Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation

In this article, propagation of solitary wave solutions to the Pochhammer-Chree equation(PC) are investigated. Different kinds of solutions like bright-dark, kink, singular, hyperbolic, rational, trigonometric as well as Jacobi elliptic function solutions are obtained. The innovative methodology use...

Full description

Saved in:
Bibliographic Details
Published inPhysica scripta Vol. 96; no. 4; pp. 45202 - 45215
Main Authors Seadawy, Aly R, Rehman, S U, Younis, M, Rizvi, S T R, Althobaiti, Saad, Makhlouf, M M
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.04.2021
Subjects
Online AccessGet full text
ISSN0031-8949
1402-4896
DOI10.1088/1402-4896/abdcf7

Cover

Abstract In this article, propagation of solitary wave solutions to the Pochhammer-Chree equation(PC) are investigated. Different kinds of solutions like bright-dark, kink, singular, hyperbolic, rational, trigonometric as well as Jacobi elliptic function solutions are obtained. The innovative methodology used to extract the solitary wave is known as Φ 6 -model expansion method. Moreover, the modulation instability (MI) analysis of governing equation is also discussed. Against the appropriate choices of parameters, two and three dimensional and contour graphs are also sketched. The obtained outcomes are more general and fresh and show that the applied method is concise, direct, elementary and can be imposed in more complex phenomena with the assistant of symbolic computations.
AbstractList In this article, propagation of solitary wave solutions to the Pochhammer-Chree equation(PC) are investigated. Different kinds of solutions like bright-dark, kink, singular, hyperbolic, rational, trigonometric as well as Jacobi elliptic function solutions are obtained. The innovative methodology used to extract the solitary wave is known as Φ 6 -model expansion method. Moreover, the modulation instability (MI) analysis of governing equation is also discussed. Against the appropriate choices of parameters, two and three dimensional and contour graphs are also sketched. The obtained outcomes are more general and fresh and show that the applied method is concise, direct, elementary and can be imposed in more complex phenomena with the assistant of symbolic computations.
Author Makhlouf, M M
Rehman, S U
Seadawy, Aly R
Rizvi, S T R
Althobaiti, Saad
Younis, M
Author_xml – sequence: 1
  givenname: Aly R
  orcidid: 0000-0002-7412-4773
  surname: Seadawy
  fullname: Seadawy, Aly R
  organization: Taibah University Mathematics Department, Faculty of science, Al-Madinah Al-Munawarah, Saudi Arabia
– sequence: 2
  givenname: S U
  surname: Rehman
  fullname: Rehman, S U
  organization: University of the Punjab PUCIT, Lahore 54000, Pakistan
– sequence: 3
  givenname: M
  surname: Younis
  fullname: Younis, M
  organization: University of the Punjab PUCIT, Lahore 54000, Pakistan
– sequence: 4
  givenname: S T R
  surname: Rizvi
  fullname: Rizvi, S T R
  organization: COMSATS University Department of Mathematics, Islamabad, Lahore Campus, Lahore Pakistan
– sequence: 5
  givenname: Saad
  surname: Althobaiti
  fullname: Althobaiti, Saad
  organization: Taif University Technology and Science Department, Ranyah University Collage, P.O. Box 11099, Taif 21944, Saudi Arabia
– sequence: 6
  givenname: M M
  surname: Makhlouf
  fullname: Makhlouf, M M
  organization: Taif University Technology and Science Department, Ranyah University Collage, P.O. Box 11099, Taif 21944, Saudi Arabia
BookMark eNp9kLtOAzEQRS0UJEKgp3RFxRLvrvdVooiXFAQF1NasH4kjZ73YDlG-gN_GSYACAdWMxudcWfcYDTrbSYTOUnKZkroep5RkCa2bcgyt4Ko6QMPv0wANCcnTpG5oc4SOvV8QkpVZ2QzR-4MVKwNB2w7rzgdotdFhg6EDs_Hax0VgY7uZDiuh4xGv4U3i3tkeZl9ahLA04IPmmG-M7oTTPKLOCry0QhojBV7rMMdPls_nsFxKl0zmTkosX1e7lBN0qMB4efo5R-jl5vp5cpdMH2_vJ1fThOdpGhKZ1oqWdZtBq4C3FVQVzyDPiyq-EFK0TcErRYSQVLQ1VUVNeRVh4EWrZMPzESL7XO6s904q1ju9BLdhKWHbItm2NbZtje2LjEr5Q-E67D4dHGjzn3i-F7Xt2cKuXKzPs96ziFBGaJFFoRcqghe_gH_mfgBxfJua
CODEN PHSTBO
CitedBy_id crossref_primary_10_1007_s11082_023_06088_7
crossref_primary_10_1016_j_chaos_2022_112128
crossref_primary_10_1142_S0218863523500297
crossref_primary_10_1016_j_chaos_2022_112485
crossref_primary_10_1007_s11082_023_04880_z
crossref_primary_10_1007_s11082_021_03498_3
crossref_primary_10_1007_s11082_022_03711_x
crossref_primary_10_1007_s11082_023_04743_7
crossref_primary_10_1007_s13369_022_06937_9
crossref_primary_10_1016_j_joes_2022_04_018
crossref_primary_10_1007_s11082_022_03960_w
crossref_primary_10_1063_5_0215021
crossref_primary_10_1007_s11082_023_04559_5
crossref_primary_10_1007_s11082_022_04158_w
crossref_primary_10_1016_j_rinp_2022_105198
crossref_primary_10_1016_j_chaos_2022_112353
crossref_primary_10_1007_s11082_022_04451_8
crossref_primary_10_1007_s11082_024_06577_3
crossref_primary_10_1080_17455030_2023_2197510
crossref_primary_10_1088_1572_9494_ac02b5
crossref_primary_10_1080_17455030_2021_2023779
crossref_primary_10_3390_fractalfract5040234
crossref_primary_10_3390_math10111818
crossref_primary_10_1088_1402_4896_ac445c
crossref_primary_10_1016_j_geomphys_2022_104561
crossref_primary_10_1371_journal_pone_0299573
crossref_primary_10_1142_S021988782350158X
crossref_primary_10_1007_s11082_021_03189_z
crossref_primary_10_1007_s11082_023_04550_0
crossref_primary_10_1080_02286203_2024_2318805
crossref_primary_10_1007_s11082_022_04198_2
crossref_primary_10_1142_S021797922350087X
crossref_primary_10_1007_s11082_022_03627_6
crossref_primary_10_1063_5_0248047
crossref_primary_10_1007_s11082_021_03040_5
crossref_primary_10_1142_S0217984924502610
crossref_primary_10_1007_s40819_021_01235_8
crossref_primary_10_1007_s11082_021_02939_3
crossref_primary_10_1142_S0217984921505485
crossref_primary_10_1142_S0218863523500157
crossref_primary_10_2478_ijmce_2023_0012
crossref_primary_10_1007_s11082_022_03797_3
crossref_primary_10_1007_s11082_024_06466_9
crossref_primary_10_1007_s11082_022_03732_6
crossref_primary_10_1007_s40314_022_01884_5
crossref_primary_10_1016_j_chaos_2022_112258
crossref_primary_10_1007_s11082_022_04478_x
crossref_primary_10_1142_S0217979223501722
crossref_primary_10_1016_j_jksus_2022_102071
crossref_primary_10_1016_j_chaos_2022_112374
crossref_primary_10_1038_s41598_024_79102_x
crossref_primary_10_1016_j_geomphys_2022_104507
crossref_primary_10_1016_j_cjph_2024_07_003
crossref_primary_10_1007_s11082_022_04053_4
crossref_primary_10_1142_S0217984921506284
crossref_primary_10_1142_S0217979221502209
crossref_primary_10_1016_j_rinp_2024_107918
crossref_primary_10_1142_S0217979223500984
crossref_primary_10_1016_j_chaos_2022_112563
crossref_primary_10_1016_j_ceramint_2021_06_105
crossref_primary_10_1016_j_chaos_2021_111114
crossref_primary_10_1140_epjp_s13360_022_02897_z
crossref_primary_10_1016_j_joes_2022_05_027
crossref_primary_10_1007_s11082_021_03028_1
crossref_primary_10_1016_j_aej_2023_01_025
crossref_primary_10_1140_epjp_s13360_023_04626_6
crossref_primary_10_1007_s11082_022_04276_5
crossref_primary_10_3390_fractalfract7010071
crossref_primary_10_1007_s11082_022_04061_4
crossref_primary_10_1142_S0217979221502210
crossref_primary_10_1007_s11082_022_03961_9
crossref_primary_10_1007_s11082_023_05816_3
crossref_primary_10_1016_j_chaos_2022_112558
crossref_primary_10_1016_j_joes_2022_05_031
crossref_primary_10_1088_1402_4896_ad0d90
crossref_primary_10_1142_S0217984925500708
crossref_primary_10_1016_j_rinp_2021_104329
crossref_primary_10_1080_17455030_2022_2039419
crossref_primary_10_1142_S0219887824502074
crossref_primary_10_1007_s11082_023_05022_1
crossref_primary_10_1016_j_rinp_2022_106129
crossref_primary_10_1088_1402_4896_ac4550
crossref_primary_10_1016_j_rinp_2023_106299
crossref_primary_10_1016_j_rinp_2021_104230
crossref_primary_10_1142_S0217979222500436
crossref_primary_10_1016_j_aej_2023_09_045
crossref_primary_10_1142_S0217979224500097
crossref_primary_10_1088_2040_8986_ac10ac
crossref_primary_10_1007_s11082_022_04300_8
crossref_primary_10_1088_1402_4896_acb680
crossref_primary_10_1142_S0217979223502338
crossref_primary_10_1142_S0217979221502131
crossref_primary_10_1142_S0217984922501226
crossref_primary_10_1007_s11082_023_05739_z
crossref_primary_10_1016_j_chaos_2022_112575
crossref_primary_10_1142_S0217979222500321
crossref_primary_10_1142_S0217979223502697
crossref_primary_10_1088_1402_4896_ac098d
crossref_primary_10_1038_s41598_023_32099_1
crossref_primary_10_1007_s40819_021_01074_7
crossref_primary_10_1142_S0217979222501934
crossref_primary_10_1142_S0217984921505394
crossref_primary_10_1007_s40819_024_01761_1
crossref_primary_10_1016_j_chaos_2022_112218
crossref_primary_10_1016_j_rinp_2021_104500
Cites_doi 10.1140/epjp/s13360-020-00566-7
10.1002/mma.7013
10.1016/j.cjph.2020.09.021
10.1088/1402-4896/ab8098
10.1016/S0960-0779(01)00248-X
10.1007/BF02464941
10.1186/s13662-018-1687-7
10.3934/math.2019.6.1523
10.1007/s11082-020-02443-0
10.1016/j.jtusci.2016.06.002
10.1142/S0217979220501155
10.1142/S0217732318501833
10.1088/1572-9494/ab8a21
10.1016/j.physleta.2020.126456
10.1142/S0217979220501131
10.1080/16583655.2019.1680170
10.1515/phys-2018-0043
10.1016/j.ijleo.2020.164702
10.1140/epjp/s13360-020-00425-5
10.1016/j.amc.2014.01.066
10.1142/S0217984920503996
10.1007/s11082-018-1426-z
10.32513/tbilisi/1593223219
10.1016/j.rinp.2018.04.039
10.1016/j.physleta.2020.126814
10.1088/1402-4896/ab5269
10.1016/j.ijleo.2017.01.053
10.1016/j.rinp.2018.02.036
10.3934/math.2020083
10.3389/fphy.2019.00255
10.1140/epjp/i2018-12288-2
10.1142/S0217984920502772
10.1080/16583655.2020.1760513
10.1007/s11082-018-1400-9
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
Copyright_xml – notice: 2021 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1402-4896/abdcf7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1402-4896
ExternalDocumentID 10_1088_1402_4896_abdcf7
psabdcf7
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
KOT
LAP
M45
MV1
N5L
N9A
NS0
PJBAE
RIN
RNS
ROL
RPA
SJN
SY9
TN5
W28
WH7
XPP
~02
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c311t-e18f468b2abfacb7a77c2a3357e18005b95c7f0dde4db84f584c72abac5bfe9c3
IEDL.DBID IOP
ISSN 0031-8949
IngestDate Tue Jul 01 01:34:07 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Wed Aug 21 03:32:59 EDT 2024
Tue Aug 20 22:16:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-e18f468b2abfacb7a77c2a3357e18005b95c7f0dde4db84f584c72abac5bfe9c3
Notes PHYSSCR-111789.R3
ORCID 0000-0002-7412-4773
PageCount 14
ParticipantIDs crossref_citationtrail_10_1088_1402_4896_abdcf7
crossref_primary_10_1088_1402_4896_abdcf7
iop_journals_10_1088_1402_4896_abdcf7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica scripta
PublicationTitleAbbrev PS
PublicationTitleAlternate Phys. Scr
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Yusuf (psabdcf7bib10) 2020; 135
Al-Ghafri (psabdcf7bib1) 2018; 16
Zayed (psabdcf7bib6) 2020; 384
Arshad (psabdcf7bib8) 2020; 34
Farah (psabdcf7bib18) 2020; 52
Iqbal (psabdcf7bib26) 2018; 33
Ali (psabdcf7bib22)
Rizvi (psabdcf7bib19) 2020; 34
Younis (psabdcf7bib9) 2020; 34
Ozkan (psabdcf7bib31) 2020; 14
Agrawal (psabdcf7bib37) 2013
Ghanbari (psabdcf7bib14) 2020; 13
Zayed (psabdcf7bib4) 2020; 214
Zhang (psabdcf7bib35) 1999; 20
Ali (psabdcf7bib2) 2018; 2018
Younas (psabdcf7bib24)
Ghanbari (psabdcf7bib39) 2019; 4
Zayed (psabdcf7bib7) 2020; 384
Seadawy (psabdcf7bib30) 2019; 13
Seadawy (psabdcf7bib38) 2017; 11
Younas (psabdcf7bib25) 2020; 68
Yusuf (psabdcf7bib23) 2020; 95
Lu (psabdcf7bib27) 2018; 9
Zayed (psabdcf7bib5) 2020; 384
Ali (psabdcf7bib17) 2020; 7
Sulaiman (psabdcf7bib11) 2020; 72
Kazi Sazzad Hossain (psabdcf7bib36) 2020; 5
Seadawy (psabdcf7bib20)
Khater (psabdcf7bib32) 2000; 115
Tariq (psabdcf7bib16) 2018; 50
Abdel-Gawad (psabdcf7bib12) 2020; 34
Zayed (psabdcf7bib3) 2018; 50
Yusuf (psabdcf7bib13) 2020; 135
Bilal (psabdcf7bib21) 2020
Li (psabdcf7bib34) 2002; 14
Younis (psabdcf7bib15) 2017; 134
Lu (psabdcf7bib28) 2018; 9
Zayed (psabdcf7bib33) 2018; 133
Helal (psabdcf7bib29) 2014; 232
References_xml – volume: 135
  start-page: 563
  year: 2020
  ident: psabdcf7bib10
  article-title: Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey—Dodd—Gibbon equation
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00566-7
– year: 2020
  ident: psabdcf7bib21
  article-title: Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin-Gottwald-Holm system and modulation instability analysis
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7013
– volume: 68
  start-page: 348
  year: 2020
  ident: psabdcf7bib25
  article-title: Dispersive of propagation wave structures to the Dullin-Gottwald-Holm dynamical equation in a shallow water waves
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.09.021
– ident: psabdcf7bib20
  article-title: Improved perturbed nonlinear Schrödinger dynamical equation with type of Kerr law nonlinearity with optical soliton solutions
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab8098
– volume: 14
  start-page: 581
  year: 2002
  ident: psabdcf7bib34
  article-title: Bifurcation of traveling wave solution of the generalized Pochhammer-Chree (PC) equation
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/S0960-0779(01)00248-X
– volume: 20
  start-page: 666
  year: 1999
  ident: psabdcf7bib35
  article-title: Explicit solitary wave solution of the generalized Pochhammer-Chree (PC) equation
  publication-title: Appl. Math. Mech.
  doi: 10.1007/BF02464941
– volume: 115
  start-page: 1303
  year: 2000
  ident: psabdcf7bib32
  article-title: General soliton solutions of n-dimensional nonlinear Schrödinger equation
  publication-title: IL Nuovo Cimento115B
– volume: 2018
  start-page: 232
  year: 2018
  ident: psabdcf7bib2
  article-title: New solitary wave solutions of some nonlinear models and their applications
  publication-title: Advances in Difference Equations
  doi: 10.1186/s13662-018-1687-7
– volume: 4
  start-page: 1523
  year: 2019
  ident: psabdcf7bib39
  article-title: New solitary wave solutions and stability analysis of the Benney-Luke and the Phi-4 equations in mathematical physics
  publication-title: AIMS Mathematics
  doi: 10.3934/math.2019.6.1523
– volume: 52
  start-page: 1
  year: 2020
  ident: psabdcf7bib18
  article-title: Interaction properties of soliton molecules and Painleve analysis for nano bioelectronics transmission model
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-020-02443-0
– volume: 11
  start-page: 623
  year: 2017
  ident: psabdcf7bib38
  article-title: Travelling wave solutions of the generalized nonlinear fifth-orderKdV water wave equations and its stability
  publication-title: Journal of Taibah University for Science
  doi: 10.1016/j.jtusci.2016.06.002
– volume: 34
  year: 2020
  ident: psabdcf7bib12
  article-title: Construction of rogue waves and conservation laws of the complex coupled Kadomtsev-Petviashvili equation
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979220501155
– volume: 33
  year: 2018
  ident: psabdcf7bib26
  article-title: Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732318501833
– volume: 72
  year: 2020
  ident: psabdcf7bib11
  article-title: New lump, lump-kink, breather waves and other interaction solutions to the (3+1)-dimensional soliton equation
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/ab8a21
– volume: 384
  year: 2020
  ident: psabdcf7bib6
  article-title: Solitons in magneto-optic waveguides with dual-power law nonlinearity
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2020.126456
– volume: 34
  year: 2020
  ident: psabdcf7bib9
  article-title: Investigation of optical solitons in birefringent polarization preserving fibers with four-wave mixing effect
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979220501131
– volume: 13
  start-page: 1060
  year: 2019
  ident: psabdcf7bib30
  article-title: Nonlinear wave solutions of the Kudryashov-Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity
  publication-title: Journal of Taibah University for Science
  doi: 10.1080/16583655.2019.1680170
– volume: 16
  start-page: 311
  year: 2018
  ident: psabdcf7bib1
  article-title: Solitary wave solutions of two KdV-type equations
  publication-title: Open Physics
  doi: 10.1515/phys-2018-0043
– volume: 384
  year: 2020
  ident: psabdcf7bib5
  article-title: Solitons in magneto-optic waveguides with dual-power law nonlinearity
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2020.126456
– year: 2013
  ident: psabdcf7bib37
– volume: 214
  year: 2020
  ident: psabdcf7bib4
  article-title: New generalized 6-model expansion method and its applications to the (3.1) dimensional resonant nonlinear Schrodinger equation with parabolic law nonlinearity
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164702
– volume: 135
  start-page: 416
  year: 2020
  ident: psabdcf7bib13
  article-title: New interaction and combined multi-wave solutions for the Heisenberg ferromagnetic spin chain equation
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00425-5
– ident: psabdcf7bib22
  article-title: Conserved quantities along with Painleve analysis and Optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model
  publication-title: Int. J. Mod. Phys. B
– ident: psabdcf7bib24
  article-title: Optical solitons and closed form solutions to (3+1)-dimensional resonant Schrodinger equation
  publication-title: Int. J. Mod. Phys. B
– volume: 232
  start-page: 1094
  year: 2014
  ident: psabdcf7bib29
  article-title: Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.01.066
– volume: 34
  start-page: 2050399
  year: 2020
  ident: psabdcf7bib19
  article-title: Chirp-free optical dromions for the presence of higher order spatio-temporal dispersions and absence of self-phase modulation in birefringent fibers
  publication-title: Modern Physics Letter B
  doi: 10.1142/S0217984920503996
– volume: 50
  start-page: 164
  year: 2018
  ident: psabdcf7bib3
  article-title: The phi power 6-model expansion method for solving the nonlinear conformable time-fractional Schrodinger equation with fourth-order dispersion and parabolic law nonlinearity
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-018-1426-z
– volume: 13
  start-page: 39
  year: 2020
  ident: psabdcf7bib14
  article-title: Families of exact solutions of Biswas-Milovic equation by an exponential rational function method
  publication-title: Tbilisi Mathematical Journal
  doi: 10.32513/tbilisi/1593223219
– volume: 9
  start-page: 1403
  year: 2018
  ident: psabdcf7bib27
  article-title: Applications of exact traveling wave solutions of modified Liouville and the symmetric regularized long wave equations via two new techniques
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2018.04.039
– volume: 384
  year: 2020
  ident: psabdcf7bib7
  article-title: Solitons and conservation laws in magneto-optic waveguides having parabolic-nonlocal law of refractive index
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2020.126814
– volume: 95
  year: 2020
  ident: psabdcf7bib23
  article-title: Optical solitons with M-truncated derivative and conservation laws for NLSE equation which describe pseudospherical surfaces
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab5269
– volume: 134
  start-page: 233
  year: 2017
  ident: psabdcf7bib15
  article-title: Optical bright-dark and Gaussian soliton with third order dispersion
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.01.053
– volume: 9
  start-page: 313
  year: 2018
  ident: psabdcf7bib28
  article-title: Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2018.02.036
– volume: 5
  start-page: 1199
  year: 2020
  ident: psabdcf7bib36
  article-title: Solitary wave solutions of few nonlinear evolution equations
  publication-title: AIMS Mathematics
  doi: 10.3934/math.2020083
– volume: 7
  start-page: 255
  year: 2020
  ident: psabdcf7bib17
  article-title: Rogue wave solutions and modulation instability with variable coefficient and harmonic potential
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2019.00255
– volume: 133
  start-page: 417
  year: 2018
  ident: psabdcf7bib33
  article-title: New Φ6-model expansion method and its applications to the resonant nonlinear Schrodinger equation with parabolic law nonlinearity
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-12288-2
– volume: 34
  year: 2020
  ident: psabdcf7bib8
  article-title: Solitary wave solutions of Kaup-Newell optical fiber model in mathematical physics and its modulation instability
  publication-title: Mod. Phys. Lett.
  doi: 10.1142/S0217984920502772
– volume: 14
  start-page: 585
  year: 2020
  ident: psabdcf7bib31
  article-title: A third-order nonlinear Schrodinger equation: the exact solutions, group-invariant solutions and conservation laws
  publication-title: Journal of Taibah University for Science
  doi: 10.1080/16583655.2020.1760513
– volume: 50
  start-page: 1
  year: 2018
  ident: psabdcf7bib16
  article-title: Dispersive traveling wave solutions to the space-time fractional equal-width dynamical equation and its applications
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-018-1400-9
SSID ssj0026269
Score 2.5836418
Snippet In this article, propagation of solitary wave solutions to the Pochhammer-Chree equation(PC) are investigated. Different kinds of solutions like bright-dark,...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 45202
SubjectTerms mathematical physics
pochhammer-chree equation
solitons
Title Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation
URI https://iopscience.iop.org/article/10.1088/1402-4896/abdcf7
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals
  customDbUrl:
  eissn: 1402-4896
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026269
  issn: 0031-8949
  databaseCode: IOP
  dateStart: 19700101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA7biuDLrq6Kdb3kYX3wIb1MMpMMPkmxFKFuHyz0QRiSkwxdLJ1q25XuH9i_7UkmLVuRIr4FcnLh5PYl5-Q7hFx6604qDbAugGFCGssQZZTM02lZlSLADhb80ZdsOBGfp-n0hHzY_4WplnHrb2OyJgquVRgd4lQHrwQJEyrPOtpYKGWDPOAK7xX-997VeH_bQqReY1_eYyoXebRR_q2GgzOpge3eO2IGZ-TbrnO1Z8n39mZt2nD7B2_jf_b-MTmN0JN-rEWfkBO3OCcPgwsorJ6Su1FlYywveu1BY3Cb3VIdaUswYem88vGNNtbH0qK_9I2j2Fvck3bFUIg6BOTYBIUtQlgbKEgobtM0BN2ZO0v92y8dVzCbhWdz1sf55Kj7UbOOPyOTwaev_SGLYRoY8F5vzVxPlSJTJtGm1GCklhISzXkqMQcXuclTkGUX91FhjRIlQh6QKKwhNaXLgT8nzUW1cC8I5RZyxERG5okVUmTaSp6JruZ4PAjHXYt0dgNVQOQw96E05kWwpStVePUWXr1Frd4Web8vsaz5O47IvsNRK-IiXh2Re3sgt1wVmCcKz06PkktbvvzHmi7Io8T7yARPoFekuf65ca8R5KzNmzCZfwON7Pn4
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxwhFCfVRuPFtlajtVYO9uCB_RiYgTk21o0fVfegiTcKDyY23exsu7s1-g_4b_tgWKONMU16I-HxMTx4_IA3v0fITnjdyaUF1gGwTEjrGKKMigU6LadyBNjxBf_ktDi4EEeX-WWKcxr_halHyfS3MNkQBTdDmBziVBuPBBkTqizaxjqoZHvkqjnyOue5DLEbDs_6DycuROsN_uVdpkpRpnfK52p5si_NYduPtpneG_J91sHGu-RnazqxLbj9i7vxP77gLVlOEJR-acTfkVd-uEIWoisojN-Tu5PapZhe9EcAj9F99oaaRF-CCUcHdYhzNHUhpha9Nn88xR6jbZoVQyHqEZhjExRuEMq6SEVC0VzTGHxn4B0Nd8C0X8PVVbw-Z3s4rzz1vxr28VVy0ds_3ztgKVwDA97tTpjvqkoUymbGVgasNFJCZjiqBXNwsdsyB1l10J4KZ5WoEPqARGEDua18CXyNzA_roV8nlDsoERtZWWZOSFEYJ3khOobjNiE89xukPVOWhsRlHkJqDHR8U1dKhyHWYYh1M8QbZPehxKjh8XhB9jNqTqfFPH5BbvuJ3GisMU_owFKPkqjUD_9Y0zZZ7H_t6W-Hp8ebZCkLbjPROegjmZ_8nvotxD0T-ynO7Xtsaf9i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+instability+analysis+and+longitudinal+wave+propagation+in+an+elastic+cylindrical+rod+modelled+with+Pochhammer-Chree+equation&rft.jtitle=Physica+scripta&rft.au=Seadawy%2C+Aly+R&rft.au=Rehman%2C+S+U&rft.au=Younis%2C+M&rft.au=Rizvi%2C+S+T+R&rft.date=2021-04-01&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=96&rft.issue=4&rft.spage=45202&rft_id=info:doi/10.1088%2F1402-4896%2Fabdcf7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1402_4896_abdcf7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon