ST-GMLP: A concise spatial-temporal framework based on gated multi-layer perceptron for traffic flow forecasting
The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing st...
Saved in:
| Published in | Neural networks Vol. 184; p. 107074 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0893-6080 1879-2782 1879-2782 |
| DOI | 10.1016/j.neunet.2024.107074 |
Cover
| Abstract | The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing studies restrict themselves to recent historical observations and typically yield structurally and computationally complex models, which greatly limits the forecasting accuracy and hinders the application of models in realistic situations. To this end, this paper proposes a concise framework named Spatial-Temporal Gated Multi-Layer Perceptron (ST-GMLP), aiming to enhance the forecasting performance by leveraging the temporal patterns of different scales with a simple and effective structure. Nevertheless, due to the incorporation of more historical features, the presence of distribution shifts between periods further restricts the forecasting accuracy. To address the above issue, ST-GMLP employs a parallel structure of learning the interdependencies of traffic flow in both spatial node and temporal directions, and then establishes the interactions between time and space to effectively mitigate the adverse effects due to temporal distribution shifts. Owing to the utilization of MLP with gated mechanisms (GMLP) for modeling the spatial-temporal interdependencies, ST-GMLP has significant advantages in terms of training efficiency and resources occupation. Extensive experimental findings indicate that ST-GMLP exhibits superior performance in comparison to state-of-the-art methods. |
|---|---|
| AbstractList | The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing studies restrict themselves to recent historical observations and typically yield structurally and computationally complex models, which greatly limits the forecasting accuracy and hinders the application of models in realistic situations. To this end, this paper proposes a concise framework named Spatial-Temporal Gated Multi-Layer Perceptron (ST-GMLP), aiming to enhance the forecasting performance by leveraging the temporal patterns of different scales with a simple and effective structure. Nevertheless, due to the incorporation of more historical features, the presence of distribution shifts between periods further restricts the forecasting accuracy. To address the above issue, ST-GMLP employs a parallel structure of learning the interdependencies of traffic flow in both spatial node and temporal directions, and then establishes the interactions between time and space to effectively mitigate the adverse effects due to temporal distribution shifts. Owing to the utilization of MLP with gated mechanisms (GMLP) for modeling the spatial-temporal interdependencies, ST-GMLP has significant advantages in terms of training efficiency and resources occupation. Extensive experimental findings indicate that ST-GMLP exhibits superior performance in comparison to state-of-the-art methods. The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing studies restrict themselves to recent historical observations and typically yield structurally and computationally complex models, which greatly limits the forecasting accuracy and hinders the application of models in realistic situations. To this end, this paper proposes a concise framework named Spatial-Temporal Gated Multi-Layer Perceptron (ST-GMLP), aiming to enhance the forecasting performance by leveraging the temporal patterns of different scales with a simple and effective structure. Nevertheless, due to the incorporation of more historical features, the presence of distribution shifts between periods further restricts the forecasting accuracy. To address the above issue, ST-GMLP employs a parallel structure of learning the interdependencies of traffic flow in both spatial node and temporal directions, and then establishes the interactions between time and space to effectively mitigate the adverse effects due to temporal distribution shifts. Owing to the utilization of MLP with gated mechanisms (GMLP) for modeling the spatial-temporal interdependencies, ST-GMLP has significant advantages in terms of training efficiency and resources occupation. Extensive experimental findings indicate that ST-GMLP exhibits superior performance in comparison to state-of-the-art methods.The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing studies restrict themselves to recent historical observations and typically yield structurally and computationally complex models, which greatly limits the forecasting accuracy and hinders the application of models in realistic situations. To this end, this paper proposes a concise framework named Spatial-Temporal Gated Multi-Layer Perceptron (ST-GMLP), aiming to enhance the forecasting performance by leveraging the temporal patterns of different scales with a simple and effective structure. Nevertheless, due to the incorporation of more historical features, the presence of distribution shifts between periods further restricts the forecasting accuracy. To address the above issue, ST-GMLP employs a parallel structure of learning the interdependencies of traffic flow in both spatial node and temporal directions, and then establishes the interactions between time and space to effectively mitigate the adverse effects due to temporal distribution shifts. Owing to the utilization of MLP with gated mechanisms (GMLP) for modeling the spatial-temporal interdependencies, ST-GMLP has significant advantages in terms of training efficiency and resources occupation. Extensive experimental findings indicate that ST-GMLP exhibits superior performance in comparison to state-of-the-art methods. |
| ArticleNumber | 107074 |
| Author | Zhu, Zhongkui Wang, Xiang Luo, Yong E, Wenjuan Jiang, Xingxing Zheng, Jianying |
| Author_xml | – sequence: 1 givenname: Yong surname: Luo fullname: Luo, Yong email: luooyoong@163.com organization: School of Rail Transportation, Soochow University, Suzhou 215131, China – sequence: 2 givenname: Jianying surname: Zheng fullname: Zheng, Jianying email: zjy@szcu.edu.cn organization: School of Smart Manufacturing and Intelligent Transportation, Suzhou City University, Suzhou 215104, China – sequence: 3 givenname: Xiang surname: Wang fullname: Wang, Xiang email: wangxiang@suda.edu.cn organization: School of Rail Transportation, Soochow University, Suzhou 215131, China – sequence: 4 givenname: Wenjuan surname: E fullname: E, Wenjuan email: wje@suda.edu.cn organization: School of Rail Transportation, Soochow University, Suzhou 215131, China – sequence: 5 givenname: Xingxing surname: Jiang fullname: Jiang, Xingxing email: jiangxx@suda.edu.cn organization: School of Rail Transportation, Soochow University, Suzhou 215131, China – sequence: 6 givenname: Zhongkui surname: Zhu fullname: Zhu, Zhongkui email: zhuzhongkui@suda.edu.cn organization: School of Rail Transportation, Soochow University, Suzhou 215131, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39721105$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UcFq3DAUFCWl2Wz7B6Xo2Is3kiVZcg-FENo0sKGBpGchy09BW9tyJTkhf18tTnvM6T3emxmYmTN0MoUJEPpIyY4S2pwfdhMsE-RdTWpeTpJI_gZtqJJtVUtVn6ANUS2rGqLIKTpL6UAIaRRn79Apa2VNKREbNN_dV1c3-9sv-ALbMFmfAKfZZG-GKsM4h2gG7KIZ4SnE37gzCXocJvxgclnGZci-GswzRDxDtDDnWJ4uRJyjcc5b7IbwdDyANSn76eE9euvMkODDy9yiX9-_3V_-qPY_r64vL_aVZZTmykLfWioVt7XoVC8sJXXPa9dZxqURjDpiWto5Ihx1QIUALoQCaRsLqm-AbdHnVXeO4c8CKevRJwvDYCYIS9KM8lYwyUsgW_TpBbp0I_R6jn408Vn_S6kA-AqwMaQUwf2HUKKPZeiDXsvQxzL0WkahfV1pUHw-eog6WQ9TseZLHFn3wb8u8BfLsJTx |
| Cites_doi | 10.3141/1678-22 10.1080/15472450902858368 10.1016/0893-6080(89)90020-8 10.1016/j.neunet.2023.12.016 10.1109/TNNLS.2020.2978386 10.1109/TITS.2004.837813 10.1109/TITS.2023.3237205 10.1016/j.neunet.2023.106093 10.1109/TITS.2022.3208943 10.24963/ijcai.2024/442 10.1016/j.inffus.2024.102228 10.1109/TITS.2024.3362145 10.1162/neco.1997.9.8.1735 10.1016/j.inffus.2023.101946 10.1016/j.neunet.2021.10.021 10.1109/TITS.2021.3056415 10.1109/TKDE.2021.3056502 10.1016/j.trc.2022.103921 10.1016/j.eswa.2023.121325 10.1016/j.inffus.2023.102122 10.1109/TITS.2023.3243913 10.1007/BF02551274 10.1016/j.knosys.2024.111637 10.3390/s17071501 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neunet.2024.107074 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| ExternalDocumentID | 39721105 10_1016_j_neunet_2024_107074 S0893608024010037 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABDPE ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADNMO ADRHT AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSH SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c311t-ced9c1784c25b8d5c102d42fbc347a531f0a91bf05f1fe155e4558e7c6ce8d6e3 |
| IEDL.DBID | .~1 |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Sun Sep 28 08:44:00 EDT 2025 Mon Jul 21 05:47:36 EDT 2025 Wed Oct 01 06:31:40 EDT 2025 Sat Apr 12 15:20:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spatial-temporal data Deep learning Traffic prediction Gated mechanisms Multi-layer perceptron |
| Language | English |
| License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c311t-ced9c1784c25b8d5c102d42fbc347a531f0a91bf05f1fe155e4558e7c6ce8d6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 39721105 |
| PQID | 3149537484 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3149537484 pubmed_primary_39721105 crossref_primary_10_1016_j_neunet_2024_107074 elsevier_sciencedirect_doi_10_1016_j_neunet_2024_107074 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ekambaram, Jati, Nguyen, Sinthong, Kalagnanam (bib0008) 2023 Seo, Defferrard, Vandergheynst, Bresson (bib0038) 2018 Li, Yu, Shahabi, Liu (bib0026) 2018 Cybenko (bib0005) 1989; 2 Ou, Sun, Zhu, Jin, Liu, Zhang, Wang (bib0034) 2022; 35 Song, Lin, Guo, Wan (bib0041) 2020 Eldan, Shamir (bib0009) 2016 Lan, Ma, Huang, Wang, Yang, Li (bib0023) 2022 Gao, H., Jiang, R., Dong, Z., Deng, J., Ma, Y., & Song, X. (2024). Spatial-temporal-decoupled masked pre-training for spatiotemporal forecasting. Guo, Lin, Feng, Song, Wan (bib0015) 2019 Lee, Fambro (bib0024) 1999; 1678 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0044) 2017 Geng, Xu, Wu, Zhao, Wang, Li, Zhang (bib0014) 2024; 105 Safran, Shamir (bib0037) 2017 Wang, Jing, Huang, Jin, Lv (bib0046) 2023; 24 Shao, Zhang, Wang, Wei, Xu (bib0039) 2022 He, Zhang, Ren, Sun (bib0017) 2016 Sun (bib0042) 2022; 23 Li, Zhu (bib0025) 2021 Xu, Han, Zhu, Sun, Du, Lv (bib0051) 2023; 100 Hornik, Stinchcombe, White (bib0019) 1989; 2 Luo, Zheng, Wang, Tao, Jiang (bib0033) 2024; 171 Wu, Pan, Chen, Long, Zhang, Philip (bib0048) 2020; 32 Wu, Ho, Lee (bib0047) 2004; 5 Shaygan, Meese, Li, Zhao, Nejad (bib0040) 2022; 145 Fan, Weng, Tian, Wu, Zhu, Wu (bib0010) 2024; 172 Feng, Ke, Yang, Ye (bib0012) 2021; 23 Fang, Long, Song, Xie (bib0011) 2021 Liu, Dong, Jiang, Deng, Deng, Chen, Song (bib0029) 2023 Zheng, Fan, Wang, Qi (bib0054) 2020 Guo, Lin, Wan, Li, Cong (bib0016) 2022; 34 Yu, Wu, Wang, Wang, Ma (bib0053) 2017; 17 Ounoughi, Ben Yahia (bib0035) 2024; 236 Yu, Yin, Zhu (bib0052) 2018 Liu, Zhu, Ye, Meng, Sun, Du (bib0030) 2023; 24 Deng, Chen, Jiang, Song, Tsang (bib0006) 2021 Jiang, Han, Zhao, Wang (bib0021) 2023 Wang (bib0045) 2020 Ali, Zhu, Zakarya (bib0001) 2022; 145 Hochreiter, Schmidhuber (bib0018) 1997; 9 Pan (bib0036) 2021 Bai, Yao, Li, Wang, Wang (bib0002) 2020 Liu, Zheng, Feng, Chen (bib0031) 2017 Chandra, Al-Deek (bib0004) 2009; 13 Tedjopurnomo, Bao, Zheng, Choudhury, Qin (bib0043) 2022; 34 Wu, Pan, Long, Jiang, Zhang (bib0050) 2019 Wu, Pan, Long, Jiang, Chang, Zhang (bib0049) 2020 Ji, Wang, Huang, Wu, Xu, Wu, Zheng (bib0020) 2023 Kong, Fan, Zuo, Deveci, Jin, Zhong (bib0022) 2024; 103 Luo, He, Han, Wang, Li (bib0032) 2024; 293 Duan, He, Zhou, Thiele, Rao (bib0007) 2023 Liu, C., Yang, S., Xu, Q., Li, Z., Long, C., Li, Z., & Zhao, R. (2024). Spatial-temporal large language model for traffic prediction. arxiv preprint arxiv:2401.10134. Liu, Zhang (bib0027) 2024; 25 Berndt, Clifford (bib0003) 1994 2024. Li (10.1016/j.neunet.2024.107074_bib0026) 2018 Luo (10.1016/j.neunet.2024.107074_bib0033) 2024; 171 Ou (10.1016/j.neunet.2024.107074_bib0034) 2022; 35 Wang (10.1016/j.neunet.2024.107074_bib0046) 2023; 24 Zheng (10.1016/j.neunet.2024.107074_bib0054) 2020 10.1016/j.neunet.2024.107074_bib0028 Wu (10.1016/j.neunet.2024.107074_bib0047) 2004; 5 Tedjopurnomo (10.1016/j.neunet.2024.107074_bib0043) 2022; 34 Wang (10.1016/j.neunet.2024.107074_bib0045) 2020 Shao (10.1016/j.neunet.2024.107074_bib0039) 2022 Deng (10.1016/j.neunet.2024.107074_bib0006) 2021 Song (10.1016/j.neunet.2024.107074_bib0041) 2020 Fan (10.1016/j.neunet.2024.107074_bib0010) 2024; 172 Shaygan (10.1016/j.neunet.2024.107074_bib0040) 2022; 145 Chandra (10.1016/j.neunet.2024.107074_bib0004) 2009; 13 Ounoughi (10.1016/j.neunet.2024.107074_bib0035) 2024; 236 Ekambaram (10.1016/j.neunet.2024.107074_bib0008) 2023 10.1016/j.neunet.2024.107074_bib0013 Geng (10.1016/j.neunet.2024.107074_bib0014) 2024; 105 Bai (10.1016/j.neunet.2024.107074_bib0002) 2020 Jiang (10.1016/j.neunet.2024.107074_bib0021) 2023 Xu (10.1016/j.neunet.2024.107074_bib0051) 2023; 100 Kong (10.1016/j.neunet.2024.107074_bib0022) 2024; 103 Hochreiter (10.1016/j.neunet.2024.107074_bib0018) 1997; 9 Wu (10.1016/j.neunet.2024.107074_bib0049) 2020 Yu (10.1016/j.neunet.2024.107074_bib0053) 2017; 17 He (10.1016/j.neunet.2024.107074_bib0017) 2016 Fang (10.1016/j.neunet.2024.107074_bib0011) 2021 Liu (10.1016/j.neunet.2024.107074_bib0031) 2017 Li (10.1016/j.neunet.2024.107074_bib0025) 2021 Liu (10.1016/j.neunet.2024.107074_bib0029) 2023 Lan (10.1016/j.neunet.2024.107074_bib0023) 2022 Ji (10.1016/j.neunet.2024.107074_bib0020) 2023 Luo (10.1016/j.neunet.2024.107074_bib0032) 2024; 293 Eldan (10.1016/j.neunet.2024.107074_bib0009) 2016 Seo (10.1016/j.neunet.2024.107074_bib0038) 2018 Liu (10.1016/j.neunet.2024.107074_bib0027) 2024; 25 Guo (10.1016/j.neunet.2024.107074_bib0015) 2019 Safran (10.1016/j.neunet.2024.107074_bib0037) 2017 Feng (10.1016/j.neunet.2024.107074_bib0012) 2021; 23 Hornik (10.1016/j.neunet.2024.107074_bib0019) 1989; 2 Wu (10.1016/j.neunet.2024.107074_bib0050) 2019 Yu (10.1016/j.neunet.2024.107074_bib0052) 2018 Vaswani (10.1016/j.neunet.2024.107074_bib0044) 2017 Ali (10.1016/j.neunet.2024.107074_bib0001) 2022; 145 Wu (10.1016/j.neunet.2024.107074_bib0048) 2020; 32 Guo (10.1016/j.neunet.2024.107074_bib0016) 2022; 34 Lee (10.1016/j.neunet.2024.107074_bib0024) 1999; 1678 Berndt (10.1016/j.neunet.2024.107074_bib0003) 1994 Cybenko (10.1016/j.neunet.2024.107074_bib0005) 1989; 2 Duan (10.1016/j.neunet.2024.107074_bib0007) 2023 Liu (10.1016/j.neunet.2024.107074_bib0030) 2023; 24 Pan (10.1016/j.neunet.2024.107074_bib0036) 2021 Sun (10.1016/j.neunet.2024.107074_bib0042) 2022; 23 |
| References_xml | – start-page: 1846 year: 2021 end-page: 1855 ident: bib0036 article-title: AutoSTG: Neural architecture search for predictions of spatio-temporal graph publication-title: Proceedings of the Web Conference – volume: 23 start-page: 23680 year: 2022 end-page: 23693 ident: bib0042 article-title: Dual dynamic spatial-temporal graph convolution network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 1 year: 2017 end-page: 6 ident: bib0031 article-title: Short-term traffic flow prediction with conv-LSTM publication-title: Proceedings of the WCSP – volume: 171 start-page: 251 year: 2024 end-page: 262 ident: bib0033 article-title: GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction publication-title: Neural Networks – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib0019 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural networks – volume: 293 year: 2024 ident: bib0032 article-title: LSTTN: A long-short term transformer-based spatiotemporal neural network for traffic flow forecasting publication-title: Knowledge-Based Systems – start-page: 11906 year: 2022 end-page: 11917 ident: bib0023 article-title: DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting publication-title: Proceedings of the ICML – volume: 105 year: 2024 ident: bib0014 article-title: STGAFormer: Spatial–temporal gated attention transformer based graph neural network for traffic flow forecasting publication-title: Information Fusion – volume: 34 start-page: 5415 year: 2022 end-page: 5428 ident: bib0016 article-title: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 1907 year: 2019 end-page: 1913 ident: bib0050 article-title: Graph WaveNet for deep spatial-temporal graph modeling publication-title: Proceedings of the IJCAI – volume: 17 start-page: 1501 year: 2017 ident: bib0053 article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks publication-title: Sensors – start-page: 359 year: 1994 end-page: 370 ident: bib0003 article-title: Using dynamic time warping to find patterns in time series publication-title: Proceedings of the KDD – volume: 100 year: 2023 ident: bib0051 article-title: Generic dynamic graph convolutional network for traffic flow forecasting publication-title: Information Fusion – volume: 34 start-page: 1544 year: 2022 end-page: 1561 ident: bib0043 article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 1234 year: 2020 end-page: 1241 ident: bib0054 article-title: Gman: A graph multi-attention network for traffic prediction publication-title: Proceedings of the AAAI – volume: 5 start-page: 276 year: 2004 end-page: 281 ident: bib0047 article-title: Travel-time prediction with support vector regression publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 448 year: 2023 end-page: 458 ident: bib0007 article-title: Localised adaptive spatial-temporal graph neural network publication-title: Proceedings of the KDD – start-page: 269 year: 2021 end-page: 278 ident: bib0006 article-title: ST-Norm: Spatial and temporal normalization for multi-variate time series forecasting publication-title: Proceedings of the KDD – reference: Gao, H., Jiang, R., Dong, Z., Deng, J., Ma, Y., & Song, X. (2024). Spatial-temporal-decoupled masked pre-training for spatiotemporal forecasting. – volume: 103 year: 2024 ident: bib0022 article-title: ADCT-Net: Adaptive traffic forecasting neural network via dual-graphic cross-fused transformer publication-title: Information Fusion – start-page: 4454 year: 2022 end-page: 4458 ident: bib0039 article-title: Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting publication-title: Proceedings of the CIKM – start-page: 770 year: 2016 end-page: 778 ident: bib0017 article-title: Deep residual learning for image recognition publication-title: Proceedings of the CVPR – volume: 145 year: 2022 ident: bib0040 article-title: Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities publication-title: Transportation Research Part C: Emerging Technologies – start-page: 17804 year: 2020 end-page: 17815 ident: bib0002 article-title: Adaptive graph convolutional recurrent network for traffic forecasting publication-title: Proceedings of the NeurIPS – start-page: 914 year: 2020 end-page: 921 ident: bib0041 article-title: Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting publication-title: Proceedings of the AAAI – volume: 32 start-page: 4 year: 2020 end-page: 24 ident: bib0048 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 2979 year: 2017 end-page: 2987 ident: bib0037 article-title: Depth-width tradeoffs in approximating natural functions with neural networks publication-title: Proceedings of the ICML – start-page: 4365 year: 2023 end-page: 4373 ident: bib0021 article-title: PDFormer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction publication-title: Proceedings of the AAAI – start-page: 3634 year: 2018 end-page: 3640 ident: bib0052 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting publication-title: Proceedings of the IJCAI – start-page: 364 year: 2021 end-page: 373 ident: bib0011 article-title: Spatial-temporal graph ODE networks for traffic flow forecasting publication-title: Proceedings of the KDD – start-page: 4125 year: 2023 end-page: 4129 ident: bib0029 article-title: Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting publication-title: Proceedings of the 32nd ACM international conference on information and knowledge management – start-page: 753 year: 2020 end-page: 763 ident: bib0049 article-title: Connecting the dots: Multivariate time series forecasting with graph neural networks publication-title: Proceedings of the KDD – volume: 145 start-page: 233 year: 2022 end-page: 247 ident: bib0001 article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction publication-title: Neural Networks – start-page: 4189 year: 2021 end-page: 4196 ident: bib0025 article-title: Spatial-temporal fusion graph neural networks for traffic flow forecasting publication-title: Proceedings of the AAAI – start-page: 4356 year: 2023 end-page: 4364 ident: bib0020 article-title: Spatio-temporal self-supervised learning for traffic flow prediction publication-title: Proceedings of the AAAI – volume: 236 year: 2024 ident: bib0035 article-title: Sequence to sequence hybrid Bi-LSTM model for traffic speed prediction publication-title: Expert Systems with Applications – start-page: 5998 year: 2017 end-page: 6008 ident: bib0044 article-title: Attention is all you need publication-title: Proceedings of the NeurIPS – volume: 13 start-page: 53 year: 2009 end-page: 72 ident: bib0004 article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models publication-title: Journal of Intelligent Transportation Systems – start-page: 907 year: 2016 end-page: 940 ident: bib0009 article-title: The power of depth for feedforward neural networks publication-title: Proceedings of the COLT – start-page: 459 year: 2023 end-page: 469 ident: bib0008 article-title: TSMixer: Lightweight MLP-mixer model for multivariate time series forecasting publication-title: Proceedings of the KDD – start-page: 1082 year: 2020 end-page: 1092 ident: bib0045 article-title: Traffic flow prediction via spatial-temporal graph neural network publication-title: Proceedings of the Web Conference – volume: 172 year: 2024 ident: bib0010 article-title: RGDAN: A random graph diffusion attention network for traffic prediction publication-title: Neural Networks – start-page: 922 year: 2019 end-page: 929 ident: bib0015 article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting publication-title: Proceedings of the AAAI – volume: 1678 start-page: 179 year: 1999 end-page: 188 ident: bib0024 article-title: Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting publication-title: Transportation research record – reference: Liu, C., Yang, S., Xu, Q., Li, Z., Long, C., Li, Z., & Zhao, R. (2024). Spatial-temporal large language model for traffic prediction. arxiv preprint arxiv:2401.10134. – start-page: 362 year: 2018 end-page: 373 ident: bib0038 article-title: Structured sequence modeling with graph convolutional recurrent networks publication-title: Proceedings of the ICLR – volume: 35 start-page: 7526 year: 2022 end-page: 7540 ident: bib0034 article-title: STP-TrellisNets+: Spatial-temporal parallel TrellisNets for multi-step metro station passenger flow prediction publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 24 start-page: 3882 year: 2023 end-page: 3907 ident: bib0046 article-title: Adaptive spatiotemporal inceptionnet for traffic flow forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 24 start-page: 5516 year: 2023 end-page: 5526 ident: bib0030 article-title: Spatio-temporal autoencoder for traffic flow prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: bib0005 article-title: Approximation by superpositions of a sigmoidal function publication-title: Mathematics of control, signals and systems – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0018 article-title: Long short-term memory publication-title: Neural Computation – volume: 25 start-page: 7645 year: 2024 end-page: 7660 ident: bib0027 article-title: Spatial–Temporal Dynamic Graph Convolutional Network with Interactive Learning for Traffic Forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 23 start-page: 5704 year: 2021 end-page: 5716 ident: bib0012 article-title: A multi-task matrix factorized graph neural network for co-prediction of zone-based and OD-based ride-hailing demand publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: , 2024. – start-page: 1 year: 2018 end-page: 16 ident: bib0026 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting publication-title: Proceedings of the ICLR – volume: 1678 start-page: 179 issue: 1 year: 1999 ident: 10.1016/j.neunet.2024.107074_bib0024 article-title: Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting publication-title: Transportation research record doi: 10.3141/1678-22 – start-page: 3634 year: 2018 ident: 10.1016/j.neunet.2024.107074_bib0052 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting – volume: 13 start-page: 53 issue: 2 year: 2009 ident: 10.1016/j.neunet.2024.107074_bib0004 article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models publication-title: Journal of Intelligent Transportation Systems doi: 10.1080/15472450902858368 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.neunet.2024.107074_bib0019 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural networks doi: 10.1016/0893-6080(89)90020-8 – start-page: 1082 year: 2020 ident: 10.1016/j.neunet.2024.107074_bib0045 article-title: Traffic flow prediction via spatial-temporal graph neural network – ident: 10.1016/j.neunet.2024.107074_bib0028 – volume: 171 start-page: 251 year: 2024 ident: 10.1016/j.neunet.2024.107074_bib0033 article-title: GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction publication-title: Neural Networks doi: 10.1016/j.neunet.2023.12.016 – start-page: 1 year: 2017 ident: 10.1016/j.neunet.2024.107074_bib0031 article-title: Short-term traffic flow prediction with conv-LSTM – volume: 35 start-page: 7526 issue: 7 year: 2022 ident: 10.1016/j.neunet.2024.107074_bib0034 article-title: STP-TrellisNets+: Spatial-temporal parallel TrellisNets for multi-step metro station passenger flow prediction publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 32 start-page: 4 issue: 1 year: 2020 ident: 10.1016/j.neunet.2024.107074_bib0048 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.2978386 – volume: 5 start-page: 276 issue: 4 year: 2004 ident: 10.1016/j.neunet.2024.107074_bib0047 article-title: Travel-time prediction with support vector regression publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2004.837813 – volume: 24 start-page: 3882 issue: 4 year: 2023 ident: 10.1016/j.neunet.2024.107074_bib0046 article-title: Adaptive spatiotemporal inceptionnet for traffic flow forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2023.3237205 – volume: 172 year: 2024 ident: 10.1016/j.neunet.2024.107074_bib0010 article-title: RGDAN: A random graph diffusion attention network for traffic prediction publication-title: Neural Networks doi: 10.1016/j.neunet.2023.106093 – start-page: 4125 year: 2023 ident: 10.1016/j.neunet.2024.107074_bib0029 article-title: Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting – start-page: 922 year: 2019 ident: 10.1016/j.neunet.2024.107074_bib0015 article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting – start-page: 753 year: 2020 ident: 10.1016/j.neunet.2024.107074_bib0049 article-title: Connecting the dots: Multivariate time series forecasting with graph neural networks – start-page: 448 year: 2023 ident: 10.1016/j.neunet.2024.107074_bib0007 article-title: Localised adaptive spatial-temporal graph neural network – volume: 23 start-page: 23680 issue: 12 year: 2022 ident: 10.1016/j.neunet.2024.107074_bib0042 article-title: Dual dynamic spatial-temporal graph convolution network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2022.3208943 – start-page: 770 year: 2016 ident: 10.1016/j.neunet.2024.107074_bib0017 article-title: Deep residual learning for image recognition – ident: 10.1016/j.neunet.2024.107074_bib0013 doi: 10.24963/ijcai.2024/442 – start-page: 2979 year: 2017 ident: 10.1016/j.neunet.2024.107074_bib0037 article-title: Depth-width tradeoffs in approximating natural functions with neural networks – volume: 105 year: 2024 ident: 10.1016/j.neunet.2024.107074_bib0014 article-title: STGAFormer: Spatial–temporal gated attention transformer based graph neural network for traffic flow forecasting publication-title: Information Fusion doi: 10.1016/j.inffus.2024.102228 – volume: 34 start-page: 1544 issue: 4 year: 2022 ident: 10.1016/j.neunet.2024.107074_bib0043 article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 364 year: 2021 ident: 10.1016/j.neunet.2024.107074_bib0011 article-title: Spatial-temporal graph ODE networks for traffic flow forecasting – start-page: 1234 year: 2020 ident: 10.1016/j.neunet.2024.107074_bib0054 article-title: Gman: A graph multi-attention network for traffic prediction – volume: 25 start-page: 7645 issue: 7 year: 2024 ident: 10.1016/j.neunet.2024.107074_bib0027 article-title: Spatial–Temporal Dynamic Graph Convolutional Network with Interactive Learning for Traffic Forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2024.3362145 – start-page: 459 year: 2023 ident: 10.1016/j.neunet.2024.107074_bib0008 article-title: TSMixer: Lightweight MLP-mixer model for multivariate time series forecasting – start-page: 362 year: 2018 ident: 10.1016/j.neunet.2024.107074_bib0038 article-title: Structured sequence modeling with graph convolutional recurrent networks – start-page: 11906 year: 2022 ident: 10.1016/j.neunet.2024.107074_bib0023 article-title: DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.neunet.2024.107074_bib0018 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – start-page: 1907 year: 2019 ident: 10.1016/j.neunet.2024.107074_bib0050 article-title: Graph WaveNet for deep spatial-temporal graph modeling – volume: 100 year: 2023 ident: 10.1016/j.neunet.2024.107074_bib0051 article-title: Generic dynamic graph convolutional network for traffic flow forecasting publication-title: Information Fusion doi: 10.1016/j.inffus.2023.101946 – volume: 145 start-page: 233 year: 2022 ident: 10.1016/j.neunet.2024.107074_bib0001 article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction publication-title: Neural Networks doi: 10.1016/j.neunet.2021.10.021 – volume: 23 start-page: 5704 issue: 6 year: 2021 ident: 10.1016/j.neunet.2024.107074_bib0012 article-title: A multi-task matrix factorized graph neural network for co-prediction of zone-based and OD-based ride-hailing demand publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2021.3056415 – start-page: 4189 year: 2021 ident: 10.1016/j.neunet.2024.107074_bib0025 article-title: Spatial-temporal fusion graph neural networks for traffic flow forecasting – volume: 34 start-page: 5415 issue: 11 year: 2022 ident: 10.1016/j.neunet.2024.107074_bib0016 article-title: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2021.3056502 – start-page: 1 year: 2018 ident: 10.1016/j.neunet.2024.107074_bib0026 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting – start-page: 5998 year: 2017 ident: 10.1016/j.neunet.2024.107074_bib0044 article-title: Attention is all you need – volume: 145 year: 2022 ident: 10.1016/j.neunet.2024.107074_bib0040 article-title: Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2022.103921 – start-page: 17804 year: 2020 ident: 10.1016/j.neunet.2024.107074_bib0002 article-title: Adaptive graph convolutional recurrent network for traffic forecasting – start-page: 907 year: 2016 ident: 10.1016/j.neunet.2024.107074_bib0009 article-title: The power of depth for feedforward neural networks – volume: 236 year: 2024 ident: 10.1016/j.neunet.2024.107074_bib0035 article-title: Sequence to sequence hybrid Bi-LSTM model for traffic speed prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121325 – volume: 103 year: 2024 ident: 10.1016/j.neunet.2024.107074_bib0022 article-title: ADCT-Net: Adaptive traffic forecasting neural network via dual-graphic cross-fused transformer publication-title: Information Fusion doi: 10.1016/j.inffus.2023.102122 – volume: 24 start-page: 5516 year: 2023 ident: 10.1016/j.neunet.2024.107074_bib0030 article-title: Spatio-temporal autoencoder for traffic flow prediction publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2023.3243913 – start-page: 269 year: 2021 ident: 10.1016/j.neunet.2024.107074_bib0006 article-title: ST-Norm: Spatial and temporal normalization for multi-variate time series forecasting – start-page: 1846 year: 2021 ident: 10.1016/j.neunet.2024.107074_bib0036 article-title: AutoSTG: Neural architecture search for predictions of spatio-temporal graph – start-page: 4454 year: 2022 ident: 10.1016/j.neunet.2024.107074_bib0039 article-title: Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 10.1016/j.neunet.2024.107074_bib0005 article-title: Approximation by superpositions of a sigmoidal function publication-title: Mathematics of control, signals and systems doi: 10.1007/BF02551274 – start-page: 4365 year: 2023 ident: 10.1016/j.neunet.2024.107074_bib0021 article-title: PDFormer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction – volume: 293 year: 2024 ident: 10.1016/j.neunet.2024.107074_bib0032 article-title: LSTTN: A long-short term transformer-based spatiotemporal neural network for traffic flow forecasting publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2024.111637 – start-page: 4356 year: 2023 ident: 10.1016/j.neunet.2024.107074_bib0020 article-title: Spatio-temporal self-supervised learning for traffic flow prediction – start-page: 914 year: 2020 ident: 10.1016/j.neunet.2024.107074_bib0041 article-title: Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting – volume: 17 start-page: 1501 issue: 7 year: 2017 ident: 10.1016/j.neunet.2024.107074_bib0053 article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks publication-title: Sensors doi: 10.3390/s17071501 – start-page: 359 year: 1994 ident: 10.1016/j.neunet.2024.107074_bib0003 article-title: Using dynamic time warping to find patterns in time series |
| SSID | ssj0006843 |
| Score | 2.4606996 |
| Snippet | The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 107074 |
| SubjectTerms | Deep learning Forecasting - methods Gated mechanisms Humans Multi-layer perceptron Multilayer Perceptrons Neural Networks, Computer Spatial-temporal data Spatio-Temporal Analysis Traffic prediction |
| Title | ST-GMLP: A concise spatial-temporal framework based on gated multi-layer perceptron for traffic flow forecasting |
| URI | https://dx.doi.org/10.1016/j.neunet.2024.107074 https://www.ncbi.nlm.nih.gov/pubmed/39721105 https://www.proquest.com/docview/3149537484 |
| Volume | 184 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--H-uLCF7jtknatN6WxXV9LYIKewtpmsLK0l32gTd_uzNpq3gQwWua0jBfMo_mmxlCLpQoOA-SjIFthADFiJClKrDMZiaVJnNG-ZJCj4O4_yrvhtFwhXSbXBikVda6v9LpXlvXI-1amu3paNR-DsDUxpgqCiECllHBDHapsIvB5cc3zSNOKuYcTGY4u0mf8xyv0i1Lh4xKLmFIBUr-Zp5-cz-9GeptkY3af6SdaonbZMWVO2Sz6c1A66O6S6bPL-zm8eHpinYohLzYO4POkT1txqwuRzWmRcPMomjMcjopKf5Vy6mnGbKxAX-cTivqywwegoNLFzODVSdoMZ6844CzZo7U6T3y2rt-6fZZ3V2BWRGGCwYCTm2oEml5lCV5ZMHVyCUvMiukMnA0i8CkYVYEUREWDtwOJ6MoccrG1iV57MQ-WS0npTskVAlAPIFYy3AA2OQG7KE0XApuw9glQYuwRqh6WhXR0A277E1XIGgEQVcgtIhqJK9_bAYNev6PN88boDScE7z8MKWbLOdaeCYtVk5tkYMKwa-1iNTHwdHRv797TNY5Ngb2lJ4TsrqYLd0peCuL7MxvxzOy1rm97w8-ASMF6W8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BPcCl0ALtUiiuxNVsYjtxwg0hYEt3USUWiZvlOI4EWmVX-6He-tuZcZKiHhASVydRrHn2zJvkeQbgRMtKiCgrOMZGTFCsjHmuI8ddYXNlC291KCk0uk0H9-rmIXlYg4vuLAzJKlvf3_j04K3bkX5rzf7s8bF_F2GoTemoKKYIVEZlHT6oRGjKwE7_vug80qyRzuHdnG7vzs8FkVftV7UnSaVQOKQjrV6LT6_xzxCHrnbgY0sg2Xkzx0-w5uvPsN01Z2DtXt2F2d2YX4-Gv8_YOcOcl5pnsAXJp-2Et_WoJqzqpFmMolnJpjWjz2olCzpDPrFIyNms0b7M8SIyXLacWyo7warJ9A8NeGcXpJ3eg_ury_HFgLftFbiTcbzkaOHcxTpTTiRFViYOuUapRFU4qbTFvVlFNo-LKkqquPLIO7xKksxrlzqflamX-7BRT2v_FZiWCHmGyZYViLAtLQZEZYWSwsWpz6Ie8M6oZtZU0TCdvOzJNCAYAsE0IPRAd5Y3_60Gg47-jSd_dEAZ3Cj098PWfrpaGBmktFQ6tQdfGgT_zUXmIRFODt793mPYHIxHQzP8efvrG2wJ6hIc9D2HsLGcr_wRUpdl8T0szWeYROsE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ST-GMLP%3A+A+concise+spatial-temporal+framework+based+on+gated+multi-layer+perceptron+for+traffic+flow+forecasting&rft.jtitle=Neural+networks&rft.au=Luo%2C+Yong&rft.au=Zheng%2C+Jianying&rft.au=Wang%2C+Xiang&rft.au=E%2C+Wenjuan&rft.date=2025-04-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=184&rft.spage=107074&rft_id=info:doi/10.1016%2Fj.neunet.2024.107074&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |