Temporal Adaptive Attention Map Guidance for Text-to-Image Diffusion Models
Text-to-image generation aims to create visually compelling images aligned with input prompts, but challenges such as subject mixing and subject neglect, often caused by semantic leakage during the generation process, remain, particularly in multi-subject scenarios. To mitigate this, existing method...
Saved in:
| Published in | Electronics (Basel) Vol. 14; no. 3; p. 412 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics14030412 |
Cover
| Abstract | Text-to-image generation aims to create visually compelling images aligned with input prompts, but challenges such as subject mixing and subject neglect, often caused by semantic leakage during the generation process, remain, particularly in multi-subject scenarios. To mitigate this, existing methods optimize attention maps in diffusion models, using static loss functions at each time step, often leading to suboptimal results due to insufficient consideration of varying characteristics across diffusion stages. To address this problem, we propose a novel framework that adaptively guides the attention maps by dividing the diffusion process into four intervals: initial, layout, shape, and refinement. We adaptively optimize attention maps using interval-specific strategies and a dynamic loss function. Additionally, we introduce a seed filtering method based on the self-attention map analysis to detect and address the semantic leakage by restarting the generation process with new noise seeds when necessary. Extensive experiments on various datasets demonstrate that our method achieves significant improvements in generating images aligned with input prompts, outperforming previous approaches both quantitatively and qualitatively. |
|---|---|
| AbstractList | Text-to-image generation aims to create visually compelling images aligned with input prompts, but challenges such as subject mixing and subject neglect, often caused by semantic leakage during the generation process, remain, particularly in multi-subject scenarios. To mitigate this, existing methods optimize attention maps in diffusion models, using static loss functions at each time step, often leading to suboptimal results due to insufficient consideration of varying characteristics across diffusion stages. To address this problem, we propose a novel framework that adaptively guides the attention maps by dividing the diffusion process into four intervals: initial, layout, shape, and refinement. We adaptively optimize attention maps using interval-specific strategies and a dynamic loss function. Additionally, we introduce a seed filtering method based on the self-attention map analysis to detect and address the semantic leakage by restarting the generation process with new noise seeds when necessary. Extensive experiments on various datasets demonstrate that our method achieves significant improvements in generating images aligned with input prompts, outperforming previous approaches both quantitatively and qualitatively. |
| Audience | Academic |
| Author | Heo, Yong Seok Jung, Sunghoon |
| Author_xml | – sequence: 1 givenname: Sunghoon surname: Jung fullname: Jung, Sunghoon – sequence: 2 givenname: Yong Seok orcidid: 0000-0001-7576-1347 surname: Heo fullname: Heo, Yong Seok |
| BookMark | eNqNkE1PIzEMhiMEEh_bX8BlpD0P63y0mTlWBbqIor2U88jNOChomswmGVj-PWG7Bw57wD7Yst7Htt5zduyDJ8YuOVxJ2cIPGsjkGLwziSuQoLg4YmcCdFu3ohXHn_pTNkvpGUq0XDYSztj9lvZjiDhUyx7H7F6oWuZMPrvgqwccq_XkevSGKhtitaU_uc6hvtvjE1XXztop_RWGnob0jZ1YHBLN_tUL9nh7s139rDe_1ner5aY2kvNcLxZzskIh9ShUC4gatMSGNxpoIaQWDfSt0nZHBlFCY3ZK445brqUCK0leMHXYO_kR315xGLoxuj3Gt45D9-FJ9x9PCvb9gI0x_J4o5e45TNGXTzvJF3Oty21VVFcH1RMO1DlvQ45oSva0d6Y4b12ZLxsp9ByggQLIA2BiSCmS_dIz7-SOhqI |
| Cites_doi | 10.1109/CVPR52688.2022.01042 10.1145/3589002 10.1109/ICCV51070.2023.02107 10.1007/978-981-99-3010-4_14 10.1109/CVPR46437.2021.00089 10.1109/CVPR.2019.00595 10.1007/978-3-031-19790-1_26 10.1007/978-3-030-34372-9 10.1145/3592116 10.1109/ICCV51070.2023.00217 10.1109/CVPR.2018.00143 10.1109/WACV57701.2024.00526 10.1109/CVPR52688.2022.01602 10.1109/CVPR52688.2022.00135 10.1109/CVPR52733.2024.00896 10.1109/ICCV.2017.629 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics14030412 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics14030412 A832750080 10_3390_electronics14030412 |
| GeographicLocations | South Dakota |
| GeographicLocations_xml | – name: South Dakota |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c311t-665ef24aeda2490aa7073a81870e6237280d947fbecaa308cb47ab1f17340f3e3 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-9292 |
| IngestDate | Tue Aug 19 23:21:57 EDT 2025 Fri Jul 25 22:08:54 EDT 2025 Mon Oct 20 16:52:54 EDT 2025 Thu Oct 16 04:39:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c311t-665ef24aeda2490aa7073a81870e6237280d947fbecaa308cb47ab1f17340f3e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7576-1347 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/14/3/412/pdf?version=1737452196 |
| PQID | 3165772374 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics14030412 proquest_journals_3165772374 gale_infotracacademiconefile_A832750080 crossref_primary_10_3390_electronics14030412 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Raffel (ref_6) 2020; 21 Chefer (ref_8) 2023; 42 Deng (ref_18) 2023; 19 ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 ref_19 ref_17 ref_39 ref_16 ref_38 ref_15 ref_37 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_40 ref_1 ref_3 ref_2 ref_29 ref_28 ref_27 ref_26 ref_9 ref_5 ref_4 ref_7 |
| References_xml | – ident: ref_7 – ident: ref_9 – ident: ref_2 doi: 10.1109/CVPR52688.2022.01042 – ident: ref_5 – volume: 19 start-page: 1 year: 2023 ident: ref_18 article-title: LFR-GAN: Local Feature Refinement based Generative Adversarial Network for Text-to-Image Generation publication-title: ACM Trans. Multimed. Comput. Commun. Appl. doi: 10.1145/3589002 – ident: ref_32 – ident: ref_3 – ident: ref_24 – ident: ref_26 – ident: ref_34 – ident: ref_12 doi: 10.1109/ICCV51070.2023.02107 – ident: ref_17 doi: 10.1007/978-981-99-3010-4_14 – ident: ref_39 – ident: ref_40 – ident: ref_19 doi: 10.1109/CVPR46437.2021.00089 – ident: ref_37 – ident: ref_16 doi: 10.1109/CVPR.2019.00595 – ident: ref_1 – ident: ref_28 doi: 10.1007/978-3-031-19790-1_26 – ident: ref_35 – ident: ref_23 – ident: ref_21 – ident: ref_33 doi: 10.1007/978-3-030-34372-9 – volume: 21 start-page: 5485 year: 2020 ident: ref_6 article-title: Exploring the limits of transfer learning with a unified text-to-text transformer publication-title: J. Mach. Learn. Res. – volume: 42 start-page: 1 year: 2023 ident: ref_8 article-title: Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion models publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/3592116 – ident: ref_25 – ident: ref_30 doi: 10.1109/ICCV51070.2023.00217 – ident: ref_4 – ident: ref_14 doi: 10.1109/CVPR.2018.00143 – ident: ref_31 – ident: ref_11 doi: 10.1109/WACV57701.2024.00526 – ident: ref_13 doi: 10.1109/CVPR52688.2022.01602 – ident: ref_29 – ident: ref_27 – ident: ref_38 doi: 10.1109/CVPR52688.2022.00135 – ident: ref_36 – ident: ref_10 doi: 10.1109/CVPR52733.2024.00896 – ident: ref_15 doi: 10.1109/ICCV.2017.629 – ident: ref_22 – ident: ref_20 |
| SSID | ssj0000913830 |
| Score | 2.3185117 |
| Snippet | Text-to-image generation aims to create visually compelling images aligned with input prompts, but challenges such as subject mixing and subject neglect, often... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 412 |
| SubjectTerms | Diffusion models Image filters Image processing Leakage Methods Noise generation Optimization Semantics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPagH8YnVKjkIXlxMuptkexCp7wcWkQrewqS7C4K20aaI_96ZJvGFiPclCzO7M99MZr8PYNulOkpDbIuwnWqhyMtCozYi0H7krFatwHBr4Lobnd-py_vwvgbd6i0Mj1VWMXESqM2wzz3yPRlEISFBGauD7FmwahT_Xa0kNLCUVjD7E4qxKZhuMTNWHaYPT7o3tx9dF2bB1NIv6Ick1ft7n2ozI6auY_qpbynqZ6Ceg5nxIMO3V3x8_JKJThdgvoSQXqfw-SLU7GAJ5r4QCy7DVa9gnKJVBjOOaF4nz4vJRu8aM-9s_GDY3x5hVq_H1W8-FBdPFFy84wfnxqPJQlbJGa3A3elJ7-hclLIJoi-DIBdRFFrXUmgNUm3lI8Z0jZESc-xbAjusR2XaKnbkPUTp636qYkwDF8RS-U5auQr1wXBg18BzkYwIERk0VKahtkjgop1S2nOpj6EKGrBbWSrJCnaMhKoKNmzyi2EbsMPWTPju5C_Yx_IJAG3GLFRJh8ILIRgCsQ1oVgZPyks1Sj6PQAPEhxP-s_H635_bgNkWy_pOhrGbUM9fxnaTsEaebpUH6B3kedRx priority: 102 providerName: ProQuest |
| Title | Temporal Adaptive Attention Map Guidance for Text-to-Image Diffusion Models |
| URI | https://www.proquest.com/docview/3165772374 https://www.mdpi.com/2079-9292/14/3/412/pdf?version=1737452196 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH5i7QF24DeibFQ5IHHBS5w4jnNCZWs3QK0m1ErjFD3XtlQxumhJQHDgb99zk8KYOADHSI4c5z2_933W8_cAXjitpE4xZ2muFRNkZaZQGcZVJJ1VIubGHw1MZ_JkId6dpWfdgVvVlVUSFV9tgnQcZTmj_B2HXIRJKHgclsa9_tKdJPEsyQSln1zuQF-mhMV70F_MTkcffUe57but1FBC3D781Vmm8jJ1Xmrqt3R0Myjvwu1mXeK3r3h-fi3rTO5Bsf3ettjk00FT64Pl9xtSjv-_oPtwtwOkwaj1oAdwy64fwu41mcJH8H7e6lfRKIOlj4_BqK7bOslgimVw3KyM956AEHAw91y6vmBvP1OoCo5WzjXVZqDvuVM9hsVkPD88YV0TBrZMOK-ZlKl1sUBrkJhahJhRUEBK81lkCTr57lYmF5kjX0BMIrXUIkPNHa1FRC6xyRPorS_W9ikETiaS8JVBQ6QPlUWCKrmmJOp0hKngA3i1tUVRtlobBXEUb7riD6YbwEtvr8LvxPoSl9hdKKDJvKZVMaJgRXiIIPEA9rcmLbotWhUJlylRC_rjA2A_zfw3Ez_7x_F7cCf2XYM3td770KsvG_ucoEyth7CjJsdD6L8Zz04_0NP0x3jY-fAVyILymA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9lB6QOVLLBTwAcQFq0nsJM6hQlvasst2Vwhtpd7CZG1LlcpuaLKq-uf4bcxskrYghLj0btnKeDzzxvG8B_DGFyYpYsxknBVGatpladBYGZog8c7oKLR8NTCeJIMT_fk0Pl2Dn10vDD-r7GLiKlDbxYzvyHdVmMSEBFWqP5Q_JKtG8d_VTkIDW2kFu7eiGGsbO0bu6pJKuGpveED7_TaKjg6nHweyVRmQMxWGtUyS2PlIo7NIpUiAmJLXI-WxNHCEDVi-yWY69fSxiCows0KnWIQ-TJUOvHKK5r0HG1rpjIq_jf3DyZev17c8zLppVNDQHSmVBbs36jYVU-Ux3dVvKfHPxLAFm8t5iVeXeH5-K_MdbcODFrKKfuNjD2HNzR_B1i0iw8cwmjYMVzTKYskRVPTrunlJKcZYik_LM8v-JQgjiylX2_VCDr9TMBMHZ94vq9VAVuWpnsDJnRjwKazPF3P3DIRPVEIIzKKlshCNQwIzWUFp1hcBxjrswfvOUnnZsHHkVMWwYfO_GLYH79iaOZ_V-gJn2LYc0GLMepX3KZwRYiLQ3IOdzuB5e4ir_MbleiCvN-F_Fn7-7-lew-ZgOj7Oj4eT0Qu4H7Gk8Ooh-A6s1xdL95JwTl28ap1JwLe79t9fBuoREA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIkF7qPiqulDABxAXrE1iJ3EOCK26bLssrThspd7CZG1LldrdtMmq6l_j1zGzSdqCEOLSu2Ur4-eZN874DcA7X5ikiDGTcVYYqWmXpUFjZWiCxDujo9Dy1cDhUXJwrL-exCdr8LN7C8NllZ1PXDlqu5jxHXlfhUlMTFCluu_bsojvw9Hn8kJyByn-09q102ggMnHXV5S-VZ_GQ9rr91E0-jLdO5BthwE5U2FYyySJnY80OouUhgSIKSEeKYalgSNewK2bbKZTTx-KqAIzK3SKRejDVOnAK6do3gfwMGUVd36lPtq_ud9hvU2jgkboSKks6N_2talYJI-Frn4Lhn-GhE14vJyXeH2FZ2d3Yt7oCWy1ZFUMGnQ9hTU3fwabdyQMn8Nk2mhb0SiLJftOMajrpoZSHGIp9penlpEliB2LKefZ9UKOz8mNieGp98tqNZD78VQv4PhezLcN6_PF3O2A8IlKiHtZtJQQonFINCYrKMD6IsBYhz342FkqLxsdjpzyFzZs_hfD9uADWzPnU1pf4gzbxwa0GOtd5QNyZMSViC73YLczeN4e3yq_BVsP5M0m_M_CL_893Vt4RKjNv42PJq9gI-JewqsK8F1Yry-X7jURnLp4s0KSgB_3Dd1flf8Oqg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB3R5UA5tBSourBUOVTqpSZx7DjJqVpRKKUC9bArwSkar21pVbpEJAHRr-94k6VbxAF6n8hx3njmjTV5A_DB6UzpBHOW5DpjklBmGWaG8SxSzmYy5sZfDZyeqeOxPDlPzrsLt6prq6RSfDoP0nGU5ozydxxyGYpQ8jgsjft8090k8VSkktJPrl7AqkqIi_dgdXz2Y3jhJ8otnm2lhgTV9uHfyTKVl6nzUlP_pKOHQXkd1ppZiXe3eHm5lHWOXkOxeN-22eTnflPr_cnvB1KO_7-hDXjVEdJg2HrQG1ixs01YX5Ip3ILvo1a_iqwMlj4-BsO6bvskg1Msg6_N1HjvCYgBByNfS9dX7NsvClXBl6lzTTU39DN3qm0YHx2ODo5ZN4SBTQTnNVMqsS6WaA1SpRYhphQUkNJ8GlmiTn66lcll6sgXEEWUTbRMUXNHe5GRE1a8hd7sambfQeCUUMSvDBoq-jCzSFQl15REnY4wkbwPnxZYFGWrtVFQjeKhKx6Brg8fPV6FP4n1NU6w-6GAFvOaVsWQghXxIaLEfRgsIC26I1oVgquESgv64n1g9zA_ZeGdZ9rvwsvYTw2e93oPoFdfN3aPqEyt33f--gcBBe7n |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Adaptive+Attention+Map+Guidance+for+Text-to-Image+Diffusion+Models&rft.jtitle=Electronics+%28Basel%29&rft.au=Jung%2C+Sunghoon&rft.au=Heo%2C+Yong+Seok&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=3&rft.spage=412&rft_id=info:doi/10.3390%2Felectronics14030412&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |