Convex set of quantum states with positive partial transpose analysed by hit and run algorithm
The convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K⩾3...
        Saved in:
      
    
          | Published in | Journal of physics. A, Mathematical and theoretical Vol. 50; no. 25; pp. 255206 - 255217 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IOP Publishing
    
        23.06.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1751-8113 1751-8121  | 
| DOI | 10.1088/1751-8121/aa70f5 | 
Cover
| Abstract | The convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K⩾3 this algorithm works faster than sampling over the entire set of states and verifying whether the partial transpose is positive. The level density of the PPT states is shown to differ from the Marchenko-Pastur distribution, supported in [0, 4] and corresponding asymptotically to the entire set of quantum states. Based on the shifted semi-circle law, describing asymptotic level density of partially transposed states, and on the level density for the Gaussian unitary ensemble with constraints for the spectrum we find an explicit form of the probability distribution supported in [0, 3], which describes well the level density obtained numerically for PPT states. | 
    
|---|---|
| AbstractList | The convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K⩾3 this algorithm works faster than sampling over the entire set of states and verifying whether the partial transpose is positive. The level density of the PPT states is shown to differ from the Marchenko-Pastur distribution, supported in [0, 4] and corresponding asymptotically to the entire set of quantum states. Based on the shifted semi-circle law, describing asymptotic level density of partially transposed states, and on the level density for the Gaussian unitary ensemble with constraints for the spectrum we find an explicit form of the probability distribution supported in [0, 3], which describes well the level density obtained numerically for PPT states. | 
    
| Author | yczkowski, Karol Szyma ski, Konrad Szarek, Tomasz Collins, Benot  | 
    
| Author_xml | – sequence: 1 givenname: Konrad surname: Szyma ski fullname: Szyma ski, Konrad email: konrad.szymanski@uj.edu.pl organization: Jagiellonian University Institute of Physics, Cracow, Poland – sequence: 2 givenname: Benot surname: Collins fullname: Collins, Benot email: collins@math.kyoto-u.ac.jp organization: CNRS , France – sequence: 3 givenname: Tomasz surname: Szarek fullname: Szarek, Tomasz email: szarek@intertele.pl organization: Gda sk University of Technology Faculty of Physics and Applied Mathematics, ul. Gabriela Narutowicza 11/12, 80-233 Gda sk, Poland – sequence: 4 givenname: Karol surname: yczkowski fullname: yczkowski, Karol email: karol@tatry.if.uj.edu.pl organization: Center for Theoretical Physics , Polish Academy of Sciences, Warsaw  | 
    
| BookMark | eNp9kM9PwyAUx4mZidv07pGTJ-t4bSnt0Sz-SpZ40auEFnAsHVRg0_33ssx4MGpCAu_lfb55fCZoZJ1VCJ0DuQJS1zNgFLIacpgJwYimR2j83Rp9v6E4QZMQVoTQkjT5GL3Mnd2qDxxUxE7jt42wcbPGIYqoAn43cYkHF0w0W4UH4aMRPY5e2JC6Cgsr-l1QErc7vDQx1RL7jcWif3U-setTdKxFH9TZ1z1Fz7c3T_P7bPF49zC_XmRdARAzWgOTDYWiqxmrKHS51EqWlLRdRwkpdE4L1pR5IaGCVtairNpWM1krpsuGtMUUVYfczrsQvNK8M-kLxtm0rOk5EL63xPca-F4JP1hKIPkBDt6shd_9h1wcEOMGvnIbnyQELjglPKfp0JxUfJA6DV7-Mvhn7id1U4fn | 
    
| CODEN | JPHAC5 | 
    
| CitedBy_id | crossref_primary_10_1103_PhysRevA_106_052428 crossref_primary_10_1088_1751_8121_ac3469 crossref_primary_10_1103_PhysRevE_96_062149 crossref_primary_10_1103_PRXQuantum_2_030347 crossref_primary_10_1103_PhysRevLett_127_060504  | 
    
| Cites_doi | 10.1103/PhysRevA.76.052325 10.1007/978-1-4612-0019-2 10.1103/PhysRevA.58.883 10.1142/S2010326312500013 10.1017/CBO9780511535048 10.1515/9781400835416 10.1088/0305-4470/34/35/335 10.1088/0305-4470/37/35/004 10.1103/physreva.93.062112 10.1002/rsa.20135 10.1103/PhysRevA.88.062330 10.1103/PhysRevA.58.826 10.26421/QIC15.7-8-10 10.1016/j.laa.2014.11.031 10.1103/PhysRevA.85.062331 10.1070/sm1967v001n04abeh001994 10.1016/S0375-9601(96)00706-2 10.1103/PhysRevA.73.022109 10.1088/0305-4470/39/5/L02 10.1103/PhysRevE.77.041108 10.1007/BF01883625 10.1063/1.2841325 10.1142/S2010326312500025 10.1155/2015/621353 10.1016/j.jcss.2004.06.003 10.1103/PhysRevA.66.062311 10.1103/PhysRevA.63.032307 10.1063/1.3595693 10.1093/biomet/57.1.97 10.1103/RevModPhys.81.865 10.1088/0305-4470/38/47/011 10.4171/OWR/2004/01 10.1137/S009753970544727X 10.1103/PhysRevA.64.012316  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 IOP Publishing Ltd | 
    
| Copyright_xml | – notice: 2017 IOP Publishing Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1088/1751-8121/aa70f5 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| DocumentTitleAlternate | Convex set of quantum states with positive partial transpose analysed by hit and run algorithm | 
    
| EISSN | 1751-8121 | 
    
| ExternalDocumentID | 10_1088_1751_8121_aa70f5 aaa70f5  | 
    
| GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR-14-CE25-0003 funderid: https://doi.org/10.13039/501100001665 – fundername: Narodowe Centrum Nauki grantid: DEC-2011/02/A/ST1/00119; DEC-2012/07/B/ST1/0332 funderid: https://doi.org/10.13039/501100004281 – fundername: Japan Society for the Promotion of Science grantid: 15KK0162; 26800048 funderid: https://doi.org/10.13039/501100001691  | 
    
| GroupedDBID | 1JI 4.4 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L NT- NT. PJBAE RIN RNS RO9 ROL RPA SY9 TN5 W28 AAYXX ADEQX AEINN CITATION  | 
    
| ID | FETCH-LOGICAL-c311t-5817d9513c877651c2dfed450bcc5003f25379423d161bd8a46bbf7d8e7f490b3 | 
    
| IEDL.DBID | IOP | 
    
| ISSN | 1751-8113 | 
    
| IngestDate | Wed Oct 01 03:14:17 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Wed Aug 21 03:33:53 EDT 2024 Fri Jan 08 09:41:19 EST 2021  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 25 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c311t-5817d9513c877651c2dfed450bcc5003f25379423d161bd8a46bbf7d8e7f490b3 | 
    
| Notes | JPhysA-107153.R1 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | crossref_primary_10_1088_1751_8121_aa70f5 iop_journals_10_1088_1751_8121_aa70f5 crossref_citationtrail_10_1088_1751_8121_aa70f5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-06-23 | 
    
| PublicationDateYYYYMMDD | 2017-06-23 | 
    
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-23 day: 23  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Journal of physics. A, Mathematical and theoretical | 
    
| PublicationTitleAbbrev | JPhysA | 
    
| PublicationTitleAlternate | J. Phys. A: Math. Theor | 
    
| PublicationYear | 2017 | 
    
| Publisher | IOP Publishing | 
    
| Publisher_xml | – name: IOP Publishing | 
    
| References | 22 24 27 Arunachalam S (35) 2015; 15 28 29 Doeblin W (25) 1937; 39 Sommers H-J (26) 2004; 37 Życzkowski K (8) 2001; 34 31 10 32 11 33 12 34 13 Collins B (20) 2017; 24 14 36 15 37 16 18 Szarek S (23) 2006; 39 19 Grabowski J (4) 2005; 38 Vempala S (17) 2005; 52 1 2 3 Forrester P J (30) 2010 5 6 7 9 21  | 
    
| References_xml | – ident: 32 doi: 10.1103/PhysRevA.76.052325 – ident: 1 doi: 10.1007/978-1-4612-0019-2 – ident: 10 doi: 10.1103/PhysRevA.58.883 – ident: 13 doi: 10.1142/S2010326312500013 – ident: 5 doi: 10.1017/CBO9780511535048 – year: 2010 ident: 30 publication-title: Log-gases and Random matrices doi: 10.1515/9781400835416 – volume: 34 start-page: 7111 issn: 0305-4470 year: 2001 ident: 8 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/34/35/335 – volume: 37 start-page: 8457 issn: 0305-4470 year: 2004 ident: 26 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/35/004 – ident: 29 doi: 10.1103/physreva.93.062112 – volume: 39 start-page: 57 issn: 1220-3858 year: 1937 ident: 25 publication-title: Bull. Math. Soc. Roum. Sci. – ident: 19 doi: 10.1002/rsa.20135 – ident: 33 doi: 10.1103/PhysRevA.88.062330 – ident: 28 doi: 10.1103/PhysRevA.58.826 – volume: 15 start-page: 0694 issn: 1533-7146 year: 2015 ident: 35 publication-title: Quant. Inf. Comput. doi: 10.26421/QIC15.7-8-10 – ident: 36 doi: 10.1016/j.laa.2014.11.031 – ident: 14 doi: 10.1103/PhysRevA.85.062331 – ident: 22 doi: 10.1070/sm1967v001n04abeh001994 – ident: 7 doi: 10.1016/S0375-9601(96)00706-2 – ident: 12 doi: 10.1103/PhysRevA.73.022109 – volume: 39 start-page: L119 issn: 0305-4470 year: 2006 ident: 23 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/39/5/L02 – ident: 15 doi: 10.1103/PhysRevE.77.041108 – ident: 2 doi: 10.1007/BF01883625 – ident: 34 doi: 10.1063/1.2841325 – ident: 37 doi: 10.1142/S2010326312500025 – ident: 27 doi: 10.1155/2015/621353 – volume: 52 start-page: 573 year: 2005 ident: 17 publication-title: Comb. Comput. Geom. MSRI Publ. – ident: 21 doi: 10.1016/j.jcss.2004.06.003 – ident: 11 doi: 10.1103/PhysRevA.66.062311 – volume: 24 start-page: 3 issn: 0944-6532 year: 2017 ident: 20 publication-title: J. Convex Anal. – ident: 3 doi: 10.1103/PhysRevA.63.032307 – ident: 9 doi: 10.1063/1.3595693 – ident: 24 doi: 10.1093/biomet/57.1.97 – ident: 6 doi: 10.1103/RevModPhys.81.865 – volume: 38 start-page: 10217 issn: 0305-4470 year: 2005 ident: 4 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/38/47/011 – ident: 16 doi: 10.4171/OWR/2004/01 – ident: 18 doi: 10.1137/S009753970544727X – ident: 31 doi: 10.1103/PhysRevA.64.012316  | 
    
| SSID | ssj0054092 | 
    
| Score | 2.2672126 | 
    
| Snippet | The convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to... | 
    
| SourceID | crossref iop  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 255206 | 
    
| SubjectTerms | gaussian unitary ensemble Marchenko-Pastur distribution positive partial transpose separable states spectral density  | 
    
| Title | Convex set of quantum states with positive partial transpose analysed by hit and run algorithm | 
    
| URI | https://iopscience.iop.org/article/10.1088/1751-8121/aa70f5 | 
    
| Volume | 50 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1751-8121 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054092 issn: 1751-8113 databaseCode: IOP dateStart: 20070101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uCF7cxd0c9OChM03TNBFPIooILgcFD2LIqqLOjNNW1F_vS9sRFRERemjhZeGlL99H3hKENlyALcs5mDihUWrIdqQBqCPvnSNCee1NyEY-PskOL9KjS3Y5hHY-cmG6vWbrb8FrXSi4VmETECfaAHgkAlwibaV47NkwGqUCiHHI3js9G2zDwESqG5EbaUIbH-VPPXzBpGEY9xPEHEyiq8Hk6siS-1ZZ6JZ5-1a38Z-zn0ITDfXEu7XoNBpynRk0VoWAmnwWXe-FAPQXnLsCdz1-KkHn5SOuMo5yHM5rcR3h9exwL4wHfRV1afTcYVUVN3EW61d8e1fAt8X9soPVw023D20f59DFwf753mHU3L4QGUpIETFBuAX-RY3gPGPEJNY7m7JYG8NgL_AJo2DMCbVAGrUVKs209twKx326HWs6j0Y63Y5bQDj4LolT3qeOpDxWwsQOeBtJVDiFTN0iag_0L01TmjzckPEgKxe5EDJoTQatyVpri2jro0WvLsvxi-wmLIZsbDP_RW79i5ySLJYJg4clcSZ71i_9sadlNJ4E9I-zKKEraKTol24VuEuh16p_9B3nDOWT | 
    
| linkProvider | IOP Publishing | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKFRUXKLSIRyk-wIFDduMkjs0RLawo7wNInOr6CQjYXTYJAn59x4kXsQihSpVySKSxnYxjzyfPzDcIrVtvtgxjsMRJGmWabEUKDHXknLWES6ec9tnIR8f53nm2f0EvQp3TOhemPwhbfwtuG6LgRoUhII63weCRCOwSaUvJYkfbA-Mm0Oeap8Rn8J2cjrZiQCN1VeTQgqTBT_leL2N2aQLGfmVmurPoz-gFm-iSm1ZVqpZ-fsPd-B9f8BXNBAiKtxvxOfTJ9ubRVB0Kqotv6HfHB6I_4sKWuO_wfQW6r-5wnXlUYH9ui5tIrweLB35M6KtsKNILi2VNcmINVk_46rqEZ4OHVQ_L28v-ENrefUfn3d2zzl4UqjBEOiWkjCgnzAAOSzVnLKdEJ8ZZk9FYaU1hT3AJTWFRJ6kB8KgMl1mulGOGW-ayrVilC2iy1-_ZRYS9D5NY6VxmScZiyXVsAb-RRPrTyMwuofZoDoQOFOW-UsatqF3lnAuvOeE1JxrNLaHNlxaDhp7jA9kNmBAR1mjxgdzamJwUNBYJhYsmcS5grpb_sac19OV0pysOfx0frKDpxAOCOI-S9AeaLIeVXQU4U6qf9S_7F1ck6vQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convex+set+of+quantum+states+with+positive+partial+transpose+analysed+by+hit+and+run+algorithm&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Szyma+ski%2C+Konrad&rft.au=Collins%2C+Benot&rft.au=Szarek%2C+Tomasz&rft.au=yczkowski%2C+Karol&rft.date=2017-06-23&rft.pub=IOP+Publishing&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=50&rft.issue=25&rft_id=info:doi/10.1088%2F1751-8121%2Faa70f5&rft.externalDocID=aaa70f5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon |