Temporal Adaptive Attention Map Guidance for Text-to-Image Diffusion Models

Text-to-image generation aims to create visually compelling images aligned with input prompts, but challenges such as subject mixing and subject neglect, often caused by semantic leakage during the generation process, remain, particularly in multi-subject scenarios. To mitigate this, existing method...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 14; no. 3; p. 412
Main Authors Jung, Sunghoon, Heo, Yong Seok
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2025
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics14030412

Cover

Abstract Text-to-image generation aims to create visually compelling images aligned with input prompts, but challenges such as subject mixing and subject neglect, often caused by semantic leakage during the generation process, remain, particularly in multi-subject scenarios. To mitigate this, existing methods optimize attention maps in diffusion models, using static loss functions at each time step, often leading to suboptimal results due to insufficient consideration of varying characteristics across diffusion stages. To address this problem, we propose a novel framework that adaptively guides the attention maps by dividing the diffusion process into four intervals: initial, layout, shape, and refinement. We adaptively optimize attention maps using interval-specific strategies and a dynamic loss function. Additionally, we introduce a seed filtering method based on the self-attention map analysis to detect and address the semantic leakage by restarting the generation process with new noise seeds when necessary. Extensive experiments on various datasets demonstrate that our method achieves significant improvements in generating images aligned with input prompts, outperforming previous approaches both quantitatively and qualitatively.
AbstractList Text-to-image generation aims to create visually compelling images aligned with input prompts, but challenges such as subject mixing and subject neglect, often caused by semantic leakage during the generation process, remain, particularly in multi-subject scenarios. To mitigate this, existing methods optimize attention maps in diffusion models, using static loss functions at each time step, often leading to suboptimal results due to insufficient consideration of varying characteristics across diffusion stages. To address this problem, we propose a novel framework that adaptively guides the attention maps by dividing the diffusion process into four intervals: initial, layout, shape, and refinement. We adaptively optimize attention maps using interval-specific strategies and a dynamic loss function. Additionally, we introduce a seed filtering method based on the self-attention map analysis to detect and address the semantic leakage by restarting the generation process with new noise seeds when necessary. Extensive experiments on various datasets demonstrate that our method achieves significant improvements in generating images aligned with input prompts, outperforming previous approaches both quantitatively and qualitatively.
Audience Academic
Author Heo, Yong Seok
Jung, Sunghoon
Author_xml – sequence: 1
  givenname: Sunghoon
  surname: Jung
  fullname: Jung, Sunghoon
– sequence: 2
  givenname: Yong Seok
  orcidid: 0000-0001-7576-1347
  surname: Heo
  fullname: Heo, Yong Seok
BookMark eNqNkE1PIzEMhiMEEh_bX8BlpD0P63y0mTlWBbqIor2U88jNOChomswmGVj-PWG7Bw57wD7Yst7Htt5zduyDJ8YuOVxJ2cIPGsjkGLwziSuQoLg4YmcCdFu3ohXHn_pTNkvpGUq0XDYSztj9lvZjiDhUyx7H7F6oWuZMPrvgqwccq_XkevSGKhtitaU_uc6hvtvjE1XXztop_RWGnob0jZ1YHBLN_tUL9nh7s139rDe_1ner5aY2kvNcLxZzskIh9ShUC4gatMSGNxpoIaQWDfSt0nZHBlFCY3ZK445brqUCK0leMHXYO_kR315xGLoxuj3Gt45D9-FJ9x9PCvb9gI0x_J4o5e45TNGXTzvJF3Oty21VVFcH1RMO1DlvQ45oSva0d6Y4b12ZLxsp9ByggQLIA2BiSCmS_dIz7-SOhqI
Cites_doi 10.1109/CVPR52688.2022.01042
10.1145/3589002
10.1109/ICCV51070.2023.02107
10.1007/978-981-99-3010-4_14
10.1109/CVPR46437.2021.00089
10.1109/CVPR.2019.00595
10.1007/978-3-031-19790-1_26
10.1007/978-3-030-34372-9
10.1145/3592116
10.1109/ICCV51070.2023.00217
10.1109/CVPR.2018.00143
10.1109/WACV57701.2024.00526
10.1109/CVPR52688.2022.01602
10.1109/CVPR52688.2022.00135
10.1109/CVPR52733.2024.00896
10.1109/ICCV.2017.629
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics14030412
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics14030412
A832750080
10_3390_electronics14030412
GeographicLocations South Dakota
GeographicLocations_xml – name: South Dakota
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c311t-665ef24aeda2490aa7073a81870e6237280d947fbecaa308cb47ab1f17340f3e3
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Tue Aug 19 23:21:57 EDT 2025
Fri Jul 25 22:08:54 EDT 2025
Mon Oct 20 16:52:54 EDT 2025
Thu Oct 16 04:39:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-665ef24aeda2490aa7073a81870e6237280d947fbecaa308cb47ab1f17340f3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7576-1347
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/14/3/412/pdf?version=1737452196
PQID 3165772374
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics14030412
proquest_journals_3165772374
gale_infotracacademiconefile_A832750080
crossref_primary_10_3390_electronics14030412
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Raffel (ref_6) 2020; 21
Chefer (ref_8) 2023; 42
Deng (ref_18) 2023; 19
ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
ref_19
ref_17
ref_39
ref_16
ref_38
ref_15
ref_37
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_40
ref_1
ref_3
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
ref_5
ref_4
ref_7
References_xml – ident: ref_7
– ident: ref_9
– ident: ref_2
  doi: 10.1109/CVPR52688.2022.01042
– ident: ref_5
– volume: 19
  start-page: 1
  year: 2023
  ident: ref_18
  article-title: LFR-GAN: Local Feature Refinement based Generative Adversarial Network for Text-to-Image Generation
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl.
  doi: 10.1145/3589002
– ident: ref_32
– ident: ref_3
– ident: ref_24
– ident: ref_26
– ident: ref_34
– ident: ref_12
  doi: 10.1109/ICCV51070.2023.02107
– ident: ref_17
  doi: 10.1007/978-981-99-3010-4_14
– ident: ref_39
– ident: ref_40
– ident: ref_19
  doi: 10.1109/CVPR46437.2021.00089
– ident: ref_37
– ident: ref_16
  doi: 10.1109/CVPR.2019.00595
– ident: ref_1
– ident: ref_28
  doi: 10.1007/978-3-031-19790-1_26
– ident: ref_35
– ident: ref_23
– ident: ref_21
– ident: ref_33
  doi: 10.1007/978-3-030-34372-9
– volume: 21
  start-page: 5485
  year: 2020
  ident: ref_6
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: J. Mach. Learn. Res.
– volume: 42
  start-page: 1
  year: 2023
  ident: ref_8
  article-title: Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion models
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/3592116
– ident: ref_25
– ident: ref_30
  doi: 10.1109/ICCV51070.2023.00217
– ident: ref_4
– ident: ref_14
  doi: 10.1109/CVPR.2018.00143
– ident: ref_31
– ident: ref_11
  doi: 10.1109/WACV57701.2024.00526
– ident: ref_13
  doi: 10.1109/CVPR52688.2022.01602
– ident: ref_29
– ident: ref_27
– ident: ref_38
  doi: 10.1109/CVPR52688.2022.00135
– ident: ref_36
– ident: ref_10
  doi: 10.1109/CVPR52733.2024.00896
– ident: ref_15
  doi: 10.1109/ICCV.2017.629
– ident: ref_22
– ident: ref_20
SSID ssj0000913830
Score 2.3185117
Snippet Text-to-image generation aims to create visually compelling images aligned with input prompts, but challenges such as subject mixing and subject neglect, often...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 412
SubjectTerms Diffusion models
Image filters
Image processing
Leakage
Methods
Noise generation
Optimization
Semantics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPagH8YnVKjkIXlxMuptkexCp7wcWkQrewqS7C4K20aaI_96ZJvGFiPclCzO7M99MZr8PYNulOkpDbIuwnWqhyMtCozYi0H7krFatwHBr4Lobnd-py_vwvgbd6i0Mj1VWMXESqM2wzz3yPRlEISFBGauD7FmwahT_Xa0kNLCUVjD7E4qxKZhuMTNWHaYPT7o3tx9dF2bB1NIv6Ick1ft7n2ozI6auY_qpbynqZ6Ceg5nxIMO3V3x8_JKJThdgvoSQXqfw-SLU7GAJ5r4QCy7DVa9gnKJVBjOOaF4nz4vJRu8aM-9s_GDY3x5hVq_H1W8-FBdPFFy84wfnxqPJQlbJGa3A3elJ7-hclLIJoi-DIBdRFFrXUmgNUm3lI8Z0jZESc-xbAjusR2XaKnbkPUTp636qYkwDF8RS-U5auQr1wXBg18BzkYwIERk0VKahtkjgop1S2nOpj6EKGrBbWSrJCnaMhKoKNmzyi2EbsMPWTPju5C_Yx_IJAG3GLFRJh8ILIRgCsQ1oVgZPyks1Sj6PQAPEhxP-s_H635_bgNkWy_pOhrGbUM9fxnaTsEaebpUH6B3kedRx
  priority: 102
  providerName: ProQuest
Title Temporal Adaptive Attention Map Guidance for Text-to-Image Diffusion Models
URI https://www.proquest.com/docview/3165772374
https://www.mdpi.com/2079-9292/14/3/412/pdf?version=1737452196
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH5i7QF24DeibFQ5IHHBS5w4jnNCZWs3QK0m1ErjFD3XtlQxumhJQHDgb99zk8KYOADHSI4c5z2_933W8_cAXjitpE4xZ2muFRNkZaZQGcZVJJ1VIubGHw1MZ_JkId6dpWfdgVvVlVUSFV9tgnQcZTmj_B2HXIRJKHgclsa9_tKdJPEsyQSln1zuQF-mhMV70F_MTkcffUe57but1FBC3D781Vmm8jJ1Xmrqt3R0Myjvwu1mXeK3r3h-fi3rTO5Bsf3ettjk00FT64Pl9xtSjv-_oPtwtwOkwaj1oAdwy64fwu41mcJH8H7e6lfRKIOlj4_BqK7bOslgimVw3KyM956AEHAw91y6vmBvP1OoCo5WzjXVZqDvuVM9hsVkPD88YV0TBrZMOK-ZlKl1sUBrkJhahJhRUEBK81lkCTr57lYmF5kjX0BMIrXUIkPNHa1FRC6xyRPorS_W9ikETiaS8JVBQ6QPlUWCKrmmJOp0hKngA3i1tUVRtlobBXEUb7riD6YbwEtvr8LvxPoSl9hdKKDJvKZVMaJgRXiIIPEA9rcmLbotWhUJlylRC_rjA2A_zfw3Ez_7x_F7cCf2XYM3td770KsvG_ucoEyth7CjJsdD6L8Zz04_0NP0x3jY-fAVyILymA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9lB6QOVLLBTwAcQFq0nsJM6hQlvasst2Vwhtpd7CZG1LlcpuaLKq-uf4bcxskrYghLj0btnKeDzzxvG8B_DGFyYpYsxknBVGatpladBYGZog8c7oKLR8NTCeJIMT_fk0Pl2Dn10vDD-r7GLiKlDbxYzvyHdVmMSEBFWqP5Q_JKtG8d_VTkIDW2kFu7eiGGsbO0bu6pJKuGpveED7_TaKjg6nHweyVRmQMxWGtUyS2PlIo7NIpUiAmJLXI-WxNHCEDVi-yWY69fSxiCows0KnWIQ-TJUOvHKK5r0HG1rpjIq_jf3DyZev17c8zLppVNDQHSmVBbs36jYVU-Ux3dVvKfHPxLAFm8t5iVeXeH5-K_MdbcODFrKKfuNjD2HNzR_B1i0iw8cwmjYMVzTKYskRVPTrunlJKcZYik_LM8v-JQgjiylX2_VCDr9TMBMHZ94vq9VAVuWpnsDJnRjwKazPF3P3DIRPVEIIzKKlshCNQwIzWUFp1hcBxjrswfvOUnnZsHHkVMWwYfO_GLYH79iaOZ_V-gJn2LYc0GLMepX3KZwRYiLQ3IOdzuB5e4ir_MbleiCvN-F_Fn7-7-lew-ZgOj7Oj4eT0Qu4H7Gk8Ooh-A6s1xdL95JwTl28ap1JwLe79t9fBuoREA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIkF7qPiqulDABxAXrE1iJ3EOCK26bLssrThspd7CZG1LldrdtMmq6l_j1zGzSdqCEOLSu2Ur4-eZN874DcA7X5ikiDGTcVYYqWmXpUFjZWiCxDujo9Dy1cDhUXJwrL-exCdr8LN7C8NllZ1PXDlqu5jxHXlfhUlMTFCluu_bsojvw9Hn8kJyByn-09q102ggMnHXV5S-VZ_GQ9rr91E0-jLdO5BthwE5U2FYyySJnY80OouUhgSIKSEeKYalgSNewK2bbKZTTx-KqAIzK3SKRejDVOnAK6do3gfwMGUVd36lPtq_ud9hvU2jgkboSKks6N_2talYJI-Frn4Lhn-GhE14vJyXeH2FZ2d3Yt7oCWy1ZFUMGnQ9hTU3fwabdyQMn8Nk2mhb0SiLJftOMajrpoZSHGIp9penlpEliB2LKefZ9UKOz8mNieGp98tqNZD78VQv4PhezLcN6_PF3O2A8IlKiHtZtJQQonFINCYrKMD6IsBYhz342FkqLxsdjpzyFzZs_hfD9uADWzPnU1pf4gzbxwa0GOtd5QNyZMSViC73YLczeN4e3yq_BVsP5M0m_M_CL_893Vt4RKjNv42PJq9gI-JewqsK8F1Yry-X7jURnLp4s0KSgB_3Dd1flf8Oqg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB3R5UA5tBSourBUOVTqpSZx7DjJqVpRKKUC9bArwSkar21pVbpEJAHRr-94k6VbxAF6n8hx3njmjTV5A_DB6UzpBHOW5DpjklBmGWaG8SxSzmYy5sZfDZyeqeOxPDlPzrsLt6prq6RSfDoP0nGU5ozydxxyGYpQ8jgsjft8090k8VSkktJPrl7AqkqIi_dgdXz2Y3jhJ8otnm2lhgTV9uHfyTKVl6nzUlP_pKOHQXkd1ppZiXe3eHm5lHWOXkOxeN-22eTnflPr_cnvB1KO_7-hDXjVEdJg2HrQG1ixs01YX5Ip3ILvo1a_iqwMlj4-BsO6bvskg1Msg6_N1HjvCYgBByNfS9dX7NsvClXBl6lzTTU39DN3qm0YHx2ODo5ZN4SBTQTnNVMqsS6WaA1SpRYhphQUkNJ8GlmiTn66lcll6sgXEEWUTbRMUXNHe5GRE1a8hd7sambfQeCUUMSvDBoq-jCzSFQl15REnY4wkbwPnxZYFGWrtVFQjeKhKx6Brg8fPV6FP4n1NU6w-6GAFvOaVsWQghXxIaLEfRgsIC26I1oVgquESgv64n1g9zA_ZeGdZ9rvwsvYTw2e93oPoFdfN3aPqEyt33f--gcBBe7n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Adaptive+Attention+Map+Guidance+for+Text-to-Image+Diffusion+Models&rft.jtitle=Electronics+%28Basel%29&rft.au=Jung%2C+Sunghoon&rft.au=Heo%2C+Yong+Seok&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=3&rft.spage=412&rft_id=info:doi/10.3390%2Felectronics14030412&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon