Unraveling the Nuclear Debate: Insights Through Clustering of Tweets
The perception of nuclear power, while central to energy policy and sustainability endeavors, remains a subject of considerable debate, in which some claim that the expansion of nuclear technology poses threats to global security, while others argue that its access should be shared for development a...
Saved in:
Published in | Electronics (Basel) Vol. 13; no. 21; p. 4159 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-9292 2079-9292 |
DOI | 10.3390/electronics13214159 |
Cover
Abstract | The perception of nuclear power, while central to energy policy and sustainability endeavors, remains a subject of considerable debate, in which some claim that the expansion of nuclear technology poses threats to global security, while others argue that its access should be shared for development and energy purposes. In this study, a total of 11,256 tweets were gathered over a three-month period using a keyword-based approach through the Twitter Standard Search API, focusing on terms related to nuclear energy. The k-means clustering algorithm was employed to analyze tweets with the aim of determining the underlying sentiments and perspectives within the public domain, while t-SNE was used for visualizing cluster separation. The results show distinct clusters reflecting various viewpoints on nuclear power, with 71.94% of tweets being neutral, 14.64% supportive, and 13.42% negative. This study also identifies a subset of users who appear to be seeking unbiased information, signaling an opportunity for educational outreach. By leveraging the immediacy and pervasiveness of X (formerly known as Twitter), this research provides a timely snapshot of the prevailing attitudes toward nuclear power and offers insights for policymakers, educators, and industry stakeholders. |
---|---|
AbstractList | The perception of nuclear power, while central to energy policy and sustainability endeavors, remains a subject of considerable debate, in which some claim that the expansion of nuclear technology poses threats to global security, while others argue that its access should be shared for development and energy purposes. In this study, a total of 11,256 tweets were gathered over a three-month period using a keyword-based approach through the Twitter Standard Search API, focusing on terms related to nuclear energy. The k-means clustering algorithm was employed to analyze tweets with the aim of determining the underlying sentiments and perspectives within the public domain, while t-SNE was used for visualizing cluster separation. The results show distinct clusters reflecting various viewpoints on nuclear power, with 71.94% of tweets being neutral, 14.64% supportive, and 13.42% negative. This study also identifies a subset of users who appear to be seeking unbiased information, signaling an opportunity for educational outreach. By leveraging the immediacy and pervasiveness of X (formerly known as Twitter), this research provides a timely snapshot of the prevailing attitudes toward nuclear power and offers insights for policymakers, educators, and industry stakeholders. |
Audience | Academic |
Author | Katalinić, Josip Dunđer, Ivan Seljan, Sanja |
Author_xml | – sequence: 1 givenname: Josip surname: Katalinić fullname: Katalinić, Josip – sequence: 2 givenname: Ivan surname: Dunđer fullname: Dunđer, Ivan – sequence: 3 givenname: Sanja orcidid: 0000-0001-9048-419X surname: Seljan fullname: Seljan, Sanja |
BookMark | eNptkMtOwzAQRS1UJErpF7CJxDrFjzxsdlXLS6pg064jxxknqVK72A6Iv8dVWbBgZjGjq3tnpHONJsYaQOiW4AVjAt_DACo4a3rlCaMkI7m4QFOKS5EKKujkz36F5t7vcSxBGGd4itY74-QnDL1pk9BB8jaqAaRL1lDLAA_Jq_F92wWfbDtnx7ZLVsPoA7iT3-pk-wUQ_A261HLwMP-dM7R7etyuXtLN-_PrarlJFSMkpFALSrGWpClUUbBSKJbzhkaVlbUqCJY5CJ43BecYiCxwhkvQWFAutJS4ZjN0d757dPZjBB-qvR2diS8rRmiBaUYzHl2Ls6uVA1S90TY4qWI3cOhVZKf7qC85yVmWcUxjgJ0DylnvHejq6PqDdN8VwdUJcfUPYvYDKWxyXA |
Cites_doi | 10.1007/978-981-16-3675-2_17 10.1007/s11356-022-19317-5 10.1016/j.enpol.2023.113939 10.1109/ICMLA52953.2021.00267 10.1109/ACCESS.2021.3064948 10.1177/0306312719889405 10.7717/peerj-cs.677 10.3390/math10152559 10.1016/j.enpol.2021.112363 10.1016/j.enpol.2023.113578 10.1109/ACCESS.2023.3257283 10.1093/database/baab015 10.4236/jcc.2022.108008 10.1177/1094428120971683 10.1007/s11192-022-04463-x 10.1109/ACCESS.2020.2983859 10.1088/1755-1315/34/1/012043 10.1088/1742-6596/1567/3/032024 10.1109/IJCNN52387.2021.9534470 10.1016/j.pnucene.2024.105286 10.1016/j.erss.2020.101477 10.1002/pa.2901 10.3390/en16196941 10.1037/h0055441 10.5267/j.msl.2023.6.004 10.3390/en14185774 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics13214159 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | A815344802 10_3390_electronics13214159 |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PMFND 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c311t-eb9220fa1d6c66379c358d2b9237bc610a5e985d6880e1a60407ef09289faa0b3 |
IEDL.DBID | 8FG |
ISSN | 2079-9292 |
IngestDate | Sat Jul 26 00:12:38 EDT 2025 Tue Jun 10 21:00:27 EDT 2025 Tue Jul 01 04:08:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-eb9220fa1d6c66379c358d2b9237bc610a5e985d6880e1a60407ef09289faa0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9048-419X |
OpenAccessLink | https://www.proquest.com/docview/3126024248?pq-origsite=%requestingapplication% |
PQID | 3126024248 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_3126024248 gale_infotracacademiconefile_A815344802 crossref_primary_10_3390_electronics13214159 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Mehta (ref_40) 2020; 9 Hickman (ref_11) 2022; 25 ref_12 ref_32 Kastrati (ref_44) 2023; 11 ref_30 Cai (ref_31) 2022; 23 Polleri (ref_38) 2020; 50 Cambe (ref_28) 2022; 127 Tabassum (ref_10) 2020; 7 ref_18 ref_17 Chiny (ref_43) 2021; 12 (ref_14) 2020; 28 Addiga (ref_13) 2022; 10 Bohdanowicz (ref_2) 2023; 177 Zubin (ref_26) 1938; 33 Ho (ref_39) 2020; 65 Wahid (ref_34) 2021; 7 Egres (ref_5) 2024; 24 Yamagata (ref_7) 2024; 185 Mustaqim (ref_42) 2020; 1567 Ramana (ref_35) 2021; 9 ref_25 ref_24 Cui (ref_16) 2020; 1 Raj (ref_23) 2021; 12 ref_20 Yzaguirre (ref_19) 2015; 34 Pan (ref_6) 2022; 34 Ramgude (ref_22) 2023; 13 Yildirim (ref_21) 2022; 23 Bibi (ref_41) 2020; 8 ref_29 Muellner (ref_1) 2021; 155 ref_27 Blecking (ref_9) 2024; 41 Arnaboldi (ref_33) 2021; 2021 Popa (ref_36) 2021; 3 Durdovic (ref_8) 2024; 174 Ewim (ref_3) 2021; 14 ref_4 Rehman (ref_37) 2022; 29 Koopman (ref_15) 2020; 6 |
References_xml | – ident: ref_18 doi: 10.1007/978-981-16-3675-2_17 – volume: 29 start-page: 48786 year: 2022 ident: ref_37 article-title: Revealing the dynamic effects of fossil fuel energy, nuclear energy, renewable energy, and carbon emissions on Pakistan’s economic growth publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-19317-5 – volume: 185 start-page: 113939 year: 2024 ident: ref_7 article-title: Public opinion on nuclear power plants in Japan, the United Kingdom, and the United States of America: A prescription for peculiar Japan publication-title: Energy Policy doi: 10.1016/j.enpol.2023.113939 – ident: ref_30 doi: 10.1109/ICMLA52953.2021.00267 – volume: 9 start-page: 42090 year: 2021 ident: ref_35 article-title: Small modular and advanced nuclear reactors: A reality check publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064948 – volume: 50 start-page: 574 year: 2020 ident: ref_38 article-title: Post-political uncertainties: Governing nuclear controversies in post-Fukushima Japan publication-title: Soc. Stud. Sci. doi: 10.1177/0306312719889405 – volume: 7 start-page: e677 year: 2021 ident: ref_34 article-title: Topic2features: A novel framework to classify noisy and sparse textual data using LDA topic distributions publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.677 – ident: ref_29 doi: 10.3390/math10152559 – volume: 155 start-page: 112363 year: 2021 ident: ref_1 article-title: Nuclear energy-The solution to climate change? publication-title: Energy Policy doi: 10.1016/j.enpol.2021.112363 – volume: 177 start-page: 113578 year: 2023 ident: ref_2 article-title: Support for nuclear power and proenvironmental attitudes: The cases of Germany and Poland publication-title: Energy Policy doi: 10.1016/j.enpol.2023.113578 – volume: 7 start-page: 4864 year: 2020 ident: ref_10 article-title: A survey on text pre-processing & feature extraction techniques in natural language processing publication-title: Int. Res. J. Eng. Technol. – volume: 11 start-page: 26542 year: 2023 ident: ref_44 article-title: Soaring energy prices: Understanding public engagement on Twitter using sentiment analysis and topic modeling with transformers publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3257283 – volume: 2021 start-page: baab015 year: 2021 ident: ref_33 article-title: Wormicloud: A new text summarization tool based on word clouds to explore the C. elegans literature publication-title: Database doi: 10.1093/database/baab015 – volume: 10 start-page: 117 year: 2022 ident: ref_13 article-title: Sentiment analysis on twitter data using term frequency-inverse document frequency publication-title: J. Comput. Commun. doi: 10.4236/jcc.2022.108008 – volume: 12 start-page: 400 year: 2021 ident: ref_23 article-title: Determining Optimal Number of K for e-Learning Groups Clustered using K-Medoid publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 25 start-page: 114 year: 2022 ident: ref_11 article-title: Text preprocessing for text mining in organizational research: Review and recommendations publication-title: Organ. Res. Methods doi: 10.1177/1094428120971683 – volume: 28 start-page: 1410 year: 2020 ident: ref_14 article-title: The impact of text preprocessing on the prediction of review ratings publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 23 start-page: 13 year: 2022 ident: ref_21 article-title: A case study: Unsupervised approach for tourist profile analysis by k-means clustering in Turkey publication-title: J. Internet Comput. Serv. – volume: 127 start-page: 4463 year: 2022 ident: ref_28 article-title: A new clustering method to explore the dynamics of research communities publication-title: Scientometrics doi: 10.1007/s11192-022-04463-x – ident: ref_25 – volume: 8 start-page: 2 year: 2020 ident: ref_41 article-title: A cooperative binary-clustering framework based on majority voting for Twitter sentiment analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2983859 – volume: 3 start-page: 22 year: 2021 ident: ref_36 article-title: Nuclear energy in the context of climate change publication-title: Cent. Eur. J. Geogr. Sustain. Dev. – volume: 34 start-page: 012043 year: 2015 ident: ref_19 article-title: Newspaper archives + text mining = rich sources of historical geo-spatial data publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/34/1/012043 – volume: 1567 start-page: 032024 year: 2020 ident: ref_42 article-title: Twitter text mining for sentiment analysis on government’s response to forest fires with Vader lexicon polarity detection and k-nearest neighbor algorithm publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1567/3/032024 – ident: ref_27 – volume: 34 start-page: 104509 year: 2022 ident: ref_6 article-title: Does nuclear energy consumption mitigate carbon emissions in leading countries by nuclear power consumption? Evidence from quantile causality approach publication-title: Energy Environ. – volume: 12 start-page: 269 year: 2021 ident: ref_43 article-title: LSTM, VADER and TF-IDF based hybrid sentiment analysis model publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_12 – volume: 6 start-page: 4 year: 2020 ident: ref_15 article-title: The Effect of Preprocessing on Short Document Clustering publication-title: Inst. Inf. Syst. Mark. – volume: 1 start-page: 6 year: 2020 ident: ref_16 article-title: Introduction to the k-means clustering algorithm based on the elbow method publication-title: Account. Audit. Financ. – volume: 9 start-page: 601 year: 2020 ident: ref_40 article-title: A review on sentiment analysis methodologies, practices and applications publication-title: Int. J. Sci. Technol. Res. – ident: ref_32 doi: 10.1109/IJCNN52387.2021.9534470 – volume: 174 start-page: 105286 year: 2024 ident: ref_8 article-title: The outlooks of nuclear energy in society: Unraveling public attitudes in the context of climate and energy security challenges publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2024.105286 – volume: 65 start-page: 101477 year: 2020 ident: ref_39 article-title: Care, competency, or honesty? Framing emergency preparedness messages and risks for nuclear energy in Singapore publication-title: Energy Res. Soc. Sci. doi: 10.1016/j.erss.2020.101477 – volume: 24 start-page: e2901 year: 2024 ident: ref_5 article-title: Nuclear perceptions from radioactive blue to sustainable green: The EU taxonomy as reflection of a divided public publication-title: J. Public Aff. doi: 10.1002/pa.2901 – volume: 41 start-page: 8 year: 2024 ident: ref_9 article-title: The Nuclear Option: Green Energy Goals in the European Energy Transition publication-title: Wis. Int. Law J. – ident: ref_24 doi: 10.3390/en16196941 – ident: ref_17 – volume: 14 start-page: 1069 year: 2021 ident: ref_3 article-title: Exploring the perception of Nigerians towards nuclear power generation publication-title: Afr. J. Sci. Technol. Innov. Dev. – volume: 33 start-page: 508 year: 1938 ident: ref_26 article-title: A technique for measuring like-mindedness publication-title: J. Abnorm. Soc. Psychol. doi: 10.1037/h0055441 – volume: 23 start-page: 1 year: 2022 ident: ref_31 article-title: Theoretical foundations of t-sne for visualizing high-dimensional clustered data publication-title: J. Mach. Learn. Res. – ident: ref_20 – volume: 13 start-page: 237 year: 2023 ident: ref_22 article-title: K-means clustering for optimization of spare parts delivery publication-title: Manag. Sci. Lett. doi: 10.5267/j.msl.2023.6.004 – ident: ref_4 doi: 10.3390/en14185774 |
SSID | ssj0000913830 |
Score | 2.3107839 |
Snippet | The perception of nuclear power, while central to energy policy and sustainability endeavors, remains a subject of considerable debate, in which some claim... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Index Database |
StartPage | 4159 |
SubjectTerms | Algorithms Analysis Cluster analysis Clustering Data collection Datasets Energy policy Energy resources Keywords Machine learning Nuclear energy Nuclear energy policy Nuclear reactor components Perceptions Public domain Public opinion Sentiment analysis Social networks Sustainability Trends Vector quantization Waste management |
Title | Unraveling the Nuclear Debate: Insights Through Clustering of Tweets |
URI | https://www.proquest.com/docview/3126024248 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAfIpCqTwgsWA1juPEYUGlHxREKwSt1C1yYmdCKTRB_H3umpR2qJhixZEi3eXO7xzfe4RcGytlooxlAeeaebHULEyVYdbzdBoEYcIF9g6Pxv5w6j3P5KzacMurY5WrnLhM1Gae4B55W3BA3tjLoO4_vxiqRuHf1UpCY5fUYVrgV60Gj397LMh5qYRTkg0JqO7ba22ZnKNED0eO0o0FaXtaXq41g0NyUIFE2im9ekR2bHZM9jeoA09Ib5qhcBA2k1PAcHSMvMR6QSF_AHq8o09ZjmV3TielEA_tfnwjJwI-P0_p5MfaIj8l00F_0h2yShGBJYLzgtk4dF0n1dz4CUAFMKWQyrhwVwRxAkhISxsqaXyISsu1DxEa2NQJoapKtXZicUZq2Tyz54QaZJYzvkHlKs9YME5qQtdyGEooGm2D3K7MEn2WxBcRFAxoxWiLFRvkBk0XYVgUC53o6nQ_vAwJpqKOgtQKpaDjNkhzZd2oipc8Wnv34v_pS7LnwqjsBmySWrH4tlcAC4q4tfR9i9Q7vdHLO1wf-uPXt1-6jbuI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4oHtSD8RlR1D1ovNjY7fZpYgxBERQ4QcKtbrvbkylIS4h_yt_oDKXKgXjz1mybtpl-O4_tzvcBXCrtOLGvtOFxLg07cqQRJL4ytG3LxPOCmAvqHe723NbAfhk6wzX4KnthaFtl6RPnjlqNYlojvxUcM2_qZfAfxh8GqUbR39VSQqOAxav-nGHJlt23H_H7XllW86nfaBkLVQEjFpznho4CyzITyZUbY7jF1xGOrywcFV4UYzYhHR34jnIR2ZpLF1Hu6cQMsDJJpDQjgfddhw1bCEFbCP3m88-aDnFs-sIsyI2ECMzbXy2bjJMkECdO1KUAuDoMzGNbcxd2Fkkpqxco2oM1ne7D9hJV4QE8DlISKqLmdYY5I-sRD7KcMPRXmK3esXaaUZmfsX4h_MMa71PiYKDrRwnrz7TOs0MY_IutjqCSjlJ9DEwRk51yFSll2UqjcRIVWJrjoYNFqq7CTWmWcFwQbYRYoJAVwxVWrMI1mS6kaZhPZCwX3QT4MCK0Cus-unIsPU2rCrXSuuFifmbhL5pO_j59AZutfrcTdtq911PYsnC06ESsQSWfTPUZpiR5dD7HAYO3_wbeN0Uy9Dg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qC6IH8YnVqntQvBiazeYpFFFrsT6KSAve4ia7OUlam4j4F_1VzjSJehBvvYVNSMJkdh6b_b4P4FBpx4l9pQ2Pc2nYkSONIPGVoW1bJp4XxFwQdvh-4F6P7Jsn56kGnxUWhrZVVjFxFqjVOKY18rbgWHkTlsFvJ-W2iIdu72zyapCCFP1preQ0ZCmzoDozurES5HGrP96xncs6_S5--yPL6l0NL6-NUnHAiAXnuaGjwLLMRHLlxpiK8VWF4ysLR4UXxVhpSEcHvqNc9HrNpYszwNOJGWDXkkhpRgLvuwAND7M-NoKNi6vBw-P3ig8xcPrCLKiPhAjM9o_STcZJMIgTY-qv9Ph3kphlvt4qrJQlKzsvfGwNajpdh-VfRIYb0B2lJGNE0HaGFSUbEEuynDKMZljLnrJ-mtEiQMaGhSwQu3x5I4YGun6csOG71nm2CaO5WGsL6uk41dvAFPHcKVeRjpatNBonUYGlOR462MLqJpxUZgknBQ1HiO0LWTH8w4pNOCbThTRJ86mMZYk1wIcR3VV47mOgx8bUtJrQqqwblrM3C398bef_0wewiE4Y3vUHt7uwZOFgAVNsQT2fvuk9rFfyaL90BAbP8_a9L6cT_xM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Nuclear+Debate%3A+Insights+Through+Clustering+of+Tweets&rft.jtitle=Electronics+%28Basel%29&rft.au=Katalini%C4%87%2C+Josip&rft.au=Dun%C4%91er%2C+Ivan&rft.au=Seljan%2C+Sanja&rft.date=2024-11-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=21&rft.spage=4159&rft_id=info:doi/10.3390%2Felectronics13214159&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13214159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |