A weighted information criterion for multiple minor components and its adaptive extraction algorithms
Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linea...
Saved in:
| Published in | Neural networks Vol. 89; pp. 1 - 10 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.05.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0893-6080 1879-2782 1879-2782 |
| DOI | 10.1016/j.neunet.2017.02.006 |
Cover
| Abstract | Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations. |
|---|---|
| AbstractList | Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations.Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations. Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations. |
| Author | Kong, Xiangyu Zhang, Huihui Gao, Yingbin Hou, Li’an |
| Author_xml | – sequence: 1 givenname: Yingbin surname: Gao fullname: Gao, Yingbin – sequence: 2 givenname: Xiangyu surname: Kong fullname: Kong, Xiangyu email: xiangyukong01@163.com – sequence: 3 givenname: Huihui surname: Zhang fullname: Zhang, Huihui – sequence: 4 givenname: Li’an surname: Hou fullname: Hou, Li’an |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28254556$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9P5SAUxcnEyfj88w0mky5n03qh0NKNiTE6mpi4cdaER2-VlxY6QB399tJ5jktXF8jvHOCcI3LgvENCvlOoKNDmbFc5XBymigFtK2AVQPOFbKhsu5K1kh2QDciuLhuQcEiOYtxBJiSvv5FDJpngQjQbghfFX7SPTwn7wrrBh0kn611hgk0Y1lU-K6ZlTHYesZisy1vjpzk_xqVYaJd16-z1nOwzFviSgjb_PPT46LPN0xRPyNdBjxFP3-cx-X199XB5U97d_7q9vLgrTU1pKgWj0FBuahCwxS10vUADQlAOvOWdHAa21d0KGd1ylHUvWQegBZh24N1QH5Ofe985-D8LxqQmGw2Oo3bol6hyOJzzfE2b0R_v6LKdsFdzsJMOr-p_NBnge8AEH2PA4QOhoNYG1E7tG1BrAwqYyvlm2flehvmfzxaDisaiM9jbgCap3tvPDd4AjF-RNg |
| Cites_doi | 10.1109/TNN.2005.844854 10.1109/78.298287 10.1109/78.700968 10.1109/TSP.2005.843698 10.1109/78.365290 10.1016/j.dsp.2012.09.007 10.1162/089976601750265036 10.1016/j.neunet.2010.04.001 10.1016/j.dsp.2011.05.001 10.1109/TNNLS.2011.2178564 10.1016/j.sigpro.2012.07.020 10.1016/S0893-6080(05)80089-9 10.1109/TNNLS.2011.2179310 10.1023/A:1011388608203 10.1016/j.tcs.2010.07.021 10.1016/j.sigpro.2013.06.017 10.1142/S0129065796000063 10.1109/78.752609 10.1109/LSP.2005.859497 10.1109/TSP.2002.800395 10.1016/j.dsp.2009.03.004 10.1109/TSP.2011.2169060 10.1109/72.623215 10.1016/0893-6080(95)91644-9 10.1142/S0129065704001863 10.1162/NECO_a_00745 10.1016/S1004-4132(07)60101-7 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neunet.2017.02.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| EndPage | 10 |
| ExternalDocumentID | 28254556 10_1016_j_neunet_2017_02_006 S0893608017300357 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM PKN 7X8 |
| ID | FETCH-LOGICAL-c311t-5210614c3050beb09d5ec05514047498ff2ba92106ca74e83d82900a50c7f49f3 |
| IEDL.DBID | .~1 |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Sat Sep 27 23:52:57 EDT 2025 Wed Feb 19 02:00:42 EST 2025 Wed Oct 01 02:07:55 EDT 2025 Fri Feb 23 02:28:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lyapunov method Weighted information criterion Recursive least square Global convergence Neural networks Multiple minor components extraction |
| Language | English |
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c311t-5210614c3050beb09d5ec05514047498ff2ba92106ca74e83d82900a50c7f49f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 28254556 |
| PQID | 1874445217 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1874445217 pubmed_primary_28254556 crossref_primary_10_1016_j_neunet_2017_02_006 elsevier_sciencedirect_doi_10_1016_j_neunet_2017_02_006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2017 2017-05-00 2017-May 20170501 |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Magnus, Neudecker (br000090) 1991 Duong Nguyen, IsaoYamada (br000030) 2014; 94 Jankovic, Ogawa (br000055) 2005 Peng, Yi, Xiang (br000130) 2009; 19 Peng, Zhang, Xiang, Zhang (br000135) 2012; 23 Yang (br000165) 1995; 43 Gao, Kong, Hu, Zhang, Hou (br000045) 2014 Duong Nguyen, IsaoYamada (br000025) 2013; 93 Wang, Karhunen (br000160) 1996; 7 Tan, Lv, Zhang, Huang (br000145) 2010; 411 Bartelmaos, Abed-Meraim (br000005) 2011; 21 Kong, Hu, Han (br000065) 2010; 23 Kong, Hu, Han (br000070) 2012; 60 Chen, Shun, Murata (br000010) 2001; 13 Feng, Zheng, Jia (br000035) 2005; 16 Luo, Unbehauen (br000085) 1997; 8 Oja, Ogawa, Wangviwattana (br000115) 1992; 75 Mathew, Reddy (br000095) 1994; 42 Möller (br000105) 2004; 14 Fiori (br000040) 2001; 13 Li, Li (br000080) 2007; 18 Jankovic, Reljin (br000060) 2005; 12 Ouyang, Bao (br000120) 2002; 50 Golub, Van Loan (br000050) 1989 Plumbley (br000140) 1995; 8 Cirrincione, Cirrincione (br000020) 2011 Chiang, Chen (br000015) 1999; 47 Kong, Hu, Ma, Han (br000075) 2012; 23 Oja (br000110) 1992; 5 Miao, Hua (br000100) 1998; 46 Tanaka (br000150) 2005; 53 Pehlevan, Hu, Chklovskii (br000125) 2015; 27 Thameri, Abed-Meraim, Belouchrani (br000155) 2013; 23 Chiang (10.1016/j.neunet.2017.02.006_br000015) 1999; 47 Möller (10.1016/j.neunet.2017.02.006_br000105) 2004; 14 Tan (10.1016/j.neunet.2017.02.006_br000145) 2010; 411 Jankovic (10.1016/j.neunet.2017.02.006_br000060) 2005; 12 Wang (10.1016/j.neunet.2017.02.006_br000160) 1996; 7 Mathew (10.1016/j.neunet.2017.02.006_br000095) 1994; 42 Peng (10.1016/j.neunet.2017.02.006_br000135) 2012; 23 Fiori (10.1016/j.neunet.2017.02.006_br000040) 2001; 13 Golub (10.1016/j.neunet.2017.02.006_br000050) 1989 Kong (10.1016/j.neunet.2017.02.006_br000065) 2010; 23 Tanaka (10.1016/j.neunet.2017.02.006_br000150) 2005; 53 Gao (10.1016/j.neunet.2017.02.006_br000045) 2014 Li (10.1016/j.neunet.2017.02.006_br000080) 2007; 18 Duong Nguyen (10.1016/j.neunet.2017.02.006_br000030) 2014; 94 Thameri (10.1016/j.neunet.2017.02.006_br000155) 2013; 23 Chen (10.1016/j.neunet.2017.02.006_br000010) 2001; 13 Duong Nguyen (10.1016/j.neunet.2017.02.006_br000025) 2013; 93 Plumbley (10.1016/j.neunet.2017.02.006_br000140) 1995; 8 Oja (10.1016/j.neunet.2017.02.006_br000110) 1992; 5 Peng (10.1016/j.neunet.2017.02.006_br000130) 2009; 19 Cirrincione (10.1016/j.neunet.2017.02.006_br000020) 2011 Kong (10.1016/j.neunet.2017.02.006_br000075) 2012; 23 Miao (10.1016/j.neunet.2017.02.006_br000100) 1998; 46 Jankovic (10.1016/j.neunet.2017.02.006_br000055) 2005 Kong (10.1016/j.neunet.2017.02.006_br000070) 2012; 60 Yang (10.1016/j.neunet.2017.02.006_br000165) 1995; 43 Ouyang (10.1016/j.neunet.2017.02.006_br000120) 2002; 50 Luo (10.1016/j.neunet.2017.02.006_br000085) 1997; 8 Feng (10.1016/j.neunet.2017.02.006_br000035) 2005; 16 Bartelmaos (10.1016/j.neunet.2017.02.006_br000005) 2011; 21 Pehlevan (10.1016/j.neunet.2017.02.006_br000125) 2015; 27 Oja (10.1016/j.neunet.2017.02.006_br000115) 1992; 75 Magnus (10.1016/j.neunet.2017.02.006_br000090) 1991 |
| References_xml | – volume: 7 start-page: 53 year: 1996 end-page: 67 ident: br000160 article-title: A unified neural bigradient algorithm for robust PCA and MCA publication-title: International Journal of Neural Systems – volume: 14 start-page: 1 year: 2004 end-page: 8 ident: br000105 article-title: A self-stabilizing learning rule for minor component analysis publication-title: International Journal of Neural Systems – volume: 19 start-page: 640 year: 2009 end-page: 649 ident: br000130 article-title: A unified learning algorithm to extract principal and minor components publication-title: Digital Signal Processing – volume: 75 start-page: 366 year: 1992 end-page: 375 ident: br000115 article-title: Principal component analysis by homogeneous neural networks—Part I: Weighted subspace criterion publication-title: IEICE Transactions on Information And Systems – volume: 50 start-page: 1994 year: 2002 end-page: 2002 ident: br000120 article-title: Fast principal component extraction by a weighted information criterion publication-title: IEEE Transactions on Signal Processing – volume: 21 start-page: 667 year: 2011 end-page: 678 ident: br000005 article-title: Fast adaptive algorithms for minor component analysis using Householder transformation publication-title: Digital Signal Processing – volume: 23 start-page: 19 year: 2013 end-page: 29 ident: br000155 article-title: Low complexity adaptive algorithms for principal and minor component analysis publication-title: Digital Signal Processing – volume: 23 start-page: 185 year: 2012 end-page: 198 ident: br000075 article-title: A unified self-stabilizing neural network algorithm for principal and minor components extraction publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 13 start-page: 1625 year: 2001 end-page: 1647 ident: br000040 article-title: A theory for learning by weight flow on Stiefel–Grassman manifold publication-title: Neural Computation – year: 1989 ident: br000050 article-title: Matrix computations – volume: 5 start-page: 927 year: 1992 end-page: 935 ident: br000110 article-title: Principal components, minor components and linear neural networks publication-title: Neural Networks – start-page: 1 year: 2014 end-page: 14 ident: br000045 article-title: Convergence analysis of Möller algorithm for estimating minor component publication-title: Neural Processing Letters – volume: 23 start-page: 359 year: 2012 end-page: 365 ident: br000135 article-title: A globally convergent MC algorithm with an adaptive learning rate publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2005 ident: br000055 article-title: Time-oriented hierarchical method for computation of minor components – volume: 94 start-page: 288 year: 2014 end-page: 299 ident: br000030 article-title: Necessary and sufficient conditions for convergence of the DDT systems of the normalized PAST algorithms publication-title: Signal Processing – year: 1991 ident: br000090 article-title: Matrix differential calculus with applications in statistics and econometrics, vol. 2 – year: 2011 ident: br000020 article-title: Neural-based orthogonal data fitting: The EXIN neural networks, vol. 66 – volume: 27 start-page: 1461 year: 2015 end-page: 1495 ident: br000125 article-title: A Hebbian/anti-Hebbian neural network for linear subspace learning: A derivation from multidimensional scaling of streaming data publication-title: Neural Computation – volume: 12 start-page: 859 year: 2005 end-page: 862 ident: br000060 article-title: A new minor component analysis method based on Douglas–Kung–Amari minor subspace analysis method publication-title: IEEE Signal Processing Letters – volume: 18 start-page: 377 year: 2007 end-page: 384 ident: br000080 article-title: Information criterion based fast PCA adaptive algorithm publication-title: Journal of Systems Engineering and Electronics – volume: 46 start-page: 1967 year: 1998 end-page: 1979 ident: br000100 article-title: Fast subspace tracking and neural network learning by a novel information criterion publication-title: IEEE Transactions on Signal Processing – volume: 93 start-page: 176 year: 2013 end-page: 184 ident: br000025 article-title: A unified convergence analysis of normalized PAST algorithms for estimating principal and minor components publication-title: Signal Processing – volume: 16 start-page: 513 year: 2005 end-page: 521 ident: br000035 article-title: Neural network learning algorithms for tracking minor subspace in high-dimensional data stream publication-title: IEEE Transactions on Neural Networks – volume: 23 start-page: 865 year: 2010 end-page: 871 ident: br000065 article-title: A self-stabilizing MSA algorithm in high-dimension data stream publication-title: Neural Networks – volume: 8 start-page: 11 year: 1995 end-page: 23 ident: br000140 article-title: Lyapunov function for convergence of principal component algorithms publication-title: Neural Networks – volume: 13 start-page: 195 year: 2001 end-page: 201 ident: br000010 article-title: Sequential extraction of minor components publication-title: Neural Processing Letters – volume: 43 start-page: 95 year: 1995 end-page: 107 ident: br000165 article-title: Projection approximation subspace tracking publication-title: IEEE Transactions on Signal Processing – volume: 8 start-page: 1149 year: 1997 end-page: 1155 ident: br000085 article-title: A minor subspace analysis algorithm publication-title: IEEE Transactions on Neural Networks – volume: 60 start-page: 197 year: 2012 end-page: 210 ident: br000070 article-title: A dual purpose principal and minor subspace gradient flow publication-title: IEEE Transactions on Signal Processing – volume: 42 start-page: 1803 year: 1994 end-page: 1811 ident: br000095 article-title: Orthogonal eigensubspace estimation using neural networks publication-title: IEEE Transactions on Signal Processing – volume: 411 start-page: 4200 year: 2010 end-page: 4215 ident: br000145 article-title: Adaptive multiple minor directions extraction in parallel using a PCA neural network publication-title: Theoretical Computer Science – volume: 53 start-page: 1243 year: 2005 end-page: 1253 ident: br000150 article-title: Generalized weighted rules for principal components tracking publication-title: IEEE Transactions on Signal Processing – volume: 47 start-page: 1125 year: 1999 end-page: 1129 ident: br000015 article-title: On the inflation method in adaptive noise-subspace estimator publication-title: IEEE Transactions on Signal Processing – volume: 16 start-page: 513 year: 2005 ident: 10.1016/j.neunet.2017.02.006_br000035 article-title: Neural network learning algorithms for tracking minor subspace in high-dimensional data stream publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2005.844854 – volume: 42 start-page: 1803 year: 1994 ident: 10.1016/j.neunet.2017.02.006_br000095 article-title: Orthogonal eigensubspace estimation using neural networks publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.298287 – volume: 46 start-page: 1967 year: 1998 ident: 10.1016/j.neunet.2017.02.006_br000100 article-title: Fast subspace tracking and neural network learning by a novel information criterion publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.700968 – volume: 53 start-page: 1243 year: 2005 ident: 10.1016/j.neunet.2017.02.006_br000150 article-title: Generalized weighted rules for principal components tracking publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2005.843698 – volume: 43 start-page: 95 year: 1995 ident: 10.1016/j.neunet.2017.02.006_br000165 article-title: Projection approximation subspace tracking publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.365290 – volume: 23 start-page: 19 year: 2013 ident: 10.1016/j.neunet.2017.02.006_br000155 article-title: Low complexity adaptive algorithms for principal and minor component analysis publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2012.09.007 – volume: 13 start-page: 1625 year: 2001 ident: 10.1016/j.neunet.2017.02.006_br000040 article-title: A theory for learning by weight flow on Stiefel–Grassman manifold publication-title: Neural Computation doi: 10.1162/089976601750265036 – volume: 23 start-page: 865 year: 2010 ident: 10.1016/j.neunet.2017.02.006_br000065 article-title: A self-stabilizing MSA algorithm in high-dimension data stream publication-title: Neural Networks doi: 10.1016/j.neunet.2010.04.001 – volume: 75 start-page: 366 year: 1992 ident: 10.1016/j.neunet.2017.02.006_br000115 article-title: Principal component analysis by homogeneous neural networks—Part I: Weighted subspace criterion publication-title: IEICE Transactions on Information And Systems – volume: 21 start-page: 667 year: 2011 ident: 10.1016/j.neunet.2017.02.006_br000005 article-title: Fast adaptive algorithms for minor component analysis using Householder transformation publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2011.05.001 – volume: 23 start-page: 185 year: 2012 ident: 10.1016/j.neunet.2017.02.006_br000075 article-title: A unified self-stabilizing neural network algorithm for principal and minor components extraction publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2011.2178564 – year: 1989 ident: 10.1016/j.neunet.2017.02.006_br000050 – volume: 93 start-page: 176 year: 2013 ident: 10.1016/j.neunet.2017.02.006_br000025 article-title: A unified convergence analysis of normalized PAST algorithms for estimating principal and minor components publication-title: Signal Processing doi: 10.1016/j.sigpro.2012.07.020 – volume: 5 start-page: 927 year: 1992 ident: 10.1016/j.neunet.2017.02.006_br000110 article-title: Principal components, minor components and linear neural networks publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80089-9 – volume: 23 start-page: 359 year: 2012 ident: 10.1016/j.neunet.2017.02.006_br000135 article-title: A globally convergent MC algorithm with an adaptive learning rate publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2011.2179310 – volume: 13 start-page: 195 year: 2001 ident: 10.1016/j.neunet.2017.02.006_br000010 article-title: Sequential extraction of minor components publication-title: Neural Processing Letters doi: 10.1023/A:1011388608203 – volume: 411 start-page: 4200 year: 2010 ident: 10.1016/j.neunet.2017.02.006_br000145 article-title: Adaptive multiple minor directions extraction in parallel using a PCA neural network publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2010.07.021 – volume: 94 start-page: 288 year: 2014 ident: 10.1016/j.neunet.2017.02.006_br000030 article-title: Necessary and sufficient conditions for convergence of the DDT systems of the normalized PAST algorithms publication-title: Signal Processing doi: 10.1016/j.sigpro.2013.06.017 – year: 2011 ident: 10.1016/j.neunet.2017.02.006_br000020 – volume: 7 start-page: 53 year: 1996 ident: 10.1016/j.neunet.2017.02.006_br000160 article-title: A unified neural bigradient algorithm for robust PCA and MCA publication-title: International Journal of Neural Systems doi: 10.1142/S0129065796000063 – volume: 47 start-page: 1125 year: 1999 ident: 10.1016/j.neunet.2017.02.006_br000015 article-title: On the inflation method in adaptive noise-subspace estimator publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.752609 – start-page: 1 year: 2014 ident: 10.1016/j.neunet.2017.02.006_br000045 article-title: Convergence analysis of Möller algorithm for estimating minor component publication-title: Neural Processing Letters – volume: 12 start-page: 859 year: 2005 ident: 10.1016/j.neunet.2017.02.006_br000060 article-title: A new minor component analysis method based on Douglas–Kung–Amari minor subspace analysis method publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2005.859497 – year: 1991 ident: 10.1016/j.neunet.2017.02.006_br000090 – volume: 50 start-page: 1994 year: 2002 ident: 10.1016/j.neunet.2017.02.006_br000120 article-title: Fast principal component extraction by a weighted information criterion publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2002.800395 – volume: 19 start-page: 640 year: 2009 ident: 10.1016/j.neunet.2017.02.006_br000130 article-title: A unified learning algorithm to extract principal and minor components publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2009.03.004 – volume: 60 start-page: 197 year: 2012 ident: 10.1016/j.neunet.2017.02.006_br000070 article-title: A dual purpose principal and minor subspace gradient flow publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2011.2169060 – volume: 8 start-page: 1149 year: 1997 ident: 10.1016/j.neunet.2017.02.006_br000085 article-title: A minor subspace analysis algorithm publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.623215 – volume: 8 start-page: 11 year: 1995 ident: 10.1016/j.neunet.2017.02.006_br000140 article-title: Lyapunov function for convergence of principal component algorithms publication-title: Neural Networks doi: 10.1016/0893-6080(95)91644-9 – volume: 14 start-page: 1 year: 2004 ident: 10.1016/j.neunet.2017.02.006_br000105 article-title: A self-stabilizing learning rule for minor component analysis publication-title: International Journal of Neural Systems doi: 10.1142/S0129065704001863 – year: 2005 ident: 10.1016/j.neunet.2017.02.006_br000055 – volume: 27 start-page: 1461 year: 2015 ident: 10.1016/j.neunet.2017.02.006_br000125 article-title: A Hebbian/anti-Hebbian neural network for linear subspace learning: A derivation from multidimensional scaling of streaming data publication-title: Neural Computation doi: 10.1162/NECO_a_00745 – volume: 18 start-page: 377 year: 2007 ident: 10.1016/j.neunet.2017.02.006_br000080 article-title: Information criterion based fast PCA adaptive algorithm publication-title: Journal of Systems Engineering and Electronics doi: 10.1016/S1004-4132(07)60101-7 |
| SSID | ssj0006843 |
| Score | 2.2250276 |
| Snippet | Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Computer Simulation Global convergence Lyapunov method Multiple minor components extraction Neural networks Neural Networks (Computer) Pattern Recognition, Automated - methods Recursive least square Signal Processing, Computer-Assisted Weighted information criterion |
| Title | A weighted information criterion for multiple minor components and its adaptive extraction algorithms |
| URI | https://dx.doi.org/10.1016/j.neunet.2017.02.006 https://www.ncbi.nlm.nih.gov/pubmed/28254556 https://www.proquest.com/docview/1874445217 |
| Volume | 89 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4P8qjMhKrqZM4djJWFaiA1AUqsVl24kARTas-xMZv5y5OQAwVElMSy3acs_35HH93R8iVs6D25pFjXOacidwmzApVMBsXKssiI0NbsXyHcjAS98_xc4v0G1sYpFXW2O8xvULrOqVbS7M7G4-7jxyWWgkKT4Au16MYLcqFUBjF4Przh-YhE8-cg8wMczfmcxXHq3Sr0iGjMlDec6dctzytUz-rZeh2l2zX-iPt-SbukZYr98lOE5uB1lP1gLge_aj-erqc1s5RsQsogAR6Z4Y7SKMNnZBOxiU8Ir98WiK1gpoSyuE1NzNERAogPvdGENS8v0yhmtfJ4pCMbm-e-gNWh1RgWRQES9h2VlvADGY5t87yNI9dxlFr4kKJNCmK0JoUM2VGCZdEOR60chPzTBUiLaIjslFCQ04IVY4rE2QiVQb22EpaWUBd0snEhrkMizZhjST1zHvO0A2l7E17yWuUvOahBsm3iWrErX-NAA3g_kfJy6Z3NEwOPPEwpZuuFhoDDgoBH63a5Nh323db0GhXxLE8_fd7z8gWPnn64znZWM5X7gJUlKXtVGOwQzZ7dw-D4Rf0medH |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgEJ74OOjF92N9YuK1Lm0ptEdjNOvzoibeCLRU17jdje7Gm7_dmdJqPBgTT20pUDLAx0z5ZgA4dBbV3iJ2AZcFD0Rh08AKVQY2KVWex0ZGtmb53sjevbh4SB6m4KT1hSFaZYP9HtNrtG5Suo00u6N-v3vLcamVqPCEFHI9TtQ0zIokUmSBHX188zxk6qlzmDug7K3_XE3yqtykckSpDJUP3Sl_W59-0z_rdehsCRYaBZId-zYuw5SrVmCxPZyBNXN1Fdwxe69_e7qCNdFRqQ8YogSFZ8Y7TGMtn5AN-hU-EsF8WBG3gpkKy9G1MCOCRIYo_uq9IJh5eRxiNU-DtzW4Pzu9O-kFzZkKQR6H4RjtztoGzHGac-ssz4rE5ZzUJi6UyNKyjKzJKFNulHBpXNBOKzcJz1UpsjJeh5kKG7IJTDmuTJiLTBk0spW0ssS6pJOpjQoZlR0IWknqkQ-doVtO2bP2ktckec0jjZLvgGrFrX8MAY3o_kfJg7Z3NM4O2vIwlRtO3jSdOChwVISqAxu-277aQl67Iknk1r-_uw9zvbvrK311fnO5DfP0xnMhd2Bm_Dpxu6ivjO1ePR4_AV-A6Nw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+weighted+information+criterion+for+multiple+minor+components+and+its+adaptive+extraction+algorithms&rft.jtitle=Neural+networks&rft.au=Gao%2C+Yingbin&rft.au=Kong%2C+Xiangyu&rft.au=Zhang%2C+Huihui&rft.au=Hou%2C+Li%27an&rft.date=2017-05-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=89&rft.spage=1&rft_id=info:doi/10.1016%2Fj.neunet.2017.02.006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |