Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance

Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially for the salinity ranges that are most relevant to agricultural producti...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 169; pp. 335 - 343
Main Authors Scudiero, Elia, Skaggs, Todd H., Corwin, Dennis L.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2015
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2015.08.026

Cover

Abstract Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially for the salinity ranges that are most relevant to agricultural productivity (i.e., salinities less than 20dSm−1, when measured as the electrical conductivity of the soil saturation extract). This paper explores the potentials and limitations of assessing and mapping soil salinity via linear modeling of remote sensing vegetation indices. A case study is presented for western San Joaquin Valley, California, USA using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields comprising 542ha were used for ground-truthing. Re-gridded to 30×30m, the ground-truth data totaled over 5000pixels with salinity values in the range 0 to 35.2dSm−1. Multi-year maximum values of CRSI were used to model soil salinity. Soil type, meteorological data, and crop type were evaluated as covariates. All considered models were evaluated for their fit to the whole data set as well as their performance in a leave-one-field-out spatial cross-validation. The best performing model was a function of CRSI, crop type (i.e., cropped or fallow), rainfall, and average minimum temperature, with R2=0.728 when evaluated against all data and R2=0.611 for the cross-validation predictions. Broken out by salinity classes, the mean absolute errors (MAE) for the cross-validation predictions were (all units dSm−1): 2.94 for the 0–2 interval (non-saline), 2.12 for 2–4 (slightly saline), 2.35 for 4–8 (moderately saline), 3.23 for 8–16 (strongly saline), and 5.64 for >16 (extremely saline). On a per-field basis, the validation predictions had good agreement with the field average (R2=0.79, MAE=2.46dSm−1), minimum (R2=0.76, MAE=2.25dSm−1), and maximum (R2=0.76, MAE=3.09dSm−1) observed salinity. Overall, reasonably accurate and precise high resolution, regional-scale remote sensing of soil salinity is possible, even over the critical range of 0 to 20dSm−1, where researchers and policy makers must focus to prevent loss of agricultural productivity and ecosystem health. Regional scale soil salinity assessment can successfully be carried out using multi-year Landsat ETM+ canopy reflectance and information on crop cover and meteorological settings. [Display omitted] •Multi-year maxima of Landsat ETM+ vegetation indices correlates with soil salinity.•Linear regressions provide reliable salinity estimates at the regional scale.•Crop and meteorological covariates increase accuracy of soil salinity predictions.•Salinity assessment models are validated through a spatial cross-validation.
AbstractList Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially for the salinity ranges that are most relevant to agricultural productivity (i.e., salinities less than 20dSm-1, when measured as the electrical conductivity of the soil saturation extract). This paper explores the potentials and limitations of assessing and mapping soil salinity via linear modeling of remote sensing vegetation indices. A case study is presented for western San Joaquin Valley, California, USA using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields comprising 542ha were used for ground-truthing. Re-gridded to 3030m, the ground-truth data totaled over 5000pixels with salinity values in the range 0 to 35.2dSm-1. Multi-year maximum values of CRSI were used to model soil salinity. Soil type, meteorological data, and crop type were evaluated as covariates. All considered models were evaluated for their fit to the whole data set as well as their performance in a leave-one-field-out spatial cross-validation. The best performing model was a function of CRSI, crop type (i.e., cropped or fallow), rainfall, and average minimum temperature, with R2 =0.728 when evaluated against all data and R2 =0.611 for the cross-validation predictions. Broken out by salinity classes, the mean absolute errors (MAE) for the cross-validation predictions were (all units dSm-1): 2.94 for the 0-2 interval (non-saline), 2.12 for 2-4 (slightly saline), 2.35 for 4-8 (moderately saline), 3.23 for 8-16 (strongly saline), and 5.64 for >16 (extremely saline). On a per-field basis, the validation predictions had good agreement with the field average (R2 =0.79, MAE=2.46dSm-1), minimum (R2 =0.76, MAE=2.25dSm-1), and maximum (R2 =0.76, MAE=3.09dSm-1) observed salinity. Overall, reasonably accurate and precise high resolution, regional-scale remote sensing of soil salinity is possible, even over the critical range of 0 to 20dSm-1, where researchers and policy makers must focus to prevent loss of agricultural productivity and ecosystem health.
Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially for the salinity ranges that are most relevant to agricultural productivity (i.e., salinities less than 20dSm−1, when measured as the electrical conductivity of the soil saturation extract). This paper explores the potentials and limitations of assessing and mapping soil salinity via linear modeling of remote sensing vegetation indices. A case study is presented for western San Joaquin Valley, California, USA using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields comprising 542ha were used for ground-truthing. Re-gridded to 30×30m, the ground-truth data totaled over 5000pixels with salinity values in the range 0 to 35.2dSm−1. Multi-year maximum values of CRSI were used to model soil salinity. Soil type, meteorological data, and crop type were evaluated as covariates. All considered models were evaluated for their fit to the whole data set as well as their performance in a leave-one-field-out spatial cross-validation. The best performing model was a function of CRSI, crop type (i.e., cropped or fallow), rainfall, and average minimum temperature, with R2=0.728 when evaluated against all data and R2=0.611 for the cross-validation predictions. Broken out by salinity classes, the mean absolute errors (MAE) for the cross-validation predictions were (all units dSm−1): 2.94 for the 0–2 interval (non-saline), 2.12 for 2–4 (slightly saline), 2.35 for 4–8 (moderately saline), 3.23 for 8–16 (strongly saline), and 5.64 for >16 (extremely saline). On a per-field basis, the validation predictions had good agreement with the field average (R2=0.79, MAE=2.46dSm−1), minimum (R2=0.76, MAE=2.25dSm−1), and maximum (R2=0.76, MAE=3.09dSm−1) observed salinity. Overall, reasonably accurate and precise high resolution, regional-scale remote sensing of soil salinity is possible, even over the critical range of 0 to 20dSm−1, where researchers and policy makers must focus to prevent loss of agricultural productivity and ecosystem health. Regional scale soil salinity assessment can successfully be carried out using multi-year Landsat ETM+ canopy reflectance and information on crop cover and meteorological settings. [Display omitted] •Multi-year maxima of Landsat ETM+ vegetation indices correlates with soil salinity.•Linear regressions provide reliable salinity estimates at the regional scale.•Crop and meteorological covariates increase accuracy of soil salinity predictions.•Salinity assessment models are validated through a spatial cross-validation.
Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially for the salinity ranges that are most relevant to agricultural productivity (i.e., salinities less than 20dSm−1, when measured as the electrical conductivity of the soil saturation extract). This paper explores the potentials and limitations of assessing and mapping soil salinity via linear modeling of remote sensing vegetation indices. A case study is presented for western San Joaquin Valley, California, USA using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields comprising 542ha were used for ground-truthing. Re-gridded to 30×30m, the ground-truth data totaled over 5000pixels with salinity values in the range 0 to 35.2dSm−1. Multi-year maximum values of CRSI were used to model soil salinity. Soil type, meteorological data, and crop type were evaluated as covariates. All considered models were evaluated for their fit to the whole data set as well as their performance in a leave-one-field-out spatial cross-validation. The best performing model was a function of CRSI, crop type (i.e., cropped or fallow), rainfall, and average minimum temperature, with R2=0.728 when evaluated against all data and R2=0.611 for the cross-validation predictions. Broken out by salinity classes, the mean absolute errors (MAE) for the cross-validation predictions were (all units dSm−1): 2.94 for the 0–2 interval (non-saline), 2.12 for 2–4 (slightly saline), 2.35 for 4–8 (moderately saline), 3.23 for 8–16 (strongly saline), and 5.64 for >16 (extremely saline). On a per-field basis, the validation predictions had good agreement with the field average (R2=0.79, MAE=2.46dSm−1), minimum (R2=0.76, MAE=2.25dSm−1), and maximum (R2=0.76, MAE=3.09dSm−1) observed salinity. Overall, reasonably accurate and precise high resolution, regional-scale remote sensing of soil salinity is possible, even over the critical range of 0 to 20dSm−1, where researchers and policy makers must focus to prevent loss of agricultural productivity and ecosystem health.
Author Corwin, Dennis L.
Skaggs, Todd H.
Scudiero, Elia
Author_xml – sequence: 1
  givenname: Elia
  orcidid: 0000-0003-4944-721X
  surname: Scudiero
  fullname: Scudiero, Elia
  email: elia.scudiero@ars.usda.gov, scudiero@dmsa.unipd.it
– sequence: 2
  givenname: Todd H.
  surname: Skaggs
  fullname: Skaggs, Todd H.
– sequence: 3
  givenname: Dennis L.
  surname: Corwin
  fullname: Corwin, Dennis L.
BookMark eNqNkU1rGzEQhkVIoU6aH5DbHgtlNzP7IcnkFEK-wCFQ0rOQ5dkgI2tdjVzwv4-Ce8ohyUkMPO8wet4TcRynSEKcIzQIKC_WTWJqWsChAd1AK4_EDLWa16CgPxYzgK6v-3ZQ38UJ8xoKqBXOxONvevFTtKFmZwNVPPlQsQ0--ryvLDMxbyjmasc-vlQLG1dsc3Xz_PircjZO232VaAzkso2Ofohvow1MZ__fU_Hn9ub5-r5ePN09XF8tatch5tophVo6GqGfkxx7NXYrlOVQKXEcrF7aYQlSOezkcq4G1LYrgxz10C9Jlq-cip-Hvds0_d0RZ7Px7CgEG2nasWmhQNjLtv0URSVbROiV_gLaKjlX0A0FxQPq0sRcDJht8hub9gbBvBVi1qYUYt4KMaBNKaRk1LuM89nmYj8n68OHyctDkorTf56SYeep-F75VMyb1eQ_SL8CEh6l2g
CitedBy_id crossref_primary_10_1016_j_catena_2020_104939
crossref_primary_10_1016_j_scitotenv_2021_147216
crossref_primary_10_3390_rs11222605
crossref_primary_10_1016_j_geoderma_2020_114211
crossref_primary_10_7717_peerj_10585
crossref_primary_10_3390_land13060877
crossref_primary_10_1038_s41598_024_60033_6
crossref_primary_10_3390_rs16244812
crossref_primary_10_1016_j_catena_2023_107375
crossref_primary_10_1111_sum_12262
crossref_primary_10_1016_j_ecolind_2023_110639
crossref_primary_10_1016_j_catena_2019_01_040
crossref_primary_10_1109_ACCESS_2020_2995458
crossref_primary_10_3390_ijerph14091018
crossref_primary_10_3390_s18020616
crossref_primary_10_1111_sum_12666
crossref_primary_10_1016_j_geodrs_2023_e00695
crossref_primary_10_3390_rs16040684
crossref_primary_10_1080_01431161_2023_2235640
crossref_primary_10_1016_j_rse_2025_114708
crossref_primary_10_1016_j_scitotenv_2021_146253
crossref_primary_10_34133_remotesensing_0130
crossref_primary_10_3389_fmars_2022_895172
crossref_primary_10_1016_j_agwat_2017_09_016
crossref_primary_10_1007_s41207_017_0021_1
crossref_primary_10_1016_j_geoderma_2017_02_004
crossref_primary_10_1016_j_jag_2022_102838
crossref_primary_10_1080_22797254_2019_1596756
crossref_primary_10_1016_j_geoderma_2021_115656
crossref_primary_10_1111_sum_12772
crossref_primary_10_1016_j_fcr_2025_109752
crossref_primary_10_1002_saj2_20153
crossref_primary_10_1016_j_scitotenv_2020_142030
crossref_primary_10_1016_j_scitotenv_2021_152524
crossref_primary_10_1016_j_jag_2018_06_006
crossref_primary_10_1088_1755_1315_692_4_042007
crossref_primary_10_3390_rs12162601
crossref_primary_10_1016_j_ecolind_2018_02_041
crossref_primary_10_1016_j_geoderma_2018_08_006
crossref_primary_10_3390_w14091438
crossref_primary_10_1038_s41598_023_27760_8
crossref_primary_10_1007_s10661_023_12197_3
crossref_primary_10_1016_j_scitotenv_2023_167720
crossref_primary_10_3390_plants11233259
crossref_primary_10_3390_rs14030512
crossref_primary_10_1016_j_agwat_2024_109114
crossref_primary_10_3389_fpls_2024_1437390
crossref_primary_10_1016_j_geoderma_2023_116738
crossref_primary_10_3390_rs15092332
crossref_primary_10_3390_rs11080967
crossref_primary_10_1109_JSTARS_2023_3274579
crossref_primary_10_3390_land11071041
crossref_primary_10_1016_j_scitotenv_2019_136092
crossref_primary_10_3390_rs15020387
crossref_primary_10_3390_rs15102540
crossref_primary_10_1016_j_catena_2019_104192
crossref_primary_10_1007_s43621_024_00594_8
crossref_primary_10_3390_land12091769
crossref_primary_10_31988_SciTrends_46281
crossref_primary_10_3390_agronomy13123074
crossref_primary_10_1080_07038992_2022_2056435
crossref_primary_10_1109_JSTARS_2022_3223935
crossref_primary_10_5194_nhess_19_1499_2019
crossref_primary_10_1016_j_scitotenv_2022_160741
crossref_primary_10_3390_rs13163100
crossref_primary_10_3390_rs15184400
crossref_primary_10_1016_j_ancene_2022_100322
crossref_primary_10_1016_j_earscirev_2020_103295
crossref_primary_10_1080_01431161_2016_1259681
crossref_primary_10_18393_ejss_1380500
crossref_primary_10_1111_ejss_13010
crossref_primary_10_1007_s10661_017_6197_7
crossref_primary_10_1080_01431161_2021_2009589
crossref_primary_10_3390_rs15040940
crossref_primary_10_1016_j_jag_2016_06_024
crossref_primary_10_1007_s11356_021_17677_y
crossref_primary_10_1016_j_jag_2018_12_011
crossref_primary_10_3390_s23157003
crossref_primary_10_1016_j_envres_2025_121167
crossref_primary_10_1016_j_jag_2019_04_012
crossref_primary_10_3390_s20226521
crossref_primary_10_1016_j_agwat_2020_106387
crossref_primary_10_1016_j_jag_2018_02_004
crossref_primary_10_1007_s11053_021_09925_2
crossref_primary_10_1080_22797254_2021_1888657
crossref_primary_10_1016_j_jclepro_2023_138553
crossref_primary_10_3390_w13081075
crossref_primary_10_3390_rs8090714
crossref_primary_10_3390_app112311145
crossref_primary_10_1088_2515_7620_ab37f0
crossref_primary_10_3390_su15075874
crossref_primary_10_3390_land13111941
crossref_primary_10_1016_j_scitotenv_2019_135387
crossref_primary_10_3390_s22197226
crossref_primary_10_1080_2150704X_2019_1610981
crossref_primary_10_19047_0136_1694_2019_97_52_90
crossref_primary_10_1016_j_geoderma_2022_116321
crossref_primary_10_1002_ldr_2670
crossref_primary_10_1016_j_still_2023_105744
crossref_primary_10_3390_s17102343
crossref_primary_10_1080_01431161_2020_1823515
crossref_primary_10_1080_10106049_2020_1778104
crossref_primary_10_3389_fenvs_2016_00065
crossref_primary_10_1080_19475705_2019_1650125
crossref_primary_10_1016_j_scitotenv_2018_04_415
crossref_primary_10_3390_rs14225803
crossref_primary_10_1016_j_jclepro_2024_142007
crossref_primary_10_1016_j_micres_2025_128140
crossref_primary_10_3390_rs13030417
crossref_primary_10_1016_j_jag_2019_101944
crossref_primary_10_1080_00103624_2018_1448862
crossref_primary_10_1007_s12665_019_8319_8
crossref_primary_10_1186_s40645_019_0311_0
crossref_primary_10_3390_w13121636
crossref_primary_10_3390_rs15174269
crossref_primary_10_1117_1_JRS_12_036018
crossref_primary_10_1016_j_compag_2025_110108
crossref_primary_10_1016_j_jafr_2024_101096
crossref_primary_10_1002_ldr_4287
crossref_primary_10_1016_j_ecolind_2016_06_015
crossref_primary_10_1016_j_ecolind_2020_106467
crossref_primary_10_1002_ldr_4445
crossref_primary_10_3390_inventions4040071
crossref_primary_10_1016_S1002_0160_17_60478_8
crossref_primary_10_1002_agj2_21704
crossref_primary_10_3733_ca_2017a0009
crossref_primary_10_1002_ldr_4162
crossref_primary_10_1016_j_agrformet_2024_110345
crossref_primary_10_4236_ars_2017_64019
crossref_primary_10_1139_cjss_2024_0046
crossref_primary_10_3390_f15060975
crossref_primary_10_1016_j_compag_2022_106844
crossref_primary_10_3389_fenvs_2025_1533419
crossref_primary_10_12677_GST_2022_102010
crossref_primary_10_3390_su10082826
crossref_primary_10_1016_j_nexus_2025_100374
crossref_primary_10_30897_ijegeo_500452
crossref_primary_10_5194_acp_22_14931_2022
crossref_primary_10_3390_rs12244118
crossref_primary_10_3390_agriculture12091490
crossref_primary_10_3390_rs15030767
crossref_primary_10_1109_TGRS_2021_3109819
crossref_primary_10_1016_j_envpol_2019_01_024
crossref_primary_10_1002_ldr_2890
crossref_primary_10_1088_1755_1315_675_1_012178
crossref_primary_10_1016_j_geoderma_2022_115935
crossref_primary_10_1186_s40645_022_00490_7
crossref_primary_10_1007_s11356_021_13503_7
crossref_primary_10_1016_j_compag_2024_109501
crossref_primary_10_1016_j_catena_2021_105585
crossref_primary_10_1016_j_ecolind_2016_11_043
crossref_primary_10_1016_j_geoderma_2017_05_016
crossref_primary_10_1016_j_ecolind_2020_106173
crossref_primary_10_1139_cjss_2021_0154
crossref_primary_10_1016_j_scitotenv_2022_157416
crossref_primary_10_1016_j_compag_2023_107821
crossref_primary_10_3390_rs15153846
Cites_doi 10.1002/2014WR016058
10.1016/j.geoderma.2005.03.014
10.2134/jeq2009.0140
10.1016/j.geoderma.2014.07.028
10.1080/01621459.1952.10483441
10.2134/jeq2009.0326
10.5194/nhess-10-89-2010
10.1109/LGRS.2005.857030
10.1016/j.geoderma.2014.09.018
10.1016/j.jag.2012.07.002
10.1016/j.rse.2006.07.010
10.1016/j.biosystemseng.2012.08.009
10.1016/j.compag.2004.11.004
10.1016/S0034-4257(02)00188-8
10.3733/hilg.v54n01p032
10.1016/j.ecolind.2015.01.004
10.1080/10106049.2011.562309
10.1016/j.rse.2009.08.011
10.1016/j.compag.2012.03.005
10.1111/j.1744-7348.1998.tb05190.x
10.1016/j.geoderma.2014.12.017
10.1002/ldr.1140
10.2134/jeq2009.0036
10.1016/j.geoderma.2013.07.020
10.2134/agronj14.0102
10.1002/joc.1688
10.1016/j.ecolind.2011.03.025
10.1017/S0043174500092997
10.1109/JSTARS.2014.2360411
10.1016/j.geoderma.2014.09.011
10.3390/rs70201181
10.2113/JEEG18.1.1
10.1016/S0034-4257(02)00096-2
10.3390/rs6021137
10.2134/jeq2007.0140
10.1016/j.ijforecast.2006.03.001
10.1016/j.geodrs.2014.10.004
10.2136/sssaj2007.0013
10.1016/j.geodrs.2014.09.002
10.4236/ars.2013.24040
10.2136/sssaj2006.0306
10.1111/j.1469-8137.2008.02531.x
10.1080/02757259309532180
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID AAYXX
CITATION
7QH
7SN
7ST
7UA
C1K
F1W
H96
L.G
SOI
7SU
8FD
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1016/j.rse.2015.08.026
DatabaseName CrossRef
Aqualine
Ecology Abstracts
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Environmental Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 343
ExternalDocumentID 10_1016_j_rse_2015_08_026
S0034425715301127
GeographicLocations INE, USA, California
USA, California, San Joaquin Valley
California
GeographicLocations_xml – name: INE, USA, California
– name: USA, California, San Joaquin Valley
– name: California
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QH
7SN
7ST
7UA
ABUFD
C1K
F1W
H96
L.G
SOI
7SU
8FD
FR3
H8D
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c311t-c77186cef049e6f47f3d16704661f5a8ba5b067c136b97518a37c16f854be6003
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Sat Sep 27 16:20:16 EDT 2025
Tue Oct 07 09:36:18 EDT 2025
Tue Oct 07 09:16:58 EDT 2025
Wed Oct 01 02:18:13 EDT 2025
Thu Apr 24 22:59:45 EDT 2025
Fri Feb 23 02:30:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spatial cross-validation
Landsat 7
Soil salinity
Remote sensing
Soil mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-c77186cef049e6f47f3d16704661f5a8ba5b067c136b97518a37c16f854be6003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4944-721X
PQID 1727697035
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_2000314622
proquest_miscellaneous_1762110478
proquest_miscellaneous_1727697035
crossref_primary_10_1016_j_rse_2015_08_026
crossref_citationtrail_10_1016_j_rse_2015_08_026
elsevier_sciencedirect_doi_10_1016_j_rse_2015_08_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
2015-11-00
20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationTitle Remote sensing of environment
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Achen (bb0005) 1982
Cone (bb0050) 1997
Minasny (bb0205) 2013; 33
Brenning (bb0035) 2012
Ruß, Brenning (bb0235) 2010; 6178
Cardina, Johnson, Sparrow (bb0045) 1997; 45
Samuel-Rosa, Heuvelink, Vasques, Anjos (bb0240) 2015; 243
U.S. Salinity Laboratory Staff (bb0280) 1954
Tanji, Wallender (bb0270) 2012
Masek, Vermote, Saleous, Wolfe, Hall, Huemmrich (bb0190) 2006; 3
Letey, Dinar (bb0165) 1986; 54
Han, Yang, Di, Mueller (bb0115) 2012; 84
Howitt, Medellín-Azuara, MacEwan, Lund, Sumner (bb0120) 2014
Ivits, Cherlet, Tóth, Lewińska, Tóth (bb0135) 2011; 24
Ji, Peters (bb0140) 2007; 106
Metternicht, Zinck (bb0195) 2003; 85
Backlund, Hoppes (bb0025) 1984; 38
Scudiero, Teatini, Corwin, Ferro, Simonetti, Morari (bb0250) 2014; 106
Corwin, Lesch (bb0060) 2013; 18
Scudiero, Skaggs, Corwin (bb0245) 2014; 2–3
Sparkes, Jaggard, Ramsden, Scott (bb0260) 1998; 132
Corwin (bb0055) 2014
Yang, Huang, Liu, Liu, Zhu (bb0295) 2015
Lal, Iivari, Kimble (bb0150) 2004
Lesch (bb0155) 2005; 46
Zhang, Qi, Gao, Ouyang, Zeng, Zhao (bb0300) 2015; 52
Furby, Caccetta, Wallace (bb0095) 2010; 39
Lobell, Ortiz-Monasterio, Gurrola, Valenzuela (bb0180) 2007; 71
Allbed, Kumar, Sinha (bb0020) 2014; 6
Ghassemi, Jakeman, Nix (bb0100) 1995
Zhang, Zeng, Gao, Ouyang, Li, Fang (bb0305) 2011; 11
Kruskal, Wallis (bb0145) 1952; 47
Nawar, Buddenbaum, Hill (bb0220) 2015; 7
Rouse, Haas, Schell, Deering (bb0225) 1973
Lobell (bb0170) 2010; 39
Daly, Halbleib, Smith, Gibson, Doggett, Taylor (bb0075) 2008; 28
Taghizadeh-Mehrjardi, Minasny, Sarmadian, Malone (bb0265) 2014; 213
Aldabaa, Weindorf, Chakraborty, Sharma, Li (bb0010) 2015; 239
Tardivo (bb0275) 2014
Hamzeh, Naseri, AlaviPanah, Mojaradi, Bartholomeus, Clevers (bb0110) 2013; 21
Hyndman, Koehler (bb0130) 2006; 22
Wu, Al-Shafie, Mhaimeed, Ziadat, Nangia, Payne (bb0285) 2014; 7
Corwin, Lesch, Oster, Kaffka (bb0065) 2006; 131
Flowers, Colmer (bb0090) 2008; 179
Boryan, Yang, Mueller, Craig (bb0030) 2011; 26
Wu, Mhaimeed, Al-Shafie, Ziadat, Dhehibi, Nangia (bb0290) 2014; 2-3
Lobell, Lesch, Corwin, Ulmer, Anderson, Potts (bb0175) 2010; 39
Brown, Cybulska, Chaturvedi, Thomsen (bb0040) 2014
Allbed, Kumar (bb0015) 2013; 2
Eldeiry, Garcia (bb0085) 2008; 72
Corwin, Lesch, Oster, Kaffka (bb0070) 2008; 37
Hadjimitsis, Papadavid, Agapiou, Themistocleous, Hadjimitsis, Retalis (bb0105) 2010; 10
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0125) 2002; 83
Mulla (bb0215) 2013; 11
Roy, Ju, Kline, Scaramuzza, Kovalskyy, Hansen (bb0230) 2010; 114
Skaggs, Anderson, Corwin, Suarez (bb0255) 2014; 12
Mougenot, Pouget, Epema (bb0210) 1993; 7
Miller, Koszinski, Wehrhan, Sommer (bb0200) 2015; 239
Ding, Yu (bb0080) 2014; 235
Tardivo (10.1016/j.rse.2015.08.026_bb0275) 2014
Scudiero (10.1016/j.rse.2015.08.026_bb0245) 2014; 2–3
Lobell (10.1016/j.rse.2015.08.026_bb0175) 2010; 39
Corwin (10.1016/j.rse.2015.08.026_bb0055) 2014
Hadjimitsis (10.1016/j.rse.2015.08.026_bb0105) 2010; 10
Tanji (10.1016/j.rse.2015.08.026_bb0270) 2012
Wu (10.1016/j.rse.2015.08.026_bb0290) 2014; 2-3
Ding (10.1016/j.rse.2015.08.026_bb0080) 2014; 235
Letey (10.1016/j.rse.2015.08.026_bb0165) 1986; 54
Rouse (10.1016/j.rse.2015.08.026_bb0225) 1973
Hamzeh (10.1016/j.rse.2015.08.026_bb0110) 2013; 21
Wu (10.1016/j.rse.2015.08.026_bb0285) 2014; 7
Eldeiry (10.1016/j.rse.2015.08.026_bb0085) 2008; 72
Sparkes (10.1016/j.rse.2015.08.026_bb0260) 1998; 132
Daly (10.1016/j.rse.2015.08.026_bb0075) 2008; 28
Furby (10.1016/j.rse.2015.08.026_bb0095) 2010; 39
Roy (10.1016/j.rse.2015.08.026_bb0230) 2010; 114
Scudiero (10.1016/j.rse.2015.08.026_bb0250) 2014; 106
Miller (10.1016/j.rse.2015.08.026_bb0200) 2015; 239
Mougenot (10.1016/j.rse.2015.08.026_bb0210) 1993; 7
Lobell (10.1016/j.rse.2015.08.026_bb0180) 2007; 71
Minasny (10.1016/j.rse.2015.08.026_bb0205) 2013; 33
Achen (10.1016/j.rse.2015.08.026_bb0005) 1982
Masek (10.1016/j.rse.2015.08.026_bb0190) 2006; 3
Backlund (10.1016/j.rse.2015.08.026_bb0025) 1984; 38
Lesch (10.1016/j.rse.2015.08.026_bb0155) 2005; 46
Aldabaa (10.1016/j.rse.2015.08.026_bb0010) 2015; 239
Mulla (10.1016/j.rse.2015.08.026_bb0215) 2013; 11
Han (10.1016/j.rse.2015.08.026_bb0115) 2012; 84
Allbed (10.1016/j.rse.2015.08.026_bb0015) 2013; 2
Ghassemi (10.1016/j.rse.2015.08.026_bb0100) 1995
Ivits (10.1016/j.rse.2015.08.026_bb0135) 2011; 24
Allbed (10.1016/j.rse.2015.08.026_bb0020) 2014; 6
Corwin (10.1016/j.rse.2015.08.026_bb0060) 2013; 18
Howitt (10.1016/j.rse.2015.08.026_bb0120) 2014
Taghizadeh-Mehrjardi (10.1016/j.rse.2015.08.026_bb0265) 2014; 213
Cone (10.1016/j.rse.2015.08.026_bb0050) 1997
Ruß (10.1016/j.rse.2015.08.026_bb0235) 2010; 6178
Lal (10.1016/j.rse.2015.08.026_bb0150) 2004
Nawar (10.1016/j.rse.2015.08.026_bb0220) 2015; 7
Lobell (10.1016/j.rse.2015.08.026_bb0170) 2010; 39
Yang (10.1016/j.rse.2015.08.026_bb0295) 2015
Kruskal (10.1016/j.rse.2015.08.026_bb0145) 1952; 47
Huete (10.1016/j.rse.2015.08.026_bb0125) 2002; 83
Metternicht (10.1016/j.rse.2015.08.026_bb0195) 2003; 85
Brown (10.1016/j.rse.2015.08.026_bb0040) 2014
Skaggs (10.1016/j.rse.2015.08.026_bb0255) 2014; 12
Boryan (10.1016/j.rse.2015.08.026_bb0030) 2011; 26
Brenning (10.1016/j.rse.2015.08.026_bb0035) 2012
Zhang (10.1016/j.rse.2015.08.026_bb0305) 2011; 11
Zhang (10.1016/j.rse.2015.08.026_bb0300) 2015; 52
Samuel-Rosa (10.1016/j.rse.2015.08.026_bb0240) 2015; 243
Cardina (10.1016/j.rse.2015.08.026_bb0045) 1997; 45
Hyndman (10.1016/j.rse.2015.08.026_bb0130) 2006; 22
Corwin (10.1016/j.rse.2015.08.026_bb0065) 2006; 131
Corwin (10.1016/j.rse.2015.08.026_bb0070) 2008; 37
Flowers (10.1016/j.rse.2015.08.026_bb0090) 2008; 179
Ji (10.1016/j.rse.2015.08.026_bb0140) 2007; 106
U.S. Salinity Laboratory Staff (10.1016/j.rse.2015.08.026_bb0280) 1954
References_xml – volume: 239
  start-page: 97
  year: 2015
  end-page: 106
  ident: bb0200
  article-title: Impact of multi-scale predictor selection for modeling soil properties
  publication-title: Geoderma
– volume: 7
  start-page: 1181
  year: 2015
  end-page: 1205
  ident: bb0220
  article-title: Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an arid region
  publication-title: Remote Sensing
– volume: 132
  start-page: 129
  year: 1998
  end-page: 142
  ident: bb0260
  article-title: The effect of field margins on the yield of sugar beet and cereal crops
  publication-title: Annals of Applied Biology
– volume: 2-3
  start-page: 21
  year: 2014
  end-page: 31
  ident: bb0290
  article-title: Mapping soil salinity changes using remote sensing in Central Iraq
  publication-title: Geoderma Regional
– volume: 39
  start-page: 35
  year: 2010
  end-page: 41
  ident: bb0175
  article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI
  publication-title: Journal of Environmental Quality
– volume: 12
  start-page: 9656
  year: 2014
  end-page: 9674
  ident: bb0255
  article-title: Analytical steady-state solutions for water-limited cropping systems using saline irrigation water
  publication-title: Water Resources Research
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: bb0125
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sensing of Environment
– volume: 33
  start-page: 14
  year: 2013
  end-page: 15
  ident: bb0205
  article-title: Why you don't need to use RPD
  publication-title: Pedometron
– volume: 114
  start-page: 35
  year: 2010
  end-page: 49
  ident: bb0230
  article-title: Web-enabled Landsat Data (WELD): Landsat ETM composited mosaics of the conterminous United States
  publication-title: Remote Sensing of Environment
– year: 1982
  ident: bb0005
  article-title: Interpreting and using regression
  publication-title: Sage University Paper Series on Quantitative Application in the Social Sciences 07–001
– volume: 131
  start-page: 369
  year: 2006
  end-page: 387
  ident: bb0065
  article-title: Monitoring management-induced spatio–temporal changes in soil quality through soil sampling directed by apparent electrical conductivity
  publication-title: Geoderma
– volume: 28
  start-page: 2031
  year: 2008
  end-page: 2064
  ident: bb0075
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  publication-title: International Journal of Climatology
– volume: 39
  start-page: 1
  year: 2010
  end-page: 4
  ident: bb0170
  article-title: Remote sensing of soil degradation: introduction
  publication-title: Journal of Environmental Quality
– volume: 52
  start-page: 480
  year: 2015
  end-page: 489
  ident: bb0300
  article-title: Detecting soil salinity with MODIS time series VI data
  publication-title: Ecological Indicators
– volume: 6178
  start-page: 350
  year: 2010
  end-page: 359
  ident: bb0235
  article-title: Data mining in precision agriculture: management of spatial information
  publication-title: Computational intelligence for knowledge-based systems design
– start-page: 5372
  year: 2012
  end-page: 5375
  ident: bb0035
  article-title: Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest
  publication-title: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2012, 23–27 July 2012
– volume: 2
  start-page: 373
  year: 2013
  end-page: 385
  ident: bb0015
  article-title: Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review
  publication-title: Advances in Remote Sensing
– volume: 24
  start-page: 438
  year: 2011
  end-page: 452
  ident: bb0135
  article-title: Characterisation of productivity limitation of salt-affected lands in different climatic regions of Europe using remote sensing derived productivity indicators
  publication-title: Land Degradation & Development
– volume: 85
  start-page: 1
  year: 2003
  end-page: 20
  ident: bb0195
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sensing of Environment
– volume: 21
  start-page: 282
  year: 2013
  end-page: 290
  ident: bb0110
  article-title: Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 6
  start-page: 1137
  year: 2014
  end-page: 1157
  ident: bb0020
  article-title: Mapping and modelling spatial variation in soil salinity in the Al Hassa Oasis based on remote sensing indicators and regression techniques
  publication-title: Remote Sensing
– start-page: 1
  year: 2015
  end-page: 12
  ident: bb0295
  article-title: Mapping soil salinity using a similarity-based prediction approach: a case study in Huanghe River Delta, China
  publication-title: Chinese Geographical Science
– volume: 46
  start-page: 153
  year: 2005
  end-page: 179
  ident: bb0155
  article-title: Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties
  publication-title: Computers and Electronics in Agriculture
– volume: 71
  start-page: 777
  year: 2007
  end-page: 783
  ident: bb0180
  article-title: Identification of saline soils with multiyear remote sensing of crop yields
  publication-title: Soil Science Society of America Journal
– volume: 54
  start-page: 1
  year: 1986
  end-page: 32
  ident: bb0165
  article-title: Simulated crop-water production functions for several crops when irrigated with saline waters
  publication-title: Hilgardia
– volume: 45
  start-page: 364
  year: 1997
  end-page: 373
  ident: bb0045
  article-title: The nature and consequence of weed spatial distribution
  publication-title: Weed Science
– volume: 10
  start-page: 89
  year: 2010
  end-page: 95
  ident: bb0105
  article-title: Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices
  publication-title: Natural Hazards and Earth System Sciences
– volume: 2–3
  start-page: 82
  year: 2014
  end-page: 90
  ident: bb0245
  article-title: Regional Scale Soil Salinity Evaluation Using Landsat 7, Western San Joaquin Valley, California, USA
  publication-title: Geoderma Regional
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: bb0130
  article-title: Another look at measures of forecast accuracy
  publication-title: International Journal of Forecasting
– volume: 179
  start-page: 945
  year: 2008
  end-page: 963
  ident: bb0090
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytologist
– start-page: 309
  year: 1973
  end-page: 317
  ident: bb0225
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: Third ERTS Symposium. NASA SP-351
– volume: 243
  start-page: 214
  year: 2015
  end-page: 227
  ident: bb0240
  article-title: Do more detailed environmental covariates deliver more accurate soil maps?
  publication-title: Geoderma
– start-page: 67
  year: 2014
  end-page: 72
  ident: bb0040
  article-title: Halophytes for the Production of Liquid Biofuels
  publication-title: Sabkha Ecosystems: Volume IV: Cash Crop Halophyte and Biodiversity Conservation
– volume: 18
  start-page: 1
  year: 2013
  end-page: 25
  ident: bb0060
  article-title: Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling
  publication-title: Journal of Environmental and Engineering Geophysics
– volume: 11
  start-page: 1552
  year: 2011
  end-page: 1562
  ident: bb0305
  article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity
  publication-title: Ecological Indicators
– start-page: 526
  year: 1995
  ident: bb0100
  article-title: Salinisation of land and water resources: human causes, extent, management and case studies
– volume: 84
  start-page: 111
  year: 2012
  end-page: 123
  ident: bb0115
  article-title: CropScape: a web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support
  publication-title: Computers and Electronics in Agriculture
– volume: 37
  start-page: 8
  year: 2008
  end-page: 24
  ident: bb0070
  article-title: Short-term sustainability of drainage water reuse: spatio-temporal impacts on soil chemical properties
  publication-title: Journal of Environmental Quality
– volume: 26
  start-page: 341
  year: 2011
  end-page: 358
  ident: bb0030
  article-title: Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program
  publication-title: Geocarto International
– volume: 39
  start-page: 16
  year: 2010
  end-page: 25
  ident: bb0095
  article-title: Salinity monitoring in Western Australia using remotely sensed and other spatial data
  publication-title: Journal of Environmental Quality
– year: 2014
  ident: bb0120
  article-title: Economic analysis of the 2014 drought for California agriculture
– volume: 239
  start-page: 34
  year: 2015
  end-page: 46
  ident: bb0010
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
– start-page: 10
  year: 2012
  end-page: 25
  ident: bb0270
  article-title: Nature and extent of agricultural salinity and sodicity
  publication-title: Agricultural Salinity Assessment and Management
– volume: 7
  start-page: 4442
  year: 2014
  end-page: 4452
  ident: bb0285
  article-title: Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 106
  start-page: 2163
  year: 2014
  end-page: 2174
  ident: bb0250
  article-title: Spatiotemporal response of maize yield to edaphic and meteorological conditions in a saline farmland
  publication-title: Agronomy Journal
– volume: 47
  start-page: 583
  year: 1952
  end-page: 621
  ident: bb0145
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: Journal of the American Statistical Association
– volume: 213
  start-page: 15
  year: 2014
  end-page: 28
  ident: bb0265
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
– year: 2014
  ident: bb0055
  article-title: Field-scale monitoring of the long-term impact and sustainability of drainage water reuse using ECa-directed soil sampling
  publication-title: ASA, CSA, and SSSA Annual Meeting, Long Beach, CA, USA, 1-4 November 2014
– start-page: 9
  year: 1997
  end-page: 15
  ident: bb0050
  article-title: The vanishing valley
  publication-title: San Jose Mercury News Magazine, June 29
– volume: 11
  start-page: 358
  year: 2013
  end-page: 371
  ident: bb0215
  article-title: Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps
  publication-title: Biosystems Engineering
– year: 2014
  ident: bb0275
  article-title: Spatial and time correlation of thermometers and pluviometers in a weather network database
  publication-title: Theoretical and Applied Climatology
– volume: 38
  start-page: 8
  year: 1984
  end-page: 9
  ident: bb0025
  article-title: Status of soil salinity in California
  publication-title: California Agriculture
– volume: 106
  start-page: 59
  year: 2007
  end-page: 65
  ident: bb0140
  article-title: Performance evaluation of spectral vegetation indices using a statistical sensitivity function
  publication-title: Remote Sensing of Environment
– year: 1954
  ident: bb0280
  article-title: USDA Handbook no. 60. Diagnosis and improvement of saline and alkali soils
– volume: 235
  start-page: 316
  year: 2014
  end-page: 322
  ident: bb0080
  article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments
  publication-title: Geoderma
– volume: 72
  start-page: 201
  year: 2008
  end-page: 211
  ident: bb0085
  article-title: Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing
  publication-title: Soil Science Society of America Journal
– year: 2004
  ident: bb0150
  article-title: Soil degradation in the United States: extent, severity, and trends
– volume: 3
  start-page: 68
  year: 2006
  end-page: 72
  ident: bb0190
  article-title: A Landsat surface reflectance dataset for North America, 1990–2000
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 7
  start-page: 241
  year: 1993
  end-page: 259
  ident: bb0210
  article-title: Remote sensing of salt affected soils
  publication-title: Remote Sensing Reviews
– volume: 12
  start-page: 9656
  year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0255
  article-title: Analytical steady-state solutions for water-limited cropping systems using saline irrigation water
  publication-title: Water Resources Research
  doi: 10.1002/2014WR016058
– volume: 131
  start-page: 369
  year: 2006
  ident: 10.1016/j.rse.2015.08.026_bb0065
  article-title: Monitoring management-induced spatio–temporal changes in soil quality through soil sampling directed by apparent electrical conductivity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.014
– volume: 39
  start-page: 35
  year: 2010
  ident: 10.1016/j.rse.2015.08.026_bb0175
  article-title: Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq2009.0140
– volume: 235
  start-page: 316
  year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0080
  article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.07.028
– volume: 47
  start-page: 583
  year: 1952
  ident: 10.1016/j.rse.2015.08.026_bb0145
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1952.10483441
– volume: 33
  start-page: 14
  year: 2013
  ident: 10.1016/j.rse.2015.08.026_bb0205
  article-title: Why you don't need to use RPD
  publication-title: Pedometron
– volume: 6178
  start-page: 350
  year: 2010
  ident: 10.1016/j.rse.2015.08.026_bb0235
  article-title: Data mining in precision agriculture: management of spatial information
– volume: 39
  start-page: 1
  year: 2010
  ident: 10.1016/j.rse.2015.08.026_bb0170
  article-title: Remote sensing of soil degradation: introduction
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq2009.0326
– start-page: 309
  year: 1973
  ident: 10.1016/j.rse.2015.08.026_bb0225
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
– year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0275
  article-title: Spatial and time correlation of thermometers and pluviometers in a weather network database
  publication-title: Theoretical and Applied Climatology
– volume: 10
  start-page: 89
  year: 2010
  ident: 10.1016/j.rse.2015.08.026_bb0105
  article-title: Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices
  publication-title: Natural Hazards and Earth System Sciences
  doi: 10.5194/nhess-10-89-2010
– volume: 3
  start-page: 68
  year: 2006
  ident: 10.1016/j.rse.2015.08.026_bb0190
  article-title: A Landsat surface reflectance dataset for North America, 1990–2000
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2005.857030
– volume: 239
  start-page: 97
  year: 2015
  ident: 10.1016/j.rse.2015.08.026_bb0200
  article-title: Impact of multi-scale predictor selection for modeling soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.018
– volume: 21
  start-page: 282
  year: 2013
  ident: 10.1016/j.rse.2015.08.026_bb0110
  article-title: Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2012.07.002
– start-page: 10
  year: 2012
  ident: 10.1016/j.rse.2015.08.026_bb0270
  article-title: Nature and extent of agricultural salinity and sodicity
– year: 1982
  ident: 10.1016/j.rse.2015.08.026_bb0005
  article-title: Interpreting and using regression
– volume: 38
  start-page: 8
  year: 1984
  ident: 10.1016/j.rse.2015.08.026_bb0025
  article-title: Status of soil salinity in California
  publication-title: California Agriculture
– volume: 106
  start-page: 59
  year: 2007
  ident: 10.1016/j.rse.2015.08.026_bb0140
  article-title: Performance evaluation of spectral vegetation indices using a statistical sensitivity function
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.07.010
– volume: 11
  start-page: 358
  year: 2013
  ident: 10.1016/j.rse.2015.08.026_bb0215
  article-title: Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2012.08.009
– volume: 46
  start-page: 153
  year: 2005
  ident: 10.1016/j.rse.2015.08.026_bb0155
  article-title: Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2004.11.004
– volume: 85
  start-page: 1
  year: 2003
  ident: 10.1016/j.rse.2015.08.026_bb0195
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00188-8
– start-page: 5372
  year: 2012
  ident: 10.1016/j.rse.2015.08.026_bb0035
  article-title: Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest
– start-page: 9
  year: 1997
  ident: 10.1016/j.rse.2015.08.026_bb0050
  article-title: The vanishing valley
– volume: 54
  start-page: 1
  year: 1986
  ident: 10.1016/j.rse.2015.08.026_bb0165
  article-title: Simulated crop-water production functions for several crops when irrigated with saline waters
  publication-title: Hilgardia
  doi: 10.3733/hilg.v54n01p032
– volume: 52
  start-page: 480
  year: 2015
  ident: 10.1016/j.rse.2015.08.026_bb0300
  article-title: Detecting soil salinity with MODIS time series VI data
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2015.01.004
– start-page: 67
  year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0040
  article-title: Halophytes for the Production of Liquid Biofuels
– volume: 26
  start-page: 341
  year: 2011
  ident: 10.1016/j.rse.2015.08.026_bb0030
  article-title: Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program
  publication-title: Geocarto International
  doi: 10.1080/10106049.2011.562309
– volume: 114
  start-page: 35
  year: 2010
  ident: 10.1016/j.rse.2015.08.026_bb0230
  article-title: Web-enabled Landsat Data (WELD): Landsat ETM composited mosaics of the conterminous United States
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.08.011
– volume: 84
  start-page: 111
  year: 2012
  ident: 10.1016/j.rse.2015.08.026_bb0115
  article-title: CropScape: a web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2012.03.005
– start-page: 1
  year: 2015
  ident: 10.1016/j.rse.2015.08.026_bb0295
  article-title: Mapping soil salinity using a similarity-based prediction approach: a case study in Huanghe River Delta, China
  publication-title: Chinese Geographical Science
– volume: 132
  start-page: 129
  year: 1998
  ident: 10.1016/j.rse.2015.08.026_bb0260
  article-title: The effect of field margins on the yield of sugar beet and cereal crops
  publication-title: Annals of Applied Biology
  doi: 10.1111/j.1744-7348.1998.tb05190.x
– volume: 243
  start-page: 214
  year: 2015
  ident: 10.1016/j.rse.2015.08.026_bb0240
  article-title: Do more detailed environmental covariates deliver more accurate soil maps?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.12.017
– volume: 24
  start-page: 438
  year: 2011
  ident: 10.1016/j.rse.2015.08.026_bb0135
  article-title: Characterisation of productivity limitation of salt-affected lands in different climatic regions of Europe using remote sensing derived productivity indicators
  publication-title: Land Degradation & Development
  doi: 10.1002/ldr.1140
– volume: 39
  start-page: 16
  year: 2010
  ident: 10.1016/j.rse.2015.08.026_bb0095
  article-title: Salinity monitoring in Western Australia using remotely sensed and other spatial data
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq2009.0036
– volume: 213
  start-page: 15
  year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0265
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.020
– volume: 106
  start-page: 2163
  year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0250
  article-title: Spatiotemporal response of maize yield to edaphic and meteorological conditions in a saline farmland
  publication-title: Agronomy Journal
  doi: 10.2134/agronj14.0102
– volume: 28
  start-page: 2031
  year: 2008
  ident: 10.1016/j.rse.2015.08.026_bb0075
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.1688
– volume: 11
  start-page: 1552
  year: 2011
  ident: 10.1016/j.rse.2015.08.026_bb0305
  article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2011.03.025
– volume: 45
  start-page: 364
  year: 1997
  ident: 10.1016/j.rse.2015.08.026_bb0045
  article-title: The nature and consequence of weed spatial distribution
  publication-title: Weed Science
  doi: 10.1017/S0043174500092997
– volume: 7
  start-page: 4442
  year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0285
  article-title: Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2014.2360411
– volume: 239
  start-page: 34
  year: 2015
  ident: 10.1016/j.rse.2015.08.026_bb0010
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.011
– year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0120
– year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0055
  article-title: Field-scale monitoring of the long-term impact and sustainability of drainage water reuse using ECa-directed soil sampling
– volume: 7
  start-page: 1181
  year: 2015
  ident: 10.1016/j.rse.2015.08.026_bb0220
  article-title: Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an arid region
  publication-title: Remote Sensing
  doi: 10.3390/rs70201181
– volume: 18
  start-page: 1
  year: 2013
  ident: 10.1016/j.rse.2015.08.026_bb0060
  article-title: Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling
  publication-title: Journal of Environmental and Engineering Geophysics
  doi: 10.2113/JEEG18.1.1
– volume: 83
  start-page: 195
  year: 2002
  ident: 10.1016/j.rse.2015.08.026_bb0125
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 6
  start-page: 1137
  year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0020
  article-title: Mapping and modelling spatial variation in soil salinity in the Al Hassa Oasis based on remote sensing indicators and regression techniques
  publication-title: Remote Sensing
  doi: 10.3390/rs6021137
– year: 1954
  ident: 10.1016/j.rse.2015.08.026_bb0280
– volume: 37
  start-page: 8
  year: 2008
  ident: 10.1016/j.rse.2015.08.026_bb0070
  article-title: Short-term sustainability of drainage water reuse: spatio-temporal impacts on soil chemical properties
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq2007.0140
– volume: 22
  start-page: 679
  year: 2006
  ident: 10.1016/j.rse.2015.08.026_bb0130
  article-title: Another look at measures of forecast accuracy
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 2–3
  start-page: 82
  year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0245
  article-title: Regional Scale Soil Salinity Evaluation Using Landsat 7, Western San Joaquin Valley, California, USA
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2014.10.004
– volume: 72
  start-page: 201
  year: 2008
  ident: 10.1016/j.rse.2015.08.026_bb0085
  article-title: Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2007.0013
– volume: 2-3
  start-page: 21
  year: 2014
  ident: 10.1016/j.rse.2015.08.026_bb0290
  article-title: Mapping soil salinity changes using remote sensing in Central Iraq
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2014.09.002
– volume: 2
  start-page: 373
  year: 2013
  ident: 10.1016/j.rse.2015.08.026_bb0015
  article-title: Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review
  publication-title: Advances in Remote Sensing
  doi: 10.4236/ars.2013.24040
– volume: 71
  start-page: 777
  year: 2007
  ident: 10.1016/j.rse.2015.08.026_bb0180
  article-title: Identification of saline soils with multiyear remote sensing of crop yields
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2006.0306
– start-page: 526
  year: 1995
  ident: 10.1016/j.rse.2015.08.026_bb0100
– year: 2004
  ident: 10.1016/j.rse.2015.08.026_bb0150
– volume: 179
  start-page: 945
  year: 2008
  ident: 10.1016/j.rse.2015.08.026_bb0090
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2008.02531.x
– volume: 7
  start-page: 241
  year: 1993
  ident: 10.1016/j.rse.2015.08.026_bb0210
  article-title: Remote sensing of salt affected soils
  publication-title: Remote Sensing Reviews
  doi: 10.1080/02757259309532180
SSID ssj0015871
Score 2.585118
Snippet Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 335
SubjectTerms California
Canopies
canopy
case studies
data collection
electrical conductivity
environmental health
fallow
issues and policy
Landsat
Landsat 7
linear models
Mathematical models
meteorological data
prediction
Productivity
rain
Reflectance
Remote sensing
researchers
Saline
Salinity
Soil (material)
Soil mapping
Soil salinity
soil salinization
soil surveys
soil types
Spatial cross-validation
temperature
vegetation index
Title Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance
URI https://dx.doi.org/10.1016/j.rse.2015.08.026
https://www.proquest.com/docview/1727697035
https://www.proquest.com/docview/1762110478
https://www.proquest.com/docview/2000314622
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4hECqXqqQgoAUZqadWLuu117s5IhSaFsKhAombZW9sCEJJlN0ccuG3M7OPIFDJocfdHa-s8fgbP-abAfgWh0wLpyUXIqRcdX3OnY8Cj6x0QwTMyEsiCg-udP9G_blNbtfgrOXCUFhlg_01pldo3bw5abR5Mh2NiOMrFVkczlk00pgY5UqlVMXg59MyzEMkWVpXzZOKk3R7s1nFeM0KypQpkiqLJ-VX-LdveoPSles5_wQfmzUjO627tQ1rftyB3d4LRQ0_NnO06MCHpq75_aIDm7-qwr2LzzD46--qUz9e4Kh4VkxGj6ywxIssF8wu83MyCoS_Y5fEALYl610PfjDU_mS6YNhfOuMnM9mBm_Pe9VmfN6UUeC6FKHmeog_SuQ-4IfA6qDTIodApbo61CInNnE0c-q1cSO26dBNjJT7okCXKeVwTyV1YH0_Gfg_YMPVJF6HAOu2UzKWNhgr_7XOb6YCYtQ9Rq0STN3nGqdzFo2kDyh4M6t2Q3g2VwIz1PnxfNpnWSTZWCat2ZMwrSzHoBFY1O25H0eAMomsRO_aTeWFoCae7iHzJKhlNO2WVZu_LEOlJouOJ44P_6-IX2KKnmun4FdbL2dwf4pKndEeVTR_Bxunvi_7VMxC4_wg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIlQuCAIV5WkkTiDT9fq1OaIqJUDSA0ql3ix7Y7dBVRJ1t4dc-O3M7CMIBDlw3N3xyhqPv5mx5wHwNk-FEcFILkSyXA1jyUPMEs-8DHMEzCxKShSenpnxufpyoS_24KTPhaGwyg77W0xv0Lp7c9xx83i9WFCOr1QkcbhnUUhzewfuKp1b8sA-_NjGeQhd2LZtnlScyPurzSbI66aiUplCN2U8qcDC35XTHzDd6J7Th_CgMxrZx3Zej2AvLgdwOPqVo4Yfu01aDeCga2x-tRnAvU9N597NY5h-i5fNsR-vcFkiq1aLa1Z5SoysN8xvC3QyioS_ZBNKAfY1G82m7xmyf7XeMJwvHfKTnDyB89PR7GTMu14KvJRC1Ly0qIRMGRN6BNEkZZOcC2PROzYiaV8ErwMqrlJIE4Z0FeMlPphUaBUiGkXyEPaXq2V8Cmxuox4iFvhggpKl9Nlc4b9j6QuTELSOIOuZ6Mqu0Dj1u7h2fUTZd4d8d8R3Rz0wc3ME77ZD1m2VjV3Eql8Z95uoONQCu4a96VfR4RaiexG_jKvbypENZ4YIfXoXjSFXWdni3zSU9SRR8-T5s_-b4ms4GM-mEzf5fPb1OdynL23a4wvYr29u40u0f-rwqpHvn-wtAKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional-scale+soil+salinity+assessment+using+Landsat+ETM%2B+canopy+reflectance&rft.jtitle=Remote+sensing+of+environment&rft.au=Scudiero%2C+Elia&rft.au=Skaggs%2C+Todd+H&rft.au=Corwin%2C+Dennis+L&rft.date=2015-11-01&rft.issn=0034-4257&rft.volume=169&rft.spage=335&rft.epage=343&rft_id=info:doi/10.1016%2Fj.rse.2015.08.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon