Convex set of quantum states with positive partial transpose analysed by hit and run algorithm

The convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K⩾3...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. A, Mathematical and theoretical Vol. 50; no. 25; pp. 255206 - 255217
Main Authors Szyma ski, Konrad, Collins, Benot, Szarek, Tomasz, yczkowski, Karol
Format Journal Article
LanguageEnglish
Published IOP Publishing 23.06.2017
Subjects
Online AccessGet full text
ISSN1751-8113
1751-8121
DOI10.1088/1751-8121/aa70f5

Cover

Abstract The convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K⩾3 this algorithm works faster than sampling over the entire set of states and verifying whether the partial transpose is positive. The level density of the PPT states is shown to differ from the Marchenko-Pastur distribution, supported in [0, 4] and corresponding asymptotically to the entire set of quantum states. Based on the shifted semi-circle law, describing asymptotic level density of partially transposed states, and on the level density for the Gaussian unitary ensemble with constraints for the spectrum we find an explicit form of the probability distribution supported in [0, 3], which describes well the level density obtained numerically for PPT states.
AbstractList The convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K⩾3 this algorithm works faster than sampling over the entire set of states and verifying whether the partial transpose is positive. The level density of the PPT states is shown to differ from the Marchenko-Pastur distribution, supported in [0, 4] and corresponding asymptotically to the entire set of quantum states. Based on the shifted semi-circle law, describing asymptotic level density of partially transposed states, and on the level density for the Gaussian unitary ensemble with constraints for the spectrum we find an explicit form of the probability distribution supported in [0, 3], which describes well the level density obtained numerically for PPT states.
Author yczkowski, Karol
Szyma ski, Konrad
Szarek, Tomasz
Collins, Benot
Author_xml – sequence: 1
  givenname: Konrad
  surname: Szyma ski
  fullname: Szyma ski, Konrad
  email: konrad.szymanski@uj.edu.pl
  organization: Jagiellonian University Institute of Physics, Cracow, Poland
– sequence: 2
  givenname: Benot
  surname: Collins
  fullname: Collins, Benot
  email: collins@math.kyoto-u.ac.jp
  organization: CNRS , France
– sequence: 3
  givenname: Tomasz
  surname: Szarek
  fullname: Szarek, Tomasz
  email: szarek@intertele.pl
  organization: Gda sk University of Technology Faculty of Physics and Applied Mathematics, ul. Gabriela Narutowicza 11/12, 80-233 Gda sk, Poland
– sequence: 4
  givenname: Karol
  surname: yczkowski
  fullname: yczkowski, Karol
  email: karol@tatry.if.uj.edu.pl
  organization: Center for Theoretical Physics , Polish Academy of Sciences, Warsaw
BookMark eNp9kM9PwyAUx4mZidv07pGTJ-t4bSnt0Sz-SpZ40auEFnAsHVRg0_33ssx4MGpCAu_lfb55fCZoZJ1VCJ0DuQJS1zNgFLIacpgJwYimR2j83Rp9v6E4QZMQVoTQkjT5GL3Mnd2qDxxUxE7jt42wcbPGIYqoAn43cYkHF0w0W4UH4aMRPY5e2JC6Cgsr-l1QErc7vDQx1RL7jcWif3U-setTdKxFH9TZ1z1Fz7c3T_P7bPF49zC_XmRdARAzWgOTDYWiqxmrKHS51EqWlLRdRwkpdE4L1pR5IaGCVtairNpWM1krpsuGtMUUVYfczrsQvNK8M-kLxtm0rOk5EL63xPca-F4JP1hKIPkBDt6shd_9h1wcEOMGvnIbnyQELjglPKfp0JxUfJA6DV7-Mvhn7id1U4fn
CODEN JPHAC5
CitedBy_id crossref_primary_10_1103_PhysRevA_106_052428
crossref_primary_10_1088_1751_8121_ac3469
crossref_primary_10_1103_PhysRevE_96_062149
crossref_primary_10_1103_PRXQuantum_2_030347
crossref_primary_10_1103_PhysRevLett_127_060504
Cites_doi 10.1103/PhysRevA.76.052325
10.1007/978-1-4612-0019-2
10.1103/PhysRevA.58.883
10.1142/S2010326312500013
10.1017/CBO9780511535048
10.1515/9781400835416
10.1088/0305-4470/34/35/335
10.1088/0305-4470/37/35/004
10.1103/physreva.93.062112
10.1002/rsa.20135
10.1103/PhysRevA.88.062330
10.1103/PhysRevA.58.826
10.26421/QIC15.7-8-10
10.1016/j.laa.2014.11.031
10.1103/PhysRevA.85.062331
10.1070/sm1967v001n04abeh001994
10.1016/S0375-9601(96)00706-2
10.1103/PhysRevA.73.022109
10.1088/0305-4470/39/5/L02
10.1103/PhysRevE.77.041108
10.1007/BF01883625
10.1063/1.2841325
10.1142/S2010326312500025
10.1155/2015/621353
10.1016/j.jcss.2004.06.003
10.1103/PhysRevA.66.062311
10.1103/PhysRevA.63.032307
10.1063/1.3595693
10.1093/biomet/57.1.97
10.1103/RevModPhys.81.865
10.1088/0305-4470/38/47/011
10.4171/OWR/2004/01
10.1137/S009753970544727X
10.1103/PhysRevA.64.012316
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd
Copyright_xml – notice: 2017 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1751-8121/aa70f5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Convex set of quantum states with positive partial transpose analysed by hit and run algorithm
EISSN 1751-8121
ExternalDocumentID 10_1088_1751_8121_aa70f5
aaa70f5
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-14-CE25-0003
  funderid: https://doi.org/10.13039/501100001665
– fundername: Narodowe Centrum Nauki
  grantid: DEC-2011/02/A/ST1/00119; DEC-2012/07/B/ST1/0332
  funderid: https://doi.org/10.13039/501100004281
– fundername: Japan Society for the Promotion of Science
  grantid: 15KK0162; 26800048
  funderid: https://doi.org/10.13039/501100001691
GroupedDBID 1JI
4.4
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ACNCT
AEFHF
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
NT-
NT.
PJBAE
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
AAYXX
ADEQX
AEINN
CITATION
ID FETCH-LOGICAL-c311t-5817d9513c877651c2dfed450bcc5003f25379423d161bd8a46bbf7d8e7f490b3
IEDL.DBID IOP
ISSN 1751-8113
IngestDate Wed Oct 01 03:14:17 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Wed Aug 21 03:33:53 EDT 2024
Fri Jan 08 09:41:19 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-5817d9513c877651c2dfed450bcc5003f25379423d161bd8a46bbf7d8e7f490b3
Notes JPhysA-107153.R1
PageCount 12
ParticipantIDs crossref_primary_10_1088_1751_8121_aa70f5
iop_journals_10_1088_1751_8121_aa70f5
crossref_citationtrail_10_1088_1751_8121_aa70f5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-23
PublicationDateYYYYMMDD 2017-06-23
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-23
  day: 23
PublicationDecade 2010
PublicationTitle Journal of physics. A, Mathematical and theoretical
PublicationTitleAbbrev JPhysA
PublicationTitleAlternate J. Phys. A: Math. Theor
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
24
27
Arunachalam S (35) 2015; 15
28
29
Doeblin W (25) 1937; 39
Sommers H-J (26) 2004; 37
Życzkowski K (8) 2001; 34
31
10
32
11
33
12
34
13
Collins B (20) 2017; 24
14
36
15
37
16
18
Szarek S (23) 2006; 39
19
Grabowski J (4) 2005; 38
Vempala S (17) 2005; 52
1
2
3
Forrester P J (30) 2010
5
6
7
9
21
References_xml – ident: 32
  doi: 10.1103/PhysRevA.76.052325
– ident: 1
  doi: 10.1007/978-1-4612-0019-2
– ident: 10
  doi: 10.1103/PhysRevA.58.883
– ident: 13
  doi: 10.1142/S2010326312500013
– ident: 5
  doi: 10.1017/CBO9780511535048
– year: 2010
  ident: 30
  publication-title: Log-gases and Random matrices
  doi: 10.1515/9781400835416
– volume: 34
  start-page: 7111
  issn: 0305-4470
  year: 2001
  ident: 8
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/34/35/335
– volume: 37
  start-page: 8457
  issn: 0305-4470
  year: 2004
  ident: 26
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/35/004
– ident: 29
  doi: 10.1103/physreva.93.062112
– volume: 39
  start-page: 57
  issn: 1220-3858
  year: 1937
  ident: 25
  publication-title: Bull. Math. Soc. Roum. Sci.
– ident: 19
  doi: 10.1002/rsa.20135
– ident: 33
  doi: 10.1103/PhysRevA.88.062330
– ident: 28
  doi: 10.1103/PhysRevA.58.826
– volume: 15
  start-page: 0694
  issn: 1533-7146
  year: 2015
  ident: 35
  publication-title: Quant. Inf. Comput.
  doi: 10.26421/QIC15.7-8-10
– ident: 36
  doi: 10.1016/j.laa.2014.11.031
– ident: 14
  doi: 10.1103/PhysRevA.85.062331
– ident: 22
  doi: 10.1070/sm1967v001n04abeh001994
– ident: 7
  doi: 10.1016/S0375-9601(96)00706-2
– ident: 12
  doi: 10.1103/PhysRevA.73.022109
– volume: 39
  start-page: L119
  issn: 0305-4470
  year: 2006
  ident: 23
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/5/L02
– ident: 15
  doi: 10.1103/PhysRevE.77.041108
– ident: 2
  doi: 10.1007/BF01883625
– ident: 34
  doi: 10.1063/1.2841325
– ident: 37
  doi: 10.1142/S2010326312500025
– ident: 27
  doi: 10.1155/2015/621353
– volume: 52
  start-page: 573
  year: 2005
  ident: 17
  publication-title: Comb. Comput. Geom. MSRI Publ.
– ident: 21
  doi: 10.1016/j.jcss.2004.06.003
– ident: 11
  doi: 10.1103/PhysRevA.66.062311
– volume: 24
  start-page: 3
  issn: 0944-6532
  year: 2017
  ident: 20
  publication-title: J. Convex Anal.
– ident: 3
  doi: 10.1103/PhysRevA.63.032307
– ident: 9
  doi: 10.1063/1.3595693
– ident: 24
  doi: 10.1093/biomet/57.1.97
– ident: 6
  doi: 10.1103/RevModPhys.81.865
– volume: 38
  start-page: 10217
  issn: 0305-4470
  year: 2005
  ident: 4
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/38/47/011
– ident: 16
  doi: 10.4171/OWR/2004/01
– ident: 18
  doi: 10.1137/S009753970544727X
– ident: 31
  doi: 10.1103/PhysRevA.64.012316
SSID ssj0054092
Score 2.2672126
Snippet The convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 255206
SubjectTerms gaussian unitary ensemble
Marchenko-Pastur distribution
positive partial transpose
separable states
spectral density
Title Convex set of quantum states with positive partial transpose analysed by hit and run algorithm
URI https://iopscience.iop.org/article/10.1088/1751-8121/aa70f5
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1751-8121
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054092
  issn: 1751-8113
  databaseCode: IOP
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uCF7cxd0c9OChM03TNBFPIooILgcFD2LIqqLOjNNW1F_vS9sRFRERemjhZeGlL99H3hKENlyALcs5mDihUWrIdqQBqCPvnSNCee1NyEY-PskOL9KjS3Y5hHY-cmG6vWbrb8FrXSi4VmETECfaAHgkAlwibaV47NkwGqUCiHHI3js9G2zDwESqG5EbaUIbH-VPPXzBpGEY9xPEHEyiq8Hk6siS-1ZZ6JZ5-1a38Z-zn0ITDfXEu7XoNBpynRk0VoWAmnwWXe-FAPQXnLsCdz1-KkHn5SOuMo5yHM5rcR3h9exwL4wHfRV1afTcYVUVN3EW61d8e1fAt8X9soPVw023D20f59DFwf753mHU3L4QGUpIETFBuAX-RY3gPGPEJNY7m7JYG8NgL_AJo2DMCbVAGrUVKs209twKx326HWs6j0Y63Y5bQDj4LolT3qeOpDxWwsQOeBtJVDiFTN0iag_0L01TmjzckPEgKxe5EDJoTQatyVpri2jro0WvLsvxi-wmLIZsbDP_RW79i5ySLJYJg4clcSZ71i_9sadlNJ4E9I-zKKEraKTol24VuEuh16p_9B3nDOWT
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKFRUXKLSIRyk-wIFDduMkjs0RLawo7wNInOr6CQjYXTYJAn59x4kXsQihSpVySKSxnYxjzyfPzDcIrVtvtgxjsMRJGmWabEUKDHXknLWES6ec9tnIR8f53nm2f0EvQp3TOhemPwhbfwtuG6LgRoUhII63weCRCOwSaUvJYkfbA-Mm0Oeap8Rn8J2cjrZiQCN1VeTQgqTBT_leL2N2aQLGfmVmurPoz-gFm-iSm1ZVqpZ-fsPd-B9f8BXNBAiKtxvxOfTJ9ubRVB0Kqotv6HfHB6I_4sKWuO_wfQW6r-5wnXlUYH9ui5tIrweLB35M6KtsKNILi2VNcmINVk_46rqEZ4OHVQ_L28v-ENrefUfn3d2zzl4UqjBEOiWkjCgnzAAOSzVnLKdEJ8ZZk9FYaU1hT3AJTWFRJ6kB8KgMl1mulGOGW-ayrVilC2iy1-_ZRYS9D5NY6VxmScZiyXVsAb-RRPrTyMwuofZoDoQOFOW-UsatqF3lnAuvOeE1JxrNLaHNlxaDhp7jA9kNmBAR1mjxgdzamJwUNBYJhYsmcS5grpb_sac19OV0pysOfx0frKDpxAOCOI-S9AeaLIeVXQU4U6qf9S_7F1ck6vQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convex+set+of+quantum+states+with+positive+partial+transpose+analysed+by+hit+and+run+algorithm&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Szyma+ski%2C+Konrad&rft.au=Collins%2C+Benot&rft.au=Szarek%2C+Tomasz&rft.au=yczkowski%2C+Karol&rft.date=2017-06-23&rft.pub=IOP+Publishing&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=50&rft.issue=25&rft_id=info:doi/10.1088%2F1751-8121%2Faa70f5&rft.externalDocID=aaa70f5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon