Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance
Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially for the salinity ranges that are most relevant to agricultural producti...
Saved in:
| Published in | Remote sensing of environment Vol. 169; pp. 335 - 343 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.11.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0034-4257 1879-0704 |
| DOI | 10.1016/j.rse.2015.08.026 |
Cover
| Abstract | Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially for the salinity ranges that are most relevant to agricultural productivity (i.e., salinities less than 20dSm−1, when measured as the electrical conductivity of the soil saturation extract). This paper explores the potentials and limitations of assessing and mapping soil salinity via linear modeling of remote sensing vegetation indices. A case study is presented for western San Joaquin Valley, California, USA using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields comprising 542ha were used for ground-truthing. Re-gridded to 30×30m, the ground-truth data totaled over 5000pixels with salinity values in the range 0 to 35.2dSm−1. Multi-year maximum values of CRSI were used to model soil salinity. Soil type, meteorological data, and crop type were evaluated as covariates. All considered models were evaluated for their fit to the whole data set as well as their performance in a leave-one-field-out spatial cross-validation. The best performing model was a function of CRSI, crop type (i.e., cropped or fallow), rainfall, and average minimum temperature, with R2=0.728 when evaluated against all data and R2=0.611 for the cross-validation predictions. Broken out by salinity classes, the mean absolute errors (MAE) for the cross-validation predictions were (all units dSm−1): 2.94 for the 0–2 interval (non-saline), 2.12 for 2–4 (slightly saline), 2.35 for 4–8 (moderately saline), 3.23 for 8–16 (strongly saline), and 5.64 for >16 (extremely saline). On a per-field basis, the validation predictions had good agreement with the field average (R2=0.79, MAE=2.46dSm−1), minimum (R2=0.76, MAE=2.25dSm−1), and maximum (R2=0.76, MAE=3.09dSm−1) observed salinity. Overall, reasonably accurate and precise high resolution, regional-scale remote sensing of soil salinity is possible, even over the critical range of 0 to 20dSm−1, where researchers and policy makers must focus to prevent loss of agricultural productivity and ecosystem health.
Regional scale soil salinity assessment can successfully be carried out using multi-year Landsat ETM+ canopy reflectance and information on crop cover and meteorological settings. [Display omitted]
•Multi-year maxima of Landsat ETM+ vegetation indices correlates with soil salinity.•Linear regressions provide reliable salinity estimates at the regional scale.•Crop and meteorological covariates increase accuracy of soil salinity predictions.•Salinity assessment models are validated through a spatial cross-validation. |
|---|---|
| AbstractList | Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially for the salinity ranges that are most relevant to agricultural productivity (i.e., salinities less than 20dSm-1, when measured as the electrical conductivity of the soil saturation extract). This paper explores the potentials and limitations of assessing and mapping soil salinity via linear modeling of remote sensing vegetation indices. A case study is presented for western San Joaquin Valley, California, USA using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields comprising 542ha were used for ground-truthing. Re-gridded to 3030m, the ground-truth data totaled over 5000pixels with salinity values in the range 0 to 35.2dSm-1. Multi-year maximum values of CRSI were used to model soil salinity. Soil type, meteorological data, and crop type were evaluated as covariates. All considered models were evaluated for their fit to the whole data set as well as their performance in a leave-one-field-out spatial cross-validation. The best performing model was a function of CRSI, crop type (i.e., cropped or fallow), rainfall, and average minimum temperature, with R2 =0.728 when evaluated against all data and R2 =0.611 for the cross-validation predictions. Broken out by salinity classes, the mean absolute errors (MAE) for the cross-validation predictions were (all units dSm-1): 2.94 for the 0-2 interval (non-saline), 2.12 for 2-4 (slightly saline), 2.35 for 4-8 (moderately saline), 3.23 for 8-16 (strongly saline), and 5.64 for >16 (extremely saline). On a per-field basis, the validation predictions had good agreement with the field average (R2 =0.79, MAE=2.46dSm-1), minimum (R2 =0.76, MAE=2.25dSm-1), and maximum (R2 =0.76, MAE=3.09dSm-1) observed salinity. Overall, reasonably accurate and precise high resolution, regional-scale remote sensing of soil salinity is possible, even over the critical range of 0 to 20dSm-1, where researchers and policy makers must focus to prevent loss of agricultural productivity and ecosystem health. Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially for the salinity ranges that are most relevant to agricultural productivity (i.e., salinities less than 20dSm−1, when measured as the electrical conductivity of the soil saturation extract). This paper explores the potentials and limitations of assessing and mapping soil salinity via linear modeling of remote sensing vegetation indices. A case study is presented for western San Joaquin Valley, California, USA using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields comprising 542ha were used for ground-truthing. Re-gridded to 30×30m, the ground-truth data totaled over 5000pixels with salinity values in the range 0 to 35.2dSm−1. Multi-year maximum values of CRSI were used to model soil salinity. Soil type, meteorological data, and crop type were evaluated as covariates. All considered models were evaluated for their fit to the whole data set as well as their performance in a leave-one-field-out spatial cross-validation. The best performing model was a function of CRSI, crop type (i.e., cropped or fallow), rainfall, and average minimum temperature, with R2=0.728 when evaluated against all data and R2=0.611 for the cross-validation predictions. Broken out by salinity classes, the mean absolute errors (MAE) for the cross-validation predictions were (all units dSm−1): 2.94 for the 0–2 interval (non-saline), 2.12 for 2–4 (slightly saline), 2.35 for 4–8 (moderately saline), 3.23 for 8–16 (strongly saline), and 5.64 for >16 (extremely saline). On a per-field basis, the validation predictions had good agreement with the field average (R2=0.79, MAE=2.46dSm−1), minimum (R2=0.76, MAE=2.25dSm−1), and maximum (R2=0.76, MAE=3.09dSm−1) observed salinity. Overall, reasonably accurate and precise high resolution, regional-scale remote sensing of soil salinity is possible, even over the critical range of 0 to 20dSm−1, where researchers and policy makers must focus to prevent loss of agricultural productivity and ecosystem health. Regional scale soil salinity assessment can successfully be carried out using multi-year Landsat ETM+ canopy reflectance and information on crop cover and meteorological settings. [Display omitted] •Multi-year maxima of Landsat ETM+ vegetation indices correlates with soil salinity.•Linear regressions provide reliable salinity estimates at the regional scale.•Crop and meteorological covariates increase accuracy of soil salinity predictions.•Salinity assessment models are validated through a spatial cross-validation. Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially for the salinity ranges that are most relevant to agricultural productivity (i.e., salinities less than 20dSm−1, when measured as the electrical conductivity of the soil saturation extract). This paper explores the potentials and limitations of assessing and mapping soil salinity via linear modeling of remote sensing vegetation indices. A case study is presented for western San Joaquin Valley, California, USA using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields comprising 542ha were used for ground-truthing. Re-gridded to 30×30m, the ground-truth data totaled over 5000pixels with salinity values in the range 0 to 35.2dSm−1. Multi-year maximum values of CRSI were used to model soil salinity. Soil type, meteorological data, and crop type were evaluated as covariates. All considered models were evaluated for their fit to the whole data set as well as their performance in a leave-one-field-out spatial cross-validation. The best performing model was a function of CRSI, crop type (i.e., cropped or fallow), rainfall, and average minimum temperature, with R2=0.728 when evaluated against all data and R2=0.611 for the cross-validation predictions. Broken out by salinity classes, the mean absolute errors (MAE) for the cross-validation predictions were (all units dSm−1): 2.94 for the 0–2 interval (non-saline), 2.12 for 2–4 (slightly saline), 2.35 for 4–8 (moderately saline), 3.23 for 8–16 (strongly saline), and 5.64 for >16 (extremely saline). On a per-field basis, the validation predictions had good agreement with the field average (R2=0.79, MAE=2.46dSm−1), minimum (R2=0.76, MAE=2.25dSm−1), and maximum (R2=0.76, MAE=3.09dSm−1) observed salinity. Overall, reasonably accurate and precise high resolution, regional-scale remote sensing of soil salinity is possible, even over the critical range of 0 to 20dSm−1, where researchers and policy makers must focus to prevent loss of agricultural productivity and ecosystem health. |
| Author | Corwin, Dennis L. Skaggs, Todd H. Scudiero, Elia |
| Author_xml | – sequence: 1 givenname: Elia orcidid: 0000-0003-4944-721X surname: Scudiero fullname: Scudiero, Elia email: elia.scudiero@ars.usda.gov, scudiero@dmsa.unipd.it – sequence: 2 givenname: Todd H. surname: Skaggs fullname: Skaggs, Todd H. – sequence: 3 givenname: Dennis L. surname: Corwin fullname: Corwin, Dennis L. |
| BookMark | eNqNkU1rGzEQhkVIoU6aH5DbHgtlNzP7IcnkFEK-wCFQ0rOQ5dkgI2tdjVzwv4-Ce8ohyUkMPO8wet4TcRynSEKcIzQIKC_WTWJqWsChAd1AK4_EDLWa16CgPxYzgK6v-3ZQ38UJ8xoKqBXOxONvevFTtKFmZwNVPPlQsQ0--ryvLDMxbyjmasc-vlQLG1dsc3Xz_PircjZO232VaAzkso2Ofohvow1MZ__fU_Hn9ub5-r5ePN09XF8tatch5tophVo6GqGfkxx7NXYrlOVQKXEcrF7aYQlSOezkcq4G1LYrgxz10C9Jlq-cip-Hvds0_d0RZ7Px7CgEG2nasWmhQNjLtv0URSVbROiV_gLaKjlX0A0FxQPq0sRcDJht8hub9gbBvBVi1qYUYt4KMaBNKaRk1LuM89nmYj8n68OHyctDkorTf56SYeep-F75VMyb1eQ_SL8CEh6l2g |
| CitedBy_id | crossref_primary_10_1016_j_catena_2020_104939 crossref_primary_10_1016_j_scitotenv_2021_147216 crossref_primary_10_3390_rs11222605 crossref_primary_10_1016_j_geoderma_2020_114211 crossref_primary_10_7717_peerj_10585 crossref_primary_10_3390_land13060877 crossref_primary_10_1038_s41598_024_60033_6 crossref_primary_10_3390_rs16244812 crossref_primary_10_1016_j_catena_2023_107375 crossref_primary_10_1111_sum_12262 crossref_primary_10_1016_j_ecolind_2023_110639 crossref_primary_10_1016_j_catena_2019_01_040 crossref_primary_10_1109_ACCESS_2020_2995458 crossref_primary_10_3390_ijerph14091018 crossref_primary_10_3390_s18020616 crossref_primary_10_1111_sum_12666 crossref_primary_10_1016_j_geodrs_2023_e00695 crossref_primary_10_3390_rs16040684 crossref_primary_10_1080_01431161_2023_2235640 crossref_primary_10_1016_j_rse_2025_114708 crossref_primary_10_1016_j_scitotenv_2021_146253 crossref_primary_10_34133_remotesensing_0130 crossref_primary_10_3389_fmars_2022_895172 crossref_primary_10_1016_j_agwat_2017_09_016 crossref_primary_10_1007_s41207_017_0021_1 crossref_primary_10_1016_j_geoderma_2017_02_004 crossref_primary_10_1016_j_jag_2022_102838 crossref_primary_10_1080_22797254_2019_1596756 crossref_primary_10_1016_j_geoderma_2021_115656 crossref_primary_10_1111_sum_12772 crossref_primary_10_1016_j_fcr_2025_109752 crossref_primary_10_1002_saj2_20153 crossref_primary_10_1016_j_scitotenv_2020_142030 crossref_primary_10_1016_j_scitotenv_2021_152524 crossref_primary_10_1016_j_jag_2018_06_006 crossref_primary_10_1088_1755_1315_692_4_042007 crossref_primary_10_3390_rs12162601 crossref_primary_10_1016_j_ecolind_2018_02_041 crossref_primary_10_1016_j_geoderma_2018_08_006 crossref_primary_10_3390_w14091438 crossref_primary_10_1038_s41598_023_27760_8 crossref_primary_10_1007_s10661_023_12197_3 crossref_primary_10_1016_j_scitotenv_2023_167720 crossref_primary_10_3390_plants11233259 crossref_primary_10_3390_rs14030512 crossref_primary_10_1016_j_agwat_2024_109114 crossref_primary_10_3389_fpls_2024_1437390 crossref_primary_10_1016_j_geoderma_2023_116738 crossref_primary_10_3390_rs15092332 crossref_primary_10_3390_rs11080967 crossref_primary_10_1109_JSTARS_2023_3274579 crossref_primary_10_3390_land11071041 crossref_primary_10_1016_j_scitotenv_2019_136092 crossref_primary_10_3390_rs15020387 crossref_primary_10_3390_rs15102540 crossref_primary_10_1016_j_catena_2019_104192 crossref_primary_10_1007_s43621_024_00594_8 crossref_primary_10_3390_land12091769 crossref_primary_10_31988_SciTrends_46281 crossref_primary_10_3390_agronomy13123074 crossref_primary_10_1080_07038992_2022_2056435 crossref_primary_10_1109_JSTARS_2022_3223935 crossref_primary_10_5194_nhess_19_1499_2019 crossref_primary_10_1016_j_scitotenv_2022_160741 crossref_primary_10_3390_rs13163100 crossref_primary_10_3390_rs15184400 crossref_primary_10_1016_j_ancene_2022_100322 crossref_primary_10_1016_j_earscirev_2020_103295 crossref_primary_10_1080_01431161_2016_1259681 crossref_primary_10_18393_ejss_1380500 crossref_primary_10_1111_ejss_13010 crossref_primary_10_1007_s10661_017_6197_7 crossref_primary_10_1080_01431161_2021_2009589 crossref_primary_10_3390_rs15040940 crossref_primary_10_1016_j_jag_2016_06_024 crossref_primary_10_1007_s11356_021_17677_y crossref_primary_10_1016_j_jag_2018_12_011 crossref_primary_10_3390_s23157003 crossref_primary_10_1016_j_envres_2025_121167 crossref_primary_10_1016_j_jag_2019_04_012 crossref_primary_10_3390_s20226521 crossref_primary_10_1016_j_agwat_2020_106387 crossref_primary_10_1016_j_jag_2018_02_004 crossref_primary_10_1007_s11053_021_09925_2 crossref_primary_10_1080_22797254_2021_1888657 crossref_primary_10_1016_j_jclepro_2023_138553 crossref_primary_10_3390_w13081075 crossref_primary_10_3390_rs8090714 crossref_primary_10_3390_app112311145 crossref_primary_10_1088_2515_7620_ab37f0 crossref_primary_10_3390_su15075874 crossref_primary_10_3390_land13111941 crossref_primary_10_1016_j_scitotenv_2019_135387 crossref_primary_10_3390_s22197226 crossref_primary_10_1080_2150704X_2019_1610981 crossref_primary_10_19047_0136_1694_2019_97_52_90 crossref_primary_10_1016_j_geoderma_2022_116321 crossref_primary_10_1002_ldr_2670 crossref_primary_10_1016_j_still_2023_105744 crossref_primary_10_3390_s17102343 crossref_primary_10_1080_01431161_2020_1823515 crossref_primary_10_1080_10106049_2020_1778104 crossref_primary_10_3389_fenvs_2016_00065 crossref_primary_10_1080_19475705_2019_1650125 crossref_primary_10_1016_j_scitotenv_2018_04_415 crossref_primary_10_3390_rs14225803 crossref_primary_10_1016_j_jclepro_2024_142007 crossref_primary_10_1016_j_micres_2025_128140 crossref_primary_10_3390_rs13030417 crossref_primary_10_1016_j_jag_2019_101944 crossref_primary_10_1080_00103624_2018_1448862 crossref_primary_10_1007_s12665_019_8319_8 crossref_primary_10_1186_s40645_019_0311_0 crossref_primary_10_3390_w13121636 crossref_primary_10_3390_rs15174269 crossref_primary_10_1117_1_JRS_12_036018 crossref_primary_10_1016_j_compag_2025_110108 crossref_primary_10_1016_j_jafr_2024_101096 crossref_primary_10_1002_ldr_4287 crossref_primary_10_1016_j_ecolind_2016_06_015 crossref_primary_10_1016_j_ecolind_2020_106467 crossref_primary_10_1002_ldr_4445 crossref_primary_10_3390_inventions4040071 crossref_primary_10_1016_S1002_0160_17_60478_8 crossref_primary_10_1002_agj2_21704 crossref_primary_10_3733_ca_2017a0009 crossref_primary_10_1002_ldr_4162 crossref_primary_10_1016_j_agrformet_2024_110345 crossref_primary_10_4236_ars_2017_64019 crossref_primary_10_1139_cjss_2024_0046 crossref_primary_10_3390_f15060975 crossref_primary_10_1016_j_compag_2022_106844 crossref_primary_10_3389_fenvs_2025_1533419 crossref_primary_10_12677_GST_2022_102010 crossref_primary_10_3390_su10082826 crossref_primary_10_1016_j_nexus_2025_100374 crossref_primary_10_30897_ijegeo_500452 crossref_primary_10_5194_acp_22_14931_2022 crossref_primary_10_3390_rs12244118 crossref_primary_10_3390_agriculture12091490 crossref_primary_10_3390_rs15030767 crossref_primary_10_1109_TGRS_2021_3109819 crossref_primary_10_1016_j_envpol_2019_01_024 crossref_primary_10_1002_ldr_2890 crossref_primary_10_1088_1755_1315_675_1_012178 crossref_primary_10_1016_j_geoderma_2022_115935 crossref_primary_10_1186_s40645_022_00490_7 crossref_primary_10_1007_s11356_021_13503_7 crossref_primary_10_1016_j_compag_2024_109501 crossref_primary_10_1016_j_catena_2021_105585 crossref_primary_10_1016_j_ecolind_2016_11_043 crossref_primary_10_1016_j_geoderma_2017_05_016 crossref_primary_10_1016_j_ecolind_2020_106173 crossref_primary_10_1139_cjss_2021_0154 crossref_primary_10_1016_j_scitotenv_2022_157416 crossref_primary_10_1016_j_compag_2023_107821 crossref_primary_10_3390_rs15153846 |
| Cites_doi | 10.1002/2014WR016058 10.1016/j.geoderma.2005.03.014 10.2134/jeq2009.0140 10.1016/j.geoderma.2014.07.028 10.1080/01621459.1952.10483441 10.2134/jeq2009.0326 10.5194/nhess-10-89-2010 10.1109/LGRS.2005.857030 10.1016/j.geoderma.2014.09.018 10.1016/j.jag.2012.07.002 10.1016/j.rse.2006.07.010 10.1016/j.biosystemseng.2012.08.009 10.1016/j.compag.2004.11.004 10.1016/S0034-4257(02)00188-8 10.3733/hilg.v54n01p032 10.1016/j.ecolind.2015.01.004 10.1080/10106049.2011.562309 10.1016/j.rse.2009.08.011 10.1016/j.compag.2012.03.005 10.1111/j.1744-7348.1998.tb05190.x 10.1016/j.geoderma.2014.12.017 10.1002/ldr.1140 10.2134/jeq2009.0036 10.1016/j.geoderma.2013.07.020 10.2134/agronj14.0102 10.1002/joc.1688 10.1016/j.ecolind.2011.03.025 10.1017/S0043174500092997 10.1109/JSTARS.2014.2360411 10.1016/j.geoderma.2014.09.011 10.3390/rs70201181 10.2113/JEEG18.1.1 10.1016/S0034-4257(02)00096-2 10.3390/rs6021137 10.2134/jeq2007.0140 10.1016/j.ijforecast.2006.03.001 10.1016/j.geodrs.2014.10.004 10.2136/sssaj2007.0013 10.1016/j.geodrs.2014.09.002 10.4236/ars.2013.24040 10.2136/sssaj2006.0306 10.1111/j.1469-8137.2008.02531.x 10.1080/02757259309532180 |
| ContentType | Journal Article |
| Copyright | 2015 |
| Copyright_xml | – notice: 2015 |
| DBID | AAYXX CITATION 7QH 7SN 7ST 7UA C1K F1W H96 L.G SOI 7SU 8FD FR3 H8D KR7 L7M 7S9 L.6 |
| DOI | 10.1016/j.rse.2015.08.026 |
| DatabaseName | CrossRef Aqualine Ecology Abstracts Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Environmental Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| EndPage | 343 |
| ExternalDocumentID | 10_1016_j_rse_2015_08_026 S0034425715301127 |
| GeographicLocations | INE, USA, California USA, California, San Joaquin Valley California |
| GeographicLocations_xml | – name: INE, USA, California – name: USA, California, San Joaquin Valley – name: California |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QH 7SN 7ST 7UA ABUFD C1K F1W H96 L.G SOI 7SU 8FD FR3 H8D KR7 L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c311t-c77186cef049e6f47f3d16704661f5a8ba5b067c136b97518a37c16f854be6003 |
| IEDL.DBID | .~1 |
| ISSN | 0034-4257 |
| IngestDate | Sat Sep 27 16:20:16 EDT 2025 Tue Oct 07 09:36:18 EDT 2025 Tue Oct 07 09:16:58 EDT 2025 Wed Oct 01 02:18:13 EDT 2025 Thu Apr 24 22:59:45 EDT 2025 Fri Feb 23 02:30:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spatial cross-validation Landsat 7 Soil salinity Remote sensing Soil mapping |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c311t-c77186cef049e6f47f3d16704661f5a8ba5b067c136b97518a37c16f854be6003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4944-721X |
| PQID | 1727697035 |
| PQPubID | 23462 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2000314622 proquest_miscellaneous_1762110478 proquest_miscellaneous_1727697035 crossref_primary_10_1016_j_rse_2015_08_026 crossref_citationtrail_10_1016_j_rse_2015_08_026 elsevier_sciencedirect_doi_10_1016_j_rse_2015_08_026 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2015 2015-11-00 20151101 |
| PublicationDateYYYYMMDD | 2015-11-01 |
| PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
| PublicationDecade | 2010 |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2015 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Achen (bb0005) 1982 Cone (bb0050) 1997 Minasny (bb0205) 2013; 33 Brenning (bb0035) 2012 Ruß, Brenning (bb0235) 2010; 6178 Cardina, Johnson, Sparrow (bb0045) 1997; 45 Samuel-Rosa, Heuvelink, Vasques, Anjos (bb0240) 2015; 243 U.S. Salinity Laboratory Staff (bb0280) 1954 Tanji, Wallender (bb0270) 2012 Masek, Vermote, Saleous, Wolfe, Hall, Huemmrich (bb0190) 2006; 3 Letey, Dinar (bb0165) 1986; 54 Han, Yang, Di, Mueller (bb0115) 2012; 84 Howitt, Medellín-Azuara, MacEwan, Lund, Sumner (bb0120) 2014 Ivits, Cherlet, Tóth, Lewińska, Tóth (bb0135) 2011; 24 Ji, Peters (bb0140) 2007; 106 Metternicht, Zinck (bb0195) 2003; 85 Backlund, Hoppes (bb0025) 1984; 38 Scudiero, Teatini, Corwin, Ferro, Simonetti, Morari (bb0250) 2014; 106 Corwin, Lesch (bb0060) 2013; 18 Scudiero, Skaggs, Corwin (bb0245) 2014; 2–3 Sparkes, Jaggard, Ramsden, Scott (bb0260) 1998; 132 Corwin (bb0055) 2014 Yang, Huang, Liu, Liu, Zhu (bb0295) 2015 Lal, Iivari, Kimble (bb0150) 2004 Lesch (bb0155) 2005; 46 Zhang, Qi, Gao, Ouyang, Zeng, Zhao (bb0300) 2015; 52 Furby, Caccetta, Wallace (bb0095) 2010; 39 Lobell, Ortiz-Monasterio, Gurrola, Valenzuela (bb0180) 2007; 71 Allbed, Kumar, Sinha (bb0020) 2014; 6 Ghassemi, Jakeman, Nix (bb0100) 1995 Zhang, Zeng, Gao, Ouyang, Li, Fang (bb0305) 2011; 11 Kruskal, Wallis (bb0145) 1952; 47 Nawar, Buddenbaum, Hill (bb0220) 2015; 7 Rouse, Haas, Schell, Deering (bb0225) 1973 Lobell (bb0170) 2010; 39 Daly, Halbleib, Smith, Gibson, Doggett, Taylor (bb0075) 2008; 28 Taghizadeh-Mehrjardi, Minasny, Sarmadian, Malone (bb0265) 2014; 213 Aldabaa, Weindorf, Chakraborty, Sharma, Li (bb0010) 2015; 239 Tardivo (bb0275) 2014 Hamzeh, Naseri, AlaviPanah, Mojaradi, Bartholomeus, Clevers (bb0110) 2013; 21 Hyndman, Koehler (bb0130) 2006; 22 Wu, Al-Shafie, Mhaimeed, Ziadat, Nangia, Payne (bb0285) 2014; 7 Corwin, Lesch, Oster, Kaffka (bb0065) 2006; 131 Flowers, Colmer (bb0090) 2008; 179 Boryan, Yang, Mueller, Craig (bb0030) 2011; 26 Wu, Mhaimeed, Al-Shafie, Ziadat, Dhehibi, Nangia (bb0290) 2014; 2-3 Lobell, Lesch, Corwin, Ulmer, Anderson, Potts (bb0175) 2010; 39 Brown, Cybulska, Chaturvedi, Thomsen (bb0040) 2014 Allbed, Kumar (bb0015) 2013; 2 Eldeiry, Garcia (bb0085) 2008; 72 Corwin, Lesch, Oster, Kaffka (bb0070) 2008; 37 Hadjimitsis, Papadavid, Agapiou, Themistocleous, Hadjimitsis, Retalis (bb0105) 2010; 10 Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0125) 2002; 83 Mulla (bb0215) 2013; 11 Roy, Ju, Kline, Scaramuzza, Kovalskyy, Hansen (bb0230) 2010; 114 Skaggs, Anderson, Corwin, Suarez (bb0255) 2014; 12 Mougenot, Pouget, Epema (bb0210) 1993; 7 Miller, Koszinski, Wehrhan, Sommer (bb0200) 2015; 239 Ding, Yu (bb0080) 2014; 235 Tardivo (10.1016/j.rse.2015.08.026_bb0275) 2014 Scudiero (10.1016/j.rse.2015.08.026_bb0245) 2014; 2–3 Lobell (10.1016/j.rse.2015.08.026_bb0175) 2010; 39 Corwin (10.1016/j.rse.2015.08.026_bb0055) 2014 Hadjimitsis (10.1016/j.rse.2015.08.026_bb0105) 2010; 10 Tanji (10.1016/j.rse.2015.08.026_bb0270) 2012 Wu (10.1016/j.rse.2015.08.026_bb0290) 2014; 2-3 Ding (10.1016/j.rse.2015.08.026_bb0080) 2014; 235 Letey (10.1016/j.rse.2015.08.026_bb0165) 1986; 54 Rouse (10.1016/j.rse.2015.08.026_bb0225) 1973 Hamzeh (10.1016/j.rse.2015.08.026_bb0110) 2013; 21 Wu (10.1016/j.rse.2015.08.026_bb0285) 2014; 7 Eldeiry (10.1016/j.rse.2015.08.026_bb0085) 2008; 72 Sparkes (10.1016/j.rse.2015.08.026_bb0260) 1998; 132 Daly (10.1016/j.rse.2015.08.026_bb0075) 2008; 28 Furby (10.1016/j.rse.2015.08.026_bb0095) 2010; 39 Roy (10.1016/j.rse.2015.08.026_bb0230) 2010; 114 Scudiero (10.1016/j.rse.2015.08.026_bb0250) 2014; 106 Miller (10.1016/j.rse.2015.08.026_bb0200) 2015; 239 Mougenot (10.1016/j.rse.2015.08.026_bb0210) 1993; 7 Lobell (10.1016/j.rse.2015.08.026_bb0180) 2007; 71 Minasny (10.1016/j.rse.2015.08.026_bb0205) 2013; 33 Achen (10.1016/j.rse.2015.08.026_bb0005) 1982 Masek (10.1016/j.rse.2015.08.026_bb0190) 2006; 3 Backlund (10.1016/j.rse.2015.08.026_bb0025) 1984; 38 Lesch (10.1016/j.rse.2015.08.026_bb0155) 2005; 46 Aldabaa (10.1016/j.rse.2015.08.026_bb0010) 2015; 239 Mulla (10.1016/j.rse.2015.08.026_bb0215) 2013; 11 Han (10.1016/j.rse.2015.08.026_bb0115) 2012; 84 Allbed (10.1016/j.rse.2015.08.026_bb0015) 2013; 2 Ghassemi (10.1016/j.rse.2015.08.026_bb0100) 1995 Ivits (10.1016/j.rse.2015.08.026_bb0135) 2011; 24 Allbed (10.1016/j.rse.2015.08.026_bb0020) 2014; 6 Corwin (10.1016/j.rse.2015.08.026_bb0060) 2013; 18 Howitt (10.1016/j.rse.2015.08.026_bb0120) 2014 Taghizadeh-Mehrjardi (10.1016/j.rse.2015.08.026_bb0265) 2014; 213 Cone (10.1016/j.rse.2015.08.026_bb0050) 1997 Ruß (10.1016/j.rse.2015.08.026_bb0235) 2010; 6178 Lal (10.1016/j.rse.2015.08.026_bb0150) 2004 Nawar (10.1016/j.rse.2015.08.026_bb0220) 2015; 7 Lobell (10.1016/j.rse.2015.08.026_bb0170) 2010; 39 Yang (10.1016/j.rse.2015.08.026_bb0295) 2015 Kruskal (10.1016/j.rse.2015.08.026_bb0145) 1952; 47 Huete (10.1016/j.rse.2015.08.026_bb0125) 2002; 83 Metternicht (10.1016/j.rse.2015.08.026_bb0195) 2003; 85 Brown (10.1016/j.rse.2015.08.026_bb0040) 2014 Skaggs (10.1016/j.rse.2015.08.026_bb0255) 2014; 12 Boryan (10.1016/j.rse.2015.08.026_bb0030) 2011; 26 Brenning (10.1016/j.rse.2015.08.026_bb0035) 2012 Zhang (10.1016/j.rse.2015.08.026_bb0305) 2011; 11 Zhang (10.1016/j.rse.2015.08.026_bb0300) 2015; 52 Samuel-Rosa (10.1016/j.rse.2015.08.026_bb0240) 2015; 243 Cardina (10.1016/j.rse.2015.08.026_bb0045) 1997; 45 Hyndman (10.1016/j.rse.2015.08.026_bb0130) 2006; 22 Corwin (10.1016/j.rse.2015.08.026_bb0065) 2006; 131 Corwin (10.1016/j.rse.2015.08.026_bb0070) 2008; 37 Flowers (10.1016/j.rse.2015.08.026_bb0090) 2008; 179 Ji (10.1016/j.rse.2015.08.026_bb0140) 2007; 106 U.S. Salinity Laboratory Staff (10.1016/j.rse.2015.08.026_bb0280) 1954 |
| References_xml | – volume: 239 start-page: 97 year: 2015 end-page: 106 ident: bb0200 article-title: Impact of multi-scale predictor selection for modeling soil properties publication-title: Geoderma – volume: 7 start-page: 1181 year: 2015 end-page: 1205 ident: bb0220 article-title: Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an arid region publication-title: Remote Sensing – volume: 132 start-page: 129 year: 1998 end-page: 142 ident: bb0260 article-title: The effect of field margins on the yield of sugar beet and cereal crops publication-title: Annals of Applied Biology – volume: 2-3 start-page: 21 year: 2014 end-page: 31 ident: bb0290 article-title: Mapping soil salinity changes using remote sensing in Central Iraq publication-title: Geoderma Regional – volume: 39 start-page: 35 year: 2010 end-page: 41 ident: bb0175 article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI publication-title: Journal of Environmental Quality – volume: 12 start-page: 9656 year: 2014 end-page: 9674 ident: bb0255 article-title: Analytical steady-state solutions for water-limited cropping systems using saline irrigation water publication-title: Water Resources Research – volume: 83 start-page: 195 year: 2002 end-page: 213 ident: bb0125 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sensing of Environment – volume: 33 start-page: 14 year: 2013 end-page: 15 ident: bb0205 article-title: Why you don't need to use RPD publication-title: Pedometron – volume: 114 start-page: 35 year: 2010 end-page: 49 ident: bb0230 article-title: Web-enabled Landsat Data (WELD): Landsat ETM composited mosaics of the conterminous United States publication-title: Remote Sensing of Environment – year: 1982 ident: bb0005 article-title: Interpreting and using regression publication-title: Sage University Paper Series on Quantitative Application in the Social Sciences 07–001 – volume: 131 start-page: 369 year: 2006 end-page: 387 ident: bb0065 article-title: Monitoring management-induced spatio–temporal changes in soil quality through soil sampling directed by apparent electrical conductivity publication-title: Geoderma – volume: 28 start-page: 2031 year: 2008 end-page: 2064 ident: bb0075 article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States publication-title: International Journal of Climatology – volume: 39 start-page: 1 year: 2010 end-page: 4 ident: bb0170 article-title: Remote sensing of soil degradation: introduction publication-title: Journal of Environmental Quality – volume: 52 start-page: 480 year: 2015 end-page: 489 ident: bb0300 article-title: Detecting soil salinity with MODIS time series VI data publication-title: Ecological Indicators – volume: 6178 start-page: 350 year: 2010 end-page: 359 ident: bb0235 article-title: Data mining in precision agriculture: management of spatial information publication-title: Computational intelligence for knowledge-based systems design – start-page: 5372 year: 2012 end-page: 5375 ident: bb0035 article-title: Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest publication-title: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2012, 23–27 July 2012 – volume: 2 start-page: 373 year: 2013 end-page: 385 ident: bb0015 article-title: Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review publication-title: Advances in Remote Sensing – volume: 24 start-page: 438 year: 2011 end-page: 452 ident: bb0135 article-title: Characterisation of productivity limitation of salt-affected lands in different climatic regions of Europe using remote sensing derived productivity indicators publication-title: Land Degradation & Development – volume: 85 start-page: 1 year: 2003 end-page: 20 ident: bb0195 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote Sensing of Environment – volume: 21 start-page: 282 year: 2013 end-page: 290 ident: bb0110 article-title: Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 6 start-page: 1137 year: 2014 end-page: 1157 ident: bb0020 article-title: Mapping and modelling spatial variation in soil salinity in the Al Hassa Oasis based on remote sensing indicators and regression techniques publication-title: Remote Sensing – start-page: 1 year: 2015 end-page: 12 ident: bb0295 article-title: Mapping soil salinity using a similarity-based prediction approach: a case study in Huanghe River Delta, China publication-title: Chinese Geographical Science – volume: 46 start-page: 153 year: 2005 end-page: 179 ident: bb0155 article-title: Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties publication-title: Computers and Electronics in Agriculture – volume: 71 start-page: 777 year: 2007 end-page: 783 ident: bb0180 article-title: Identification of saline soils with multiyear remote sensing of crop yields publication-title: Soil Science Society of America Journal – volume: 54 start-page: 1 year: 1986 end-page: 32 ident: bb0165 article-title: Simulated crop-water production functions for several crops when irrigated with saline waters publication-title: Hilgardia – volume: 45 start-page: 364 year: 1997 end-page: 373 ident: bb0045 article-title: The nature and consequence of weed spatial distribution publication-title: Weed Science – volume: 10 start-page: 89 year: 2010 end-page: 95 ident: bb0105 article-title: Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices publication-title: Natural Hazards and Earth System Sciences – volume: 2–3 start-page: 82 year: 2014 end-page: 90 ident: bb0245 article-title: Regional Scale Soil Salinity Evaluation Using Landsat 7, Western San Joaquin Valley, California, USA publication-title: Geoderma Regional – volume: 22 start-page: 679 year: 2006 end-page: 688 ident: bb0130 article-title: Another look at measures of forecast accuracy publication-title: International Journal of Forecasting – volume: 179 start-page: 945 year: 2008 end-page: 963 ident: bb0090 article-title: Salinity tolerance in halophytes publication-title: New Phytologist – start-page: 309 year: 1973 end-page: 317 ident: bb0225 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: Third ERTS Symposium. NASA SP-351 – volume: 243 start-page: 214 year: 2015 end-page: 227 ident: bb0240 article-title: Do more detailed environmental covariates deliver more accurate soil maps? publication-title: Geoderma – start-page: 67 year: 2014 end-page: 72 ident: bb0040 article-title: Halophytes for the Production of Liquid Biofuels publication-title: Sabkha Ecosystems: Volume IV: Cash Crop Halophyte and Biodiversity Conservation – volume: 18 start-page: 1 year: 2013 end-page: 25 ident: bb0060 article-title: Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling publication-title: Journal of Environmental and Engineering Geophysics – volume: 11 start-page: 1552 year: 2011 end-page: 1562 ident: bb0305 article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity publication-title: Ecological Indicators – start-page: 526 year: 1995 ident: bb0100 article-title: Salinisation of land and water resources: human causes, extent, management and case studies – volume: 84 start-page: 111 year: 2012 end-page: 123 ident: bb0115 article-title: CropScape: a web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support publication-title: Computers and Electronics in Agriculture – volume: 37 start-page: 8 year: 2008 end-page: 24 ident: bb0070 article-title: Short-term sustainability of drainage water reuse: spatio-temporal impacts on soil chemical properties publication-title: Journal of Environmental Quality – volume: 26 start-page: 341 year: 2011 end-page: 358 ident: bb0030 article-title: Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program publication-title: Geocarto International – volume: 39 start-page: 16 year: 2010 end-page: 25 ident: bb0095 article-title: Salinity monitoring in Western Australia using remotely sensed and other spatial data publication-title: Journal of Environmental Quality – year: 2014 ident: bb0120 article-title: Economic analysis of the 2014 drought for California agriculture – volume: 239 start-page: 34 year: 2015 end-page: 46 ident: bb0010 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma – start-page: 10 year: 2012 end-page: 25 ident: bb0270 article-title: Nature and extent of agricultural salinity and sodicity publication-title: Agricultural Salinity Assessment and Management – volume: 7 start-page: 4442 year: 2014 end-page: 4452 ident: bb0285 article-title: Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 106 start-page: 2163 year: 2014 end-page: 2174 ident: bb0250 article-title: Spatiotemporal response of maize yield to edaphic and meteorological conditions in a saline farmland publication-title: Agronomy Journal – volume: 47 start-page: 583 year: 1952 end-page: 621 ident: bb0145 article-title: Use of ranks in one-criterion variance analysis publication-title: Journal of the American Statistical Association – volume: 213 start-page: 15 year: 2014 end-page: 28 ident: bb0265 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma – year: 2014 ident: bb0055 article-title: Field-scale monitoring of the long-term impact and sustainability of drainage water reuse using ECa-directed soil sampling publication-title: ASA, CSA, and SSSA Annual Meeting, Long Beach, CA, USA, 1-4 November 2014 – start-page: 9 year: 1997 end-page: 15 ident: bb0050 article-title: The vanishing valley publication-title: San Jose Mercury News Magazine, June 29 – volume: 11 start-page: 358 year: 2013 end-page: 371 ident: bb0215 article-title: Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps publication-title: Biosystems Engineering – year: 2014 ident: bb0275 article-title: Spatial and time correlation of thermometers and pluviometers in a weather network database publication-title: Theoretical and Applied Climatology – volume: 38 start-page: 8 year: 1984 end-page: 9 ident: bb0025 article-title: Status of soil salinity in California publication-title: California Agriculture – volume: 106 start-page: 59 year: 2007 end-page: 65 ident: bb0140 article-title: Performance evaluation of spectral vegetation indices using a statistical sensitivity function publication-title: Remote Sensing of Environment – year: 1954 ident: bb0280 article-title: USDA Handbook no. 60. Diagnosis and improvement of saline and alkali soils – volume: 235 start-page: 316 year: 2014 end-page: 322 ident: bb0080 article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments publication-title: Geoderma – volume: 72 start-page: 201 year: 2008 end-page: 211 ident: bb0085 article-title: Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing publication-title: Soil Science Society of America Journal – year: 2004 ident: bb0150 article-title: Soil degradation in the United States: extent, severity, and trends – volume: 3 start-page: 68 year: 2006 end-page: 72 ident: bb0190 article-title: A Landsat surface reflectance dataset for North America, 1990–2000 publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 7 start-page: 241 year: 1993 end-page: 259 ident: bb0210 article-title: Remote sensing of salt affected soils publication-title: Remote Sensing Reviews – volume: 12 start-page: 9656 year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0255 article-title: Analytical steady-state solutions for water-limited cropping systems using saline irrigation water publication-title: Water Resources Research doi: 10.1002/2014WR016058 – volume: 131 start-page: 369 year: 2006 ident: 10.1016/j.rse.2015.08.026_bb0065 article-title: Monitoring management-induced spatio–temporal changes in soil quality through soil sampling directed by apparent electrical conductivity publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.014 – volume: 39 start-page: 35 year: 2010 ident: 10.1016/j.rse.2015.08.026_bb0175 article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI publication-title: Journal of Environmental Quality doi: 10.2134/jeq2009.0140 – volume: 235 start-page: 316 year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0080 article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments publication-title: Geoderma doi: 10.1016/j.geoderma.2014.07.028 – volume: 47 start-page: 583 year: 1952 ident: 10.1016/j.rse.2015.08.026_bb0145 article-title: Use of ranks in one-criterion variance analysis publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1952.10483441 – volume: 33 start-page: 14 year: 2013 ident: 10.1016/j.rse.2015.08.026_bb0205 article-title: Why you don't need to use RPD publication-title: Pedometron – volume: 6178 start-page: 350 year: 2010 ident: 10.1016/j.rse.2015.08.026_bb0235 article-title: Data mining in precision agriculture: management of spatial information – volume: 39 start-page: 1 year: 2010 ident: 10.1016/j.rse.2015.08.026_bb0170 article-title: Remote sensing of soil degradation: introduction publication-title: Journal of Environmental Quality doi: 10.2134/jeq2009.0326 – start-page: 309 year: 1973 ident: 10.1016/j.rse.2015.08.026_bb0225 article-title: Monitoring vegetation systems in the Great Plains with ERTS – year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0275 article-title: Spatial and time correlation of thermometers and pluviometers in a weather network database publication-title: Theoretical and Applied Climatology – volume: 10 start-page: 89 year: 2010 ident: 10.1016/j.rse.2015.08.026_bb0105 article-title: Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices publication-title: Natural Hazards and Earth System Sciences doi: 10.5194/nhess-10-89-2010 – volume: 3 start-page: 68 year: 2006 ident: 10.1016/j.rse.2015.08.026_bb0190 article-title: A Landsat surface reflectance dataset for North America, 1990–2000 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2005.857030 – volume: 239 start-page: 97 year: 2015 ident: 10.1016/j.rse.2015.08.026_bb0200 article-title: Impact of multi-scale predictor selection for modeling soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.018 – volume: 21 start-page: 282 year: 2013 ident: 10.1016/j.rse.2015.08.026_bb0110 article-title: Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2012.07.002 – start-page: 10 year: 2012 ident: 10.1016/j.rse.2015.08.026_bb0270 article-title: Nature and extent of agricultural salinity and sodicity – year: 1982 ident: 10.1016/j.rse.2015.08.026_bb0005 article-title: Interpreting and using regression – volume: 38 start-page: 8 year: 1984 ident: 10.1016/j.rse.2015.08.026_bb0025 article-title: Status of soil salinity in California publication-title: California Agriculture – volume: 106 start-page: 59 year: 2007 ident: 10.1016/j.rse.2015.08.026_bb0140 article-title: Performance evaluation of spectral vegetation indices using a statistical sensitivity function publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.07.010 – volume: 11 start-page: 358 year: 2013 ident: 10.1016/j.rse.2015.08.026_bb0215 article-title: Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2012.08.009 – volume: 46 start-page: 153 year: 2005 ident: 10.1016/j.rse.2015.08.026_bb0155 article-title: Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2004.11.004 – volume: 85 start-page: 1 year: 2003 ident: 10.1016/j.rse.2015.08.026_bb0195 article-title: Remote sensing of soil salinity: potentials and constraints publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00188-8 – start-page: 5372 year: 2012 ident: 10.1016/j.rse.2015.08.026_bb0035 article-title: Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest – start-page: 9 year: 1997 ident: 10.1016/j.rse.2015.08.026_bb0050 article-title: The vanishing valley – volume: 54 start-page: 1 year: 1986 ident: 10.1016/j.rse.2015.08.026_bb0165 article-title: Simulated crop-water production functions for several crops when irrigated with saline waters publication-title: Hilgardia doi: 10.3733/hilg.v54n01p032 – volume: 52 start-page: 480 year: 2015 ident: 10.1016/j.rse.2015.08.026_bb0300 article-title: Detecting soil salinity with MODIS time series VI data publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2015.01.004 – start-page: 67 year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0040 article-title: Halophytes for the Production of Liquid Biofuels – volume: 26 start-page: 341 year: 2011 ident: 10.1016/j.rse.2015.08.026_bb0030 article-title: Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program publication-title: Geocarto International doi: 10.1080/10106049.2011.562309 – volume: 114 start-page: 35 year: 2010 ident: 10.1016/j.rse.2015.08.026_bb0230 article-title: Web-enabled Landsat Data (WELD): Landsat ETM composited mosaics of the conterminous United States publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.08.011 – volume: 84 start-page: 111 year: 2012 ident: 10.1016/j.rse.2015.08.026_bb0115 article-title: CropScape: a web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2012.03.005 – start-page: 1 year: 2015 ident: 10.1016/j.rse.2015.08.026_bb0295 article-title: Mapping soil salinity using a similarity-based prediction approach: a case study in Huanghe River Delta, China publication-title: Chinese Geographical Science – volume: 132 start-page: 129 year: 1998 ident: 10.1016/j.rse.2015.08.026_bb0260 article-title: The effect of field margins on the yield of sugar beet and cereal crops publication-title: Annals of Applied Biology doi: 10.1111/j.1744-7348.1998.tb05190.x – volume: 243 start-page: 214 year: 2015 ident: 10.1016/j.rse.2015.08.026_bb0240 article-title: Do more detailed environmental covariates deliver more accurate soil maps? publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.017 – volume: 24 start-page: 438 year: 2011 ident: 10.1016/j.rse.2015.08.026_bb0135 article-title: Characterisation of productivity limitation of salt-affected lands in different climatic regions of Europe using remote sensing derived productivity indicators publication-title: Land Degradation & Development doi: 10.1002/ldr.1140 – volume: 39 start-page: 16 year: 2010 ident: 10.1016/j.rse.2015.08.026_bb0095 article-title: Salinity monitoring in Western Australia using remotely sensed and other spatial data publication-title: Journal of Environmental Quality doi: 10.2134/jeq2009.0036 – volume: 213 start-page: 15 year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0265 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.020 – volume: 106 start-page: 2163 year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0250 article-title: Spatiotemporal response of maize yield to edaphic and meteorological conditions in a saline farmland publication-title: Agronomy Journal doi: 10.2134/agronj14.0102 – volume: 28 start-page: 2031 year: 2008 ident: 10.1016/j.rse.2015.08.026_bb0075 article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States publication-title: International Journal of Climatology doi: 10.1002/joc.1688 – volume: 11 start-page: 1552 year: 2011 ident: 10.1016/j.rse.2015.08.026_bb0305 article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2011.03.025 – volume: 45 start-page: 364 year: 1997 ident: 10.1016/j.rse.2015.08.026_bb0045 article-title: The nature and consequence of weed spatial distribution publication-title: Weed Science doi: 10.1017/S0043174500092997 – volume: 7 start-page: 4442 year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0285 article-title: Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2014.2360411 – volume: 239 start-page: 34 year: 2015 ident: 10.1016/j.rse.2015.08.026_bb0010 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.011 – year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0120 – year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0055 article-title: Field-scale monitoring of the long-term impact and sustainability of drainage water reuse using ECa-directed soil sampling – volume: 7 start-page: 1181 year: 2015 ident: 10.1016/j.rse.2015.08.026_bb0220 article-title: Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an arid region publication-title: Remote Sensing doi: 10.3390/rs70201181 – volume: 18 start-page: 1 year: 2013 ident: 10.1016/j.rse.2015.08.026_bb0060 article-title: Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling publication-title: Journal of Environmental and Engineering Geophysics doi: 10.2113/JEEG18.1.1 – volume: 83 start-page: 195 year: 2002 ident: 10.1016/j.rse.2015.08.026_bb0125 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00096-2 – volume: 6 start-page: 1137 year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0020 article-title: Mapping and modelling spatial variation in soil salinity in the Al Hassa Oasis based on remote sensing indicators and regression techniques publication-title: Remote Sensing doi: 10.3390/rs6021137 – year: 1954 ident: 10.1016/j.rse.2015.08.026_bb0280 – volume: 37 start-page: 8 year: 2008 ident: 10.1016/j.rse.2015.08.026_bb0070 article-title: Short-term sustainability of drainage water reuse: spatio-temporal impacts on soil chemical properties publication-title: Journal of Environmental Quality doi: 10.2134/jeq2007.0140 – volume: 22 start-page: 679 year: 2006 ident: 10.1016/j.rse.2015.08.026_bb0130 article-title: Another look at measures of forecast accuracy publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2006.03.001 – volume: 2–3 start-page: 82 year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0245 article-title: Regional Scale Soil Salinity Evaluation Using Landsat 7, Western San Joaquin Valley, California, USA publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2014.10.004 – volume: 72 start-page: 201 year: 2008 ident: 10.1016/j.rse.2015.08.026_bb0085 article-title: Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2007.0013 – volume: 2-3 start-page: 21 year: 2014 ident: 10.1016/j.rse.2015.08.026_bb0290 article-title: Mapping soil salinity changes using remote sensing in Central Iraq publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2014.09.002 – volume: 2 start-page: 373 year: 2013 ident: 10.1016/j.rse.2015.08.026_bb0015 article-title: Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review publication-title: Advances in Remote Sensing doi: 10.4236/ars.2013.24040 – volume: 71 start-page: 777 year: 2007 ident: 10.1016/j.rse.2015.08.026_bb0180 article-title: Identification of saline soils with multiyear remote sensing of crop yields publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2006.0306 – start-page: 526 year: 1995 ident: 10.1016/j.rse.2015.08.026_bb0100 – year: 2004 ident: 10.1016/j.rse.2015.08.026_bb0150 – volume: 179 start-page: 945 year: 2008 ident: 10.1016/j.rse.2015.08.026_bb0090 article-title: Salinity tolerance in halophytes publication-title: New Phytologist doi: 10.1111/j.1469-8137.2008.02531.x – volume: 7 start-page: 241 year: 1993 ident: 10.1016/j.rse.2015.08.026_bb0210 article-title: Remote sensing of salt affected soils publication-title: Remote Sensing Reviews doi: 10.1080/02757259309532180 |
| SSID | ssj0015871 |
| Score | 2.585118 |
| Snippet | Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 335 |
| SubjectTerms | California Canopies canopy case studies data collection electrical conductivity environmental health fallow issues and policy Landsat Landsat 7 linear models Mathematical models meteorological data prediction Productivity rain Reflectance Remote sensing researchers Saline Salinity Soil (material) Soil mapping Soil salinity soil salinization soil surveys soil types Spatial cross-validation temperature vegetation index |
| Title | Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance |
| URI | https://dx.doi.org/10.1016/j.rse.2015.08.026 https://www.proquest.com/docview/1727697035 https://www.proquest.com/docview/1762110478 https://www.proquest.com/docview/2000314622 |
| Volume | 169 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4hECqXqqQgoAUZqadWLuu117s5IhSaFsKhAombZW9sCEJJlN0ccuG3M7OPIFDJocfdHa-s8fgbP-abAfgWh0wLpyUXIqRcdX3OnY8Cj6x0QwTMyEsiCg-udP9G_blNbtfgrOXCUFhlg_01pldo3bw5abR5Mh2NiOMrFVkczlk00pgY5UqlVMXg59MyzEMkWVpXzZOKk3R7s1nFeM0KypQpkiqLJ-VX-LdveoPSles5_wQfmzUjO627tQ1rftyB3d4LRQ0_NnO06MCHpq75_aIDm7-qwr2LzzD46--qUz9e4Kh4VkxGj6ywxIssF8wu83MyCoS_Y5fEALYl610PfjDU_mS6YNhfOuMnM9mBm_Pe9VmfN6UUeC6FKHmeog_SuQ-4IfA6qDTIodApbo61CInNnE0c-q1cSO26dBNjJT7okCXKeVwTyV1YH0_Gfg_YMPVJF6HAOu2UzKWNhgr_7XOb6YCYtQ9Rq0STN3nGqdzFo2kDyh4M6t2Q3g2VwIz1PnxfNpnWSTZWCat2ZMwrSzHoBFY1O25H0eAMomsRO_aTeWFoCae7iHzJKhlNO2WVZu_LEOlJouOJ44P_6-IX2KKnmun4FdbL2dwf4pKndEeVTR_Bxunvi_7VMxC4_wg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIlQuCAIV5WkkTiDT9fq1OaIqJUDSA0ql3ix7Y7dBVRJ1t4dc-O3M7CMIBDlw3N3xyhqPv5mx5wHwNk-FEcFILkSyXA1jyUPMEs-8DHMEzCxKShSenpnxufpyoS_24KTPhaGwyg77W0xv0Lp7c9xx83i9WFCOr1QkcbhnUUhzewfuKp1b8sA-_NjGeQhd2LZtnlScyPurzSbI66aiUplCN2U8qcDC35XTHzDd6J7Th_CgMxrZx3Zej2AvLgdwOPqVo4Yfu01aDeCga2x-tRnAvU9N597NY5h-i5fNsR-vcFkiq1aLa1Z5SoysN8xvC3QyioS_ZBNKAfY1G82m7xmyf7XeMJwvHfKTnDyB89PR7GTMu14KvJRC1Ly0qIRMGRN6BNEkZZOcC2PROzYiaV8ErwMqrlJIE4Z0FeMlPphUaBUiGkXyEPaXq2V8Cmxuox4iFvhggpKl9Nlc4b9j6QuTELSOIOuZ6Mqu0Dj1u7h2fUTZd4d8d8R3Rz0wc3ME77ZD1m2VjV3Eql8Z95uoONQCu4a96VfR4RaiexG_jKvbypENZ4YIfXoXjSFXWdni3zSU9SRR8-T5s_-b4ms4GM-mEzf5fPb1OdynL23a4wvYr29u40u0f-rwqpHvn-wtAKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional-scale+soil+salinity+assessment+using+Landsat+ETM%2B+canopy+reflectance&rft.jtitle=Remote+sensing+of+environment&rft.au=Scudiero%2C+Elia&rft.au=Skaggs%2C+Todd+H&rft.au=Corwin%2C+Dennis+L&rft.date=2015-11-01&rft.issn=0034-4257&rft.volume=169&rft.spage=335&rft.epage=343&rft_id=info:doi/10.1016%2Fj.rse.2015.08.026&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |