CoCoNet: an efficient deep learning tool for viral metagenome binning

Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into su...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 37; no. 18; pp. 2803 - 2810
Main Authors Arisdakessian, Cédric G, Nigro, Olivia D, Steward, Grieg F, Poisson, Guylaine, Belcaid, Mahdi
Format Journal Article
LanguageEnglish
Published England 29.09.2021
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
DOI10.1093/bioinformatics/btab213

Cover

Abstract Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community's genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community's genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes. We propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets. CoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings. Supplementary data are available at Bioinformatics online.
AbstractList Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community's genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community's genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes. We propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets. CoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings. Supplementary data are available at Bioinformatics online.
Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community's genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community's genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes.MOTIVATIONMetagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community's genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community's genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes.We propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets.RESULTSWe propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets.CoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings.AVAILABILITY AND IMPLEMENTATIONCoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Author Poisson, Guylaine
Arisdakessian, Cédric G
Steward, Grieg F
Nigro, Olivia D
Belcaid, Mahdi
Author_xml – sequence: 1
  givenname: Cédric G
  orcidid: 0000-0001-5255-0942
  surname: Arisdakessian
  fullname: Arisdakessian, Cédric G
– sequence: 2
  givenname: Olivia D
  surname: Nigro
  fullname: Nigro, Olivia D
– sequence: 3
  givenname: Grieg F
  surname: Steward
  fullname: Steward, Grieg F
– sequence: 4
  givenname: Guylaine
  surname: Poisson
  fullname: Poisson, Guylaine
– sequence: 5
  givenname: Mahdi
  surname: Belcaid
  fullname: Belcaid, Mahdi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33822891$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LAzEQhoNUrK3-hZKjl7XJZje7K16k1A8oetFzSLKTEtlNapIK_nu3tBX04mmG4XlnmGeCRs47QGhGyTUlDZsr660zPvQyWR3nKkmVU3aCzinjVVbUlI5-esLGaBLjOyGkJCU_Q2PG6jyvG3qOlgu_8M-QbrB0GIyx2oJLuAXY4A5kcNatcfK-w8Mx_GmD7HAPSa7B-R6wsm5HXKBTI7sIl4c6RW_3y9fFY7Z6eXha3K0yzShNGeO8boEbqcDQiteqMBVlpgAjZdW0ZVVoYGVhatOynObU5A20w9goWmmmKJuiq_3eTfAfW4hJ9DZq6DrpwG-jyEvScFKWRTGgswO6VT20YhNsL8OXOL4-ALd7QAcfYwAjtE2DTe9SkLYTlIidafHbtDiYHuL8T_x44Z_gNwl5iyE
CitedBy_id crossref_primary_10_1093_bioinformatics_btad209
crossref_primary_10_3233_JIFS_223897
crossref_primary_10_3389_fmicb_2024_1516667
crossref_primary_10_1093_nargab_lqae185
crossref_primary_10_7717_peerj_cs_925
crossref_primary_10_1038_s41467_022_28581_5
crossref_primary_10_1038_s41467_023_35945_y
crossref_primary_10_1038_s41564_023_01598_2
crossref_primary_10_1128_mmbr_00004_21
crossref_primary_10_1099_mgen_0_001231
crossref_primary_10_1093_nar_gkac341
crossref_primary_10_1093_bib_bbae372
Cites_doi 10.1089/bsp.2013.0008
10.1093/nar/gkv1189
10.1103/PhysRevE.74.036104
10.1186/s40168-019-0633-6
10.1093/bioinformatics/btu638
10.1371/journal.pone.0076144
10.3389/fmicb.2012.00410
10.1093/bioinformatics/bty560
10.1007/978-3-642-77011-1_2
10.1038/nmeth.3103
10.1186/s40168-019-0626-5
10.7717/peerj.7359
10.1038/s41598-019-41695-z
10.1186/s40168-018-0507-3
10.1007/BF01908075
10.1093/bioinformatics/bty191
10.1007/s00203-018-1615-y
10.1016/j.cels.2016.10.004
10.1101/gr.251686.119
10.7717/peerj.603
10.1101/gr.213959.116
10.3389/fbioe.2015.00141
10.1007/978-1-60327-565-1_7
10.1371/journal.pgen.1005838
10.1186/1471-2164-15-37
10.1016/j.drudis.2020.03.003
10.1371/journal.pone.0057355
10.1371/journal.pbio.0040368
10.3389/fmicb.2017.01561
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bioinformatics/btab213
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 2810
ExternalDocumentID 33822891
10_1093_bioinformatics_btab213
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation Division of Ocean Sciences
  grantid: 1636402
– fundername: Office of Integrative Activities
  grantid: 1557349-Ike Wai
– fundername: Securing Hawaii's Water Future
  grantid: 1736030-G2P
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c311t-3668de6fabef1768b4f713f4efaa79d574ce354f8fd32121f29edd57fb17c3b13
ISSN 1367-4803
1367-4811
IngestDate Thu Jul 10 19:25:41 EDT 2025
Mon Jul 21 06:03:31 EDT 2025
Tue Jul 01 02:33:55 EDT 2025
Thu Apr 24 23:10:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c311t-3668de6fabef1768b4f713f4efaa79d574ce354f8fd32121f29edd57fb17c3b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5255-0942
PMID 33822891
PQID 2509605544
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2509605544
pubmed_primary_33822891
crossref_citationtrail_10_1093_bioinformatics_btab213
crossref_primary_10_1093_bioinformatics_btab213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-29
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2021
References Popic (2023061402422499800_btab213-B27) 2017
Vázquez-Castellanos (2023061402422499800_btab213-B35) 2014; 15
Kingma (2023061402422499800_btab213-B18) 2014
Karlsson (2023061402422499800_btab213-B17) 2013; 11
Gilbert (2023061402422499800_btab213-B11) 2016; 12
D’Souza (2023061402422499800_btab213-B8) 2020; 25
García-López (2023061402422499800_btab213-B10) 2015; 3
Newman (2023061402422499800_btab213-B23) 2006; 74
Roux (2023061402422499800_btab213-B30) 2009
Kang (2023061402422499800_btab213-B16) 2019; 7
Rolnick (2023061402422499800_btab213-B28) 2017
Beaulaurier (2023061402422499800_btab213-B4) 2020; 30
Tyagi (2023061402422499800_btab213-B34) 2019; 201
Alneberg (2023061402422499800_btab213-B1) 2014; 11
Angly (2023061402422499800_btab213-B3) 2006; 4
Parras-Moltó (2023061402422499800_btab213-B26) 2018; 6
Casjens (2023061402422499800_btab213-B6) 2009
Fritz (2023061402422499800_btab213-B9) 2019; 7
Nurk (2023061402422499800_btab213-B24) 2017; 27
Rosseel (2023061402422499800_btab213-B29) 2013; 8
Imelfort (2023061402422499800_btab213-B15) 2014; 2
Traag (2023061402422499800_btab213-B33) 2019; 9
Anders (2023061402422499800_btab213-B2) 2015; 31
Sutton (2023061402422499800_btab213-B32) 2019; 7
O’Leary (2023061402422499800_btab213-B25) 2016; 44
Hurwitz (2023061402422499800_btab213-B14) 2013; 8
Nayfach (2023061402422499800_btab213-B22) 2020
Hubert (2023061402422499800_btab213-B12) 1985; 2
Lai (2023061402422499800_btab213-B19) 1992
Xie (2023061402422499800_btab213-B36) 2016; 3
Li (2023061402422499800_btab213-B20) 2013
Bromley (2023061402422499800_btab213-B5) 1993
Strous (2023061402422499800_btab213-B31) 2012; 3
Chen (2023061402422499800_btab213-B7) 2018; 34
Hugerth (2023061402422499800_btab213-B13) 2017; 8
Li (2023061402422499800_btab213-B21) 2018; 34
References_xml – volume: 11
  start-page: S227
  year: 2013
  ident: 2023061402422499800_btab213-B17
  article-title: The effect of preprocessing by sequence-independent, single-primer amplification (SISPA) on metagenomic detection of viruses
  publication-title: Biosecurity Bioterrorism Biodefense Strat. Pract. Sci
  doi: 10.1089/bsp.2013.0008
– volume: 44
  start-page: D733
  year: 2016
  ident: 2023061402422499800_btab213-B25
  article-title: Reference sequence (refseq) database at ncbi: current status, taxonomic expansion, and functional annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1189
– volume: 74
  start-page: 036104
  year: 2006
  ident: 2023061402422499800_btab213-B23
  article-title: Finding community structure in networks using the eigenvectors of matrices
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.036104
– volume: 7
  start-page: 1
  year: 2019
  ident: 2023061402422499800_btab213-B9
  article-title: Camisim: simulating metagenomes and microbial communities
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0633-6
– volume: 31
  start-page: 166
  year: 2015
  ident: 2023061402422499800_btab213-B2
  article-title: Htseq-a python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 8
  start-page: e76144
  year: 2013
  ident: 2023061402422499800_btab213-B29
  article-title: The origin of biased sequence depth in sequence-independent nucleic acid amplification and optimization for efficient massive parallel sequencing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0076144
– volume: 3
  start-page: 410
  year: 2012
  ident: 2023061402422499800_btab213-B31
  article-title: The binning of metagenomic contigs for microbial physiology of mixed cultures
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2012.00410
– volume: 34
  start-page: i884
  year: 2018
  ident: 2023061402422499800_btab213-B7
  article-title: fastp: an ultra-fast all-in-one fastq preprocessor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty560
– start-page: 21
  volume-title: Genetic Diversity of RNA Viruses
  year: 1992
  ident: 2023061402422499800_btab213-B19
  doi: 10.1007/978-3-642-77011-1_2
– year: 2009
  ident: 2023061402422499800_btab213-B30
– volume: 11
  start-page: 1144
  year: 2014
  ident: 2023061402422499800_btab213-B1
  article-title: Binning metagenomic contigs by coverage and composition
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3103
– year: 2013
  ident: 2023061402422499800_btab213-B20
  article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
– volume: 7
  start-page: 12
  year: 2019
  ident: 2023061402422499800_btab213-B32
  article-title: Choice of assembly software has a critical impact on virome characterisation
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0626-5
– volume: 7
  start-page: e7359
  year: 2019
  ident: 2023061402422499800_btab213-B16
  article-title: Metabat 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies
  publication-title: PeerJ
  doi: 10.7717/peerj.7359
– volume: 9
  start-page: 5233
  year: 2019
  ident: 2023061402422499800_btab213-B33
  article-title: From Louvain to Leiden: guaranteeing well-connected communities
  publication-title: Sci. Rep
  doi: 10.1038/s41598-019-41695-z
– year: 2020
  ident: 2023061402422499800_btab213-B22
  article-title: Checkv: assessing the quality of metagenome-assembled viral genomes
  publication-title: Nature Biotechnol., 1–8
– volume: 6
  start-page: 119
  year: 2018
  ident: 2023061402422499800_btab213-B26
  article-title: Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0507-3
– volume: 2
  start-page: 193
  year: 1985
  ident: 2023061402422499800_btab213-B12
  article-title: Comparing partitions
  publication-title: J. Classif
  doi: 10.1007/BF01908075
– volume: 34
  start-page: 3094
  year: 2018
  ident: 2023061402422499800_btab213-B21
  article-title: Minimap2: pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– volume: 201
  start-page: 295
  year: 2019
  ident: 2023061402422499800_btab213-B34
  article-title: Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome
  publication-title: Arch. Microbiol
  doi: 10.1007/s00203-018-1615-y
– volume: 3
  start-page: 572
  year: 2016
  ident: 2023061402422499800_btab213-B36
  article-title: Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.10.004
– volume: 30
  start-page: 437
  year: 2020
  ident: 2023061402422499800_btab213-B4
  article-title: Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities
  publication-title: Genome Res
  doi: 10.1101/gr.251686.119
– volume: 2
  start-page: e603
  year: 2014
  ident: 2023061402422499800_btab213-B15
  article-title: GroopM: an automated tool for the recovery of population genomes from related metagenomes
  publication-title: PeerJ
  doi: 10.7717/peerj.603
– volume: 27
  start-page: 824
  year: 2017
  ident: 2023061402422499800_btab213-B24
  article-title: metaspades: a new versatile metagenomic assembler
  publication-title: Genome Res
  doi: 10.1101/gr.213959.116
– volume: 3
  start-page: 141
  year: 2015
  ident: 2023061402422499800_btab213-B10
  article-title: Fragmentation and coverage variation in viral metagenome assemblies, and their effect in diversity calculations
  publication-title: Front. Bioeng. Biotechnol
  doi: 10.3389/fbioe.2015.00141
– start-page: 91
  volume-title: Bacteriophages
  year: 2009
  ident: 2023061402422499800_btab213-B6
  doi: 10.1007/978-1-60327-565-1_7
– volume: 12
  start-page: e1005838
  year: 2016
  ident: 2023061402422499800_btab213-B11
  article-title: Continuous influx of genetic material from host to virus populations
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005838
– year: 2014
  ident: 2023061402422499800_btab213-B18
  article-title: Adam: a method for stochastic optimization
– volume: 15
  start-page: 37
  year: 2014
  ident: 2023061402422499800_btab213-B35
  article-title: Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-37
– start-page: 737
  year: 1993
  ident: 2023061402422499800_btab213-B5
  article-title: Signature verification using a “siamese” time delay neural network
  publication-title: Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS’93
– volume: 25
  start-page: 748
  year: 2020
  ident: 2023061402422499800_btab213-B8
  article-title: Machine learning in drug–target interaction prediction: current state and future directions
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2020.03.003
– volume: 8
  start-page: e57355
  year: 2013
  ident: 2023061402422499800_btab213-B14
  article-title: The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057355
– volume: 4
  start-page: e368
  year: 2006
  ident: 2023061402422499800_btab213-B3
  article-title: The marine viromes of four oceanic regions
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040368
– volume: 8
  start-page: 1561
  year: 2017
  ident: 2023061402422499800_btab213-B13
  article-title: Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2017.01561
– start-page: 130997
  year: 2017
  ident: 2023061402422499800_btab213-B27
  article-title: GATTACA: lightweight metagenomic binning with compact indexing of kmer counts and minhash-based panel selection
  publication-title: bioRxiv
– year: 2017
  ident: 2023061402422499800_btab213-B28
  article-title: Deep learning is robust to massive label noise
SSID ssj0005056
Score 2.4662452
Snippet Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2803
SubjectTerms Algorithms
Deep Learning
Metagenome
Metagenomics - methods
Microbiota - genetics
Sequence Analysis, DNA - methods
Software
Title CoCoNet: an efficient deep learning tool for viral metagenome binning
URI https://www.ncbi.nlm.nih.gov/pubmed/33822891
https://www.proquest.com/docview/2509605544
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIvaHyPATISb1NoHTupyxuqxiYeOh46qW-RHTtVRZdMkE4b_9L-yd3FdpLyPV6i1mouru-X89n38x0hb1Wap4nGqK4USSRMOoqkBiznIlapZgJjf8i2mKXHp-LTIlkMBtc91tKm1u_y7788V_I_WoU20Cuekr2FZluh0ACfQb9wBQ3D9Z90PK2m1cw2m3vwmtomGwTG9o2156EexBK8y6o5pHiAfF48K1IrzMx6Zg9gVVyGqSsEdleVz6Xa5G_GZKSXgf_uC370Nw_ARBj1Bam0biN16gLvBvn5bdWu2WrpTtOcrFcXK9UjGePOnZN9BEv2ZUcz_lwBIBwh4GhztVYh-u_3J2KGZArfD2dSOWZWlyNnxmy_zZtZb4dd8peAN9m3qu3d_qtjwv5k_V1mLL01UNhQKx0z3s14Icr_w0TY0hNdYJ5n25IyL-cOuRvDFIJ1QuYni45PNGpKBbd_NxxHn_Dhtpyhl7PtCf1medO4OfNd8sCvT-gHB7aHZGDLR-Seq1h69Zgcesi9p6qkLeAoAo4GwFEEHIWO0AZwtAMc9YB7Qk4_Hs6nx5GvxBHlnLE64mkqjU0LpW3BYIGqRTFmvBC2UGo8MclY5JYnopCF4eALsSKeWAPNhWbjnGvGn5Kdsirtc0ItrPBjaZgBTxEcIxgp-LlkaEsMiBd7JAmjkuU-TT1WS1lnf9bKHhm29527RC1_veNNGPQMbCoGylRpq823LMacSCNwtKE3z5w2Wpmcg0stJ-zFrZ-3T-5378dLslN_3dhX4NHW-nWDpBu7Q6iD
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CoCoNet%3A+an+efficient+deep+learning+tool+for+viral+metagenome+binning&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Arisdakessian%2C+C%C3%A9dric+G&rft.au=Nigro%2C+Olivia+D&rft.au=Steward%2C+Grieg+F&rft.au=Poisson%2C+Guylaine&rft.date=2021-09-29&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=37&rft.issue=18&rft.spage=2803&rft.epage=2810&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab213&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btab213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon