Key charged residues influence the amyloidogenic propensity of the helix-1 region of serum amyloid A

Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies s...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1868; no. 11; p. 130690
Main Authors Bilog, Marvin, Vedad, Jayson, Capadona, Charisse, Profit, Adam A., Desamero, Ruel Z.B.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2024
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2024.130690

Cover

Abstract Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1–13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1–13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1–13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA. [Display omitted] •SAA1–13 fragment exhibits aggregation behavior similar to the full-length helix-1 SAA1–27 sequence•Arg-1 mutation significantly reduces SAA1-13 amyloidogenic propensity, highlighting the role of slat-bridge interactions in amyloid formation•Asp-12 mutation shows that alternative interactions and conformations can drive misfolding trajectory towards fibrilization•Mutation of Ser-5 or Glu-9 enhances SAA1–13 amyloidogenicity and facilitates the formation of labile helical intermediates•Favoring the formation of labile helical intermediates appears to promote the amyloid fibril formation by SAA1–13
AbstractList Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA , mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA . Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.
Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1–13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1–13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1–13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA. [Display omitted] •SAA1–13 fragment exhibits aggregation behavior similar to the full-length helix-1 SAA1–27 sequence•Arg-1 mutation significantly reduces SAA1-13 amyloidogenic propensity, highlighting the role of slat-bridge interactions in amyloid formation•Asp-12 mutation shows that alternative interactions and conformations can drive misfolding trajectory towards fibrilization•Mutation of Ser-5 or Glu-9 enhances SAA1–13 amyloidogenicity and facilitates the formation of labile helical intermediates•Favoring the formation of labile helical intermediates appears to promote the amyloid fibril formation by SAA1–13
Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1-13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1-13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1-13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1-13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1-13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1-13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable β-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.
ArticleNumber 130690
Author Desamero, Ruel Z.B.
Capadona, Charisse
Profit, Adam A.
Bilog, Marvin
Vedad, Jayson
Author_xml – sequence: 1
  givenname: Marvin
  surname: Bilog
  fullname: Bilog, Marvin
  organization: Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States
– sequence: 2
  givenname: Jayson
  surname: Vedad
  fullname: Vedad, Jayson
  organization: PhD Programs in Chemistry, Graduate Center of the City University of New York, NY, New York, 10016, United States
– sequence: 3
  givenname: Charisse
  surname: Capadona
  fullname: Capadona, Charisse
  organization: Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States
– sequence: 4
  givenname: Adam A.
  surname: Profit
  fullname: Profit, Adam A.
  organization: Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States
– sequence: 5
  givenname: Ruel Z.B.
  surname: Desamero
  fullname: Desamero, Ruel Z.B.
  email: rdesamero@york.cuny.edu
  organization: Department of Chemistry and the Institute of Macromolecular Assembly, York College of the City University of New York, Jamaica, New York 11451, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39117048$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOwzAQRS0Eghb4A4SyZJMyfiRuNkgI8RJIbGBtJfakdZXExU4Q_Xtc0rLEG0v2OWPP3Ck57FyHhFxQmFGg-fVqVlXlArsZAyZmlENewAGZ0Llk6RwgPyQT4CBSQfPshExDWEFcWZEdkxNeUCpBzCfEvOAm0cvSL9AkHoM1A4bEdnUzYKcx6ZeYlO2mcda4-JjVydq7NXbB9pvE1b_3S2zsd0qjvrCu254G9EO795LbM3JUl03A891-Sj4e7t_vntLXt8fnu9vXVHNK-1TSDJnOaioEr-dIhS6Rg6SMgSklBw1Mcl7kEZMmyxgTGddFJStWGVPImp-Sq7Fu_ONn7KNXrQ0am6bs0A1BcSigiBITEb3coUPVolFrb9vSb9R-MhEQI6C9C8Fj_YdQUNsA1EqNAahtAGoMIGo3o4axzy-LXgVtt5M01qPulXH2_wI_qbiOnA
Cites_doi 10.1074/jbc.M112.394155
10.3109/10409239509085140
10.1016/j.pnmrs.2015.05.002
10.1073/pnas.96.20.11211
10.3109/13506129908993291
10.1016/j.jinf.2020.03.035
10.1038/nprot.2006.202
10.1073/pnas.1820585116
10.3389/fmed.2023.1135695
10.1110/ps.041024904
10.1073/pnas.2634884100
10.1038/nchem.2615
10.1021/bi00616a015
10.1016/S0140-6736(00)05252-1
10.1016/0263-7855(96)00018-5
10.1016/j.abb.2011.04.019
10.1016/j.compbiolchem.2012.06.005
10.1111/j.1742-4658.2005.05022.x
10.3109/13506129409148635
10.3390/biom10020241
10.1093/nar/gkaa1100
10.1016/j.bioorg.2024.107404
10.1074/jbc.M206039200
10.1111/j.1365-3083.1985.tb01431.x
10.1016/j.ijbiomac.2020.03.064
10.1111/j.1365-3083.1995.tb03538.x
10.1021/ja909345p
10.1074/jbc.C400260200
10.1007/s00726-015-2167-y
10.1042/bj3181041
10.1006/jmbi.1999.3422
10.1002/bip.360221211
10.1371/journal.pbio.0050134
10.1073/pnas.252340199
10.1016/j.saa.2024.124094
10.1016/j.softx.2015.06.001
10.1046/j.1432-1033.2002.03024.x
10.1021/bi030149y
10.1110/ps.9.9.1700
10.1021/bi101936c
10.1146/annurev.med.57.121304.131243
10.1063/1.464397
10.1517/14656566.9.12.2117
10.1093/nar/gky497
10.3109/13506129.2011.654294
10.1111/j.1742-4658.2011.08149.x
10.1073/pnas.202495199
10.1016/j.bpj.2012.07.046
10.1080/19336896.2021.1910468
10.1098/rstb.2000.0766
10.1016/j.ijid.2021.03.025
10.1046/j.1432-1327.1999.00657.x
10.1021/acs.jpcb.6b07672
10.1074/jbc.M204168200
10.1021/ja800328y
10.1016/j.chemphyslip.2009.07.008
10.1063/1.445869
10.1016/j.abb.2020.108264
10.1021/acs.jctc.6b00826
10.1016/j.bbamem.2013.04.012
10.1063/1.2408420
10.1016/j.bbapap.2005.06.005
10.1016/j.chemphyslip.2016.11.004
10.1063/1.328693
10.1161/ATVBAHA.118.310979
10.1016/S1877-1173(10)93013-5
10.1126/science.265.5176.1219
10.1016/j.bbabio.2007.06.004
10.1073/pnas.1322357111
10.1021/acsomega.8b02377
10.1021/acs.jpcb.9b10843
10.1017/S0033583516000044
10.1039/D1RA02898G
10.3390/metabo12111099
10.1007/s12551-018-0427-2
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bbagen.2024.130690
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 39117048
10_1016_j_bbagen_2024_130690
S0304416524001338
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R15 GM119040
– fundername: NIGMS NIH HHS
  grantid: R15 GM134491
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
EFLBG
ID FETCH-LOGICAL-c311t-715e2c5f1443f8e14cae3071220da730c027339615e7d5522453c9b7b2bdd97f3
IEDL.DBID AIKHN
ISSN 0304-4165
1872-8006
IngestDate Fri Sep 05 13:39:45 EDT 2025
Fri May 30 10:59:45 EDT 2025
Tue Jul 01 00:22:20 EDT 2025
Sat Oct 19 15:54:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Circular dichroism spectroscopy
ThT
CD
HFIP
MALDI-TOF
and VMD
BeStSel
DSSP
TFA
Cit
Serum amyloid a
SAA
Mechanism of aggregation
FTIR
MD
Thioflavin T fluorescence assay
Fourier transform infrared spectroscopy
AA amyloidosis
DMF
TEM
TIPS
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-715e2c5f1443f8e14cae3071220da730c027339615e7d5522453c9b7b2bdd97f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39117048
PQID 3090945324
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3090945324
pubmed_primary_39117048
crossref_primary_10_1016_j_bbagen_2024_130690
elsevier_sciencedirect_doi_10_1016_j_bbagen_2024_130690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Szulc, Gąsior-Głogowska, Żyłka, Szefczyk, Wojciechowski, Żak, Dyrka, Kaczorowska, Burdukiewicz, Tarek, Kotulska (bb0195) 2024; 313
Vestergaard, Groenning, Roessle, Kastrup, van de Weert, Flink, Frokjaer, Gajhede, Svergun (bb0370) 2007; 5
Wilson, Thompson, Shridas, McNamara, de Beer, de Beer, Webb, Tannock (bb0055) 2018; 38
Pettersson, Konttinen, Maury (bb0005) 2008; 9
Schrödinger (bb0260) 2021
Srinivasan, Patke, Wang, Ye, Litt, Srivastava, Lopez, Kurouski, Lednev, Kane, Colon (bb0070) 2013; 288
Seelig, Schönfeld (bb0270) 2016; 49
Balobanov, Chertkova, Egorova, Dolgikh, Bychkova, Kirpichnikov (bb0280) 2020; 10
Wang, Khatua, Hansmann (bb0120) 2020; 124
The UniProt (bb0205) 2021; 49
Fezoui, Teplow (bb0355) 2002; 277
Lu, Yu, Zhu, Cheng, Sun (bb0130) 2014; 111
Yamada, Liepnieks, Kluve-Beckerman, Benson (bb0135) 1995; 41
Bussi, Donadio, Parrinello (bb0240) 2007; 126
Cai, Singh (bb0340) 2004; 43
Husby, Marhaug, Dowton, Sletten, Sipe (bb0040) 1994; 1
Marshall, Morris, Charlton, O’Reilly, Lewis, Walden, Serpell (bb0385) 2011; 50
Florio, Luciano, Di Natale, Marasco (bb0190) 2024; 147
Rubin, Perugia, Goldschmidt, Fridkin, Addadi (bb0375) 2008; 130
Jackson, Mantsch (bb0345) 1995; 30
Zerovnik, Stoka, Mirtic, Guncar, Grdadolnik, Staniforth, Turk, Turk (bb0350) 2011; 278
Egashira, Takase, Yamamoto, Tanaka, Saito (bb0265) 2011; 511
Tanaka, Takarada, Nadanaka, Kojima, Hosoi, Machiba, Kitagawa, Yamada (bb0200) 2023; 742
Gillmore, Lovat, Persey, Pepys, Hawkins (bb0035) 2001; 358
Tanaka, Nishimura, Takeshita, Takase, Yamada, Mukai (bb0210) 2017; 202
Kayed, Sokolov, Edmonds, McIntire, Milton, Hall, Glabe (bb0065) 2004; 279
Seo, Hoffmann, Warnke, Huang, Gewinner, Schöllkopf, Bowers, von Helden, Pagel (bb0335) 2017; 9
Villegas, Zurdo, Filimonov, Avilés, Dobson, Serrano (bb0160) 2000; 9
Gazit (bb0185) 2005; 272
Uhlar, Whitehead (bb0075) 1999; 265
Sosnowska, Skibiszewska, Kaminska, Wieczerzak, Jankowska (bb0300) 2016; 48
Zhang, Li (bb0085) 2010; 93
Bush, Sarkar, Kopple (bb0290) 1978; 17
Parrinello, Rahman (bb0245) 1981; 52
Litvinov, Faizullin, Zuev, Weisel (bb0330) 2012; 103
West, Wang, Patterson, Mancias, Beasley, Hecht (bb0150) 1999; 96
Humphrey, Dalke, Schulten (bb0255) 1996; 14
Skibiszewska, Zaczek, Dybala-Defratyka, Jedrzejewska, Jankowska (bb0125) 2020; 681
Kabsch, Sander (bb0250) 1983; 22
Tenidis, Waldner, Bernhagen, Fischle, Bergmann, Weber, Merkle, Voelter, Brunner, Kapurniotu (bb0170) 2000; 295
Hammarström, Jiang, Hurshman, Powers, Kelly (bb0165) 2002; 99
Galkin (bb0030) 2021; 15
López de la Paz, Goldie, Zurdo, Lacroix, Dobson, Hoenger, Serrano (bb0155) 2002; 99
Greenfield (bb0285) 2006; 1
Karamanos, Kalverda, Thompson, Radford (bb0390) 2015; 88-89
Pepys (bb0060) 2001; 356
Kisilevsky, Manley (bb0045) 2012; 19
López de la Paz, Serrano (bb0145) 2004; 101
Stanković, Niu, Hall, Zarić (bb0180) 2020; 156
Patel, Bramall, Waters, De Beer, Woo (bb0140) 1996; 318
Zandomeneghi, Krebs, McCammon, Fändrich (bb0315) 2004; 13
Nordling, Abraham-Nordling (bb0105) 2012; 39
Micsonai, Wien, Bulyáki, Kun, Moussong, Lee, Goto, Réfrégiers, Kardos (bb0215) 2018; 46
Almusalami, Lockett, Ferro, Posner (bb0020) 2023; 10
Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bb0220) 2015; 1-2
Zerovnik (bb0360) 2002; 269
Olamoyesan, Ang, Rodger (bb0275) 2021; 11
Sarroukh, Goormaghtigh, Ruysschaert, Raussens (bb0320) 2013; 1828
Li, Xiang, Ren, Xu, Zhao, Chen, Long, Wang, Wu (bb0010) 2020; 80
Shea, Hsu, Bi, Paranjapye, Childers, Cochran, Tomberlin, Wang, Paris, Zonderman, Varani, Link, Mullan, Daggett (bb0365) 2019; 116
Ohta, Tanaka, Sakakura, Kawakami, Aimoto, Saito (bb0100) 2009; 162
Pepys (bb0090) 2006; 57
Darden, York, Pedersen (bb0235) 1993; 98
Turnell, Sarra, Glover, Baum, Caspi, Baltz, Pepys (bb0095) 1986; 5
Martial, Lefevre, Auger (bb0380) 2018; 10
Sipe (bb0050) 1999; 6
Wang, Xi, Hansmann (bb0110) 2018; 3
Kusalik, Svishchev (bb0230) 1994; 265
Zinellu, Paliogiannis, Carru, Mangoni (bb0015) 2021; 105
Reches, Porat, Gazit (bb0175) 2002; 277
Jannone, Grigg, Aguirre, Jones (bb0305) 2016; 120
Husebekk, Skogen, Husby, G, M. (bb0080) 1985; 21
Jorgensen, Chandrasekhar, Madura, Impey, Klein (bb0225) 1983; 79
Kelly, Jess, Price (bb0295) 2005; 1751
Gonçalves, Bobermin, Sesterheim, Netto (bb0025) 2022; 12
Bernhardt, Xi, Wang, Hansmann (bb0115) 2016; 12
Barth (bb0325) 2007; 1767
Rubin, Perugia, Wolf, Klein, Fridkin, Addadi (bb0310) 2010; 132
Kayed (10.1016/j.bbagen.2024.130690_bb0065) 2004; 279
Egashira (10.1016/j.bbagen.2024.130690_bb0265) 2011; 511
Bernhardt (10.1016/j.bbagen.2024.130690_bb0115) 2016; 12
Greenfield (10.1016/j.bbagen.2024.130690_bb0285) 2006; 1
West (10.1016/j.bbagen.2024.130690_bb0150) 1999; 96
Martial (10.1016/j.bbagen.2024.130690_bb0380) 2018; 10
The UniProt (10.1016/j.bbagen.2024.130690_bb0205) 2021; 49
Schrödinger (10.1016/j.bbagen.2024.130690_bb0260) 2021
Husebekk (10.1016/j.bbagen.2024.130690_bb0080) 1985; 21
Ohta (10.1016/j.bbagen.2024.130690_bb0100) 2009; 162
Micsonai (10.1016/j.bbagen.2024.130690_bb0215) 2018; 46
Darden (10.1016/j.bbagen.2024.130690_bb0235) 1993; 98
Balobanov (10.1016/j.bbagen.2024.130690_bb0280) 2020; 10
Hammarström (10.1016/j.bbagen.2024.130690_bb0165) 2002; 99
Gazit (10.1016/j.bbagen.2024.130690_bb0185) 2005; 272
Galkin (10.1016/j.bbagen.2024.130690_bb0030) 2021; 15
López de la Paz (10.1016/j.bbagen.2024.130690_bb0145) 2004; 101
Bush (10.1016/j.bbagen.2024.130690_bb0290) 1978; 17
Zinellu (10.1016/j.bbagen.2024.130690_bb0015) 2021; 105
Pepys (10.1016/j.bbagen.2024.130690_bb0060) 2001; 356
Karamanos (10.1016/j.bbagen.2024.130690_bb0390) 2015; 88-89
Sosnowska (10.1016/j.bbagen.2024.130690_bb0300) 2016; 48
Pettersson (10.1016/j.bbagen.2024.130690_bb0005) 2008; 9
Zandomeneghi (10.1016/j.bbagen.2024.130690_bb0315) 2004; 13
Seo (10.1016/j.bbagen.2024.130690_bb0335) 2017; 9
Zerovnik (10.1016/j.bbagen.2024.130690_bb0360) 2002; 269
Srinivasan (10.1016/j.bbagen.2024.130690_bb0070) 2013; 288
Rubin (10.1016/j.bbagen.2024.130690_bb0310) 2010; 132
Jackson (10.1016/j.bbagen.2024.130690_bb0345) 1995; 30
Parrinello (10.1016/j.bbagen.2024.130690_bb0245) 1981; 52
Szulc (10.1016/j.bbagen.2024.130690_bb0195) 2024; 313
Olamoyesan (10.1016/j.bbagen.2024.130690_bb0275) 2021; 11
Stanković (10.1016/j.bbagen.2024.130690_bb0180) 2020; 156
Zerovnik (10.1016/j.bbagen.2024.130690_bb0350) 2011; 278
Gillmore (10.1016/j.bbagen.2024.130690_bb0035) 2001; 358
Villegas (10.1016/j.bbagen.2024.130690_bb0160) 2000; 9
Bussi (10.1016/j.bbagen.2024.130690_bb0240) 2007; 126
Seelig (10.1016/j.bbagen.2024.130690_bb0270) 2016; 49
Humphrey (10.1016/j.bbagen.2024.130690_bb0255) 1996; 14
Vestergaard (10.1016/j.bbagen.2024.130690_bb0370) 2007; 5
Jannone (10.1016/j.bbagen.2024.130690_bb0305) 2016; 120
Almusalami (10.1016/j.bbagen.2024.130690_bb0020) 2023; 10
Lu (10.1016/j.bbagen.2024.130690_bb0130) 2014; 111
Shea (10.1016/j.bbagen.2024.130690_bb0365) 2019; 116
Marshall (10.1016/j.bbagen.2024.130690_bb0385) 2011; 50
Tanaka (10.1016/j.bbagen.2024.130690_bb0210) 2017; 202
Fezoui (10.1016/j.bbagen.2024.130690_bb0355) 2002; 277
Rubin (10.1016/j.bbagen.2024.130690_bb0375) 2008; 130
Sipe (10.1016/j.bbagen.2024.130690_bb0050) 1999; 6
Uhlar (10.1016/j.bbagen.2024.130690_bb0075) 1999; 265
Kusalik (10.1016/j.bbagen.2024.130690_bb0230) 1994; 265
Cai (10.1016/j.bbagen.2024.130690_bb0340) 2004; 43
Li (10.1016/j.bbagen.2024.130690_bb0010) 2020; 80
Kabsch (10.1016/j.bbagen.2024.130690_bb0250) 1983; 22
Tanaka (10.1016/j.bbagen.2024.130690_bb0200) 2023; 742
Zhang (10.1016/j.bbagen.2024.130690_bb0085) 2010; 93
Kelly (10.1016/j.bbagen.2024.130690_bb0295) 2005; 1751
Sarroukh (10.1016/j.bbagen.2024.130690_bb0320) 2013; 1828
Gonçalves (10.1016/j.bbagen.2024.130690_bb0025) 2022; 12
Kisilevsky (10.1016/j.bbagen.2024.130690_bb0045) 2012; 19
Abraham (10.1016/j.bbagen.2024.130690_bb0220) 2015; 1-2
Husby (10.1016/j.bbagen.2024.130690_bb0040) 1994; 1
Jorgensen (10.1016/j.bbagen.2024.130690_bb0225) 1983; 79
Pepys (10.1016/j.bbagen.2024.130690_bb0090) 2006; 57
Wang (10.1016/j.bbagen.2024.130690_bb0110) 2018; 3
Wilson (10.1016/j.bbagen.2024.130690_bb0055) 2018; 38
Skibiszewska (10.1016/j.bbagen.2024.130690_bb0125) 2020; 681
Patel (10.1016/j.bbagen.2024.130690_bb0140) 1996; 318
López de la Paz (10.1016/j.bbagen.2024.130690_bb0155) 2002; 99
Tenidis (10.1016/j.bbagen.2024.130690_bb0170) 2000; 295
Turnell (10.1016/j.bbagen.2024.130690_bb0095) 1986; 5
Wang (10.1016/j.bbagen.2024.130690_bb0120) 2020; 124
Nordling (10.1016/j.bbagen.2024.130690_bb0105) 2012; 39
Yamada (10.1016/j.bbagen.2024.130690_bb0135) 1995; 41
Barth (10.1016/j.bbagen.2024.130690_bb0325) 2007; 1767
Reches (10.1016/j.bbagen.2024.130690_bb0175) 2002; 277
Florio (10.1016/j.bbagen.2024.130690_bb0190) 2024; 147
Litvinov (10.1016/j.bbagen.2024.130690_bb0330) 2012; 103
References_xml – volume: 356
  start-page: 203
  year: 2001
  end-page: 210
  ident: bb0060
  article-title: Pathogenesis, diagnosis and treatment of systemic amyloidosis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 9
  start-page: 1700
  year: 2000
  end-page: 1708
  ident: bb0160
  article-title: Protein engineering as a strategy to avoid formation of amyloid fibrils
  publication-title: Protein Sci.
– volume: 21
  start-page: 283
  year: 1985
  end-page: 287
  ident: bb0080
  article-title: Transformation of amyloid precursor Saa to protein aa and incorporation in amyloid fibrils in vivo
  publication-title: Scand. J. Immunol.
– volume: 3
  start-page: 16184
  year: 2018
  end-page: 16190
  ident: bb0110
  article-title: Stability of the N-terminal Helix and its role in amyloid formation of serum amyloid a
  publication-title: ACS Omega
– volume: 99
  start-page: 16427
  year: 2002
  end-page: 16432
  ident: bb0165
  article-title: Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity
  publication-title: PNAS
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  ident: bb0245
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
– volume: 39
  start-page: 29
  year: 2012
  end-page: 34
  ident: bb0105
  article-title: Colonic amyloidosis, computational analysis of the major Amyloidogenic species, serum amyloid a
  publication-title: Comput. Biol. Chem.
– volume: 1
  start-page: 2876
  year: 2006
  end-page: 2890
  ident: bb0285
  article-title: Using circular dichroism spectra to estimate protein secondary structure
  publication-title: Nat. Protoc.
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  ident: bb0235
  article-title: Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
– volume: 103
  start-page: 1020
  year: 2012
  end-page: 1027
  ident: bb0330
  article-title: The Α-Helix to Β-sheet transition in stretched and compressed hydrated fibrin clots
  publication-title: Biophys. J.
– volume: 202
  start-page: 6
  year: 2017
  end-page: 12
  ident: bb0210
  article-title: Effect of lipid environment on amyloid fibril formation of human serum amyloid a
  publication-title: Chem. Phys. Lipids
– volume: 265
  start-page: 1219
  year: 1994
  end-page: 1221
  ident: bb0230
  article-title: The spatial structure in liquid water
  publication-title: Science
– volume: 96
  start-page: 11211
  year: 1999
  end-page: 11216
  ident: bb0150
  article-title: De novo amyloid proteins from designed combinatorial libraries
  publication-title: PNAS
– volume: 41
  start-page: 94
  year: 1995
  end-page: 97
  ident: bb0135
  article-title: Cathepsin B generates the Most common form of amyloid a (76 residues) as a degradation product from serum amyloid a
  publication-title: Scand. J. Immunol.
– volume: 318
  start-page: 1041
  year: 1996
  end-page: 1049
  ident: bb0140
  article-title: Expression of recombinant human serum amyloid a in mammalian cells and demonstration of the region necessary for high-density lipoprotein binding and amyloid fibril formation by site-directed mutagenesis
  publication-title: Biochem. J.
– volume: 49
  year: 2016
  ident: bb0270
  article-title: Thermal protein unfolding by differential scanning calorimetry and circular dichroism spectroscopy two-state model versus sequential unfolding
  publication-title: Q. Rev. Biophys.
– volume: 5
  year: 2007
  ident: bb0370
  article-title: A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils
  publication-title: PLoS Biol.
– volume: 295
  start-page: 1055
  year: 2000
  end-page: 1071
  ident: bb0170
  article-title: Identification of a Penta- and Hexapeptide of islet amyloid polypeptide (Iapp) with Amyloidogenic and cytotoxic Properties1 1edited by R
  publication-title: Huber,
– volume: 13
  start-page: 3314
  year: 2004
  end-page: 3321
  ident: bb0315
  article-title: Ftir reveals structural differences between native Β-sheet proteins and amyloid fibrils
  publication-title: Protein Sci.
– volume: 30
  start-page: 95
  year: 1995
  end-page: 120
  ident: bb0345
  article-title: The use and misuse of Ftir spectroscopy in the determination of protein structure
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 12
  start-page: 1099
  year: 2022
  ident: bb0025
  article-title: Sars-Cov-2-induced Amyloidgenesis: not one, but three hypotheses for cerebral Covid-19 outcomes
  publication-title: Metabolites
– volume: 681
  year: 2020
  ident: bb0125
  article-title: Influence of short peptides with aromatic amino acid residues on aggregation properties of serum amyloid a and its fragments
  publication-title: Arch. Biochem. Biophys.
– volume: 511
  start-page: 101
  year: 2011
  end-page: 106
  ident: bb0265
  article-title: Identification of regions responsible for heparin-induced Amyloidogenesis of human serum amyloid a using its fragment peptides
  publication-title: Arch. Biochem. Biophys.
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: bb0255
  article-title: Vmd: visual molecular dynamics
  publication-title: J. Mol. Graph.
– volume: 279
  start-page: 46363
  year: 2004
  end-page: 46366
  ident: bb0065
  article-title: Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein Misfolding diseases
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 53
  year: 2021
  end-page: 55
  ident: bb0030
  article-title: Hypothesis: aa amyloidosis is a factor causing systemic complications after coronavirus disease
  publication-title: Prion
– volume: 1
  start-page: 119
  year: 1994
  end-page: 137
  ident: bb0040
  article-title: Serum amyloid a (Saa): biochemistry, genetics and the pathogenesis of aa amyloidosis
  publication-title: Amyloid
– volume: 147
  year: 2024
  ident: bb0190
  article-title: The effects of histidine substitution of aromatic residues on the Amyloidogenic properties of the fragment 264–277 of Nucleophosmin 1
  publication-title: Bioorg. Chem.
– volume: 79
  start-page: 926
  year: 1983
  end-page: 935
  ident: bb0225
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 4951
  year: 1978
  end-page: 4954
  ident: bb0290
  article-title: Circular dichroism of Β turns in peptides and proteins
  publication-title: Biochemistry
– volume: 288
  start-page: 2744
  year: 2013
  end-page: 2755
  ident: bb0070
  article-title: Pathogenic serum amyloid a 1.1 shows a Long oligomer-rich fibrillation lag phase contrary to the highly Amyloidogenic non-pathogenic Saa2.2
  publication-title: J. Biol. Chem.
– volume: 1828
  start-page: 2328
  year: 2013
  end-page: 2338
  ident: bb0320
  article-title: Atr-Ftir: a “rejuvenated” tool to investigate amyloid proteins
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 38
  start-page: 1890
  year: 2018
  end-page: 1900
  ident: bb0055
  article-title: Serum amyloid a is an exchangeable apolipoprotein
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 277
  start-page: 36948
  year: 2002
  end-page: 36954
  ident: bb0355
  article-title: Kinetic studies of amyloid Beta-protein fibril assembly. differential effects of alpha-helix stabilization
  publication-title: J. Biol. Chem.
– volume: 105
  start-page: 668
  year: 2021
  end-page: 674
  ident: bb0015
  article-title: Serum amyloid a concentrations, Covid-19 severity and mortality: an updated systematic review and Meta-analysis
  publication-title: Int. J. Infect. Dis.
– year: 2021
  ident: bb0260
  article-title: The Pymol Molecular Graphics System, Version 2.4.1
– volume: 49
  start-page: D480
  year: 2021
  end-page: D489
  ident: bb0205
  article-title: Uniprot: The universal protein Knowledge Base in 2021
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 39
  year: 2017
  end-page: 44
  ident: bb0335
  article-title: An infrared spectroscopy approach to follow Β-sheet formation in peptide amyloid assemblies
  publication-title: Nat. Chem.
– volume: 99
  start-page: 16052
  year: 2002
  end-page: 16057
  ident: bb0155
  article-title: De novo designed peptide-based amyloid fibrils
  publication-title: PNAS
– volume: 277
  start-page: 35475
  year: 2002
  end-page: 35480
  ident: bb0175
  article-title: Amyloid fibril formation by Pentapeptide and Tetrapeptide fragments of human calcitonin *
  publication-title: JBC
– volume: 101
  start-page: 87
  year: 2004
  end-page: 92
  ident: bb0145
  article-title: Sequence determinants of amyloid fibril formation
  publication-title: PNAS
– volume: 269
  start-page: 3362
  year: 2002
  end-page: 3371
  ident: bb0360
  article-title: Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease
  publication-title: Eur. J. Biochem.
– volume: 5
  year: 1986
  ident: bb0095
  article-title: Secondary structure prediction of human Saa1. Presumptive Identification of Calcium and Lipid Binding Sites
  publication-title: Mol. Biol. Med.
– volume: 742
  year: 2023
  ident: bb0200
  article-title: Influences of amino-terminal modifications on amyloid fibril formation of human serum amyloid a
  publication-title: ABB
– volume: 93
  start-page: 309
  year: 2010
  end-page: 334
  ident: bb0085
  article-title: Heparan sulfate proteoglycans in amyloidosis
  publication-title: Prog. Mol. Biol. Transl. Sci.
– volume: 22
  start-page: 2577
  year: 1983
  end-page: 2637
  ident: bb0250
  article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
  publication-title: Biopolymers
– volume: 1767
  start-page: 1073
  year: 2007
  end-page: 1101
  ident: bb0325
  article-title: Infrared spectroscopy of proteins
  publication-title: Biochim. Biophys. Acta
– volume: 156
  start-page: 949
  year: 2020
  end-page: 959
  ident: bb0180
  article-title: Role of aromatic amino acids in amyloid self-assembly
  publication-title: Int. J. Biol. Macromol.
– volume: 11
  start-page: 23985
  year: 2021
  end-page: 23991
  ident: bb0275
  article-title: Circular dichroism for secondary structure determination of proteins with unfolded domains using a self-Organising map algorithm Somspec
  publication-title: RSC Adv.
– volume: 265
  start-page: 501
  year: 1999
  end-page: 523
  ident: bb0075
  article-title: Serum amyloid a, the major vertebrate acute-phase reactant
  publication-title: Eur. J. Biochem.
– volume: 130
  start-page: 4602
  year: 2008
  end-page: 4603
  ident: bb0375
  article-title: Chirality of amyloid Suprastructures
  publication-title: JACS
– volume: 6
  start-page: 67
  year: 1999
  end-page: 70
  ident: bb0050
  article-title: Revised nomenclature for serum amyloid a (Saa). Nomenclature Committee of the International Society of amyloidosis. Part 2
  publication-title: Amyloid
– volume: 46
  start-page: W315
  year: 2018
  end-page: W322
  ident: bb0215
  article-title: Bestsel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra
  publication-title: Nucleic Acids Res.
– volume: 1-2
  start-page: 19
  year: 2015
  end-page: 25
  ident: bb0220
  article-title: Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
– volume: 116
  start-page: 8895
  year: 2019
  end-page: 8900
  ident: bb0365
  article-title: Α-sheet secondary structure in amyloid Beta-peptide drives aggregation and toxicity in Alzheimer’s disease
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 48
  start-page: 1069
  year: 2016
  end-page: 1078
  ident: bb0300
  article-title: Designing Peptidic inhibitors of serum amyloid a aggregation process
  publication-title: Amino Acids
– volume: 111
  start-page: 5189
  year: 2014
  end-page: 5194
  ident: bb0130
  article-title: Structural mechanism of serum amyloid a-mediated inflammatory amyloidosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  start-page: 241
  year: 2020
  ident: bb0280
  article-title: The kinetics of amyloid fibril formation by De novo protein Albebetin and its mutant variants
  publication-title: Biomolecules
– volume: 12
  start-page: 5656
  year: 2016
  end-page: 5666
  ident: bb0115
  article-title: Simulating protein fold switching by replica exchange with tunneling
  publication-title: J. Chem. Theory Comput.
– volume: 272
  start-page: 5971
  year: 2005
  end-page: 5978
  ident: bb0185
  article-title: Mechanisms of amyloid fibril self-assembly and inhibition
  publication-title: FEBS J.
– volume: 162
  start-page: 62
  year: 2009
  end-page: 68
  ident: bb0100
  article-title: Defining lipid-binding regions of human serum amyloid a using its fragment peptides
  publication-title: Chem. Phys. Lipids
– volume: 19
  start-page: 5
  year: 2012
  end-page: 14
  ident: bb0045
  article-title: Acute-phase serum amyloid a: perspectives on its physiological and pathological roles
  publication-title: Amyloid
– volume: 124
  start-page: 1009
  year: 2020
  end-page: 1019
  ident: bb0120
  article-title: Cleavage, downregulation, and aggregation of serum amyloid a
  publication-title: J. Phys. Chem. B
– volume: 88-89
  start-page: 86
  year: 2015
  end-page: 104
  ident: bb0390
  article-title: Mechanisms of amyloid formation revealed by solution Nmr
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 57
  start-page: 223
  year: 2006
  end-page: 241
  ident: bb0090
  article-title: Amyloidosis
  publication-title: Annu. Rev. Med.
– volume: 132
  start-page: 4242
  year: 2010
  end-page: 4248
  ident: bb0310
  article-title: Relation between serum amyloid a truncated peptides and their Suprastructure chirality
  publication-title: JACS
– volume: 1751
  start-page: 119
  year: 2005
  end-page: 139
  ident: bb0295
  article-title: How to study proteins by circular dichroism
  publication-title: Biochim. Biophys. Acta Proteins Proteomics
– volume: 10
  year: 2023
  ident: bb0020
  article-title: Serum amyloid a—a potential therapeutic target for hyper-inflammatory syndrome associated with Covid-19
  publication-title: Front. Med.
– volume: 278
  start-page: 2263
  year: 2011
  end-page: 2282
  ident: bb0350
  article-title: Mechanisms of Amyloid Fibril Formation--Focus on Domain-Swapping
  publication-title: FEBS J.
– volume: 313
  year: 2024
  ident: bb0195
  article-title: Structural effects of charge destabilization and amino acid substitutions in amyloid fragments of Csga
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 9
  start-page: 2117
  year: 2008
  end-page: 2128
  ident: bb0005
  article-title: Treatment strategies for amyloid a amyloidosis
  publication-title: Expert Opin. Pharmacother.
– volume: 50
  start-page: 2061
  year: 2011
  end-page: 2071
  ident: bb0385
  article-title: Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability
  publication-title: Biochemistry
– volume: 358
  start-page: 24
  year: 2001
  end-page: 29
  ident: bb0035
  article-title: Amyloid load and clinical outcome in aa amyloidosis in relation to circulating concentration of serum amyloid a protein
  publication-title: Lancet
– volume: 126
  year: 2007
  ident: bb0240
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
– volume: 43
  start-page: 2541
  year: 2004
  end-page: 2549
  ident: bb0340
  article-title: A distinct utility of the amide iii infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods
  publication-title: Biochemistry
– volume: 120
  start-page: 10258
  year: 2016
  end-page: 10268
  ident: bb0305
  article-title: Electrostatic interactions at N- and C-termini determine fibril polymorphism in serum amyloid a fragments
  publication-title: J. Phys. Chem. B
– volume: 10
  start-page: 1133
  year: 2018
  end-page: 1149
  ident: bb0380
  article-title: Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state Nmr
  publication-title: Biophys. Rev.
– volume: 80
  start-page: 646
  year: 2020
  end-page: 655
  ident: bb0010
  article-title: Serum amyloid a is a biomarker of severe coronavirus disease and poor prognosis
  publication-title: J. Infect.
– volume: 288
  start-page: 2744
  year: 2013
  ident: 10.1016/j.bbagen.2024.130690_bb0070
  article-title: Pathogenic serum amyloid a 1.1 shows a Long oligomer-rich fibrillation lag phase contrary to the highly Amyloidogenic non-pathogenic Saa2.2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.394155
– volume: 30
  start-page: 95
  year: 1995
  ident: 10.1016/j.bbagen.2024.130690_bb0345
  article-title: The use and misuse of Ftir spectroscopy in the determination of protein structure
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409239509085140
– volume: 88-89
  start-page: 86
  year: 2015
  ident: 10.1016/j.bbagen.2024.130690_bb0390
  article-title: Mechanisms of amyloid formation revealed by solution Nmr
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2015.05.002
– volume: 96
  start-page: 11211
  year: 1999
  ident: 10.1016/j.bbagen.2024.130690_bb0150
  article-title: De novo amyloid proteins from designed combinatorial libraries
  publication-title: PNAS
  doi: 10.1073/pnas.96.20.11211
– year: 2021
  ident: 10.1016/j.bbagen.2024.130690_bb0260
– volume: 6
  start-page: 67
  year: 1999
  ident: 10.1016/j.bbagen.2024.130690_bb0050
  article-title: Revised nomenclature for serum amyloid a (Saa). Nomenclature Committee of the International Society of amyloidosis. Part 2
  publication-title: Amyloid
  doi: 10.3109/13506129908993291
– volume: 80
  start-page: 646
  year: 2020
  ident: 10.1016/j.bbagen.2024.130690_bb0010
  article-title: Serum amyloid a is a biomarker of severe coronavirus disease and poor prognosis
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.03.035
– volume: 1
  start-page: 2876
  year: 2006
  ident: 10.1016/j.bbagen.2024.130690_bb0285
  article-title: Using circular dichroism spectra to estimate protein secondary structure
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.202
– volume: 116
  start-page: 8895
  year: 2019
  ident: 10.1016/j.bbagen.2024.130690_bb0365
  article-title: Α-sheet secondary structure in amyloid Beta-peptide drives aggregation and toxicity in Alzheimer’s disease
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1820585116
– volume: 10
  year: 2023
  ident: 10.1016/j.bbagen.2024.130690_bb0020
  article-title: Serum amyloid a—a potential therapeutic target for hyper-inflammatory syndrome associated with Covid-19
  publication-title: Front. Med.
  doi: 10.3389/fmed.2023.1135695
– volume: 13
  start-page: 3314
  year: 2004
  ident: 10.1016/j.bbagen.2024.130690_bb0315
  article-title: Ftir reveals structural differences between native Β-sheet proteins and amyloid fibrils
  publication-title: Protein Sci.
  doi: 10.1110/ps.041024904
– volume: 101
  start-page: 87
  year: 2004
  ident: 10.1016/j.bbagen.2024.130690_bb0145
  article-title: Sequence determinants of amyloid fibril formation
  publication-title: PNAS
  doi: 10.1073/pnas.2634884100
– volume: 9
  start-page: 39
  year: 2017
  ident: 10.1016/j.bbagen.2024.130690_bb0335
  article-title: An infrared spectroscopy approach to follow Β-sheet formation in peptide amyloid assemblies
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2615
– volume: 17
  start-page: 4951
  year: 1978
  ident: 10.1016/j.bbagen.2024.130690_bb0290
  article-title: Circular dichroism of Β turns in peptides and proteins
  publication-title: Biochemistry
  doi: 10.1021/bi00616a015
– volume: 358
  start-page: 24
  year: 2001
  ident: 10.1016/j.bbagen.2024.130690_bb0035
  article-title: Amyloid load and clinical outcome in aa amyloidosis in relation to circulating concentration of serum amyloid a protein
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)05252-1
– volume: 14
  start-page: 33
  year: 1996
  ident: 10.1016/j.bbagen.2024.130690_bb0255
  article-title: Vmd: visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 511
  start-page: 101
  year: 2011
  ident: 10.1016/j.bbagen.2024.130690_bb0265
  article-title: Identification of regions responsible for heparin-induced Amyloidogenesis of human serum amyloid a using its fragment peptides
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2011.04.019
– volume: 39
  start-page: 29
  year: 2012
  ident: 10.1016/j.bbagen.2024.130690_bb0105
  article-title: Colonic amyloidosis, computational analysis of the major Amyloidogenic species, serum amyloid a
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2012.06.005
– volume: 272
  start-page: 5971
  year: 2005
  ident: 10.1016/j.bbagen.2024.130690_bb0185
  article-title: Mechanisms of amyloid fibril self-assembly and inhibition
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2005.05022.x
– volume: 1
  start-page: 119
  year: 1994
  ident: 10.1016/j.bbagen.2024.130690_bb0040
  article-title: Serum amyloid a (Saa): biochemistry, genetics and the pathogenesis of aa amyloidosis
  publication-title: Amyloid
  doi: 10.3109/13506129409148635
– volume: 10
  start-page: 241
  year: 2020
  ident: 10.1016/j.bbagen.2024.130690_bb0280
  article-title: The kinetics of amyloid fibril formation by De novo protein Albebetin and its mutant variants
  publication-title: Biomolecules
  doi: 10.3390/biom10020241
– volume: 49
  start-page: D480
  year: 2021
  ident: 10.1016/j.bbagen.2024.130690_bb0205
  article-title: Uniprot: The universal protein Knowledge Base in 2021
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1100
– volume: 147
  year: 2024
  ident: 10.1016/j.bbagen.2024.130690_bb0190
  article-title: The effects of histidine substitution of aromatic residues on the Amyloidogenic properties of the fragment 264–277 of Nucleophosmin 1
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2024.107404
– volume: 277
  start-page: 35475
  year: 2002
  ident: 10.1016/j.bbagen.2024.130690_bb0175
  article-title: Amyloid fibril formation by Pentapeptide and Tetrapeptide fragments of human calcitonin *
  publication-title: JBC
  doi: 10.1074/jbc.M206039200
– volume: 21
  start-page: 283
  year: 1985
  ident: 10.1016/j.bbagen.2024.130690_bb0080
  article-title: Transformation of amyloid precursor Saa to protein aa and incorporation in amyloid fibrils in vivo
  publication-title: Scand. J. Immunol.
  doi: 10.1111/j.1365-3083.1985.tb01431.x
– volume: 156
  start-page: 949
  year: 2020
  ident: 10.1016/j.bbagen.2024.130690_bb0180
  article-title: Role of aromatic amino acids in amyloid self-assembly
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.03.064
– volume: 41
  start-page: 94
  year: 1995
  ident: 10.1016/j.bbagen.2024.130690_bb0135
  article-title: Cathepsin B generates the Most common form of amyloid a (76 residues) as a degradation product from serum amyloid a
  publication-title: Scand. J. Immunol.
  doi: 10.1111/j.1365-3083.1995.tb03538.x
– volume: 132
  start-page: 4242
  year: 2010
  ident: 10.1016/j.bbagen.2024.130690_bb0310
  article-title: Relation between serum amyloid a truncated peptides and their Suprastructure chirality
  publication-title: JACS
  doi: 10.1021/ja909345p
– volume: 279
  start-page: 46363
  year: 2004
  ident: 10.1016/j.bbagen.2024.130690_bb0065
  article-title: Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein Misfolding diseases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C400260200
– volume: 48
  start-page: 1069
  year: 2016
  ident: 10.1016/j.bbagen.2024.130690_bb0300
  article-title: Designing Peptidic inhibitors of serum amyloid a aggregation process
  publication-title: Amino Acids
  doi: 10.1007/s00726-015-2167-y
– volume: 318
  start-page: 1041
  issue: Pt 3
  year: 1996
  ident: 10.1016/j.bbagen.2024.130690_bb0140
  article-title: Expression of recombinant human serum amyloid a in mammalian cells and demonstration of the region necessary for high-density lipoprotein binding and amyloid fibril formation by site-directed mutagenesis
  publication-title: Biochem. J.
  doi: 10.1042/bj3181041
– volume: 295
  start-page: 1055
  year: 2000
  ident: 10.1016/j.bbagen.2024.130690_bb0170
  article-title: Identification of a Penta- and Hexapeptide of islet amyloid polypeptide (Iapp) with Amyloidogenic and cytotoxic Properties1 1edited by R
  publication-title: Huber, J Mol Bio
  doi: 10.1006/jmbi.1999.3422
– volume: 22
  start-page: 2577
  year: 1983
  ident: 10.1016/j.bbagen.2024.130690_bb0250
  article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
– volume: 5
  year: 2007
  ident: 10.1016/j.bbagen.2024.130690_bb0370
  article-title: A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050134
– volume: 99
  start-page: 16052
  year: 2002
  ident: 10.1016/j.bbagen.2024.130690_bb0155
  article-title: De novo designed peptide-based amyloid fibrils
  publication-title: PNAS
  doi: 10.1073/pnas.252340199
– volume: 313
  year: 2024
  ident: 10.1016/j.bbagen.2024.130690_bb0195
  article-title: Structural effects of charge destabilization and amino acid substitutions in amyloid fragments of Csga
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2024.124094
– volume: 1-2
  start-page: 19
  year: 2015
  ident: 10.1016/j.bbagen.2024.130690_bb0220
  article-title: Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 269
  start-page: 3362
  year: 2002
  ident: 10.1016/j.bbagen.2024.130690_bb0360
  article-title: Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2002.03024.x
– volume: 43
  start-page: 2541
  year: 2004
  ident: 10.1016/j.bbagen.2024.130690_bb0340
  article-title: A distinct utility of the amide iii infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods
  publication-title: Biochemistry
  doi: 10.1021/bi030149y
– volume: 9
  start-page: 1700
  year: 2000
  ident: 10.1016/j.bbagen.2024.130690_bb0160
  article-title: Protein engineering as a strategy to avoid formation of amyloid fibrils
  publication-title: Protein Sci.
  doi: 10.1110/ps.9.9.1700
– volume: 50
  start-page: 2061
  year: 2011
  ident: 10.1016/j.bbagen.2024.130690_bb0385
  article-title: Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability
  publication-title: Biochemistry
  doi: 10.1021/bi101936c
– volume: 57
  start-page: 223
  year: 2006
  ident: 10.1016/j.bbagen.2024.130690_bb0090
  article-title: Amyloidosis
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev.med.57.121304.131243
– volume: 98
  start-page: 10089
  year: 1993
  ident: 10.1016/j.bbagen.2024.130690_bb0235
  article-title: Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 9
  start-page: 2117
  year: 2008
  ident: 10.1016/j.bbagen.2024.130690_bb0005
  article-title: Treatment strategies for amyloid a amyloidosis
  publication-title: Expert Opin. Pharmacother.
  doi: 10.1517/14656566.9.12.2117
– volume: 46
  start-page: W315
  year: 2018
  ident: 10.1016/j.bbagen.2024.130690_bb0215
  article-title: Bestsel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky497
– volume: 19
  start-page: 5
  year: 2012
  ident: 10.1016/j.bbagen.2024.130690_bb0045
  article-title: Acute-phase serum amyloid a: perspectives on its physiological and pathological roles
  publication-title: Amyloid
  doi: 10.3109/13506129.2011.654294
– volume: 278
  start-page: 2263
  year: 2011
  ident: 10.1016/j.bbagen.2024.130690_bb0350
  article-title: Mechanisms of Amyloid Fibril Formation--Focus on Domain-Swapping
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2011.08149.x
– volume: 99
  start-page: 16427
  year: 2002
  ident: 10.1016/j.bbagen.2024.130690_bb0165
  article-title: Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity
  publication-title: PNAS
  doi: 10.1073/pnas.202495199
– volume: 103
  start-page: 1020
  year: 2012
  ident: 10.1016/j.bbagen.2024.130690_bb0330
  article-title: The Α-Helix to Β-sheet transition in stretched and compressed hydrated fibrin clots
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2012.07.046
– volume: 15
  start-page: 53
  year: 2021
  ident: 10.1016/j.bbagen.2024.130690_bb0030
  article-title: Hypothesis: aa amyloidosis is a factor causing systemic complications after coronavirus disease
  publication-title: Prion
  doi: 10.1080/19336896.2021.1910468
– volume: 356
  start-page: 203
  year: 2001
  ident: 10.1016/j.bbagen.2024.130690_bb0060
  article-title: Pathogenesis, diagnosis and treatment of systemic amyloidosis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2000.0766
– volume: 105
  start-page: 668
  year: 2021
  ident: 10.1016/j.bbagen.2024.130690_bb0015
  article-title: Serum amyloid a concentrations, Covid-19 severity and mortality: an updated systematic review and Meta-analysis
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2021.03.025
– volume: 265
  start-page: 501
  year: 1999
  ident: 10.1016/j.bbagen.2024.130690_bb0075
  article-title: Serum amyloid a, the major vertebrate acute-phase reactant
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.1999.00657.x
– volume: 120
  start-page: 10258
  year: 2016
  ident: 10.1016/j.bbagen.2024.130690_bb0305
  article-title: Electrostatic interactions at N- and C-termini determine fibril polymorphism in serum amyloid a fragments
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b07672
– volume: 277
  start-page: 36948
  year: 2002
  ident: 10.1016/j.bbagen.2024.130690_bb0355
  article-title: Kinetic studies of amyloid Beta-protein fibril assembly. differential effects of alpha-helix stabilization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M204168200
– volume: 130
  start-page: 4602
  year: 2008
  ident: 10.1016/j.bbagen.2024.130690_bb0375
  article-title: Chirality of amyloid Suprastructures
  publication-title: JACS
  doi: 10.1021/ja800328y
– volume: 162
  start-page: 62
  year: 2009
  ident: 10.1016/j.bbagen.2024.130690_bb0100
  article-title: Defining lipid-binding regions of human serum amyloid a using its fragment peptides
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2009.07.008
– volume: 79
  start-page: 926
  year: 1983
  ident: 10.1016/j.bbagen.2024.130690_bb0225
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 681
  year: 2020
  ident: 10.1016/j.bbagen.2024.130690_bb0125
  article-title: Influence of short peptides with aromatic amino acid residues on aggregation properties of serum amyloid a and its fragments
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2020.108264
– volume: 12
  start-page: 5656
  year: 2016
  ident: 10.1016/j.bbagen.2024.130690_bb0115
  article-title: Simulating protein fold switching by replica exchange with tunneling
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00826
– volume: 1828
  start-page: 2328
  year: 2013
  ident: 10.1016/j.bbagen.2024.130690_bb0320
  article-title: Atr-Ftir: a “rejuvenated” tool to investigate amyloid proteins
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2013.04.012
– volume: 742
  year: 2023
  ident: 10.1016/j.bbagen.2024.130690_bb0200
  article-title: Influences of amino-terminal modifications on amyloid fibril formation of human serum amyloid a
  publication-title: ABB
– volume: 126
  year: 2007
  ident: 10.1016/j.bbagen.2024.130690_bb0240
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 5
  year: 1986
  ident: 10.1016/j.bbagen.2024.130690_bb0095
  article-title: Secondary structure prediction of human Saa1. Presumptive Identification of Calcium and Lipid Binding Sites
  publication-title: Mol. Biol. Med.
– volume: 1751
  start-page: 119
  year: 2005
  ident: 10.1016/j.bbagen.2024.130690_bb0295
  article-title: How to study proteins by circular dichroism
  publication-title: Biochim. Biophys. Acta Proteins Proteomics
  doi: 10.1016/j.bbapap.2005.06.005
– volume: 202
  start-page: 6
  year: 2017
  ident: 10.1016/j.bbagen.2024.130690_bb0210
  article-title: Effect of lipid environment on amyloid fibril formation of human serum amyloid a
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2016.11.004
– volume: 52
  start-page: 7182
  year: 1981
  ident: 10.1016/j.bbagen.2024.130690_bb0245
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 38
  start-page: 1890
  year: 2018
  ident: 10.1016/j.bbagen.2024.130690_bb0055
  article-title: Serum amyloid a is an exchangeable apolipoprotein
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.118.310979
– volume: 93
  start-page: 309
  year: 2010
  ident: 10.1016/j.bbagen.2024.130690_bb0085
  article-title: Heparan sulfate proteoglycans in amyloidosis
  publication-title: Prog. Mol. Biol. Transl. Sci.
  doi: 10.1016/S1877-1173(10)93013-5
– volume: 265
  start-page: 1219
  year: 1994
  ident: 10.1016/j.bbagen.2024.130690_bb0230
  article-title: The spatial structure in liquid water
  publication-title: Science
  doi: 10.1126/science.265.5176.1219
– volume: 1767
  start-page: 1073
  year: 2007
  ident: 10.1016/j.bbagen.2024.130690_bb0325
  article-title: Infrared spectroscopy of proteins
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2007.06.004
– volume: 111
  start-page: 5189
  year: 2014
  ident: 10.1016/j.bbagen.2024.130690_bb0130
  article-title: Structural mechanism of serum amyloid a-mediated inflammatory amyloidosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1322357111
– volume: 3
  start-page: 16184
  year: 2018
  ident: 10.1016/j.bbagen.2024.130690_bb0110
  article-title: Stability of the N-terminal Helix and its role in amyloid formation of serum amyloid a
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02377
– volume: 124
  start-page: 1009
  year: 2020
  ident: 10.1016/j.bbagen.2024.130690_bb0120
  article-title: Cleavage, downregulation, and aggregation of serum amyloid a
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b10843
– volume: 49
  year: 2016
  ident: 10.1016/j.bbagen.2024.130690_bb0270
  article-title: Thermal protein unfolding by differential scanning calorimetry and circular dichroism spectroscopy two-state model versus sequential unfolding
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583516000044
– volume: 11
  start-page: 23985
  year: 2021
  ident: 10.1016/j.bbagen.2024.130690_bb0275
  article-title: Circular dichroism for secondary structure determination of proteins with unfolded domains using a self-Organising map algorithm Somspec
  publication-title: RSC Adv.
  doi: 10.1039/D1RA02898G
– volume: 12
  start-page: 1099
  year: 2022
  ident: 10.1016/j.bbagen.2024.130690_bb0025
  article-title: Sars-Cov-2-induced Amyloidgenesis: not one, but three hypotheses for cerebral Covid-19 outcomes
  publication-title: Metabolites
  doi: 10.3390/metabo12111099
– volume: 10
  start-page: 1133
  year: 2018
  ident: 10.1016/j.bbagen.2024.130690_bb0380
  article-title: Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state Nmr
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-018-0427-2
SSID ssj0000595
Score 2.449718
Snippet Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 130690
SubjectTerms AA amyloidosis
Amino Acid Sequence
Amyloid - chemistry
Amyloid - metabolism
Amyloidosis - genetics
Amyloidosis - metabolism
Circular dichroism spectroscopy
Fourier transform infrared spectroscopy
Humans
Mechanism of aggregation
Mutation
Protein Aggregates
Protein Structure, Secondary
Serum amyloid a
Serum Amyloid A Protein - chemistry
Serum Amyloid A Protein - genetics
Serum Amyloid A Protein - metabolism
Thioflavin T fluorescence assay
Title Key charged residues influence the amyloidogenic propensity of the helix-1 region of serum amyloid A
URI https://dx.doi.org/10.1016/j.bbagen.2024.130690
https://www.ncbi.nlm.nih.gov/pubmed/39117048
https://www.proquest.com/docview/3090945324
Volume 1868
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED7alLK9lLbbunRd0WCvWiJZiuzHEFqylfZlK_RNSJbMPFo7dAmsL_vtu7OtjcLKYI-WLVucTqfvrLv7AN7LSky9iiU3ThmuXAzcyRC4UTNZSa-lm1Ki8OXVbHmtPt3omy1YpFwYCqscbH9v0ztrPbRMBmlOVnU9-UyHeggnNEVBkqe1DTsSd_t8BDvzjxfLqz8GWXfkK_Q8pw4pg64L8_Ie1y0VQpWKmJFnZJz_vkM9hUC7neh8H_YGCMnm_SgPYCs2h7Dbk0o-HMKzReJwewHhIj6wrhhSDAwd6zrgm1mdiEkYoj_m7tBnr0OL46tLtqKf8w0FarC26u5_jbf1Dy4YUTi0DbWi1m7uUj82fwnX52dfFks-8CrwMhNizY3QUZa6Ql8qq_IoVOkiLnUh5TQ4XPEl1bjJCsQ60QSNAE3prCy88dKHUJgqewWjpm3ia2DCBOFigULMpTI6eEQcSqJaFNKjm56PgSdZ2lVfPsOmuLJvtpe9JdnbXvZjMEng9pEaWLTw_-j5Ls2PRSHTsYdrYrv5brNpgT6sRuQ4hqN-4n6PJSuIeUflx__93TfwnK769MQTGK3vN_Et4pS1P4XtDz_F6aCNvwADrOXX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66lNG-jK3d1nS_NOirSCRLUfwYwkq6tHlZC30TkiUzj9UOawLtf98729oodAz2Klm2OJ1O31l39wGcyFKMvYoFN04ZrlwM3MkQuFETWUqvpRtTovDFarK4Ul-v9fUOzFMuDIVV9ra_s-mtte5bRr00R-uqGn2jSz2EE5qiIMnTega7ikitB7A7O1suVn8Msm7JV-h5TgNSBl0b5uU97lsqhCoVMSNPyDg_fUL9DYG2J9HpS3jRQ0g262b5CnZifQDPO1LJ-wPYmycOt0MIy3jP2mJIMTB0rKuAb2ZVIiZhiP6Yu0GfvQoNzq8q2Jp-ztcUqMGasu3_Hn9Wd1wwonBoampFrd3epHFs9hquTr9czhe851XgRSbEhhuhoyx0ib5UVk6jUIWLuNWFlOPgcMcXVOMmyxHrRBM0AjSlsyL3xksfQm7K7A0M6qaOR8CECcLFHIU4lcro4BFxKIlqkUuPbvp0CDzJ0q678hk2xZX9sJ3sLcnedrIfgkkCt4_UwKKF_8fIz2l9LAqZrj1cHZvtrc3GOfqwGpHjEN52C_d7LllOzDtqevzf3_0Ee4vLi3N7frZavoN96ulSFd_DYPNrGz8gZtn4j71OPgBwZee9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+charged+residues+influence+the+amyloidogenic+propensity+of+the+helix-1+region+of+serum+amyloid+A&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Bilog%2C+Marvin&rft.au=Vedad%2C+Jayson&rft.au=Capadona%2C+Charisse&rft.au=Profit%2C+Adam+A.&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.volume=1868&rft.issue=11&rft_id=info:doi/10.1016%2Fj.bbagen.2024.130690&rft.externalDocID=S0304416524001338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon