Robust probit linear mixed models for longitudinal binary data

In this paper, we propose Bayesian analysis methods dealing with longitudinal data involving repeated binary outcomes on subjects with dropouts. The proposed Bayesian methods implement probit models with random effects to capture heterogeneity and hypersphere decomposition to model the correlation m...

Full description

Saved in:
Bibliographic Details
Published inBiometrical journal Vol. 64; no. 7; pp. 1307 - 1324
Main Authors Lee, Kuo‐Jung, Kim, Chanmin, Chen, Ray‐Bing, Lee, Keunbaik
Format Journal Article
LanguageEnglish
Published Weinheim Wiley - VCH Verlag GmbH & Co. KGaA 01.10.2022
Subjects
Online AccessGet full text
ISSN0323-3847
1521-4036
DOI10.1002/bimj.202100246

Cover

Abstract In this paper, we propose Bayesian analysis methods dealing with longitudinal data involving repeated binary outcomes on subjects with dropouts. The proposed Bayesian methods implement probit models with random effects to capture heterogeneity and hypersphere decomposition to model the correlation matrix for serial correlation of repeated responses. We investigate the model robustness against misspecifications of the probit models along with techniques to handle missing data. The parameters of the proposed models are estimated by implementing an Markov chain Monte Carlo (MCMC) algorithm, and simulations were performed to provide a comparison with other models and validate the choice of prior distributions. The simulations show that when suitable correlation structures are specified, the proposed approach improves estimation of the regression parameters in terms of the mean percent relative error and the mean squared error. Finally, two real data examples are provided to illustrate the proposed approach.
AbstractList In this paper, we propose Bayesian analysis methods dealing with longitudinal data involving repeated binary outcomes on subjects with dropouts. The proposed Bayesian methods implement probit models with random effects to capture heterogeneity and hypersphere decomposition to model the correlation matrix for serial correlation of repeated responses. We investigate the model robustness against misspecifications of the probit models along with techniques to handle missing data. The parameters of the proposed models are estimated by implementing an Markov chain Monte Carlo (MCMC) algorithm, and simulations were performed to provide a comparison with other models and validate the choice of prior distributions. The simulations show that when suitable correlation structures are specified, the proposed approach improves estimation of the regression parameters in terms of the mean percent relative error and the mean squared error. Finally, two real data examples are provided to illustrate the proposed approach.
In this paper, we propose Bayesian analysis methods dealing with longitudinal data involving repeated binary outcomes on subjects with dropouts. The proposed Bayesian methods implement probit models with random effects to capture heterogeneity and hypersphere decomposition to model the correlation matrix for serial correlation of repeated responses. We investigate the model robustness against misspecifications of the probit models along with techniques to handle missing data. The parameters of the proposed models are estimated by implementing an Markov chain Monte Carlo (MCMC) algorithm, and simulations were performed to provide a comparison with other models and validate the choice of prior distributions. The simulations show that when suitable correlation structures are specified, the proposed approach improves estimation of the regression parameters in terms of the mean percent relative error and the mean squared error. Finally, two real data examples are provided to illustrate the proposed approach.
Author Lee, Keunbaik
Lee, Kuo‐Jung
Kim, Chanmin
Chen, Ray‐Bing
Author_xml – sequence: 1
  givenname: Kuo‐Jung
  surname: Lee
  fullname: Lee, Kuo‐Jung
  organization: National Cheng Kung University
– sequence: 2
  givenname: Chanmin
  orcidid: 0000-0002-2588-6704
  surname: Kim
  fullname: Kim, Chanmin
  organization: Sungkyunkwan University
– sequence: 3
  givenname: Ray‐Bing
  orcidid: 0000-0001-7226-509X
  surname: Chen
  fullname: Chen, Ray‐Bing
  organization: National Cheng Kung University
– sequence: 4
  givenname: Keunbaik
  orcidid: 0000-0001-9331-6837
  surname: Lee
  fullname: Lee, Keunbaik
  email: keunbaik@skku.edu
  organization: Sungkyunkwan University
BookMark eNqFkM1LAzEQxYNUsK1ePQc8b83HZtO9CFr8qFQE0XNINomk7G5qkkX735vS4kEQLzMMvDfzmzcBo973BoBzjGYYIXKpXLeeEUR2Q1kdgTFmBBclotUIjBEltKDzkp-ASYxrhFCNSjIGVy9eDTHBTfDKJdi63sgAO_dlNOy8Nm2E1gfY-v7dpUG7XrZQ5Rq2UMskT8GxlW00Z4c-BW93t6-Lh2L1fL9cXK-KhuIMwbWkjBFqGOYqU1BbcU2qitSaYTu3qK6ZaowuWWOx0rguayRxxTlR3NTI0im42O_NnB-DiUms_RAyTBSEk7yVIjbPqnKvaoKPMRgrGpdkcr5PQbpWYCR24YhdUuInqWyb_bJtguvyi38bDnc-XWu2_6jFzfLpkVCO6TerLXvH
CitedBy_id crossref_primary_10_1002_sim_10029
crossref_primary_10_1007_s00180_024_01499_w
Cites_doi 10.2139/ssrn.3381994
10.2307/2530960
10.2307/2290687
10.1093/biomet/92.3.519
10.1080/03610910701539617
10.2307/2347977
10.1002/jae.680
10.1093/biomet/asz002
10.1093/biomet/63.3.581
10.1198/106186006X160681
10.1201/9781420011180
10.1111/biom.13113
10.1214/20-BA1237
10.1023/A:1008853808677
10.1007/BF02925924
10.1002/9781119013563
10.2307/2529876
10.1093/biomet/90.1.239
10.2307/2531147
10.1093/biomet/85.2.347
10.1097/01.hjh.0000249694.81241.7c
10.1037/0022-006X.62.2.285
10.1093/biomet/77.3.485
10.1111/1467-9868.00353
10.1016/j.csda.2017.03.007
10.1111/rssb.12065
10.1002/sim.3489
10.1007/s11222-016-9649-y
10.1198/jcgs.2009.06134
10.1002/sim.1470
10.1080/01621459.1979.10481632
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
7QO
8FD
FR3
K9.
P64
DOI 10.1002/bimj.202100246
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-4036
EndPage 1324
ExternalDocumentID 10_1002_bimj_202100246
BIMJ2371
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: NRF‐ 2022R1A2C1002752; NRF‐2020R1F1A1A01048168
– fundername: Ministry of Science and Technology in Taiwan
  funderid: MOST 108‐2118‐M‐006‐011; MOST 109‐2118‐M‐006 ‐010‐MY2
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
7QO
8FD
FR3
K9.
P64
ID FETCH-LOGICAL-c3121-7da35523e517b3843f67d26629d51f8f0995bced45cf1bd19490a16772b7e90f3
IEDL.DBID DR2
ISSN 0323-3847
IngestDate Fri Jul 25 12:26:12 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Wed Oct 01 04:57:15 EDT 2025
Wed Jan 22 16:21:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3121-7da35523e517b3843f67d26629d51f8f0995bced45cf1bd19490a16772b7e90f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7226-509X
0000-0002-2588-6704
0000-0001-9331-6837
PQID 2725173058
PQPubID 105592
PageCount 18
ParticipantIDs proquest_journals_2725173058
crossref_citationtrail_10_1002_bimj_202100246
crossref_primary_10_1002_bimj_202100246
wiley_primary_10_1002_bimj_202100246_BIMJ2371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Biometrical journal
PublicationYear 2022
Publisher Wiley - VCH Verlag GmbH & Co. KGaA
Publisher_xml – name: Wiley - VCH Verlag GmbH & Co. KGaA
References 2007; 17
1984; 40
1976; 63
1982; 38
1990; 77
2017; 27
1993; 88
1982; 31
2000; 41
2015; 77
2006; 15
2008
2005
1985; 41
2008; 6
2003; 18
2019; 106
2020; 76
2002
1998; 85
1979; 74
2017; 112
2007; 36
1994; 62
1999; 9
2009; 28
2021; 16
2006; 24
2002; 64
2019
2018
2005; 92
2015; 90
2003; 22
2009; 18
e_1_2_9_30_1
e_1_2_9_31_1
Lin T.‐I. (e_1_2_9_19_1) 2008; 6
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Song X.‐K. (e_1_2_9_28_1) 2007; 17
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
Hall A. R. (e_1_2_9_13_1) 2005
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 28
  start-page: 642
  year: 2009
  end-page: 658
  article-title: Working‐correlation‐structure identification in generalized estimating equations
  publication-title: Statistics in Medicine
– volume: 85
  start-page: 347
  year: 1998
  end-page: 361
  article-title: Analysis of multivariate probit models
  publication-title: Biometrika
– volume: 31
  start-page: 144
  year: 1982
  end-page: 148
  article-title: Extra‐binomial variation in logistic linear models
  publication-title: Applied Statistics
– year: 2005
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  article-title: Random‐effects models for longitudinal data
  publication-title: Biometrics
– volume: 6
  start-page: 333
  year: 2008
  end-page: 355
  article-title: Longitudinal data analysis using linear mixed models with autoregressive dependence structures
  publication-title: Journal of Data Science
– volume: 77
  start-page: 485
  year: 1990
  end-page: 497
  article-title: Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data
  publication-title: Biometrika
– volume: 22
  start-page: 1631
  year: 2003
  end-page: 1647
  article-title: Modelling the random effects covariance matrix in longitudinal data
  publication-title: Statistics in Medicine
– volume: 74
  start-page: 153
  year: 1979
  end-page: 160
  article-title: A predictive approach to model selection
  publication-title: Journal of the American Statistical Association
– volume: 90
  start-page: 239
  year: 2015
  end-page: 244
  article-title: On modelling mean‐covariance structures in longitudinal studies
  publication-title: Biometrika
– volume: 16
  start-page: 1039
  year: 2021
  end-page: 1058
  article-title: Bayesian estimation of correlation matrices of longitudinal data
  publication-title: Bayesian Analysis
– volume: 17
  start-page: 929
  year: 2007
  end-page: 943
  article-title: Maximum likelihood inference in robust linear mixed‐effects models using distributions
  publication-title: Statistica Sinica
– volume: 18
  start-page: 387
  year: 2003
  end-page: 405
  article-title: Incentive effects in the demand for health care: A bivariate panel count data estimation
  publication-title: Journal of Applied Econometrics
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  article-title: Inference and missing data
  publication-title: Biometrika
– volume: 41
  start-page: 875
  year: 1985
  end-page: 885
  article-title: The grouped continuous model for multivariate ordered categorical variables and covariate adjustment
  publication-title: Biometrics
– volume: 112
  start-page: 145
  year: 2017
  end-page: 153
  article-title: Analysis of binary longitudinal data with time‐varying effects
  publication-title: Computational Statistics & Data Analysis
– year: 2018
– volume: 18
  start-page: 349
  year: 2009
  end-page: 367
  article-title: Examples of adaptive mcmc
  publication-title: Journal of Computational and Graphical Statistics
– volume: 92
  start-page: 519
  year: 2005
  end-page: 528
  article-title: A note on composite likelihood inference and model selection
  publication-title: Biometrika
– volume: 9
  start-page: 17
  year: 1999
  end-page: 26
  article-title: On mcmc sampling in hierarchical longitudinal models
  publication-title: Statistics and Computing
– volume: 76
  start-page: 75
  year: 2020
  end-page: 86
  article-title: Estimation of covariance matrix of multivariate longitudinal data using modified Choleksky and hypersphere decompositions
  publication-title: Biometrics
– volume: 15
  start-page: 897
  year: 2006
  end-page: 914
  article-title: A new algorithm for simulating a correlation matrix based on parameter expansion and reparameterization
  publication-title: Journal of Computational and Graphical Statistics
– volume: 24
  start-page: 2177
  year: 2006
  end-page: 2182
  article-title: Short‐term incidence rate of hypertension in Korea middle‐aged adults
  publication-title: Journal of Hypertension
– year: 2002
– volume: 77
  start-page: 219
  year: 2015
  end-page: 238
  article-title: A joint modelling approach for longitudinal studies
  publication-title: Journal of Royal Statistical Society, Series B
– year: 2008
– volume: 36
  start-page: 987
  year: 2007
  end-page: 996
  article-title: Selection of working correlation structure and best model in gee analyses of longitudinal data
  publication-title: Communications in Statistics ‐ Simulation and Computation
– volume: 106
  start-page: 321
  year: 2019
  end-page: 337
  article-title: Multivariate output analysis for Markov chain Monte Carlo
  publication-title: Biometrika
– volume: 64
  start-page: 583
  year: 2002
  end-page: 639
  article-title: Bayesian measures of model complexity and fit
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 40
  start-page: 961
  year: 1984
  end-page: 971
  article-title: Random effects models for serial observations with binary responses
  publication-title: Biometrics
– volume: 27
  start-page: 711
  year: 2017
  end-page: 735
  article-title: Comparison of Bayesian predictive methods for model selection
  publication-title: Statistics and Computing
– volume: 62
  start-page: 285
  year: 1994
  end-page: 296
  article-title: Application of random‐effects probit regression models
  publication-title: Journal of Consulting and Clinical Psychology
– volume: 88
  start-page: 125
  year: 1993
  end-page: 134
  article-title: Approximate inference in generalized linear mixed models
  publication-title: Journal of the American Statistical Association
– year: 2019
– volume: 41
  start-page: 281
  year: 2000
  end-page: 304
  article-title: Multivariate regression analysis of panel data with binary outcomes applied to unemployment data
  publication-title: Statistical Papers
– ident: e_1_2_9_31_1
  doi: 10.2139/ssrn.3381994
– ident: e_1_2_9_2_1
  doi: 10.2307/2530960
– ident: e_1_2_9_3_1
  doi: 10.2307/2290687
– ident: e_1_2_9_32_1
  doi: 10.1093/biomet/92.3.519
– ident: e_1_2_9_6_1
  doi: 10.1080/03610910701539617
– ident: e_1_2_9_35_1
  doi: 10.2307/2347977
– ident: e_1_2_9_24_1
  doi: 10.1002/jae.680
– ident: e_1_2_9_33_1
  doi: 10.1093/biomet/asz002
– ident: e_1_2_9_27_1
  doi: 10.1093/biomet/63.3.581
– ident: e_1_2_9_21_1
  doi: 10.1198/106186006X160681
– ident: e_1_2_9_8_1
  doi: 10.1201/9781420011180
– ident: e_1_2_9_18_1
  doi: 10.1111/biom.13113
– ident: e_1_2_9_11_1
  doi: 10.1214/20-BA1237
– ident: e_1_2_9_4_1
  doi: 10.1023/A:1008853808677
– ident: e_1_2_9_7_1
  doi: 10.1007/BF02925924
– ident: e_1_2_9_20_1
  doi: 10.1002/9781119013563
– ident: e_1_2_9_17_1
  doi: 10.2307/2529876
– ident: e_1_2_9_22_1
  doi: 10.1093/biomet/90.1.239
– ident: e_1_2_9_30_1
  doi: 10.2307/2531147
– volume: 6
  start-page: 333
  year: 2008
  ident: e_1_2_9_19_1
  article-title: Longitudinal data analysis using t linear mixed models with autoregressive dependence structures
  publication-title: Journal of Data Science
– ident: e_1_2_9_5_1
  doi: 10.1093/biomet/85.2.347
– ident: e_1_2_9_16_1
  doi: 10.1097/01.hjh.0000249694.81241.7c
– ident: e_1_2_9_12_1
  doi: 10.1037/0022-006X.62.2.285
– ident: e_1_2_9_26_1
  doi: 10.1093/biomet/77.3.485
– ident: e_1_2_9_29_1
  doi: 10.1111/1467-9868.00353
– volume-title: Generalized method of moments. Advanced texts in econometrics
  year: 2005
  ident: e_1_2_9_13_1
– volume: 17
  start-page: 929
  year: 2007
  ident: e_1_2_9_28_1
  article-title: Maximum likelihood inference in robust linear mixed‐effects models using t distributions
  publication-title: Statistica Sinica
– ident: e_1_2_9_15_1
  doi: 10.1016/j.csda.2017.03.007
– ident: e_1_2_9_34_1
– ident: e_1_2_9_36_1
  doi: 10.1111/rssb.12065
– ident: e_1_2_9_14_1
  doi: 10.1002/sim.3489
– ident: e_1_2_9_23_1
  doi: 10.1007/s11222-016-9649-y
– ident: e_1_2_9_25_1
  doi: 10.1198/jcgs.2009.06134
– ident: e_1_2_9_9_1
  doi: 10.1002/sim.1470
– ident: e_1_2_9_10_1
  doi: 10.1080/01621459.1979.10481632
SSID ssj0009042
Score 2.316684
Snippet In this paper, we propose Bayesian analysis methods dealing with longitudinal data involving repeated binary outcomes on subjects with dropouts. The proposed...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1307
SubjectTerms Algorithms
Bayesian analysis
Binary data
Computer simulation
Correlation analysis
correlation matrix
Heterogeneity
hypersphere decomposition
Hyperspheres
Markov chains
Mathematical models
MCMC
Missing data
Parameters
R package
Title Robust probit linear mixed models for longitudinal binary data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.202100246
https://www.proquest.com/docview/2725173058
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0323-3847
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009042
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5SELy4i9UqOQie0k6WWXIRVCy1UA_FQm9DtoFqF-lMQf31Jpmugoh4HHgzb-YlL_kyefk-AK4wVZnAhiORiAgxHVGUcBUgrbmIoswufTxPQecpavVYux_2107xl_wQyx9uLjP8eO0SXMi8sSINlYPRi13fEXfJHOc2pqHfp-2u-KN4wMptBEIRtePwgrUxII3N2zdnpRXUXAesfsZp7gGxeNey0OS1PitkXX1-o3H8z8fsg905HIW3Zf85AFtmfAi2S4HKjyNw053IWV5AJzszKKDzI6ZwNHg3GnoNnRxa0AuHE6d6NNNOYQtKf8IXutLTY9BrPjzft9BccQEpiglGsRYWfxBqQhxLGzCaRbG2UzjhOsRZklk4GUplNAtVhqXGnPFA4MgidBkbHmT0BFTGk7E5BTBiSagJz7TRglncKA3H1kksMTMhUaoK0CLiqZrTkTtVjGFaEimT1MUkXcakCq6X9m8lEcePlrVFA6bzhMxTEjtuNju4Jdaxb4lfnpLePXbahMb47I_252CHuCMSvuCvBirFdGYuLHAp5KXvnF8SK-Rk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA4uiF7cxXHNQfCUmWZp2lwEV8Zl5jAoeCvNUhidRWZaUH-9SZcZFUTEY-E1aV_yki_Jy_cBcISpSmJsBIrDmCOmOUWhUB7SWsScJ3bpk_MUtNq8-cBuHv0qm9DdhSn4ISYbbi4y8vHaBbjbkG5MWUNlt_9kF3jEPTI-C-bdIZ2LzYvOlEFKeKw4SCAUUTsSV7yNHml8ff_rvDQFm58haz7nXK0AWX1tkWryXM9SWVfv34gc__U7q2C5RKTwtOhCa2DGDNbBQqFR-bYBTjpDmY1T6JRnuil0FcUj2O--Gg1zGZ0xtLgX9oZO-CjTTmQLyvySL3TZp5vg4ery_ryJStEFpCgmGAU6thCEUOPjQFqP0YQH2s7iRGgfJ2FiEaUvldHMVwmWGgsmvBhzC9JlYISX0C0wNxgOzDaAnIW-JiLRRsfMQkdpBLaVBBIz4xOlagBVLo9UyUjuhDF6UcGlTCLnk2jikxo4nti_FFwcP1ruVS0YlTE5jkjg6Nns-BbaivOm-KWU6Oy6dUNogHf-aH8IFpv3rbvo7rp9uwuWiLsxkef_7YG5dJSZfYtjUnmQ99QPbQzogA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA46onhxF8c1B8FTtFmaNhfBbXCbQQYFbyUrjMuMOB1Qf71JO4sjiIjHQtrXvuTlfS9Nvg-AXUy1k9gKJFPJETOcolToCBkjJOfOlz4FT0G9wc_v2OV9fP_lFH_JDzFccAuRUczXIcBfjDsYkYaq1vODr-9IuGR8Ekwx7kusAIuaIwIpEbHyPwKhiPqJeEDbGJGD8fvH09IIa35FrEXKqc0DOXjZcqfJ434vV_v64xuP43--ZgHM9fEoPCoH0CKYsO0lMF0qVL4vg8NmR_W6OQy6M60cBjvyFT633qyBhYhOF3rUC586QfaoZ4LEFlTFEV8Y9p6ugLva2e3JOepLLiBNMcEoMdIDEEJtjBPlHUYdT4zP4USYGLvUeTwZK20Ni7XDymDBRCQx9xBdJVZEjq6CSrvTtmsAcpbGhghnrJHMA0dlBfZGEoWZjYnWVYAGHs90n488yGI8ZSWTMsmCT7KhT6pgb9j-pWTi-LHl5qADs35EdjOSBHI2P7ul3nDRE788JTu-qF8SmuD1P7bfATM3p7Xs-qJxtQFmSTguUWz-2wSV_LVntzyIydV2MU4_AcCj5y8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+probit+linear+mixed+models+for+longitudinal+binary+data&rft.jtitle=Biometrical+journal&rft.au=Kuo%E2%80%90Jung+Lee&rft.au=Kim%2C+Chanmin&rft.au=Ray%E2%80%90Bing+Chen&rft.au=Lee%2C+Keunbaik&rft.date=2022-10-01&rft.pub=Wiley+-+VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=64&rft.issue=7&rft.spage=1307&rft.epage=1324&rft_id=info:doi/10.1002%2Fbimj.202100246&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon