean percent relative error and the mean squared error. Finally, two real data examples are provided to illustrate the proposed approach. In this paper, we propose Bayesian analysis methods dealing with longitudinal data involving repeated binary outcomes on subjects with dropouts. The proposed Bayesian methods implement probit models with random effects to capture heterogeneity and hypersphere decomposition to model the correlation matrix for serial correlation of repeated responses. We investigate the model robustness against misspecifications of the probit models along with techniques to handle missing data. The parameters of the proposed models are estimated by implementing an Markov chain Monte Carlo (MCMC) algorithm, and simulations were performed to provide a comparison with other models and validate the choice of prior distributions. The simulations show that when suitable correlation structures are specified, the proposed approach improves estimation of the regression parameters in terms of the mean percent relative error and the mean squared error. Finally, two real data examples are provided to illustrate the proposed approach. |
Author | Lee, Keunbaik Lee, Kuo‐Jung Kim, Chanmin Chen, Ray‐Bing |
Author_xml | – sequence: 1 givenname: Kuo‐Jung surname: Lee fullname: Lee, Kuo‐Jung organization: National Cheng Kung University – sequence: 2 givenname: Chanmin orcidid: 0000-0002-2588-6704 surname: Kim fullname: Kim, Chanmin organization: Sungkyunkwan University – sequence: 3 givenname: Ray‐Bing orcidid: 0000-0001-7226-509X surname: Chen fullname: Chen, Ray‐Bing organization: National Cheng Kung University – sequence: 4 givenname: Keunbaik orcidid: 0000-0001-9331-6837 surname: Lee fullname: Lee, Keunbaik email: keunbaik@skku.edu organization: Sungkyunkwan University |
BookMark | eNqFkM1LAzEQxYNUsK1ePQc8b83HZtO9CFr8qFQE0XNINomk7G5qkkX735vS4kEQLzMMvDfzmzcBo973BoBzjGYYIXKpXLeeEUR2Q1kdgTFmBBclotUIjBEltKDzkp-ASYxrhFCNSjIGVy9eDTHBTfDKJdi63sgAO_dlNOy8Nm2E1gfY-v7dpUG7XrZQ5Rq2UMskT8GxlW00Z4c-BW93t6-Lh2L1fL9cXK-KhuIMwbWkjBFqGOYqU1BbcU2qitSaYTu3qK6ZaowuWWOx0rguayRxxTlR3NTI0im42O_NnB-DiUms_RAyTBSEk7yVIjbPqnKvaoKPMRgrGpdkcr5PQbpWYCR24YhdUuInqWyb_bJtguvyi38bDnc-XWu2_6jFzfLpkVCO6TerLXvH |
CitedBy_id | crossref_primary_10_1002_sim_10029 crossref_primary_10_1007_s00180_024_01499_w |
Cites_doi | 10.2139/ssrn.3381994 10.2307/2530960 10.2307/2290687 10.1093/biomet/92.3.519 10.1080/03610910701539617 10.2307/2347977 10.1002/jae.680 10.1093/biomet/asz002 10.1093/biomet/63.3.581 10.1198/106186006X160681 10.1201/9781420011180 10.1111/biom.13113 10.1214/20-BA1237 10.1023/A:1008853808677 10.1007/BF02925924 10.1002/9781119013563 10.2307/2529876 10.1093/biomet/90.1.239 10.2307/2531147 10.1093/biomet/85.2.347 10.1097/01.hjh.0000249694.81241.7c 10.1037/0022-006X.62.2.285 10.1093/biomet/77.3.485 10.1111/1467-9868.00353 10.1016/j.csda.2017.03.007 10.1111/rssb.12065 10.1002/sim.3489 10.1007/s11222-016-9649-y 10.1198/jcgs.2009.06134 10.1002/sim.1470 10.1080/01621459.1979.10481632 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION 7QO 8FD FR3 K9. P64 |
DOI | 10.1002/bimj.202100246 |
DatabaseName | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1521-4036 |
EndPage | 1324 |
ExternalDocumentID | 10_1002_bimj_202100246 BIMJ2371 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: NRF‐ 2022R1A2C1002752; NRF‐2020R1F1A1A01048168 – fundername: Ministry of Science and Technology in Taiwan funderid: MOST 108‐2118‐M‐006‐011; MOST 109‐2118‐M‐006 ‐010‐MY2 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AMVHM CITATION 7QO 8FD FR3 K9. P64 |
ID | FETCH-LOGICAL-c3121-7da35523e517b3843f67d26629d51f8f0995bced45cf1bd19490a16772b7e90f3 |
IEDL.DBID | DR2 |
ISSN | 0323-3847 |
IngestDate | Fri Jul 25 12:26:12 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Wed Oct 01 04:57:15 EDT 2025 Wed Jan 22 16:21:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3121-7da35523e517b3843f67d26629d51f8f0995bced45cf1bd19490a16772b7e90f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7226-509X 0000-0002-2588-6704 0000-0001-9331-6837 |
PQID | 2725173058 |
PQPubID | 105592 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2725173058 crossref_citationtrail_10_1002_bimj_202100246 crossref_primary_10_1002_bimj_202100246 wiley_primary_10_1002_bimj_202100246_BIMJ2371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Biometrical journal |
PublicationYear | 2022 |
Publisher | Wiley - VCH Verlag GmbH & Co. KGaA |
Publisher_xml | – name: Wiley - VCH Verlag GmbH & Co. KGaA |
References | 2007; 17 1984; 40 1976; 63 1982; 38 1990; 77 2017; 27 1993; 88 1982; 31 2000; 41 2015; 77 2006; 15 2008 2005 1985; 41 2008; 6 2003; 18 2019; 106 2020; 76 2002 1998; 85 1979; 74 2017; 112 2007; 36 1994; 62 1999; 9 2009; 28 2021; 16 2006; 24 2002; 64 2019 2018 2005; 92 2015; 90 2003; 22 2009; 18 e_1_2_9_30_1 e_1_2_9_31_1 Lin T.‐I. (e_1_2_9_19_1) 2008; 6 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Song X.‐K. (e_1_2_9_28_1) 2007; 17 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 Hall A. R. (e_1_2_9_13_1) 2005 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 28 start-page: 642 year: 2009 end-page: 658 article-title: Working‐correlation‐structure identification in generalized estimating equations publication-title: Statistics in Medicine – volume: 85 start-page: 347 year: 1998 end-page: 361 article-title: Analysis of multivariate probit models publication-title: Biometrika – volume: 31 start-page: 144 year: 1982 end-page: 148 article-title: Extra‐binomial variation in logistic linear models publication-title: Applied Statistics – year: 2005 – volume: 38 start-page: 963 year: 1982 end-page: 974 article-title: Random‐effects models for longitudinal data publication-title: Biometrics – volume: 6 start-page: 333 year: 2008 end-page: 355 article-title: Longitudinal data analysis using linear mixed models with autoregressive dependence structures publication-title: Journal of Data Science – volume: 77 start-page: 485 year: 1990 end-page: 497 article-title: Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data publication-title: Biometrika – volume: 22 start-page: 1631 year: 2003 end-page: 1647 article-title: Modelling the random effects covariance matrix in longitudinal data publication-title: Statistics in Medicine – volume: 74 start-page: 153 year: 1979 end-page: 160 article-title: A predictive approach to model selection publication-title: Journal of the American Statistical Association – volume: 90 start-page: 239 year: 2015 end-page: 244 article-title: On modelling mean‐covariance structures in longitudinal studies publication-title: Biometrika – volume: 16 start-page: 1039 year: 2021 end-page: 1058 article-title: Bayesian estimation of correlation matrices of longitudinal data publication-title: Bayesian Analysis – volume: 17 start-page: 929 year: 2007 end-page: 943 article-title: Maximum likelihood inference in robust linear mixed‐effects models using distributions publication-title: Statistica Sinica – volume: 18 start-page: 387 year: 2003 end-page: 405 article-title: Incentive effects in the demand for health care: A bivariate panel count data estimation publication-title: Journal of Applied Econometrics – volume: 63 start-page: 581 year: 1976 end-page: 592 article-title: Inference and missing data publication-title: Biometrika – volume: 41 start-page: 875 year: 1985 end-page: 885 article-title: The grouped continuous model for multivariate ordered categorical variables and covariate adjustment publication-title: Biometrics – volume: 112 start-page: 145 year: 2017 end-page: 153 article-title: Analysis of binary longitudinal data with time‐varying effects publication-title: Computational Statistics & Data Analysis – year: 2018 – volume: 18 start-page: 349 year: 2009 end-page: 367 article-title: Examples of adaptive mcmc publication-title: Journal of Computational and Graphical Statistics – volume: 92 start-page: 519 year: 2005 end-page: 528 article-title: A note on composite likelihood inference and model selection publication-title: Biometrika – volume: 9 start-page: 17 year: 1999 end-page: 26 article-title: On mcmc sampling in hierarchical longitudinal models publication-title: Statistics and Computing – volume: 76 start-page: 75 year: 2020 end-page: 86 article-title: Estimation of covariance matrix of multivariate longitudinal data using modified Choleksky and hypersphere decompositions publication-title: Biometrics – volume: 15 start-page: 897 year: 2006 end-page: 914 article-title: A new algorithm for simulating a correlation matrix based on parameter expansion and reparameterization publication-title: Journal of Computational and Graphical Statistics – volume: 24 start-page: 2177 year: 2006 end-page: 2182 article-title: Short‐term incidence rate of hypertension in Korea middle‐aged adults publication-title: Journal of Hypertension – year: 2002 – volume: 77 start-page: 219 year: 2015 end-page: 238 article-title: A joint modelling approach for longitudinal studies publication-title: Journal of Royal Statistical Society, Series B – year: 2008 – volume: 36 start-page: 987 year: 2007 end-page: 996 article-title: Selection of working correlation structure and best model in gee analyses of longitudinal data publication-title: Communications in Statistics ‐ Simulation and Computation – volume: 106 start-page: 321 year: 2019 end-page: 337 article-title: Multivariate output analysis for Markov chain Monte Carlo publication-title: Biometrika – volume: 64 start-page: 583 year: 2002 end-page: 639 article-title: Bayesian measures of model complexity and fit publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 40 start-page: 961 year: 1984 end-page: 971 article-title: Random effects models for serial observations with binary responses publication-title: Biometrics – volume: 27 start-page: 711 year: 2017 end-page: 735 article-title: Comparison of Bayesian predictive methods for model selection publication-title: Statistics and Computing – volume: 62 start-page: 285 year: 1994 end-page: 296 article-title: Application of random‐effects probit regression models publication-title: Journal of Consulting and Clinical Psychology – volume: 88 start-page: 125 year: 1993 end-page: 134 article-title: Approximate inference in generalized linear mixed models publication-title: Journal of the American Statistical Association – year: 2019 – volume: 41 start-page: 281 year: 2000 end-page: 304 article-title: Multivariate regression analysis of panel data with binary outcomes applied to unemployment data publication-title: Statistical Papers – ident: e_1_2_9_31_1 doi: 10.2139/ssrn.3381994 – ident: e_1_2_9_2_1 doi: 10.2307/2530960 – ident: e_1_2_9_3_1 doi: 10.2307/2290687 – ident: e_1_2_9_32_1 doi: 10.1093/biomet/92.3.519 – ident: e_1_2_9_6_1 doi: 10.1080/03610910701539617 – ident: e_1_2_9_35_1 doi: 10.2307/2347977 – ident: e_1_2_9_24_1 doi: 10.1002/jae.680 – ident: e_1_2_9_33_1 doi: 10.1093/biomet/asz002 – ident: e_1_2_9_27_1 doi: 10.1093/biomet/63.3.581 – ident: e_1_2_9_21_1 doi: 10.1198/106186006X160681 – ident: e_1_2_9_8_1 doi: 10.1201/9781420011180 – ident: e_1_2_9_18_1 doi: 10.1111/biom.13113 – ident: e_1_2_9_11_1 doi: 10.1214/20-BA1237 – ident: e_1_2_9_4_1 doi: 10.1023/A:1008853808677 – ident: e_1_2_9_7_1 doi: 10.1007/BF02925924 – ident: e_1_2_9_20_1 doi: 10.1002/9781119013563 – ident: e_1_2_9_17_1 doi: 10.2307/2529876 – ident: e_1_2_9_22_1 doi: 10.1093/biomet/90.1.239 – ident: e_1_2_9_30_1 doi: 10.2307/2531147 – volume: 6 start-page: 333 year: 2008 ident: e_1_2_9_19_1 article-title: Longitudinal data analysis using t linear mixed models with autoregressive dependence structures publication-title: Journal of Data Science – ident: e_1_2_9_5_1 doi: 10.1093/biomet/85.2.347 – ident: e_1_2_9_16_1 doi: 10.1097/01.hjh.0000249694.81241.7c – ident: e_1_2_9_12_1 doi: 10.1037/0022-006X.62.2.285 – ident: e_1_2_9_26_1 doi: 10.1093/biomet/77.3.485 – ident: e_1_2_9_29_1 doi: 10.1111/1467-9868.00353 – volume-title: Generalized method of moments. Advanced texts in econometrics year: 2005 ident: e_1_2_9_13_1 – volume: 17 start-page: 929 year: 2007 ident: e_1_2_9_28_1 article-title: Maximum likelihood inference in robust linear mixed‐effects models using t distributions publication-title: Statistica Sinica – ident: e_1_2_9_15_1 doi: 10.1016/j.csda.2017.03.007 – ident: e_1_2_9_34_1 – ident: e_1_2_9_36_1 doi: 10.1111/rssb.12065 – ident: e_1_2_9_14_1 doi: 10.1002/sim.3489 – ident: e_1_2_9_23_1 doi: 10.1007/s11222-016-9649-y – ident: e_1_2_9_25_1 doi: 10.1198/jcgs.2009.06134 – ident: e_1_2_9_9_1 doi: 10.1002/sim.1470 – ident: e_1_2_9_10_1 doi: 10.1080/01621459.1979.10481632 |
SSID | ssj0009042 |
Score | 2.316684 |
Snippet | In this paper, we propose Bayesian analysis methods dealing with longitudinal data involving repeated binary outcomes on subjects with dropouts. The proposed... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1307 |
SubjectTerms | Algorithms Bayesian analysis Binary data Computer simulation Correlation analysis correlation matrix Heterogeneity hypersphere decomposition Hyperspheres Markov chains Mathematical models MCMC Missing data Parameters R package |
Title | Robust probit linear mixed models for longitudinal binary data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.202100246 https://www.proquest.com/docview/2725173058 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0323-3847 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4036 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009042 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5SELy4i9UqOQie0k6WWXIRVCy1UA_FQm9DtoFqF-lMQf31Jpmugoh4HHgzb-YlL_kyefk-AK4wVZnAhiORiAgxHVGUcBUgrbmIoswufTxPQecpavVYux_2107xl_wQyx9uLjP8eO0SXMi8sSINlYPRi13fEXfJHOc2pqHfp-2u-KN4wMptBEIRtePwgrUxII3N2zdnpRXUXAesfsZp7gGxeNey0OS1PitkXX1-o3H8z8fsg905HIW3Zf85AFtmfAi2S4HKjyNw053IWV5AJzszKKDzI6ZwNHg3GnoNnRxa0AuHE6d6NNNOYQtKf8IXutLTY9BrPjzft9BccQEpiglGsRYWfxBqQhxLGzCaRbG2UzjhOsRZklk4GUplNAtVhqXGnPFA4MgidBkbHmT0BFTGk7E5BTBiSagJz7TRglncKA3H1kksMTMhUaoK0CLiqZrTkTtVjGFaEimT1MUkXcakCq6X9m8lEcePlrVFA6bzhMxTEjtuNju4Jdaxb4lfnpLePXbahMb47I_252CHuCMSvuCvBirFdGYuLHAp5KXvnF8SK-Rk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA4uiF7cxXHNQfCUmWZp2lwEV8Zl5jAoeCvNUhidRWZaUH-9SZcZFUTEY-E1aV_yki_Jy_cBcISpSmJsBIrDmCOmOUWhUB7SWsScJ3bpk_MUtNq8-cBuHv0qm9DdhSn4ISYbbi4y8vHaBbjbkG5MWUNlt_9kF3jEPTI-C-bdIZ2LzYvOlEFKeKw4SCAUUTsSV7yNHml8ff_rvDQFm58haz7nXK0AWX1tkWryXM9SWVfv34gc__U7q2C5RKTwtOhCa2DGDNbBQqFR-bYBTjpDmY1T6JRnuil0FcUj2O--Gg1zGZ0xtLgX9oZO-CjTTmQLyvySL3TZp5vg4ery_ryJStEFpCgmGAU6thCEUOPjQFqP0YQH2s7iRGgfJ2FiEaUvldHMVwmWGgsmvBhzC9JlYISX0C0wNxgOzDaAnIW-JiLRRsfMQkdpBLaVBBIz4xOlagBVLo9UyUjuhDF6UcGlTCLnk2jikxo4nti_FFwcP1ruVS0YlTE5jkjg6Nns-BbaivOm-KWU6Oy6dUNogHf-aH8IFpv3rbvo7rp9uwuWiLsxkef_7YG5dJSZfYtjUnmQ99QPbQzogA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA46onhxF8c1B8FTtFmaNhfBbXCbQQYFbyUrjMuMOB1Qf71JO4sjiIjHQtrXvuTlfS9Nvg-AXUy1k9gKJFPJETOcolToCBkjJOfOlz4FT0G9wc_v2OV9fP_lFH_JDzFccAuRUczXIcBfjDsYkYaq1vODr-9IuGR8Ekwx7kusAIuaIwIpEbHyPwKhiPqJeEDbGJGD8fvH09IIa35FrEXKqc0DOXjZcqfJ434vV_v64xuP43--ZgHM9fEoPCoH0CKYsO0lMF0qVL4vg8NmR_W6OQy6M60cBjvyFT633qyBhYhOF3rUC586QfaoZ4LEFlTFEV8Y9p6ugLva2e3JOepLLiBNMcEoMdIDEEJtjBPlHUYdT4zP4USYGLvUeTwZK20Ni7XDymDBRCQx9xBdJVZEjq6CSrvTtmsAcpbGhghnrJHMA0dlBfZGEoWZjYnWVYAGHs90n488yGI8ZSWTMsmCT7KhT6pgb9j-pWTi-LHl5qADs35EdjOSBHI2P7ul3nDRE788JTu-qF8SmuD1P7bfATM3p7Xs-qJxtQFmSTguUWz-2wSV_LVntzyIydV2MU4_AcCj5y8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+probit+linear+mixed+models+for+longitudinal+binary+data&rft.jtitle=Biometrical+journal&rft.au=Kuo%E2%80%90Jung+Lee&rft.au=Kim%2C+Chanmin&rft.au=Ray%E2%80%90Bing+Chen&rft.au=Lee%2C+Keunbaik&rft.date=2022-10-01&rft.pub=Wiley+-+VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=64&rft.issue=7&rft.spage=1307&rft.epage=1324&rft_id=info:doi/10.1002%2Fbimj.202100246&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |