Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation
In this article, propagation of solitary wave solutions to the Pochhammer-Chree equation(PC) are investigated. Different kinds of solutions like bright-dark, kink, singular, hyperbolic, rational, trigonometric as well as Jacobi elliptic function solutions are obtained. The innovative methodology use...
Saved in:
Published in | Physica scripta Vol. 96; no. 4; pp. 45202 - 45215 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-8949 1402-4896 |
DOI | 10.1088/1402-4896/abdcf7 |
Cover
Abstract | In this article, propagation of solitary wave solutions to the Pochhammer-Chree equation(PC) are investigated. Different kinds of solutions like bright-dark, kink, singular, hyperbolic, rational, trigonometric as well as Jacobi elliptic function solutions are obtained. The innovative methodology used to extract the solitary wave is known as Φ
6
-model expansion method. Moreover, the modulation instability (MI) analysis of governing equation is also discussed. Against the appropriate choices of parameters, two and three dimensional and contour graphs are also sketched. The obtained outcomes are more general and fresh and show that the applied method is concise, direct, elementary and can be imposed in more complex phenomena with the assistant of symbolic computations. |
---|---|
AbstractList | In this article, propagation of solitary wave solutions to the Pochhammer-Chree equation(PC) are investigated. Different kinds of solutions like bright-dark, kink, singular, hyperbolic, rational, trigonometric as well as Jacobi elliptic function solutions are obtained. The innovative methodology used to extract the solitary wave is known as Φ
6
-model expansion method. Moreover, the modulation instability (MI) analysis of governing equation is also discussed. Against the appropriate choices of parameters, two and three dimensional and contour graphs are also sketched. The obtained outcomes are more general and fresh and show that the applied method is concise, direct, elementary and can be imposed in more complex phenomena with the assistant of symbolic computations. |
Author | Makhlouf, M M Rehman, S U Seadawy, Aly R Rizvi, S T R Althobaiti, Saad Younis, M |
Author_xml | – sequence: 1 givenname: Aly R orcidid: 0000-0002-7412-4773 surname: Seadawy fullname: Seadawy, Aly R organization: Taibah University Mathematics Department, Faculty of science, Al-Madinah Al-Munawarah, Saudi Arabia – sequence: 2 givenname: S U surname: Rehman fullname: Rehman, S U organization: University of the Punjab PUCIT, Lahore 54000, Pakistan – sequence: 3 givenname: M surname: Younis fullname: Younis, M organization: University of the Punjab PUCIT, Lahore 54000, Pakistan – sequence: 4 givenname: S T R surname: Rizvi fullname: Rizvi, S T R organization: COMSATS University Department of Mathematics, Islamabad, Lahore Campus, Lahore Pakistan – sequence: 5 givenname: Saad surname: Althobaiti fullname: Althobaiti, Saad organization: Taif University Technology and Science Department, Ranyah University Collage, P.O. Box 11099, Taif 21944, Saudi Arabia – sequence: 6 givenname: M M surname: Makhlouf fullname: Makhlouf, M M organization: Taif University Technology and Science Department, Ranyah University Collage, P.O. Box 11099, Taif 21944, Saudi Arabia |
BookMark | eNp9kLtOAzEQRS0UJEKgp3RFxRLvrvdVooiXFAQF1NasH4kjZ73YDlG-gN_GSYACAdWMxudcWfcYDTrbSYTOUnKZkroep5RkCa2bcgyt4Ko6QMPv0wANCcnTpG5oc4SOvV8QkpVZ2QzR-4MVKwNB2w7rzgdotdFhg6EDs_Hax0VgY7uZDiuh4xGv4U3i3tkeZl9ahLA04IPmmG-M7oTTPKLOCry0QhojBV7rMMdPls_nsFxKl0zmTkosX1e7lBN0qMB4efo5R-jl5vp5cpdMH2_vJ1fThOdpGhKZ1oqWdZtBq4C3FVQVzyDPiyq-EFK0TcErRYSQVLQ1VUVNeRVh4EWrZMPzESL7XO6s904q1ju9BLdhKWHbItm2NbZtje2LjEr5Q-E67D4dHGjzn3i-F7Xt2cKuXKzPs96ziFBGaJFFoRcqghe_gH_mfgBxfJua |
CODEN | PHSTBO |
CitedBy_id | crossref_primary_10_1007_s11082_023_06088_7 crossref_primary_10_1016_j_chaos_2022_112128 crossref_primary_10_1142_S0218863523500297 crossref_primary_10_1016_j_chaos_2022_112485 crossref_primary_10_1007_s11082_023_04880_z crossref_primary_10_1007_s11082_021_03498_3 crossref_primary_10_1007_s11082_022_03711_x crossref_primary_10_1007_s11082_023_04743_7 crossref_primary_10_1007_s13369_022_06937_9 crossref_primary_10_1016_j_joes_2022_04_018 crossref_primary_10_1007_s11082_022_03960_w crossref_primary_10_1063_5_0215021 crossref_primary_10_1007_s11082_023_04559_5 crossref_primary_10_1007_s11082_022_04158_w crossref_primary_10_1016_j_rinp_2022_105198 crossref_primary_10_1016_j_chaos_2022_112353 crossref_primary_10_1007_s11082_022_04451_8 crossref_primary_10_1007_s11082_024_06577_3 crossref_primary_10_1080_17455030_2023_2197510 crossref_primary_10_1088_1572_9494_ac02b5 crossref_primary_10_1080_17455030_2021_2023779 crossref_primary_10_3390_fractalfract5040234 crossref_primary_10_3390_math10111818 crossref_primary_10_1088_1402_4896_ac445c crossref_primary_10_1016_j_geomphys_2022_104561 crossref_primary_10_1371_journal_pone_0299573 crossref_primary_10_1142_S021988782350158X crossref_primary_10_1007_s11082_021_03189_z crossref_primary_10_1007_s11082_023_04550_0 crossref_primary_10_1080_02286203_2024_2318805 crossref_primary_10_1007_s11082_022_04198_2 crossref_primary_10_1142_S021797922350087X crossref_primary_10_1007_s11082_022_03627_6 crossref_primary_10_1063_5_0248047 crossref_primary_10_1007_s11082_021_03040_5 crossref_primary_10_1142_S0217984924502610 crossref_primary_10_1007_s40819_021_01235_8 crossref_primary_10_1007_s11082_021_02939_3 crossref_primary_10_1142_S0217984921505485 crossref_primary_10_1142_S0218863523500157 crossref_primary_10_2478_ijmce_2023_0012 crossref_primary_10_1007_s11082_022_03797_3 crossref_primary_10_1007_s11082_024_06466_9 crossref_primary_10_1007_s11082_022_03732_6 crossref_primary_10_1007_s40314_022_01884_5 crossref_primary_10_1016_j_chaos_2022_112258 crossref_primary_10_1007_s11082_022_04478_x crossref_primary_10_1142_S0217979223501722 crossref_primary_10_1016_j_jksus_2022_102071 crossref_primary_10_1016_j_chaos_2022_112374 crossref_primary_10_1038_s41598_024_79102_x crossref_primary_10_1016_j_geomphys_2022_104507 crossref_primary_10_1016_j_cjph_2024_07_003 crossref_primary_10_1007_s11082_022_04053_4 crossref_primary_10_1142_S0217984921506284 crossref_primary_10_1142_S0217979221502209 crossref_primary_10_1016_j_rinp_2024_107918 crossref_primary_10_1142_S0217979223500984 crossref_primary_10_1016_j_chaos_2022_112563 crossref_primary_10_1016_j_ceramint_2021_06_105 crossref_primary_10_1016_j_chaos_2021_111114 crossref_primary_10_1140_epjp_s13360_022_02897_z crossref_primary_10_1016_j_joes_2022_05_027 crossref_primary_10_1007_s11082_021_03028_1 crossref_primary_10_1016_j_aej_2023_01_025 crossref_primary_10_1140_epjp_s13360_023_04626_6 crossref_primary_10_1007_s11082_022_04276_5 crossref_primary_10_3390_fractalfract7010071 crossref_primary_10_1007_s11082_022_04061_4 crossref_primary_10_1142_S0217979221502210 crossref_primary_10_1007_s11082_022_03961_9 crossref_primary_10_1007_s11082_023_05816_3 crossref_primary_10_1016_j_chaos_2022_112558 crossref_primary_10_1016_j_joes_2022_05_031 crossref_primary_10_1088_1402_4896_ad0d90 crossref_primary_10_1142_S0217984925500708 crossref_primary_10_1016_j_rinp_2021_104329 crossref_primary_10_1080_17455030_2022_2039419 crossref_primary_10_1142_S0219887824502074 crossref_primary_10_1007_s11082_023_05022_1 crossref_primary_10_1016_j_rinp_2022_106129 crossref_primary_10_1088_1402_4896_ac4550 crossref_primary_10_1016_j_rinp_2023_106299 crossref_primary_10_1016_j_rinp_2021_104230 crossref_primary_10_1142_S0217979222500436 crossref_primary_10_1016_j_aej_2023_09_045 crossref_primary_10_1142_S0217979224500097 crossref_primary_10_1088_2040_8986_ac10ac crossref_primary_10_1007_s11082_022_04300_8 crossref_primary_10_1088_1402_4896_acb680 crossref_primary_10_1142_S0217979223502338 crossref_primary_10_1142_S0217979221502131 crossref_primary_10_1142_S0217984922501226 crossref_primary_10_1007_s11082_023_05739_z crossref_primary_10_1016_j_chaos_2022_112575 crossref_primary_10_1142_S0217979222500321 crossref_primary_10_1142_S0217979223502697 crossref_primary_10_1088_1402_4896_ac098d crossref_primary_10_1038_s41598_023_32099_1 crossref_primary_10_1007_s40819_021_01074_7 crossref_primary_10_1142_S0217979222501934 crossref_primary_10_1142_S0217984921505394 crossref_primary_10_1007_s40819_024_01761_1 crossref_primary_10_1016_j_chaos_2022_112218 crossref_primary_10_1016_j_rinp_2021_104500 |
Cites_doi | 10.1140/epjp/s13360-020-00566-7 10.1002/mma.7013 10.1016/j.cjph.2020.09.021 10.1088/1402-4896/ab8098 10.1016/S0960-0779(01)00248-X 10.1007/BF02464941 10.1186/s13662-018-1687-7 10.3934/math.2019.6.1523 10.1007/s11082-020-02443-0 10.1016/j.jtusci.2016.06.002 10.1142/S0217979220501155 10.1142/S0217732318501833 10.1088/1572-9494/ab8a21 10.1016/j.physleta.2020.126456 10.1142/S0217979220501131 10.1080/16583655.2019.1680170 10.1515/phys-2018-0043 10.1016/j.ijleo.2020.164702 10.1140/epjp/s13360-020-00425-5 10.1016/j.amc.2014.01.066 10.1142/S0217984920503996 10.1007/s11082-018-1426-z 10.32513/tbilisi/1593223219 10.1016/j.rinp.2018.04.039 10.1016/j.physleta.2020.126814 10.1088/1402-4896/ab5269 10.1016/j.ijleo.2017.01.053 10.1016/j.rinp.2018.02.036 10.3934/math.2020083 10.3389/fphy.2019.00255 10.1140/epjp/i2018-12288-2 10.1142/S0217984920502772 10.1080/16583655.2020.1760513 10.1007/s11082-018-1400-9 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd |
Copyright_xml | – notice: 2021 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1402-4896/abdcf7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1402-4896 |
ExternalDocumentID | 10_1088_1402_4896_abdcf7 psabdcf7 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT LAP M45 MV1 N5L N9A NS0 PJBAE RIN RNS ROL RPA SJN SY9 TN5 W28 WH7 XPP ~02 AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c311t-e18f468b2abfacb7a77c2a3357e18005b95c7f0dde4db84f584c72abac5bfe9c3 |
IEDL.DBID | IOP |
ISSN | 0031-8949 |
IngestDate | Tue Jul 01 01:34:07 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Wed Aug 21 03:32:59 EDT 2024 Tue Aug 20 22:16:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c311t-e18f468b2abfacb7a77c2a3357e18005b95c7f0dde4db84f584c72abac5bfe9c3 |
Notes | PHYSSCR-111789.R3 |
ORCID | 0000-0002-7412-4773 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1088_1402_4896_abdcf7 crossref_primary_10_1088_1402_4896_abdcf7 iop_journals_10_1088_1402_4896_abdcf7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica scripta |
PublicationTitleAbbrev | PS |
PublicationTitleAlternate | Phys. Scr |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Yusuf (psabdcf7bib10) 2020; 135 Al-Ghafri (psabdcf7bib1) 2018; 16 Zayed (psabdcf7bib6) 2020; 384 Arshad (psabdcf7bib8) 2020; 34 Farah (psabdcf7bib18) 2020; 52 Iqbal (psabdcf7bib26) 2018; 33 Ali (psabdcf7bib22) Rizvi (psabdcf7bib19) 2020; 34 Younis (psabdcf7bib9) 2020; 34 Ozkan (psabdcf7bib31) 2020; 14 Agrawal (psabdcf7bib37) 2013 Ghanbari (psabdcf7bib14) 2020; 13 Zayed (psabdcf7bib4) 2020; 214 Zhang (psabdcf7bib35) 1999; 20 Ali (psabdcf7bib2) 2018; 2018 Younas (psabdcf7bib24) Ghanbari (psabdcf7bib39) 2019; 4 Zayed (psabdcf7bib7) 2020; 384 Seadawy (psabdcf7bib30) 2019; 13 Seadawy (psabdcf7bib38) 2017; 11 Younas (psabdcf7bib25) 2020; 68 Yusuf (psabdcf7bib23) 2020; 95 Lu (psabdcf7bib27) 2018; 9 Zayed (psabdcf7bib5) 2020; 384 Ali (psabdcf7bib17) 2020; 7 Sulaiman (psabdcf7bib11) 2020; 72 Kazi Sazzad Hossain (psabdcf7bib36) 2020; 5 Seadawy (psabdcf7bib20) Khater (psabdcf7bib32) 2000; 115 Tariq (psabdcf7bib16) 2018; 50 Abdel-Gawad (psabdcf7bib12) 2020; 34 Zayed (psabdcf7bib3) 2018; 50 Yusuf (psabdcf7bib13) 2020; 135 Bilal (psabdcf7bib21) 2020 Li (psabdcf7bib34) 2002; 14 Younis (psabdcf7bib15) 2017; 134 Lu (psabdcf7bib28) 2018; 9 Zayed (psabdcf7bib33) 2018; 133 Helal (psabdcf7bib29) 2014; 232 |
References_xml | – volume: 135 start-page: 563 year: 2020 ident: psabdcf7bib10 article-title: Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey—Dodd—Gibbon equation publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00566-7 – year: 2020 ident: psabdcf7bib21 article-title: Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin-Gottwald-Holm system and modulation instability analysis publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.7013 – volume: 68 start-page: 348 year: 2020 ident: psabdcf7bib25 article-title: Dispersive of propagation wave structures to the Dullin-Gottwald-Holm dynamical equation in a shallow water waves publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.09.021 – ident: psabdcf7bib20 article-title: Improved perturbed nonlinear Schrödinger dynamical equation with type of Kerr law nonlinearity with optical soliton solutions publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab8098 – volume: 14 start-page: 581 year: 2002 ident: psabdcf7bib34 article-title: Bifurcation of traveling wave solution of the generalized Pochhammer-Chree (PC) equation publication-title: Chaos Soliton. Fract. doi: 10.1016/S0960-0779(01)00248-X – volume: 20 start-page: 666 year: 1999 ident: psabdcf7bib35 article-title: Explicit solitary wave solution of the generalized Pochhammer-Chree (PC) equation publication-title: Appl. Math. Mech. doi: 10.1007/BF02464941 – volume: 115 start-page: 1303 year: 2000 ident: psabdcf7bib32 article-title: General soliton solutions of n-dimensional nonlinear Schrödinger equation publication-title: IL Nuovo Cimento115B – volume: 2018 start-page: 232 year: 2018 ident: psabdcf7bib2 article-title: New solitary wave solutions of some nonlinear models and their applications publication-title: Advances in Difference Equations doi: 10.1186/s13662-018-1687-7 – volume: 4 start-page: 1523 year: 2019 ident: psabdcf7bib39 article-title: New solitary wave solutions and stability analysis of the Benney-Luke and the Phi-4 equations in mathematical physics publication-title: AIMS Mathematics doi: 10.3934/math.2019.6.1523 – volume: 52 start-page: 1 year: 2020 ident: psabdcf7bib18 article-title: Interaction properties of soliton molecules and Painleve analysis for nano bioelectronics transmission model publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-020-02443-0 – volume: 11 start-page: 623 year: 2017 ident: psabdcf7bib38 article-title: Travelling wave solutions of the generalized nonlinear fifth-orderKdV water wave equations and its stability publication-title: Journal of Taibah University for Science doi: 10.1016/j.jtusci.2016.06.002 – volume: 34 year: 2020 ident: psabdcf7bib12 article-title: Construction of rogue waves and conservation laws of the complex coupled Kadomtsev-Petviashvili equation publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979220501155 – volume: 33 year: 2018 ident: psabdcf7bib26 article-title: Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732318501833 – volume: 72 year: 2020 ident: psabdcf7bib11 article-title: New lump, lump-kink, breather waves and other interaction solutions to the (3+1)-dimensional soliton equation publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/ab8a21 – volume: 384 year: 2020 ident: psabdcf7bib6 article-title: Solitons in magneto-optic waveguides with dual-power law nonlinearity publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126456 – volume: 34 year: 2020 ident: psabdcf7bib9 article-title: Investigation of optical solitons in birefringent polarization preserving fibers with four-wave mixing effect publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979220501131 – volume: 13 start-page: 1060 year: 2019 ident: psabdcf7bib30 article-title: Nonlinear wave solutions of the Kudryashov-Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity publication-title: Journal of Taibah University for Science doi: 10.1080/16583655.2019.1680170 – volume: 16 start-page: 311 year: 2018 ident: psabdcf7bib1 article-title: Solitary wave solutions of two KdV-type equations publication-title: Open Physics doi: 10.1515/phys-2018-0043 – volume: 384 year: 2020 ident: psabdcf7bib5 article-title: Solitons in magneto-optic waveguides with dual-power law nonlinearity publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126456 – year: 2013 ident: psabdcf7bib37 – volume: 214 year: 2020 ident: psabdcf7bib4 article-title: New generalized 6-model expansion method and its applications to the (3.1) dimensional resonant nonlinear Schrodinger equation with parabolic law nonlinearity publication-title: Optik doi: 10.1016/j.ijleo.2020.164702 – volume: 135 start-page: 416 year: 2020 ident: psabdcf7bib13 article-title: New interaction and combined multi-wave solutions for the Heisenberg ferromagnetic spin chain equation publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00425-5 – ident: psabdcf7bib22 article-title: Conserved quantities along with Painleve analysis and Optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model publication-title: Int. J. Mod. Phys. B – ident: psabdcf7bib24 article-title: Optical solitons and closed form solutions to (3+1)-dimensional resonant Schrodinger equation publication-title: Int. J. Mod. Phys. B – volume: 232 start-page: 1094 year: 2014 ident: psabdcf7bib29 article-title: Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.01.066 – volume: 34 start-page: 2050399 year: 2020 ident: psabdcf7bib19 article-title: Chirp-free optical dromions for the presence of higher order spatio-temporal dispersions and absence of self-phase modulation in birefringent fibers publication-title: Modern Physics Letter B doi: 10.1142/S0217984920503996 – volume: 50 start-page: 164 year: 2018 ident: psabdcf7bib3 article-title: The phi power 6-model expansion method for solving the nonlinear conformable time-fractional Schrodinger equation with fourth-order dispersion and parabolic law nonlinearity publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-018-1426-z – volume: 13 start-page: 39 year: 2020 ident: psabdcf7bib14 article-title: Families of exact solutions of Biswas-Milovic equation by an exponential rational function method publication-title: Tbilisi Mathematical Journal doi: 10.32513/tbilisi/1593223219 – volume: 9 start-page: 1403 year: 2018 ident: psabdcf7bib27 article-title: Applications of exact traveling wave solutions of modified Liouville and the symmetric regularized long wave equations via two new techniques publication-title: Results in Physics doi: 10.1016/j.rinp.2018.04.039 – volume: 384 year: 2020 ident: psabdcf7bib7 article-title: Solitons and conservation laws in magneto-optic waveguides having parabolic-nonlocal law of refractive index publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126814 – volume: 95 year: 2020 ident: psabdcf7bib23 article-title: Optical solitons with M-truncated derivative and conservation laws for NLSE equation which describe pseudospherical surfaces publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab5269 – volume: 134 start-page: 233 year: 2017 ident: psabdcf7bib15 article-title: Optical bright-dark and Gaussian soliton with third order dispersion publication-title: Optik doi: 10.1016/j.ijleo.2017.01.053 – volume: 9 start-page: 313 year: 2018 ident: psabdcf7bib28 article-title: Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications publication-title: Results in Physics doi: 10.1016/j.rinp.2018.02.036 – volume: 5 start-page: 1199 year: 2020 ident: psabdcf7bib36 article-title: Solitary wave solutions of few nonlinear evolution equations publication-title: AIMS Mathematics doi: 10.3934/math.2020083 – volume: 7 start-page: 255 year: 2020 ident: psabdcf7bib17 article-title: Rogue wave solutions and modulation instability with variable coefficient and harmonic potential publication-title: Front. Phys. doi: 10.3389/fphy.2019.00255 – volume: 133 start-page: 417 year: 2018 ident: psabdcf7bib33 article-title: New Φ6-model expansion method and its applications to the resonant nonlinear Schrodinger equation with parabolic law nonlinearity publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-12288-2 – volume: 34 year: 2020 ident: psabdcf7bib8 article-title: Solitary wave solutions of Kaup-Newell optical fiber model in mathematical physics and its modulation instability publication-title: Mod. Phys. Lett. doi: 10.1142/S0217984920502772 – volume: 14 start-page: 585 year: 2020 ident: psabdcf7bib31 article-title: A third-order nonlinear Schrodinger equation: the exact solutions, group-invariant solutions and conservation laws publication-title: Journal of Taibah University for Science doi: 10.1080/16583655.2020.1760513 – volume: 50 start-page: 1 year: 2018 ident: psabdcf7bib16 article-title: Dispersive traveling wave solutions to the space-time fractional equal-width dynamical equation and its applications publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-018-1400-9 |
SSID | ssj0026269 |
Score | 2.5836418 |
Snippet | In this article, propagation of solitary wave solutions to the Pochhammer-Chree equation(PC) are investigated. Different kinds of solutions like bright-dark,... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 45202 |
SubjectTerms | mathematical physics pochhammer-chree equation solitons |
Title | Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation |
URI | https://iopscience.iop.org/article/10.1088/1402-4896/abdcf7 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Journals customDbUrl: eissn: 1402-4896 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026269 issn: 0031-8949 databaseCode: IOP dateStart: 19700101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA7biuDLrq6Kdb3kYX3wIb1MMpMMPkmxFKFuHyz0QRiSkwxdLJ1q25XuH9i_7UkmLVuRIr4FcnLh5PYl5-Q7hFx6604qDbAugGFCGssQZZTM02lZlSLADhb80ZdsOBGfp-n0hHzY_4WplnHrb2OyJgquVRgd4lQHrwQJEyrPOtpYKGWDPOAK7xX-997VeH_bQqReY1_eYyoXebRR_q2GgzOpge3eO2IGZ-TbrnO1Z8n39mZt2nD7B2_jf_b-MTmN0JN-rEWfkBO3OCcPgwsorJ6Su1FlYywveu1BY3Cb3VIdaUswYem88vGNNtbH0qK_9I2j2Fvck3bFUIg6BOTYBIUtQlgbKEgobtM0BN2ZO0v92y8dVzCbhWdz1sf55Kj7UbOOPyOTwaev_SGLYRoY8F5vzVxPlSJTJtGm1GCklhISzXkqMQcXuclTkGUX91FhjRIlQh6QKKwhNaXLgT8nzUW1cC8I5RZyxERG5okVUmTaSp6JruZ4PAjHXYt0dgNVQOQw96E05kWwpStVePUWXr1Frd4Web8vsaz5O47IvsNRK-IiXh2Re3sgt1wVmCcKz06PkktbvvzHmi7Io8T7yARPoFekuf65ca8R5KzNmzCZfwON7Pn4 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxwhFCfVRuPFtlajtVYO9uCB_RiYgTk21o0fVfegiTcKDyY23exsu7s1-g_4b_tgWKONMU16I-HxMTx4_IA3v0fITnjdyaUF1gGwTEjrGKKMigU6LadyBNjxBf_ktDi4EEeX-WWKcxr_halHyfS3MNkQBTdDmBziVBuPBBkTqizaxjqoZHvkqjnyOue5DLEbDs_6DycuROsN_uVdpkpRpnfK52p5si_NYduPtpneG_J91sHGu-RnazqxLbj9i7vxP77gLVlOEJR-acTfkVd-uEIWoisojN-Tu5PapZhe9EcAj9F99oaaRF-CCUcHdYhzNHUhpha9Nn88xR6jbZoVQyHqEZhjExRuEMq6SEVC0VzTGHxn4B0Nd8C0X8PVVbw-Z3s4rzz1vxr28VVy0ds_3ztgKVwDA97tTpjvqkoUymbGVgasNFJCZjiqBXNwsdsyB1l10J4KZ5WoEPqARGEDua18CXyNzA_roV8nlDsoERtZWWZOSFEYJ3khOobjNiE89xukPVOWhsRlHkJqDHR8U1dKhyHWYYh1M8QbZPehxKjh8XhB9jNqTqfFPH5BbvuJ3GisMU_owFKPkqjUD_9Y0zZZ7H_t6W-Hp8ebZCkLbjPROegjmZ_8nvotxD0T-ynO7Xtsaf9i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+instability+analysis+and+longitudinal+wave+propagation+in+an+elastic+cylindrical+rod+modelled+with+Pochhammer-Chree+equation&rft.jtitle=Physica+scripta&rft.au=Seadawy%2C+Aly+R&rft.au=Rehman%2C+S+U&rft.au=Younis%2C+M&rft.au=Rizvi%2C+S+T+R&rft.date=2021-04-01&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=96&rft.issue=4&rft.spage=45202&rft_id=info:doi/10.1088%2F1402-4896%2Fabdcf7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1402_4896_abdcf7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon |