A weighted information criterion for multiple minor components and its adaptive extraction algorithms

Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linea...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 89; pp. 1 - 10
Main Authors Gao, Yingbin, Kong, Xiangyu, Zhang, Huihui, Hou, Li’an
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2017
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2017.02.006

Cover

Abstract Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations.
AbstractList Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations.Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations.
Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations.
Author Kong, Xiangyu
Zhang, Huihui
Gao, Yingbin
Hou, Li’an
Author_xml – sequence: 1
  givenname: Yingbin
  surname: Gao
  fullname: Gao, Yingbin
– sequence: 2
  givenname: Xiangyu
  surname: Kong
  fullname: Kong, Xiangyu
  email: xiangyukong01@163.com
– sequence: 3
  givenname: Huihui
  surname: Zhang
  fullname: Zhang, Huihui
– sequence: 4
  givenname: Li’an
  surname: Hou
  fullname: Hou, Li’an
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28254556$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9P5SAUxcnEyfj88w0mky5n03qh0NKNiTE6mpi4cdaER2-VlxY6QB399tJ5jktXF8jvHOCcI3LgvENCvlOoKNDmbFc5XBymigFtK2AVQPOFbKhsu5K1kh2QDciuLhuQcEiOYtxBJiSvv5FDJpngQjQbghfFX7SPTwn7wrrBh0kn611hgk0Y1lU-K6ZlTHYesZisy1vjpzk_xqVYaJd16-z1nOwzFviSgjb_PPT46LPN0xRPyNdBjxFP3-cx-X199XB5U97d_7q9vLgrTU1pKgWj0FBuahCwxS10vUADQlAOvOWdHAa21d0KGd1ylHUvWQegBZh24N1QH5Ofe985-D8LxqQmGw2Oo3bol6hyOJzzfE2b0R_v6LKdsFdzsJMOr-p_NBnge8AEH2PA4QOhoNYG1E7tG1BrAwqYyvlm2flehvmfzxaDisaiM9jbgCap3tvPDd4AjF-RNg
Cites_doi 10.1109/TNN.2005.844854
10.1109/78.298287
10.1109/78.700968
10.1109/TSP.2005.843698
10.1109/78.365290
10.1016/j.dsp.2012.09.007
10.1162/089976601750265036
10.1016/j.neunet.2010.04.001
10.1016/j.dsp.2011.05.001
10.1109/TNNLS.2011.2178564
10.1016/j.sigpro.2012.07.020
10.1016/S0893-6080(05)80089-9
10.1109/TNNLS.2011.2179310
10.1023/A:1011388608203
10.1016/j.tcs.2010.07.021
10.1016/j.sigpro.2013.06.017
10.1142/S0129065796000063
10.1109/78.752609
10.1109/LSP.2005.859497
10.1109/TSP.2002.800395
10.1016/j.dsp.2009.03.004
10.1109/TSP.2011.2169060
10.1109/72.623215
10.1016/0893-6080(95)91644-9
10.1142/S0129065704001863
10.1162/NECO_a_00745
10.1016/S1004-4132(07)60101-7
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2017.02.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 10
ExternalDocumentID 28254556
10_1016_j_neunet_2017_02_006
S0893608017300357
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c311t-5210614c3050beb09d5ec05514047498ff2ba92106ca74e83d82900a50c7f49f3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Sat Sep 27 23:52:57 EDT 2025
Wed Feb 19 02:00:42 EST 2025
Wed Oct 01 02:07:55 EDT 2025
Fri Feb 23 02:28:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lyapunov method
Weighted information criterion
Recursive least square
Global convergence
Neural networks
Multiple minor components extraction
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-5210614c3050beb09d5ec05514047498ff2ba92106ca74e83d82900a50c7f49f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28254556
PQID 1874445217
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1874445217
pubmed_primary_28254556
crossref_primary_10_1016_j_neunet_2017_02_006
elsevier_sciencedirect_doi_10_1016_j_neunet_2017_02_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2017
2017-05-00
2017-May
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Magnus, Neudecker (br000090) 1991
Duong Nguyen, IsaoYamada (br000030) 2014; 94
Jankovic, Ogawa (br000055) 2005
Peng, Yi, Xiang (br000130) 2009; 19
Peng, Zhang, Xiang, Zhang (br000135) 2012; 23
Yang (br000165) 1995; 43
Gao, Kong, Hu, Zhang, Hou (br000045) 2014
Duong Nguyen, IsaoYamada (br000025) 2013; 93
Wang, Karhunen (br000160) 1996; 7
Tan, Lv, Zhang, Huang (br000145) 2010; 411
Bartelmaos, Abed-Meraim (br000005) 2011; 21
Kong, Hu, Han (br000065) 2010; 23
Kong, Hu, Han (br000070) 2012; 60
Chen, Shun, Murata (br000010) 2001; 13
Feng, Zheng, Jia (br000035) 2005; 16
Luo, Unbehauen (br000085) 1997; 8
Oja, Ogawa, Wangviwattana (br000115) 1992; 75
Mathew, Reddy (br000095) 1994; 42
Möller (br000105) 2004; 14
Fiori (br000040) 2001; 13
Li, Li (br000080) 2007; 18
Jankovic, Reljin (br000060) 2005; 12
Ouyang, Bao (br000120) 2002; 50
Golub, Van Loan (br000050) 1989
Plumbley (br000140) 1995; 8
Cirrincione, Cirrincione (br000020) 2011
Chiang, Chen (br000015) 1999; 47
Kong, Hu, Ma, Han (br000075) 2012; 23
Oja (br000110) 1992; 5
Miao, Hua (br000100) 1998; 46
Tanaka (br000150) 2005; 53
Pehlevan, Hu, Chklovskii (br000125) 2015; 27
Thameri, Abed-Meraim, Belouchrani (br000155) 2013; 23
Chiang (10.1016/j.neunet.2017.02.006_br000015) 1999; 47
Möller (10.1016/j.neunet.2017.02.006_br000105) 2004; 14
Tan (10.1016/j.neunet.2017.02.006_br000145) 2010; 411
Jankovic (10.1016/j.neunet.2017.02.006_br000060) 2005; 12
Wang (10.1016/j.neunet.2017.02.006_br000160) 1996; 7
Mathew (10.1016/j.neunet.2017.02.006_br000095) 1994; 42
Peng (10.1016/j.neunet.2017.02.006_br000135) 2012; 23
Fiori (10.1016/j.neunet.2017.02.006_br000040) 2001; 13
Golub (10.1016/j.neunet.2017.02.006_br000050) 1989
Kong (10.1016/j.neunet.2017.02.006_br000065) 2010; 23
Tanaka (10.1016/j.neunet.2017.02.006_br000150) 2005; 53
Gao (10.1016/j.neunet.2017.02.006_br000045) 2014
Li (10.1016/j.neunet.2017.02.006_br000080) 2007; 18
Duong Nguyen (10.1016/j.neunet.2017.02.006_br000030) 2014; 94
Thameri (10.1016/j.neunet.2017.02.006_br000155) 2013; 23
Chen (10.1016/j.neunet.2017.02.006_br000010) 2001; 13
Duong Nguyen (10.1016/j.neunet.2017.02.006_br000025) 2013; 93
Plumbley (10.1016/j.neunet.2017.02.006_br000140) 1995; 8
Oja (10.1016/j.neunet.2017.02.006_br000110) 1992; 5
Peng (10.1016/j.neunet.2017.02.006_br000130) 2009; 19
Cirrincione (10.1016/j.neunet.2017.02.006_br000020) 2011
Kong (10.1016/j.neunet.2017.02.006_br000075) 2012; 23
Miao (10.1016/j.neunet.2017.02.006_br000100) 1998; 46
Jankovic (10.1016/j.neunet.2017.02.006_br000055) 2005
Kong (10.1016/j.neunet.2017.02.006_br000070) 2012; 60
Yang (10.1016/j.neunet.2017.02.006_br000165) 1995; 43
Ouyang (10.1016/j.neunet.2017.02.006_br000120) 2002; 50
Luo (10.1016/j.neunet.2017.02.006_br000085) 1997; 8
Feng (10.1016/j.neunet.2017.02.006_br000035) 2005; 16
Bartelmaos (10.1016/j.neunet.2017.02.006_br000005) 2011; 21
Pehlevan (10.1016/j.neunet.2017.02.006_br000125) 2015; 27
Oja (10.1016/j.neunet.2017.02.006_br000115) 1992; 75
Magnus (10.1016/j.neunet.2017.02.006_br000090) 1991
References_xml – volume: 7
  start-page: 53
  year: 1996
  end-page: 67
  ident: br000160
  article-title: A unified neural bigradient algorithm for robust PCA and MCA
  publication-title: International Journal of Neural Systems
– volume: 14
  start-page: 1
  year: 2004
  end-page: 8
  ident: br000105
  article-title: A self-stabilizing learning rule for minor component analysis
  publication-title: International Journal of Neural Systems
– volume: 19
  start-page: 640
  year: 2009
  end-page: 649
  ident: br000130
  article-title: A unified learning algorithm to extract principal and minor components
  publication-title: Digital Signal Processing
– volume: 75
  start-page: 366
  year: 1992
  end-page: 375
  ident: br000115
  article-title: Principal component analysis by homogeneous neural networks—Part I: Weighted subspace criterion
  publication-title: IEICE Transactions on Information And Systems
– volume: 50
  start-page: 1994
  year: 2002
  end-page: 2002
  ident: br000120
  article-title: Fast principal component extraction by a weighted information criterion
  publication-title: IEEE Transactions on Signal Processing
– volume: 21
  start-page: 667
  year: 2011
  end-page: 678
  ident: br000005
  article-title: Fast adaptive algorithms for minor component analysis using Householder transformation
  publication-title: Digital Signal Processing
– volume: 23
  start-page: 19
  year: 2013
  end-page: 29
  ident: br000155
  article-title: Low complexity adaptive algorithms for principal and minor component analysis
  publication-title: Digital Signal Processing
– volume: 23
  start-page: 185
  year: 2012
  end-page: 198
  ident: br000075
  article-title: A unified self-stabilizing neural network algorithm for principal and minor components extraction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 13
  start-page: 1625
  year: 2001
  end-page: 1647
  ident: br000040
  article-title: A theory for learning by weight flow on Stiefel–Grassman manifold
  publication-title: Neural Computation
– year: 1989
  ident: br000050
  article-title: Matrix computations
– volume: 5
  start-page: 927
  year: 1992
  end-page: 935
  ident: br000110
  article-title: Principal components, minor components and linear neural networks
  publication-title: Neural Networks
– start-page: 1
  year: 2014
  end-page: 14
  ident: br000045
  article-title: Convergence analysis of Möller algorithm for estimating minor component
  publication-title: Neural Processing Letters
– volume: 23
  start-page: 359
  year: 2012
  end-page: 365
  ident: br000135
  article-title: A globally convergent MC algorithm with an adaptive learning rate
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2005
  ident: br000055
  article-title: Time-oriented hierarchical method for computation of minor components
– volume: 94
  start-page: 288
  year: 2014
  end-page: 299
  ident: br000030
  article-title: Necessary and sufficient conditions for convergence of the DDT systems of the normalized PAST algorithms
  publication-title: Signal Processing
– year: 1991
  ident: br000090
  article-title: Matrix differential calculus with applications in statistics and econometrics, vol. 2
– year: 2011
  ident: br000020
  article-title: Neural-based orthogonal data fitting: The EXIN neural networks, vol. 66
– volume: 27
  start-page: 1461
  year: 2015
  end-page: 1495
  ident: br000125
  article-title: A Hebbian/anti-Hebbian neural network for linear subspace learning: A derivation from multidimensional scaling of streaming data
  publication-title: Neural Computation
– volume: 12
  start-page: 859
  year: 2005
  end-page: 862
  ident: br000060
  article-title: A new minor component analysis method based on Douglas–Kung–Amari minor subspace analysis method
  publication-title: IEEE Signal Processing Letters
– volume: 18
  start-page: 377
  year: 2007
  end-page: 384
  ident: br000080
  article-title: Information criterion based fast PCA adaptive algorithm
  publication-title: Journal of Systems Engineering and Electronics
– volume: 46
  start-page: 1967
  year: 1998
  end-page: 1979
  ident: br000100
  article-title: Fast subspace tracking and neural network learning by a novel information criterion
  publication-title: IEEE Transactions on Signal Processing
– volume: 93
  start-page: 176
  year: 2013
  end-page: 184
  ident: br000025
  article-title: A unified convergence analysis of normalized PAST algorithms for estimating principal and minor components
  publication-title: Signal Processing
– volume: 16
  start-page: 513
  year: 2005
  end-page: 521
  ident: br000035
  article-title: Neural network learning algorithms for tracking minor subspace in high-dimensional data stream
  publication-title: IEEE Transactions on Neural Networks
– volume: 23
  start-page: 865
  year: 2010
  end-page: 871
  ident: br000065
  article-title: A self-stabilizing MSA algorithm in high-dimension data stream
  publication-title: Neural Networks
– volume: 8
  start-page: 11
  year: 1995
  end-page: 23
  ident: br000140
  article-title: Lyapunov function for convergence of principal component algorithms
  publication-title: Neural Networks
– volume: 13
  start-page: 195
  year: 2001
  end-page: 201
  ident: br000010
  article-title: Sequential extraction of minor components
  publication-title: Neural Processing Letters
– volume: 43
  start-page: 95
  year: 1995
  end-page: 107
  ident: br000165
  article-title: Projection approximation subspace tracking
  publication-title: IEEE Transactions on Signal Processing
– volume: 8
  start-page: 1149
  year: 1997
  end-page: 1155
  ident: br000085
  article-title: A minor subspace analysis algorithm
  publication-title: IEEE Transactions on Neural Networks
– volume: 60
  start-page: 197
  year: 2012
  end-page: 210
  ident: br000070
  article-title: A dual purpose principal and minor subspace gradient flow
  publication-title: IEEE Transactions on Signal Processing
– volume: 42
  start-page: 1803
  year: 1994
  end-page: 1811
  ident: br000095
  article-title: Orthogonal eigensubspace estimation using neural networks
  publication-title: IEEE Transactions on Signal Processing
– volume: 411
  start-page: 4200
  year: 2010
  end-page: 4215
  ident: br000145
  article-title: Adaptive multiple minor directions extraction in parallel using a PCA neural network
  publication-title: Theoretical Computer Science
– volume: 53
  start-page: 1243
  year: 2005
  end-page: 1253
  ident: br000150
  article-title: Generalized weighted rules for principal components tracking
  publication-title: IEEE Transactions on Signal Processing
– volume: 47
  start-page: 1125
  year: 1999
  end-page: 1129
  ident: br000015
  article-title: On the inflation method in adaptive noise-subspace estimator
  publication-title: IEEE Transactions on Signal Processing
– volume: 16
  start-page: 513
  year: 2005
  ident: 10.1016/j.neunet.2017.02.006_br000035
  article-title: Neural network learning algorithms for tracking minor subspace in high-dimensional data stream
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2005.844854
– volume: 42
  start-page: 1803
  year: 1994
  ident: 10.1016/j.neunet.2017.02.006_br000095
  article-title: Orthogonal eigensubspace estimation using neural networks
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.298287
– volume: 46
  start-page: 1967
  year: 1998
  ident: 10.1016/j.neunet.2017.02.006_br000100
  article-title: Fast subspace tracking and neural network learning by a novel information criterion
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.700968
– volume: 53
  start-page: 1243
  year: 2005
  ident: 10.1016/j.neunet.2017.02.006_br000150
  article-title: Generalized weighted rules for principal components tracking
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2005.843698
– volume: 43
  start-page: 95
  year: 1995
  ident: 10.1016/j.neunet.2017.02.006_br000165
  article-title: Projection approximation subspace tracking
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.365290
– volume: 23
  start-page: 19
  year: 2013
  ident: 10.1016/j.neunet.2017.02.006_br000155
  article-title: Low complexity adaptive algorithms for principal and minor component analysis
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2012.09.007
– volume: 13
  start-page: 1625
  year: 2001
  ident: 10.1016/j.neunet.2017.02.006_br000040
  article-title: A theory for learning by weight flow on Stiefel–Grassman manifold
  publication-title: Neural Computation
  doi: 10.1162/089976601750265036
– volume: 23
  start-page: 865
  year: 2010
  ident: 10.1016/j.neunet.2017.02.006_br000065
  article-title: A self-stabilizing MSA algorithm in high-dimension data stream
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2010.04.001
– volume: 75
  start-page: 366
  year: 1992
  ident: 10.1016/j.neunet.2017.02.006_br000115
  article-title: Principal component analysis by homogeneous neural networks—Part I: Weighted subspace criterion
  publication-title: IEICE Transactions on Information And Systems
– volume: 21
  start-page: 667
  year: 2011
  ident: 10.1016/j.neunet.2017.02.006_br000005
  article-title: Fast adaptive algorithms for minor component analysis using Householder transformation
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2011.05.001
– volume: 23
  start-page: 185
  year: 2012
  ident: 10.1016/j.neunet.2017.02.006_br000075
  article-title: A unified self-stabilizing neural network algorithm for principal and minor components extraction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2011.2178564
– year: 1989
  ident: 10.1016/j.neunet.2017.02.006_br000050
– volume: 93
  start-page: 176
  year: 2013
  ident: 10.1016/j.neunet.2017.02.006_br000025
  article-title: A unified convergence analysis of normalized PAST algorithms for estimating principal and minor components
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2012.07.020
– volume: 5
  start-page: 927
  year: 1992
  ident: 10.1016/j.neunet.2017.02.006_br000110
  article-title: Principal components, minor components and linear neural networks
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80089-9
– volume: 23
  start-page: 359
  year: 2012
  ident: 10.1016/j.neunet.2017.02.006_br000135
  article-title: A globally convergent MC algorithm with an adaptive learning rate
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2011.2179310
– volume: 13
  start-page: 195
  year: 2001
  ident: 10.1016/j.neunet.2017.02.006_br000010
  article-title: Sequential extraction of minor components
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1011388608203
– volume: 411
  start-page: 4200
  year: 2010
  ident: 10.1016/j.neunet.2017.02.006_br000145
  article-title: Adaptive multiple minor directions extraction in parallel using a PCA neural network
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2010.07.021
– volume: 94
  start-page: 288
  year: 2014
  ident: 10.1016/j.neunet.2017.02.006_br000030
  article-title: Necessary and sufficient conditions for convergence of the DDT systems of the normalized PAST algorithms
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2013.06.017
– year: 2011
  ident: 10.1016/j.neunet.2017.02.006_br000020
– volume: 7
  start-page: 53
  year: 1996
  ident: 10.1016/j.neunet.2017.02.006_br000160
  article-title: A unified neural bigradient algorithm for robust PCA and MCA
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065796000063
– volume: 47
  start-page: 1125
  year: 1999
  ident: 10.1016/j.neunet.2017.02.006_br000015
  article-title: On the inflation method in adaptive noise-subspace estimator
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.752609
– start-page: 1
  year: 2014
  ident: 10.1016/j.neunet.2017.02.006_br000045
  article-title: Convergence analysis of Möller algorithm for estimating minor component
  publication-title: Neural Processing Letters
– volume: 12
  start-page: 859
  year: 2005
  ident: 10.1016/j.neunet.2017.02.006_br000060
  article-title: A new minor component analysis method based on Douglas–Kung–Amari minor subspace analysis method
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2005.859497
– year: 1991
  ident: 10.1016/j.neunet.2017.02.006_br000090
– volume: 50
  start-page: 1994
  year: 2002
  ident: 10.1016/j.neunet.2017.02.006_br000120
  article-title: Fast principal component extraction by a weighted information criterion
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2002.800395
– volume: 19
  start-page: 640
  year: 2009
  ident: 10.1016/j.neunet.2017.02.006_br000130
  article-title: A unified learning algorithm to extract principal and minor components
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2009.03.004
– volume: 60
  start-page: 197
  year: 2012
  ident: 10.1016/j.neunet.2017.02.006_br000070
  article-title: A dual purpose principal and minor subspace gradient flow
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2011.2169060
– volume: 8
  start-page: 1149
  year: 1997
  ident: 10.1016/j.neunet.2017.02.006_br000085
  article-title: A minor subspace analysis algorithm
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.623215
– volume: 8
  start-page: 11
  year: 1995
  ident: 10.1016/j.neunet.2017.02.006_br000140
  article-title: Lyapunov function for convergence of principal component algorithms
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(95)91644-9
– volume: 14
  start-page: 1
  year: 2004
  ident: 10.1016/j.neunet.2017.02.006_br000105
  article-title: A self-stabilizing learning rule for minor component analysis
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065704001863
– year: 2005
  ident: 10.1016/j.neunet.2017.02.006_br000055
– volume: 27
  start-page: 1461
  year: 2015
  ident: 10.1016/j.neunet.2017.02.006_br000125
  article-title: A Hebbian/anti-Hebbian neural network for linear subspace learning: A derivation from multidimensional scaling of streaming data
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00745
– volume: 18
  start-page: 377
  year: 2007
  ident: 10.1016/j.neunet.2017.02.006_br000080
  article-title: Information criterion based fast PCA adaptive algorithm
  publication-title: Journal of Systems Engineering and Electronics
  doi: 10.1016/S1004-4132(07)60101-7
SSID ssj0006843
Score 2.2250276
Snippet Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Computer Simulation
Global convergence
Lyapunov method
Multiple minor components extraction
Neural networks
Neural Networks (Computer)
Pattern Recognition, Automated - methods
Recursive least square
Signal Processing, Computer-Assisted
Weighted information criterion
Title A weighted information criterion for multiple minor components and its adaptive extraction algorithms
URI https://dx.doi.org/10.1016/j.neunet.2017.02.006
https://www.ncbi.nlm.nih.gov/pubmed/28254556
https://www.proquest.com/docview/1874445217
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4P8qjMhKrqZM4djJWFaiA1AUqsVl24kARTas-xMZv5y5OQAwVElMSy3acs_35HH93R8iVs6D25pFjXOacidwmzApVMBsXKssiI0NbsXyHcjAS98_xc4v0G1sYpFXW2O8xvULrOqVbS7M7G4-7jxyWWgkKT4Au16MYLcqFUBjF4Przh-YhE8-cg8wMczfmcxXHq3Sr0iGjMlDec6dctzytUz-rZeh2l2zX-iPt-SbukZYr98lOE5uB1lP1gLge_aj-erqc1s5RsQsogAR6Z4Y7SKMNnZBOxiU8Ir98WiK1gpoSyuE1NzNERAogPvdGENS8v0yhmtfJ4pCMbm-e-gNWh1RgWRQES9h2VlvADGY5t87yNI9dxlFr4kKJNCmK0JoUM2VGCZdEOR60chPzTBUiLaIjslFCQ04IVY4rE2QiVQb22EpaWUBd0snEhrkMizZhjST1zHvO0A2l7E17yWuUvOahBsm3iWrErX-NAA3g_kfJy6Z3NEwOPPEwpZuuFhoDDgoBH63a5Nh323db0GhXxLE8_fd7z8gWPnn64znZWM5X7gJUlKXtVGOwQzZ7dw-D4Rf0medH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgEJ74OOjF92N9YuK1Lm0ptEdjNOvzoibeCLRU17jdje7Gm7_dmdJqPBgTT20pUDLAx0z5ZgA4dBbV3iJ2AZcFD0Rh08AKVQY2KVWex0ZGtmb53sjevbh4SB6m4KT1hSFaZYP9HtNrtG5Suo00u6N-v3vLcamVqPCEFHI9TtQ0zIokUmSBHX188zxk6qlzmDug7K3_XE3yqtykckSpDJUP3Sl_W59-0z_rdehsCRYaBZId-zYuw5SrVmCxPZyBNXN1Fdwxe69_e7qCNdFRqQ8YogSFZ8Y7TGMtn5AN-hU-EsF8WBG3gpkKy9G1MCOCRIYo_uq9IJh5eRxiNU-DtzW4Pzu9O-kFzZkKQR6H4RjtztoGzHGac-ssz4rE5ZzUJi6UyNKyjKzJKFNulHBpXNBOKzcJz1UpsjJeh5kKG7IJTDmuTJiLTBk0spW0ssS6pJOpjQoZlR0IWknqkQ-doVtO2bP2ktckec0jjZLvgGrFrX8MAY3o_kfJg7Z3NM4O2vIwlRtO3jSdOChwVISqAxu-277aQl67Iknk1r-_uw9zvbvrK311fnO5DfP0xnMhd2Bm_Dpxu6ivjO1ePR4_AV-A6Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+weighted+information+criterion+for+multiple+minor+components+and+its+adaptive+extraction+algorithms&rft.jtitle=Neural+networks&rft.au=Gao%2C+Yingbin&rft.au=Kong%2C+Xiangyu&rft.au=Zhang%2C+Huihui&rft.au=Hou%2C+Li%27an&rft.date=2017-05-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=89&rft.spage=1&rft_id=info:doi/10.1016%2Fj.neunet.2017.02.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon