ST-GMLP: A concise spatial-temporal framework based on gated multi-layer perceptron for traffic flow forecasting

The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing st...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 184; p. 107074
Main Authors Luo, Yong, Zheng, Jianying, Wang, Xiang, E, Wenjuan, Jiang, Xingxing, Zhu, Zhongkui
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.04.2025
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2024.107074

Cover

Abstract The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing studies restrict themselves to recent historical observations and typically yield structurally and computationally complex models, which greatly limits the forecasting accuracy and hinders the application of models in realistic situations. To this end, this paper proposes a concise framework named Spatial-Temporal Gated Multi-Layer Perceptron (ST-GMLP), aiming to enhance the forecasting performance by leveraging the temporal patterns of different scales with a simple and effective structure. Nevertheless, due to the incorporation of more historical features, the presence of distribution shifts between periods further restricts the forecasting accuracy. To address the above issue, ST-GMLP employs a parallel structure of learning the interdependencies of traffic flow in both spatial node and temporal directions, and then establishes the interactions between time and space to effectively mitigate the adverse effects due to temporal distribution shifts. Owing to the utilization of MLP with gated mechanisms (GMLP) for modeling the spatial-temporal interdependencies, ST-GMLP has significant advantages in terms of training efficiency and resources occupation. Extensive experimental findings indicate that ST-GMLP exhibits superior performance in comparison to state-of-the-art methods.
AbstractList The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing studies restrict themselves to recent historical observations and typically yield structurally and computationally complex models, which greatly limits the forecasting accuracy and hinders the application of models in realistic situations. To this end, this paper proposes a concise framework named Spatial-Temporal Gated Multi-Layer Perceptron (ST-GMLP), aiming to enhance the forecasting performance by leveraging the temporal patterns of different scales with a simple and effective structure. Nevertheless, due to the incorporation of more historical features, the presence of distribution shifts between periods further restricts the forecasting accuracy. To address the above issue, ST-GMLP employs a parallel structure of learning the interdependencies of traffic flow in both spatial node and temporal directions, and then establishes the interactions between time and space to effectively mitigate the adverse effects due to temporal distribution shifts. Owing to the utilization of MLP with gated mechanisms (GMLP) for modeling the spatial-temporal interdependencies, ST-GMLP has significant advantages in terms of training efficiency and resources occupation. Extensive experimental findings indicate that ST-GMLP exhibits superior performance in comparison to state-of-the-art methods.
The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing studies restrict themselves to recent historical observations and typically yield structurally and computationally complex models, which greatly limits the forecasting accuracy and hinders the application of models in realistic situations. To this end, this paper proposes a concise framework named Spatial-Temporal Gated Multi-Layer Perceptron (ST-GMLP), aiming to enhance the forecasting performance by leveraging the temporal patterns of different scales with a simple and effective structure. Nevertheless, due to the incorporation of more historical features, the presence of distribution shifts between periods further restricts the forecasting accuracy. To address the above issue, ST-GMLP employs a parallel structure of learning the interdependencies of traffic flow in both spatial node and temporal directions, and then establishes the interactions between time and space to effectively mitigate the adverse effects due to temporal distribution shifts. Owing to the utilization of MLP with gated mechanisms (GMLP) for modeling the spatial-temporal interdependencies, ST-GMLP has significant advantages in terms of training efficiency and resources occupation. Extensive experimental findings indicate that ST-GMLP exhibits superior performance in comparison to state-of-the-art methods.The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing studies restrict themselves to recent historical observations and typically yield structurally and computationally complex models, which greatly limits the forecasting accuracy and hinders the application of models in realistic situations. To this end, this paper proposes a concise framework named Spatial-Temporal Gated Multi-Layer Perceptron (ST-GMLP), aiming to enhance the forecasting performance by leveraging the temporal patterns of different scales with a simple and effective structure. Nevertheless, due to the incorporation of more historical features, the presence of distribution shifts between periods further restricts the forecasting accuracy. To address the above issue, ST-GMLP employs a parallel structure of learning the interdependencies of traffic flow in both spatial node and temporal directions, and then establishes the interactions between time and space to effectively mitigate the adverse effects due to temporal distribution shifts. Owing to the utilization of MLP with gated mechanisms (GMLP) for modeling the spatial-temporal interdependencies, ST-GMLP has significant advantages in terms of training efficiency and resources occupation. Extensive experimental findings indicate that ST-GMLP exhibits superior performance in comparison to state-of-the-art methods.
ArticleNumber 107074
Author Zhu, Zhongkui
Wang, Xiang
Luo, Yong
E, Wenjuan
Jiang, Xingxing
Zheng, Jianying
Author_xml – sequence: 1
  givenname: Yong
  surname: Luo
  fullname: Luo, Yong
  email: luooyoong@163.com
  organization: School of Rail Transportation, Soochow University, Suzhou 215131, China
– sequence: 2
  givenname: Jianying
  surname: Zheng
  fullname: Zheng, Jianying
  email: zjy@szcu.edu.cn
  organization: School of Smart Manufacturing and Intelligent Transportation, Suzhou City University, Suzhou 215104, China
– sequence: 3
  givenname: Xiang
  surname: Wang
  fullname: Wang, Xiang
  email: wangxiang@suda.edu.cn
  organization: School of Rail Transportation, Soochow University, Suzhou 215131, China
– sequence: 4
  givenname: Wenjuan
  surname: E
  fullname: E, Wenjuan
  email: wje@suda.edu.cn
  organization: School of Rail Transportation, Soochow University, Suzhou 215131, China
– sequence: 5
  givenname: Xingxing
  surname: Jiang
  fullname: Jiang, Xingxing
  email: jiangxx@suda.edu.cn
  organization: School of Rail Transportation, Soochow University, Suzhou 215131, China
– sequence: 6
  givenname: Zhongkui
  surname: Zhu
  fullname: Zhu, Zhongkui
  email: zhuzhongkui@suda.edu.cn
  organization: School of Rail Transportation, Soochow University, Suzhou 215131, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39721105$$D View this record in MEDLINE/PubMed
BookMark eNp9UcFq3DAUFCWl2Wz7B6Xo2Is3kiVZcg-FENo0sKGBpGchy09BW9tyJTkhf18tTnvM6T3emxmYmTN0MoUJEPpIyY4S2pwfdhMsE-RdTWpeTpJI_gZtqJJtVUtVn6ANUS2rGqLIKTpL6UAIaRRn79Apa2VNKREbNN_dV1c3-9sv-ALbMFmfAKfZZG-GKsM4h2gG7KIZ4SnE37gzCXocJvxgclnGZci-GswzRDxDtDDnWJ4uRJyjcc5b7IbwdDyANSn76eE9euvMkODDy9yiX9-_3V_-qPY_r64vL_aVZZTmykLfWioVt7XoVC8sJXXPa9dZxqURjDpiWto5Ihx1QIUALoQCaRsLqm-AbdHnVXeO4c8CKevRJwvDYCYIS9KM8lYwyUsgW_TpBbp0I_R6jn408Vn_S6kA-AqwMaQUwf2HUKKPZeiDXsvQxzL0WkahfV1pUHw-eog6WQ9TseZLHFn3wb8u8BfLsJTx
Cites_doi 10.3141/1678-22
10.1080/15472450902858368
10.1016/0893-6080(89)90020-8
10.1016/j.neunet.2023.12.016
10.1109/TNNLS.2020.2978386
10.1109/TITS.2004.837813
10.1109/TITS.2023.3237205
10.1016/j.neunet.2023.106093
10.1109/TITS.2022.3208943
10.24963/ijcai.2024/442
10.1016/j.inffus.2024.102228
10.1109/TITS.2024.3362145
10.1162/neco.1997.9.8.1735
10.1016/j.inffus.2023.101946
10.1016/j.neunet.2021.10.021
10.1109/TITS.2021.3056415
10.1109/TKDE.2021.3056502
10.1016/j.trc.2022.103921
10.1016/j.eswa.2023.121325
10.1016/j.inffus.2023.102122
10.1109/TITS.2023.3243913
10.1007/BF02551274
10.1016/j.knosys.2024.111637
10.3390/s17071501
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2024.107074
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 39721105
10_1016_j_neunet_2024_107074
S0893608024010037
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSH
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c311t-ced9c1784c25b8d5c102d42fbc347a531f0a91bf05f1fe155e4558e7c6ce8d6e3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Sun Sep 28 08:44:00 EDT 2025
Mon Jul 21 05:47:36 EDT 2025
Wed Oct 01 06:31:40 EDT 2025
Sat Apr 12 15:20:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Spatial-temporal data
Deep learning
Traffic prediction
Gated mechanisms
Multi-layer perceptron
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-ced9c1784c25b8d5c102d42fbc347a531f0a91bf05f1fe155e4558e7c6ce8d6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39721105
PQID 3149537484
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3149537484
pubmed_primary_39721105
crossref_primary_10_1016_j_neunet_2024_107074
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_107074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ekambaram, Jati, Nguyen, Sinthong, Kalagnanam (bib0008) 2023
Seo, Defferrard, Vandergheynst, Bresson (bib0038) 2018
Li, Yu, Shahabi, Liu (bib0026) 2018
Cybenko (bib0005) 1989; 2
Ou, Sun, Zhu, Jin, Liu, Zhang, Wang (bib0034) 2022; 35
Song, Lin, Guo, Wan (bib0041) 2020
Eldan, Shamir (bib0009) 2016
Lan, Ma, Huang, Wang, Yang, Li (bib0023) 2022
Gao, H., Jiang, R., Dong, Z., Deng, J., Ma, Y., & Song, X. (2024). Spatial-temporal-decoupled masked pre-training for spatiotemporal forecasting.
Guo, Lin, Feng, Song, Wan (bib0015) 2019
Lee, Fambro (bib0024) 1999; 1678
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0044) 2017
Geng, Xu, Wu, Zhao, Wang, Li, Zhang (bib0014) 2024; 105
Safran, Shamir (bib0037) 2017
Wang, Jing, Huang, Jin, Lv (bib0046) 2023; 24
Shao, Zhang, Wang, Wei, Xu (bib0039) 2022
He, Zhang, Ren, Sun (bib0017) 2016
Sun (bib0042) 2022; 23
Li, Zhu (bib0025) 2021
Xu, Han, Zhu, Sun, Du, Lv (bib0051) 2023; 100
Hornik, Stinchcombe, White (bib0019) 1989; 2
Luo, Zheng, Wang, Tao, Jiang (bib0033) 2024; 171
Wu, Pan, Chen, Long, Zhang, Philip (bib0048) 2020; 32
Wu, Ho, Lee (bib0047) 2004; 5
Shaygan, Meese, Li, Zhao, Nejad (bib0040) 2022; 145
Fan, Weng, Tian, Wu, Zhu, Wu (bib0010) 2024; 172
Feng, Ke, Yang, Ye (bib0012) 2021; 23
Fang, Long, Song, Xie (bib0011) 2021
Liu, Dong, Jiang, Deng, Deng, Chen, Song (bib0029) 2023
Zheng, Fan, Wang, Qi (bib0054) 2020
Guo, Lin, Wan, Li, Cong (bib0016) 2022; 34
Yu, Wu, Wang, Wang, Ma (bib0053) 2017; 17
Ounoughi, Ben Yahia (bib0035) 2024; 236
Yu, Yin, Zhu (bib0052) 2018
Liu, Zhu, Ye, Meng, Sun, Du (bib0030) 2023; 24
Deng, Chen, Jiang, Song, Tsang (bib0006) 2021
Jiang, Han, Zhao, Wang (bib0021) 2023
Wang (bib0045) 2020
Ali, Zhu, Zakarya (bib0001) 2022; 145
Hochreiter, Schmidhuber (bib0018) 1997; 9
Pan (bib0036) 2021
Bai, Yao, Li, Wang, Wang (bib0002) 2020
Liu, Zheng, Feng, Chen (bib0031) 2017
Chandra, Al-Deek (bib0004) 2009; 13
Tedjopurnomo, Bao, Zheng, Choudhury, Qin (bib0043) 2022; 34
Wu, Pan, Long, Jiang, Zhang (bib0050) 2019
Wu, Pan, Long, Jiang, Chang, Zhang (bib0049) 2020
Ji, Wang, Huang, Wu, Xu, Wu, Zheng (bib0020) 2023
Kong, Fan, Zuo, Deveci, Jin, Zhong (bib0022) 2024; 103
Luo, He, Han, Wang, Li (bib0032) 2024; 293
Duan, He, Zhou, Thiele, Rao (bib0007) 2023
Liu, C., Yang, S., Xu, Q., Li, Z., Long, C., Li, Z., & Zhao, R. (2024). Spatial-temporal large language model for traffic prediction. arxiv preprint arxiv:2401.10134.
Liu, Zhang (bib0027) 2024; 25
Berndt, Clifford (bib0003) 1994
2024.
Li (10.1016/j.neunet.2024.107074_bib0026) 2018
Luo (10.1016/j.neunet.2024.107074_bib0033) 2024; 171
Ou (10.1016/j.neunet.2024.107074_bib0034) 2022; 35
Wang (10.1016/j.neunet.2024.107074_bib0046) 2023; 24
Zheng (10.1016/j.neunet.2024.107074_bib0054) 2020
10.1016/j.neunet.2024.107074_bib0028
Wu (10.1016/j.neunet.2024.107074_bib0047) 2004; 5
Tedjopurnomo (10.1016/j.neunet.2024.107074_bib0043) 2022; 34
Wang (10.1016/j.neunet.2024.107074_bib0045) 2020
Shao (10.1016/j.neunet.2024.107074_bib0039) 2022
Deng (10.1016/j.neunet.2024.107074_bib0006) 2021
Song (10.1016/j.neunet.2024.107074_bib0041) 2020
Fan (10.1016/j.neunet.2024.107074_bib0010) 2024; 172
Shaygan (10.1016/j.neunet.2024.107074_bib0040) 2022; 145
Chandra (10.1016/j.neunet.2024.107074_bib0004) 2009; 13
Ounoughi (10.1016/j.neunet.2024.107074_bib0035) 2024; 236
Ekambaram (10.1016/j.neunet.2024.107074_bib0008) 2023
10.1016/j.neunet.2024.107074_bib0013
Geng (10.1016/j.neunet.2024.107074_bib0014) 2024; 105
Bai (10.1016/j.neunet.2024.107074_bib0002) 2020
Jiang (10.1016/j.neunet.2024.107074_bib0021) 2023
Xu (10.1016/j.neunet.2024.107074_bib0051) 2023; 100
Kong (10.1016/j.neunet.2024.107074_bib0022) 2024; 103
Hochreiter (10.1016/j.neunet.2024.107074_bib0018) 1997; 9
Wu (10.1016/j.neunet.2024.107074_bib0049) 2020
Yu (10.1016/j.neunet.2024.107074_bib0053) 2017; 17
He (10.1016/j.neunet.2024.107074_bib0017) 2016
Fang (10.1016/j.neunet.2024.107074_bib0011) 2021
Liu (10.1016/j.neunet.2024.107074_bib0031) 2017
Li (10.1016/j.neunet.2024.107074_bib0025) 2021
Liu (10.1016/j.neunet.2024.107074_bib0029) 2023
Lan (10.1016/j.neunet.2024.107074_bib0023) 2022
Ji (10.1016/j.neunet.2024.107074_bib0020) 2023
Luo (10.1016/j.neunet.2024.107074_bib0032) 2024; 293
Eldan (10.1016/j.neunet.2024.107074_bib0009) 2016
Seo (10.1016/j.neunet.2024.107074_bib0038) 2018
Liu (10.1016/j.neunet.2024.107074_bib0027) 2024; 25
Guo (10.1016/j.neunet.2024.107074_bib0015) 2019
Safran (10.1016/j.neunet.2024.107074_bib0037) 2017
Feng (10.1016/j.neunet.2024.107074_bib0012) 2021; 23
Hornik (10.1016/j.neunet.2024.107074_bib0019) 1989; 2
Wu (10.1016/j.neunet.2024.107074_bib0050) 2019
Yu (10.1016/j.neunet.2024.107074_bib0052) 2018
Vaswani (10.1016/j.neunet.2024.107074_bib0044) 2017
Ali (10.1016/j.neunet.2024.107074_bib0001) 2022; 145
Wu (10.1016/j.neunet.2024.107074_bib0048) 2020; 32
Guo (10.1016/j.neunet.2024.107074_bib0016) 2022; 34
Lee (10.1016/j.neunet.2024.107074_bib0024) 1999; 1678
Berndt (10.1016/j.neunet.2024.107074_bib0003) 1994
Cybenko (10.1016/j.neunet.2024.107074_bib0005) 1989; 2
Duan (10.1016/j.neunet.2024.107074_bib0007) 2023
Liu (10.1016/j.neunet.2024.107074_bib0030) 2023; 24
Pan (10.1016/j.neunet.2024.107074_bib0036) 2021
Sun (10.1016/j.neunet.2024.107074_bib0042) 2022; 23
References_xml – start-page: 1846
  year: 2021
  end-page: 1855
  ident: bib0036
  article-title: AutoSTG: Neural architecture search for predictions of spatio-temporal graph
  publication-title: Proceedings of the Web Conference
– volume: 23
  start-page: 23680
  year: 2022
  end-page: 23693
  ident: bib0042
  article-title: Dual dynamic spatial-temporal graph convolution network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib0031
  article-title: Short-term traffic flow prediction with conv-LSTM
  publication-title: Proceedings of the WCSP
– volume: 171
  start-page: 251
  year: 2024
  end-page: 262
  ident: bib0033
  article-title: GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction
  publication-title: Neural Networks
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib0019
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural networks
– volume: 293
  year: 2024
  ident: bib0032
  article-title: LSTTN: A long-short term transformer-based spatiotemporal neural network for traffic flow forecasting
  publication-title: Knowledge-Based Systems
– start-page: 11906
  year: 2022
  end-page: 11917
  ident: bib0023
  article-title: DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting
  publication-title: Proceedings of the ICML
– volume: 105
  year: 2024
  ident: bib0014
  article-title: STGAFormer: Spatial–temporal gated attention transformer based graph neural network for traffic flow forecasting
  publication-title: Information Fusion
– volume: 34
  start-page: 5415
  year: 2022
  end-page: 5428
  ident: bib0016
  article-title: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1907
  year: 2019
  end-page: 1913
  ident: bib0050
  article-title: Graph WaveNet for deep spatial-temporal graph modeling
  publication-title: Proceedings of the IJCAI
– volume: 17
  start-page: 1501
  year: 2017
  ident: bib0053
  article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks
  publication-title: Sensors
– start-page: 359
  year: 1994
  end-page: 370
  ident: bib0003
  article-title: Using dynamic time warping to find patterns in time series
  publication-title: Proceedings of the KDD
– volume: 100
  year: 2023
  ident: bib0051
  article-title: Generic dynamic graph convolutional network for traffic flow forecasting
  publication-title: Information Fusion
– volume: 34
  start-page: 1544
  year: 2022
  end-page: 1561
  ident: bib0043
  article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1234
  year: 2020
  end-page: 1241
  ident: bib0054
  article-title: Gman: A graph multi-attention network for traffic prediction
  publication-title: Proceedings of the AAAI
– volume: 5
  start-page: 276
  year: 2004
  end-page: 281
  ident: bib0047
  article-title: Travel-time prediction with support vector regression
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 448
  year: 2023
  end-page: 458
  ident: bib0007
  article-title: Localised adaptive spatial-temporal graph neural network
  publication-title: Proceedings of the KDD
– start-page: 269
  year: 2021
  end-page: 278
  ident: bib0006
  article-title: ST-Norm: Spatial and temporal normalization for multi-variate time series forecasting
  publication-title: Proceedings of the KDD
– reference: Gao, H., Jiang, R., Dong, Z., Deng, J., Ma, Y., & Song, X. (2024). Spatial-temporal-decoupled masked pre-training for spatiotemporal forecasting.
– volume: 103
  year: 2024
  ident: bib0022
  article-title: ADCT-Net: Adaptive traffic forecasting neural network via dual-graphic cross-fused transformer
  publication-title: Information Fusion
– start-page: 4454
  year: 2022
  end-page: 4458
  ident: bib0039
  article-title: Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting
  publication-title: Proceedings of the CIKM
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0017
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the CVPR
– volume: 145
  year: 2022
  ident: bib0040
  article-title: Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities
  publication-title: Transportation Research Part C: Emerging Technologies
– start-page: 17804
  year: 2020
  end-page: 17815
  ident: bib0002
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
  publication-title: Proceedings of the NeurIPS
– start-page: 914
  year: 2020
  end-page: 921
  ident: bib0041
  article-title: Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting
  publication-title: Proceedings of the AAAI
– volume: 32
  start-page: 4
  year: 2020
  end-page: 24
  ident: bib0048
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 2979
  year: 2017
  end-page: 2987
  ident: bib0037
  article-title: Depth-width tradeoffs in approximating natural functions with neural networks
  publication-title: Proceedings of the ICML
– start-page: 4365
  year: 2023
  end-page: 4373
  ident: bib0021
  article-title: PDFormer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction
  publication-title: Proceedings of the AAAI
– start-page: 3634
  year: 2018
  end-page: 3640
  ident: bib0052
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
  publication-title: Proceedings of the IJCAI
– start-page: 364
  year: 2021
  end-page: 373
  ident: bib0011
  article-title: Spatial-temporal graph ODE networks for traffic flow forecasting
  publication-title: Proceedings of the KDD
– start-page: 4125
  year: 2023
  end-page: 4129
  ident: bib0029
  article-title: Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting
  publication-title: Proceedings of the 32nd ACM international conference on information and knowledge management
– start-page: 753
  year: 2020
  end-page: 763
  ident: bib0049
  article-title: Connecting the dots: Multivariate time series forecasting with graph neural networks
  publication-title: Proceedings of the KDD
– volume: 145
  start-page: 233
  year: 2022
  end-page: 247
  ident: bib0001
  article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction
  publication-title: Neural Networks
– start-page: 4189
  year: 2021
  end-page: 4196
  ident: bib0025
  article-title: Spatial-temporal fusion graph neural networks for traffic flow forecasting
  publication-title: Proceedings of the AAAI
– start-page: 4356
  year: 2023
  end-page: 4364
  ident: bib0020
  article-title: Spatio-temporal self-supervised learning for traffic flow prediction
  publication-title: Proceedings of the AAAI
– volume: 236
  year: 2024
  ident: bib0035
  article-title: Sequence to sequence hybrid Bi-LSTM model for traffic speed prediction
  publication-title: Expert Systems with Applications
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: bib0044
  article-title: Attention is all you need
  publication-title: Proceedings of the NeurIPS
– volume: 13
  start-page: 53
  year: 2009
  end-page: 72
  ident: bib0004
  article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models
  publication-title: Journal of Intelligent Transportation Systems
– start-page: 907
  year: 2016
  end-page: 940
  ident: bib0009
  article-title: The power of depth for feedforward neural networks
  publication-title: Proceedings of the COLT
– start-page: 459
  year: 2023
  end-page: 469
  ident: bib0008
  article-title: TSMixer: Lightweight MLP-mixer model for multivariate time series forecasting
  publication-title: Proceedings of the KDD
– start-page: 1082
  year: 2020
  end-page: 1092
  ident: bib0045
  article-title: Traffic flow prediction via spatial-temporal graph neural network
  publication-title: Proceedings of the Web Conference
– volume: 172
  year: 2024
  ident: bib0010
  article-title: RGDAN: A random graph diffusion attention network for traffic prediction
  publication-title: Neural Networks
– start-page: 922
  year: 2019
  end-page: 929
  ident: bib0015
  article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting
  publication-title: Proceedings of the AAAI
– volume: 1678
  start-page: 179
  year: 1999
  end-page: 188
  ident: bib0024
  article-title: Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting
  publication-title: Transportation research record
– reference: Liu, C., Yang, S., Xu, Q., Li, Z., Long, C., Li, Z., & Zhao, R. (2024). Spatial-temporal large language model for traffic prediction. arxiv preprint arxiv:2401.10134.
– start-page: 362
  year: 2018
  end-page: 373
  ident: bib0038
  article-title: Structured sequence modeling with graph convolutional recurrent networks
  publication-title: Proceedings of the ICLR
– volume: 35
  start-page: 7526
  year: 2022
  end-page: 7540
  ident: bib0034
  article-title: STP-TrellisNets+: Spatial-temporal parallel TrellisNets for multi-step metro station passenger flow prediction
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 24
  start-page: 3882
  year: 2023
  end-page: 3907
  ident: bib0046
  article-title: Adaptive spatiotemporal inceptionnet for traffic flow forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 24
  start-page: 5516
  year: 2023
  end-page: 5526
  ident: bib0030
  article-title: Spatio-temporal autoencoder for traffic flow prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: bib0005
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of control, signals and systems
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0018
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 25
  start-page: 7645
  year: 2024
  end-page: 7660
  ident: bib0027
  article-title: Spatial–Temporal Dynamic Graph Convolutional Network with Interactive Learning for Traffic Forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 23
  start-page: 5704
  year: 2021
  end-page: 5716
  ident: bib0012
  article-title: A multi-task matrix factorized graph neural network for co-prediction of zone-based and OD-based ride-hailing demand
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: , 2024.
– start-page: 1
  year: 2018
  end-page: 16
  ident: bib0026
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
  publication-title: Proceedings of the ICLR
– volume: 1678
  start-page: 179
  issue: 1
  year: 1999
  ident: 10.1016/j.neunet.2024.107074_bib0024
  article-title: Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting
  publication-title: Transportation research record
  doi: 10.3141/1678-22
– start-page: 3634
  year: 2018
  ident: 10.1016/j.neunet.2024.107074_bib0052
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
– volume: 13
  start-page: 53
  issue: 2
  year: 2009
  ident: 10.1016/j.neunet.2024.107074_bib0004
  article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models
  publication-title: Journal of Intelligent Transportation Systems
  doi: 10.1080/15472450902858368
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.neunet.2024.107074_bib0019
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural networks
  doi: 10.1016/0893-6080(89)90020-8
– start-page: 1082
  year: 2020
  ident: 10.1016/j.neunet.2024.107074_bib0045
  article-title: Traffic flow prediction via spatial-temporal graph neural network
– ident: 10.1016/j.neunet.2024.107074_bib0028
– volume: 171
  start-page: 251
  year: 2024
  ident: 10.1016/j.neunet.2024.107074_bib0033
  article-title: GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.12.016
– start-page: 1
  year: 2017
  ident: 10.1016/j.neunet.2024.107074_bib0031
  article-title: Short-term traffic flow prediction with conv-LSTM
– volume: 35
  start-page: 7526
  issue: 7
  year: 2022
  ident: 10.1016/j.neunet.2024.107074_bib0034
  article-title: STP-TrellisNets+: Spatial-temporal parallel TrellisNets for multi-step metro station passenger flow prediction
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.neunet.2024.107074_bib0048
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2978386
– volume: 5
  start-page: 276
  issue: 4
  year: 2004
  ident: 10.1016/j.neunet.2024.107074_bib0047
  article-title: Travel-time prediction with support vector regression
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2004.837813
– volume: 24
  start-page: 3882
  issue: 4
  year: 2023
  ident: 10.1016/j.neunet.2024.107074_bib0046
  article-title: Adaptive spatiotemporal inceptionnet for traffic flow forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2023.3237205
– volume: 172
  year: 2024
  ident: 10.1016/j.neunet.2024.107074_bib0010
  article-title: RGDAN: A random graph diffusion attention network for traffic prediction
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.106093
– start-page: 4125
  year: 2023
  ident: 10.1016/j.neunet.2024.107074_bib0029
  article-title: Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting
– start-page: 922
  year: 2019
  ident: 10.1016/j.neunet.2024.107074_bib0015
  article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting
– start-page: 753
  year: 2020
  ident: 10.1016/j.neunet.2024.107074_bib0049
  article-title: Connecting the dots: Multivariate time series forecasting with graph neural networks
– start-page: 448
  year: 2023
  ident: 10.1016/j.neunet.2024.107074_bib0007
  article-title: Localised adaptive spatial-temporal graph neural network
– volume: 23
  start-page: 23680
  issue: 12
  year: 2022
  ident: 10.1016/j.neunet.2024.107074_bib0042
  article-title: Dual dynamic spatial-temporal graph convolution network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2022.3208943
– start-page: 770
  year: 2016
  ident: 10.1016/j.neunet.2024.107074_bib0017
  article-title: Deep residual learning for image recognition
– ident: 10.1016/j.neunet.2024.107074_bib0013
  doi: 10.24963/ijcai.2024/442
– start-page: 2979
  year: 2017
  ident: 10.1016/j.neunet.2024.107074_bib0037
  article-title: Depth-width tradeoffs in approximating natural functions with neural networks
– volume: 105
  year: 2024
  ident: 10.1016/j.neunet.2024.107074_bib0014
  article-title: STGAFormer: Spatial–temporal gated attention transformer based graph neural network for traffic flow forecasting
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2024.102228
– volume: 34
  start-page: 1544
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2024.107074_bib0043
  article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 364
  year: 2021
  ident: 10.1016/j.neunet.2024.107074_bib0011
  article-title: Spatial-temporal graph ODE networks for traffic flow forecasting
– start-page: 1234
  year: 2020
  ident: 10.1016/j.neunet.2024.107074_bib0054
  article-title: Gman: A graph multi-attention network for traffic prediction
– volume: 25
  start-page: 7645
  issue: 7
  year: 2024
  ident: 10.1016/j.neunet.2024.107074_bib0027
  article-title: Spatial–Temporal Dynamic Graph Convolutional Network with Interactive Learning for Traffic Forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2024.3362145
– start-page: 459
  year: 2023
  ident: 10.1016/j.neunet.2024.107074_bib0008
  article-title: TSMixer: Lightweight MLP-mixer model for multivariate time series forecasting
– start-page: 362
  year: 2018
  ident: 10.1016/j.neunet.2024.107074_bib0038
  article-title: Structured sequence modeling with graph convolutional recurrent networks
– start-page: 11906
  year: 2022
  ident: 10.1016/j.neunet.2024.107074_bib0023
  article-title: DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.neunet.2024.107074_bib0018
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 1907
  year: 2019
  ident: 10.1016/j.neunet.2024.107074_bib0050
  article-title: Graph WaveNet for deep spatial-temporal graph modeling
– volume: 100
  year: 2023
  ident: 10.1016/j.neunet.2024.107074_bib0051
  article-title: Generic dynamic graph convolutional network for traffic flow forecasting
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.101946
– volume: 145
  start-page: 233
  year: 2022
  ident: 10.1016/j.neunet.2024.107074_bib0001
  article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.10.021
– volume: 23
  start-page: 5704
  issue: 6
  year: 2021
  ident: 10.1016/j.neunet.2024.107074_bib0012
  article-title: A multi-task matrix factorized graph neural network for co-prediction of zone-based and OD-based ride-hailing demand
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2021.3056415
– start-page: 4189
  year: 2021
  ident: 10.1016/j.neunet.2024.107074_bib0025
  article-title: Spatial-temporal fusion graph neural networks for traffic flow forecasting
– volume: 34
  start-page: 5415
  issue: 11
  year: 2022
  ident: 10.1016/j.neunet.2024.107074_bib0016
  article-title: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2021.3056502
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2024.107074_bib0026
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
– start-page: 5998
  year: 2017
  ident: 10.1016/j.neunet.2024.107074_bib0044
  article-title: Attention is all you need
– volume: 145
  year: 2022
  ident: 10.1016/j.neunet.2024.107074_bib0040
  article-title: Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2022.103921
– start-page: 17804
  year: 2020
  ident: 10.1016/j.neunet.2024.107074_bib0002
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
– start-page: 907
  year: 2016
  ident: 10.1016/j.neunet.2024.107074_bib0009
  article-title: The power of depth for feedforward neural networks
– volume: 236
  year: 2024
  ident: 10.1016/j.neunet.2024.107074_bib0035
  article-title: Sequence to sequence hybrid Bi-LSTM model for traffic speed prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121325
– volume: 103
  year: 2024
  ident: 10.1016/j.neunet.2024.107074_bib0022
  article-title: ADCT-Net: Adaptive traffic forecasting neural network via dual-graphic cross-fused transformer
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.102122
– volume: 24
  start-page: 5516
  year: 2023
  ident: 10.1016/j.neunet.2024.107074_bib0030
  article-title: Spatio-temporal autoencoder for traffic flow prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2023.3243913
– start-page: 269
  year: 2021
  ident: 10.1016/j.neunet.2024.107074_bib0006
  article-title: ST-Norm: Spatial and temporal normalization for multi-variate time series forecasting
– start-page: 1846
  year: 2021
  ident: 10.1016/j.neunet.2024.107074_bib0036
  article-title: AutoSTG: Neural architecture search for predictions of spatio-temporal graph
– start-page: 4454
  year: 2022
  ident: 10.1016/j.neunet.2024.107074_bib0039
  article-title: Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 10.1016/j.neunet.2024.107074_bib0005
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of control, signals and systems
  doi: 10.1007/BF02551274
– start-page: 4365
  year: 2023
  ident: 10.1016/j.neunet.2024.107074_bib0021
  article-title: PDFormer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction
– volume: 293
  year: 2024
  ident: 10.1016/j.neunet.2024.107074_bib0032
  article-title: LSTTN: A long-short term transformer-based spatiotemporal neural network for traffic flow forecasting
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2024.111637
– start-page: 4356
  year: 2023
  ident: 10.1016/j.neunet.2024.107074_bib0020
  article-title: Spatio-temporal self-supervised learning for traffic flow prediction
– start-page: 914
  year: 2020
  ident: 10.1016/j.neunet.2024.107074_bib0041
  article-title: Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting
– volume: 17
  start-page: 1501
  issue: 7
  year: 2017
  ident: 10.1016/j.neunet.2024.107074_bib0053
  article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks
  publication-title: Sensors
  doi: 10.3390/s17071501
– start-page: 359
  year: 1994
  ident: 10.1016/j.neunet.2024.107074_bib0003
  article-title: Using dynamic time warping to find patterns in time series
SSID ssj0006843
Score 2.4606996
Snippet The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 107074
SubjectTerms Deep learning
Forecasting - methods
Gated mechanisms
Humans
Multi-layer perceptron
Multilayer Perceptrons
Neural Networks, Computer
Spatial-temporal data
Spatio-Temporal Analysis
Traffic prediction
Title ST-GMLP: A concise spatial-temporal framework based on gated multi-layer perceptron for traffic flow forecasting
URI https://dx.doi.org/10.1016/j.neunet.2024.107074
https://www.ncbi.nlm.nih.gov/pubmed/39721105
https://www.proquest.com/docview/3149537484
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--H-uLCF7jtknatN6WxXV9LYIKewtpmsLK0l32gTd_uzNpq3gQwWua0jBfMo_mmxlCLpQoOA-SjIFthADFiJClKrDMZiaVJnNG-ZJCj4O4_yrvhtFwhXSbXBikVda6v9LpXlvXI-1amu3paNR-DsDUxpgqCiECllHBDHapsIvB5cc3zSNOKuYcTGY4u0mf8xyv0i1Lh4xKLmFIBUr-Zp5-cz-9GeptkY3af6SdaonbZMWVO2Sz6c1A66O6S6bPL-zm8eHpinYohLzYO4POkT1txqwuRzWmRcPMomjMcjopKf5Vy6mnGbKxAX-cTivqywwegoNLFzODVSdoMZ6844CzZo7U6T3y2rt-6fZZ3V2BWRGGCwYCTm2oEml5lCV5ZMHVyCUvMiukMnA0i8CkYVYEUREWDtwOJ6MoccrG1iV57MQ-WS0npTskVAlAPIFYy3AA2OQG7KE0XApuw9glQYuwRqh6WhXR0A277E1XIGgEQVcgtIhqJK9_bAYNev6PN88boDScE7z8MKWbLOdaeCYtVk5tkYMKwa-1iNTHwdHRv797TNY5Ngb2lJ4TsrqYLd0peCuL7MxvxzOy1rm97w8-ASMF6W8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BPcCl0ALtUiiuxNVsYjtxwg0hYEt3USUWiZvlOI4EWmVX-6He-tuZcZKiHhASVydRrHn2zJvkeQbgRMtKiCgrOMZGTFCsjHmuI8ddYXNlC291KCk0uk0H9-rmIXlYg4vuLAzJKlvf3_j04K3bkX5rzf7s8bF_F2GoTemoKKYIVEZlHT6oRGjKwE7_vug80qyRzuHdnG7vzs8FkVftV7UnSaVQOKQjrV6LT6_xzxCHrnbgY0sg2Xkzx0-w5uvPsN01Z2DtXt2F2d2YX4-Gv8_YOcOcl5pnsAXJp-2Et_WoJqzqpFmMolnJpjWjz2olCzpDPrFIyNms0b7M8SIyXLacWyo7warJ9A8NeGcXpJ3eg_ury_HFgLftFbiTcbzkaOHcxTpTTiRFViYOuUapRFU4qbTFvVlFNo-LKkqquPLIO7xKksxrlzqflamX-7BRT2v_FZiWCHmGyZYViLAtLQZEZYWSwsWpz6Ie8M6oZtZU0TCdvOzJNCAYAsE0IPRAd5Y3_60Gg47-jSd_dEAZ3Cj098PWfrpaGBmktFQ6tQdfGgT_zUXmIRFODt793mPYHIxHQzP8efvrG2wJ6hIc9D2HsLGcr_wRUpdl8T0szWeYROsE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ST-GMLP%3A+A+concise+spatial-temporal+framework+based+on+gated+multi-layer+perceptron+for+traffic+flow+forecasting&rft.jtitle=Neural+networks&rft.au=Luo%2C+Yong&rft.au=Zheng%2C+Jianying&rft.au=Wang%2C+Xiang&rft.au=E%2C+Wenjuan&rft.date=2025-04-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=184&rft.spage=107074&rft_id=info:doi/10.1016%2Fj.neunet.2024.107074&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon