Single-stage gradient-based stellarator coil design: stochastic optimization

We extend the single-stage stellarator coil design approach for quasi-symmetry on axis from (Giuliani et al 2020) to additionally take into account coil manufacturing errors. By modeling coil errors independently from the coil discretization, we have the flexibility to consider realistic forms of co...

Full description

Saved in:
Bibliographic Details
Published inNuclear fusion Vol. 62; no. 7; pp. 76034 - 76046
Main Authors Wechsung, Florian, Giuliani, Andrew, Landreman, Matt, Cerfon, Antoine, Stadler, Georg
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2022
Subjects
Online AccessGet full text
ISSN0029-5515
1741-4326
DOI10.1088/1741-4326/ac45f3

Cover

More Information
Summary:We extend the single-stage stellarator coil design approach for quasi-symmetry on axis from (Giuliani et al 2020) to additionally take into account coil manufacturing errors. By modeling coil errors independently from the coil discretization, we have the flexibility to consider realistic forms of coil errors. The corresponding stochastic optimization problems are formulated using a risk-neutral approach and risk-averse approaches. We present an efficient, gradient-based descent algorithm which relies on analytical derivatives to solve these problems. In a comprehensive numerical study, we compare the coil designs resulting from deterministic and risk-neutral stochastic optimization and find that the risk-neutral formulation results in more robust configurations and reduces the number of local minima of the optimization problem. We also compare deterministic and risk-neutral approaches in terms of quasi-symmetry on and away from the magnetic axis, and in terms of the confinement of particles released close to the axis. Finally, we show that for the optimization problems we consider, a risk-averse objective using the conditional value-at-risk leads to results which are similar to the risk-neutral objective.
Bibliography:International Atomic Energy Agency
NF-104832.R2
ISSN:0029-5515
1741-4326
DOI:10.1088/1741-4326/ac45f3