CoCoNet: an efficient deep learning tool for viral metagenome binning
Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into su...
        Saved in:
      
    
          | Published in | Bioinformatics (Oxford, England) Vol. 37; no. 18; pp. 2803 - 2810 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
        
        29.09.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1367-4803 1367-4811 1367-4811  | 
| DOI | 10.1093/bioinformatics/btab213 | 
Cover
| Abstract | Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community's genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community's genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes.
We propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets.
CoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings.
Supplementary data are available at Bioinformatics online. | 
    
|---|---|
| AbstractList | Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community's genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community's genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes.
We propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets.
CoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings.
Supplementary data are available at Bioinformatics online. Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community's genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community's genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes.MOTIVATIONMetagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community's genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community's genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes.We propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets.RESULTSWe propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets.CoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings.AVAILABILITY AND IMPLEMENTATIONCoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.  | 
    
| Author | Poisson, Guylaine Arisdakessian, Cédric G Steward, Grieg F Nigro, Olivia D Belcaid, Mahdi  | 
    
| Author_xml | – sequence: 1 givenname: Cédric G orcidid: 0000-0001-5255-0942 surname: Arisdakessian fullname: Arisdakessian, Cédric G – sequence: 2 givenname: Olivia D surname: Nigro fullname: Nigro, Olivia D – sequence: 3 givenname: Grieg F surname: Steward fullname: Steward, Grieg F – sequence: 4 givenname: Guylaine surname: Poisson fullname: Poisson, Guylaine – sequence: 5 givenname: Mahdi surname: Belcaid fullname: Belcaid, Mahdi  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33822891$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkE1LAzEQhoNUrK3-hZKjl7XJZje7K16k1A8oetFzSLKTEtlNapIK_nu3tBX04mmG4XlnmGeCRs47QGhGyTUlDZsr660zPvQyWR3nKkmVU3aCzinjVVbUlI5-esLGaBLjOyGkJCU_Q2PG6jyvG3qOlgu_8M-QbrB0GIyx2oJLuAXY4A5kcNatcfK-w8Mx_GmD7HAPSa7B-R6wsm5HXKBTI7sIl4c6RW_3y9fFY7Z6eXha3K0yzShNGeO8boEbqcDQiteqMBVlpgAjZdW0ZVVoYGVhatOynObU5A20w9goWmmmKJuiq_3eTfAfW4hJ9DZq6DrpwG-jyEvScFKWRTGgswO6VT20YhNsL8OXOL4-ALd7QAcfYwAjtE2DTe9SkLYTlIidafHbtDiYHuL8T_x44Z_gNwl5iyE | 
    
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btad209 crossref_primary_10_3233_JIFS_223897 crossref_primary_10_3389_fmicb_2024_1516667 crossref_primary_10_1093_nargab_lqae185 crossref_primary_10_7717_peerj_cs_925 crossref_primary_10_1038_s41467_022_28581_5 crossref_primary_10_1038_s41467_023_35945_y crossref_primary_10_1038_s41564_023_01598_2 crossref_primary_10_1128_mmbr_00004_21 crossref_primary_10_1099_mgen_0_001231 crossref_primary_10_1093_nar_gkac341 crossref_primary_10_1093_bib_bbae372  | 
    
| Cites_doi | 10.1089/bsp.2013.0008 10.1093/nar/gkv1189 10.1103/PhysRevE.74.036104 10.1186/s40168-019-0633-6 10.1093/bioinformatics/btu638 10.1371/journal.pone.0076144 10.3389/fmicb.2012.00410 10.1093/bioinformatics/bty560 10.1007/978-3-642-77011-1_2 10.1038/nmeth.3103 10.1186/s40168-019-0626-5 10.7717/peerj.7359 10.1038/s41598-019-41695-z 10.1186/s40168-018-0507-3 10.1007/BF01908075 10.1093/bioinformatics/bty191 10.1007/s00203-018-1615-y 10.1016/j.cels.2016.10.004 10.1101/gr.251686.119 10.7717/peerj.603 10.1101/gr.213959.116 10.3389/fbioe.2015.00141 10.1007/978-1-60327-565-1_7 10.1371/journal.pgen.1005838 10.1186/1471-2164-15-37 10.1016/j.drudis.2020.03.003 10.1371/journal.pone.0057355 10.1371/journal.pbio.0040368 10.3389/fmicb.2017.01561  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. | 
    
| Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1093/bioinformatics/btab213 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1367-4811 | 
    
| EndPage | 2810 | 
    
| ExternalDocumentID | 33822891 10_1093_bioinformatics_btab213  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: National Science Foundation Division of Ocean Sciences grantid: 1636402 – fundername: Office of Integrative Activities grantid: 1557349-Ike Wai – fundername: Securing Hawaii's Water Future grantid: 1736030-G2P  | 
    
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c311t-3668de6fabef1768b4f713f4efaa79d574ce354f8fd32121f29edd57fb17c3b13 | 
    
| ISSN | 1367-4803 1367-4811  | 
    
| IngestDate | Thu Jul 10 19:25:41 EDT 2025 Mon Jul 21 06:03:31 EDT 2025 Tue Jul 01 02:33:55 EDT 2025 Thu Apr 24 23:10:34 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 18 | 
    
| Language | English | 
    
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.  | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c311t-3668de6fabef1768b4f713f4efaa79d574ce354f8fd32121f29edd57fb17c3b13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0001-5255-0942 | 
    
| PMID | 33822891 | 
    
| PQID | 2509605544 | 
    
| PQPubID | 23479 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | proquest_miscellaneous_2509605544 pubmed_primary_33822891 crossref_citationtrail_10_1093_bioinformatics_btab213 crossref_primary_10_1093_bioinformatics_btab213  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-09-29 | 
    
| PublicationDateYYYYMMDD | 2021-09-29 | 
    
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-29 day: 29  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Bioinformatics (Oxford, England) | 
    
| PublicationTitleAlternate | Bioinformatics | 
    
| PublicationYear | 2021 | 
    
| References | Popic (2023061402422499800_btab213-B27) 2017 Vázquez-Castellanos (2023061402422499800_btab213-B35) 2014; 15 Kingma (2023061402422499800_btab213-B18) 2014 Karlsson (2023061402422499800_btab213-B17) 2013; 11 Gilbert (2023061402422499800_btab213-B11) 2016; 12 D’Souza (2023061402422499800_btab213-B8) 2020; 25 García-López (2023061402422499800_btab213-B10) 2015; 3 Newman (2023061402422499800_btab213-B23) 2006; 74 Roux (2023061402422499800_btab213-B30) 2009 Kang (2023061402422499800_btab213-B16) 2019; 7 Rolnick (2023061402422499800_btab213-B28) 2017 Beaulaurier (2023061402422499800_btab213-B4) 2020; 30 Tyagi (2023061402422499800_btab213-B34) 2019; 201 Alneberg (2023061402422499800_btab213-B1) 2014; 11 Angly (2023061402422499800_btab213-B3) 2006; 4 Parras-Moltó (2023061402422499800_btab213-B26) 2018; 6 Casjens (2023061402422499800_btab213-B6) 2009 Fritz (2023061402422499800_btab213-B9) 2019; 7 Nurk (2023061402422499800_btab213-B24) 2017; 27 Rosseel (2023061402422499800_btab213-B29) 2013; 8 Imelfort (2023061402422499800_btab213-B15) 2014; 2 Traag (2023061402422499800_btab213-B33) 2019; 9 Anders (2023061402422499800_btab213-B2) 2015; 31 Sutton (2023061402422499800_btab213-B32) 2019; 7 O’Leary (2023061402422499800_btab213-B25) 2016; 44 Hurwitz (2023061402422499800_btab213-B14) 2013; 8 Nayfach (2023061402422499800_btab213-B22) 2020 Hubert (2023061402422499800_btab213-B12) 1985; 2 Lai (2023061402422499800_btab213-B19) 1992 Xie (2023061402422499800_btab213-B36) 2016; 3 Li (2023061402422499800_btab213-B20) 2013 Bromley (2023061402422499800_btab213-B5) 1993 Strous (2023061402422499800_btab213-B31) 2012; 3 Chen (2023061402422499800_btab213-B7) 2018; 34 Hugerth (2023061402422499800_btab213-B13) 2017; 8 Li (2023061402422499800_btab213-B21) 2018; 34  | 
    
| References_xml | – volume: 11 start-page: S227 year: 2013 ident: 2023061402422499800_btab213-B17 article-title: The effect of preprocessing by sequence-independent, single-primer amplification (SISPA) on metagenomic detection of viruses publication-title: Biosecurity Bioterrorism Biodefense Strat. Pract. Sci doi: 10.1089/bsp.2013.0008 – volume: 44 start-page: D733 year: 2016 ident: 2023061402422499800_btab213-B25 article-title: Reference sequence (refseq) database at ncbi: current status, taxonomic expansion, and functional annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1189 – volume: 74 start-page: 036104 year: 2006 ident: 2023061402422499800_btab213-B23 article-title: Finding community structure in networks using the eigenvectors of matrices publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.036104 – volume: 7 start-page: 1 year: 2019 ident: 2023061402422499800_btab213-B9 article-title: Camisim: simulating metagenomes and microbial communities publication-title: Microbiome doi: 10.1186/s40168-019-0633-6 – volume: 31 start-page: 166 year: 2015 ident: 2023061402422499800_btab213-B2 article-title: Htseq-a python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 8 start-page: e76144 year: 2013 ident: 2023061402422499800_btab213-B29 article-title: The origin of biased sequence depth in sequence-independent nucleic acid amplification and optimization for efficient massive parallel sequencing publication-title: PLoS One doi: 10.1371/journal.pone.0076144 – volume: 3 start-page: 410 year: 2012 ident: 2023061402422499800_btab213-B31 article-title: The binning of metagenomic contigs for microbial physiology of mixed cultures publication-title: Front. Microbiol doi: 10.3389/fmicb.2012.00410 – volume: 34 start-page: i884 year: 2018 ident: 2023061402422499800_btab213-B7 article-title: fastp: an ultra-fast all-in-one fastq preprocessor publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty560 – start-page: 21 volume-title: Genetic Diversity of RNA Viruses year: 1992 ident: 2023061402422499800_btab213-B19 doi: 10.1007/978-3-642-77011-1_2 – year: 2009 ident: 2023061402422499800_btab213-B30 – volume: 11 start-page: 1144 year: 2014 ident: 2023061402422499800_btab213-B1 article-title: Binning metagenomic contigs by coverage and composition publication-title: Nat. Methods doi: 10.1038/nmeth.3103 – year: 2013 ident: 2023061402422499800_btab213-B20 article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM – volume: 7 start-page: 12 year: 2019 ident: 2023061402422499800_btab213-B32 article-title: Choice of assembly software has a critical impact on virome characterisation publication-title: Microbiome doi: 10.1186/s40168-019-0626-5 – volume: 7 start-page: e7359 year: 2019 ident: 2023061402422499800_btab213-B16 article-title: Metabat 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies publication-title: PeerJ doi: 10.7717/peerj.7359 – volume: 9 start-page: 5233 year: 2019 ident: 2023061402422499800_btab213-B33 article-title: From Louvain to Leiden: guaranteeing well-connected communities publication-title: Sci. Rep doi: 10.1038/s41598-019-41695-z – year: 2020 ident: 2023061402422499800_btab213-B22 article-title: Checkv: assessing the quality of metagenome-assembled viral genomes publication-title: Nature Biotechnol., 1–8 – volume: 6 start-page: 119 year: 2018 ident: 2023061402422499800_btab213-B26 article-title: Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses publication-title: Microbiome doi: 10.1186/s40168-018-0507-3 – volume: 2 start-page: 193 year: 1985 ident: 2023061402422499800_btab213-B12 article-title: Comparing partitions publication-title: J. Classif doi: 10.1007/BF01908075 – volume: 34 start-page: 3094 year: 2018 ident: 2023061402422499800_btab213-B21 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 201 start-page: 295 year: 2019 ident: 2023061402422499800_btab213-B34 article-title: Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome publication-title: Arch. Microbiol doi: 10.1007/s00203-018-1615-y – volume: 3 start-page: 572 year: 2016 ident: 2023061402422499800_btab213-B36 article-title: Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome publication-title: Cell Syst doi: 10.1016/j.cels.2016.10.004 – volume: 30 start-page: 437 year: 2020 ident: 2023061402422499800_btab213-B4 article-title: Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities publication-title: Genome Res doi: 10.1101/gr.251686.119 – volume: 2 start-page: e603 year: 2014 ident: 2023061402422499800_btab213-B15 article-title: GroopM: an automated tool for the recovery of population genomes from related metagenomes publication-title: PeerJ doi: 10.7717/peerj.603 – volume: 27 start-page: 824 year: 2017 ident: 2023061402422499800_btab213-B24 article-title: metaspades: a new versatile metagenomic assembler publication-title: Genome Res doi: 10.1101/gr.213959.116 – volume: 3 start-page: 141 year: 2015 ident: 2023061402422499800_btab213-B10 article-title: Fragmentation and coverage variation in viral metagenome assemblies, and their effect in diversity calculations publication-title: Front. Bioeng. Biotechnol doi: 10.3389/fbioe.2015.00141 – start-page: 91 volume-title: Bacteriophages year: 2009 ident: 2023061402422499800_btab213-B6 doi: 10.1007/978-1-60327-565-1_7 – volume: 12 start-page: e1005838 year: 2016 ident: 2023061402422499800_btab213-B11 article-title: Continuous influx of genetic material from host to virus populations publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005838 – year: 2014 ident: 2023061402422499800_btab213-B18 article-title: Adam: a method for stochastic optimization – volume: 15 start-page: 37 year: 2014 ident: 2023061402422499800_btab213-B35 article-title: Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut publication-title: BMC Genomics doi: 10.1186/1471-2164-15-37 – start-page: 737 year: 1993 ident: 2023061402422499800_btab213-B5 article-title: Signature verification using a “siamese” time delay neural network publication-title: Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS’93 – volume: 25 start-page: 748 year: 2020 ident: 2023061402422499800_btab213-B8 article-title: Machine learning in drug–target interaction prediction: current state and future directions publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2020.03.003 – volume: 8 start-page: e57355 year: 2013 ident: 2023061402422499800_btab213-B14 article-title: The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology publication-title: PLoS One doi: 10.1371/journal.pone.0057355 – volume: 4 start-page: e368 year: 2006 ident: 2023061402422499800_btab213-B3 article-title: The marine viromes of four oceanic regions publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040368 – volume: 8 start-page: 1561 year: 2017 ident: 2023061402422499800_btab213-B13 article-title: Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing publication-title: Front. Microbiol doi: 10.3389/fmicb.2017.01561 – start-page: 130997 year: 2017 ident: 2023061402422499800_btab213-B27 article-title: GATTACA: lightweight metagenomic binning with compact indexing of kmer counts and minhash-based panel selection publication-title: bioRxiv – year: 2017 ident: 2023061402422499800_btab213-B28 article-title: Deep learning is robust to massive label noise  | 
    
| SSID | ssj0005056 | 
    
| Score | 2.4662452 | 
    
| Snippet | Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes.... | 
    
| SourceID | proquest pubmed crossref  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 2803 | 
    
| SubjectTerms | Algorithms Deep Learning Metagenome Metagenomics - methods Microbiota - genetics Sequence Analysis, DNA - methods Software  | 
    
| Title | CoCoNet: an efficient deep learning tool for viral metagenome binning | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33822891 https://www.proquest.com/docview/2509605544  | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIvaHyPATISb1NoHTupyxuqxiYeOh46qW-RHTtVRZdMkE4b_9L-yd3FdpLyPV6i1mouru-X89n38x0hb1Wap4nGqK4USSRMOoqkBiznIlapZgJjf8i2mKXHp-LTIlkMBtc91tKm1u_y7788V_I_WoU20Cuekr2FZluh0ACfQb9wBQ3D9Z90PK2m1cw2m3vwmtomGwTG9o2156EexBK8y6o5pHiAfF48K1IrzMx6Zg9gVVyGqSsEdleVz6Xa5G_GZKSXgf_uC370Nw_ARBj1Bam0biN16gLvBvn5bdWu2WrpTtOcrFcXK9UjGePOnZN9BEv2ZUcz_lwBIBwh4GhztVYh-u_3J2KGZArfD2dSOWZWlyNnxmy_zZtZb4dd8peAN9m3qu3d_qtjwv5k_V1mLL01UNhQKx0z3s14Icr_w0TY0hNdYJ5n25IyL-cOuRvDFIJ1QuYni45PNGpKBbd_NxxHn_Dhtpyhl7PtCf1medO4OfNd8sCvT-gHB7aHZGDLR-Seq1h69Zgcesi9p6qkLeAoAo4GwFEEHIWO0AZwtAMc9YB7Qk4_Hs6nx5GvxBHlnLE64mkqjU0LpW3BYIGqRTFmvBC2UGo8MclY5JYnopCF4eALsSKeWAPNhWbjnGvGn5Kdsirtc0ItrPBjaZgBTxEcIxgp-LlkaEsMiBd7JAmjkuU-TT1WS1lnf9bKHhm29527RC1_veNNGPQMbCoGylRpq823LMacSCNwtKE3z5w2Wpmcg0stJ-zFrZ-3T-5378dLslN_3dhX4NHW-nWDpBu7Q6iD | 
    
| linkProvider | Oxford University Press | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CoCoNet%3A+an+efficient+deep+learning+tool+for+viral+metagenome+binning&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Arisdakessian%2C+C%C3%A9dric+G&rft.au=Nigro%2C+Olivia+D&rft.au=Steward%2C+Grieg+F&rft.au=Poisson%2C+Guylaine&rft.date=2021-09-29&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=37&rft.issue=18&rft.spage=2803&rft.epage=2810&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab213&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btab213 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |