Intellectual assessment of amyotrophic lateral sclerosis using deep resemble forward neural network
ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At pre...
Saved in:
| Published in | Neural networks Vol. 178; p. 106478 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0893-6080 1879-2782 1879-2782 |
| DOI | 10.1016/j.neunet.2024.106478 |
Cover
| Abstract | ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At present, there are no disease-modifying therapies to cure ALS, and there is a lack of preventive tools. The general clinical assessments are based on symptom reports, neurophysiological tests, neurological examinations, and neuroimaging. But, these techniques possess various limitations of low reliability, lack of standardized protocols, and lack of sensitivity, especially in the early stages of disease. So, effective methods are required to detect the progression of the disease and minimize the suffering of patients. Extensive studies concentrated on investigating the causes of neurological disease, which creates a barrier to precise identification and classification of genes accompanied with ALS disease. Hence, the proposed system implements a deep RSFFNNCNN (Resemble Single Feed Forward Neural Network-Convolutional Neural Network) algorithm to effectively classify the clinical associations of ALS. It involves the addition of custom weights to the kernel initializer and neutralizer ‘k’ parameter to each hidden layer in the network. This is done to increase the stability and learning ability of the classifier. Additionally, the comparison of the proposed approach is performed with SFNN (Single Feed NN) and ML (Machine Learning) based algorithms, namely, NB (Naïve Bayes), XGBoost (Extreme Gradient Boosting) and RF (Random Forest), to estimate the efficacy of the proposed model. The reliability of the proposed algorithm is measured by deploying performance metrics such as precision, recall, F1 score, and accuracy. |
|---|---|
| AbstractList | ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At present, there are no disease-modifying therapies to cure ALS, and there is a lack of preventive tools. The general clinical assessments are based on symptom reports, neurophysiological tests, neurological examinations, and neuroimaging. But, these techniques possess various limitations of low reliability, lack of standardized protocols, and lack of sensitivity, especially in the early stages of disease. So, effective methods are required to detect the progression of the disease and minimize the suffering of patients. Extensive studies concentrated on investigating the causes of neurological disease, which creates a barrier to precise identification and classification of genes accompanied with ALS disease. Hence, the proposed system implements a deep RSFFNNCNN (Resemble Single Feed Forward Neural Network-Convolutional Neural Network) algorithm to effectively classify the clinical associations of ALS. It involves the addition of custom weights to the kernel initializer and neutralizer 'k' parameter to each hidden layer in the network. This is done to increase the stability and learning ability of the classifier. Additionally, the comparison of the proposed approach is performed with SFNN (Single Feed NN) and ML (Machine Learning) based algorithms, namely, NB (Naïve Bayes), XGBoost (Extreme Gradient Boosting) and RF (Random Forest), to estimate the efficacy of the proposed model. The reliability of the proposed algorithm is measured by deploying performance metrics such as precision, recall, F1 score, and accuracy. ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At present, there are no disease-modifying therapies to cure ALS, and there is a lack of preventive tools. The general clinical assessments are based on symptom reports, neurophysiological tests, neurological examinations, and neuroimaging. But, these techniques possess various limitations of low reliability, lack of standardized protocols, and lack of sensitivity, especially in the early stages of disease. So, effective methods are required to detect the progression of the disease and minimize the suffering of patients. Extensive studies concentrated on investigating the causes of neurological disease, which creates a barrier to precise identification and classification of genes accompanied with ALS disease. Hence, the proposed system implements a deep RSFFNNCNN (Resemble Single Feed Forward Neural Network-Convolutional Neural Network) algorithm to effectively classify the clinical associations of ALS. It involves the addition of custom weights to the kernel initializer and neutralizer 'k' parameter to each hidden layer in the network. This is done to increase the stability and learning ability of the classifier. Additionally, the comparison of the proposed approach is performed with SFNN (Single Feed NN) and ML (Machine Learning) based algorithms, namely, NB (Naïve Bayes), XGBoost (Extreme Gradient Boosting) and RF (Random Forest), to estimate the efficacy of the proposed model. The reliability of the proposed algorithm is measured by deploying performance metrics such as precision, recall, F1 score, and accuracy.ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At present, there are no disease-modifying therapies to cure ALS, and there is a lack of preventive tools. The general clinical assessments are based on symptom reports, neurophysiological tests, neurological examinations, and neuroimaging. But, these techniques possess various limitations of low reliability, lack of standardized protocols, and lack of sensitivity, especially in the early stages of disease. So, effective methods are required to detect the progression of the disease and minimize the suffering of patients. Extensive studies concentrated on investigating the causes of neurological disease, which creates a barrier to precise identification and classification of genes accompanied with ALS disease. Hence, the proposed system implements a deep RSFFNNCNN (Resemble Single Feed Forward Neural Network-Convolutional Neural Network) algorithm to effectively classify the clinical associations of ALS. It involves the addition of custom weights to the kernel initializer and neutralizer 'k' parameter to each hidden layer in the network. This is done to increase the stability and learning ability of the classifier. Additionally, the comparison of the proposed approach is performed with SFNN (Single Feed NN) and ML (Machine Learning) based algorithms, namely, NB (Naïve Bayes), XGBoost (Extreme Gradient Boosting) and RF (Random Forest), to estimate the efficacy of the proposed model. The reliability of the proposed algorithm is measured by deploying performance metrics such as precision, recall, F1 score, and accuracy. |
| ArticleNumber | 106478 |
| Author | Alsubai, Shtwai Zhang, Yu-Dong Sha, Mohemmed Dutta, Ashit Kumar Alqahtani, Abdullah |
| Author_xml | – sequence: 1 givenname: Abdullah surname: Alqahtani fullname: Alqahtani, Abdullah email: aq.alqahtani@psau.edu.sa organization: Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia – sequence: 2 givenname: Shtwai surname: Alsubai fullname: Alsubai, Shtwai email: sa.alsubai@psau.edu.sa organization: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia – sequence: 3 givenname: Mohemmed surname: Sha fullname: Sha, Mohemmed email: ms.mohamed@psau.edu.sa organization: Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia – sequence: 4 givenname: Ashit Kumar surname: Dutta fullname: Dutta, Ashit Kumar email: adotta@mcst.edu.sa organization: Department of Computer Science and Information System, College of Applied Sciences, Al Maarefa University, Riyadh, Saudi Arabia – sequence: 5 givenname: Yu-Dong surname: Zhang fullname: Zhang, Yu-Dong email: yudong.zhang@leicester.ac.uk organization: School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38996790$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMtqHDEQRUVwiMd2_iAYLbPpsR49LWljCMZJDAZv4rXQo5Ro3C2Npe4Y_300tJNlVgXFuUXdc4ZOUk6A0CdKtpTQ4Wq_TbAkmLeMsL6thl7Id2hDpVAdE5KdoA2RincDkeQUndW6J4QMsucf0CmXSg1CkQ1yd2mGcQQ3L2bEplaodYI04xywmV7zXPLhV3R4NDOURlQ3Qsk1VrzUmH5iD3DABSpMdgQccnkxxeP22RFu373k8nSB3gczVvj4Ns_R49fbHzffu_uHb3c3X-47xymdOwa8t4Ib4pWRoKwifKDUGhJ6OXjrLRd2J4P14ImxQfRGGMMCsMAD3THHz9Hn9e6h5OcF6qynWF1rZxLkpWpOhJK7HeOsoZdv6GIn8PpQ4mTKq_4rpgH9CrjWthYI_xBK9NG_3uvVvz7616v_FrteY9B6_o5QdHURkgMfS3OsfY7_P_AHz6qS2A |
| Cites_doi | 10.1044/2021_JSLHR-20-00743 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.neunet.2024.106478 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| ExternalDocumentID | 38996790 10_1016_j_neunet_2024_106478 S0893608024004027 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD NPM 7X8 |
| ID | FETCH-LOGICAL-c311t-2e34b73a0d9a8e9b903611ba0f486dbdb37b58fbded0abf74a7aa2fe2f3f152c3 |
| IEDL.DBID | .~1 |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Sat Sep 27 23:31:15 EDT 2025 Wed Feb 19 02:09:50 EST 2025 Wed Oct 01 04:09:15 EDT 2025 Sat Aug 10 15:30:49 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Amyotrophic lateral sclerosis Neurotic disorders Machine learning Classification |
| Language | English |
| License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c311t-2e34b73a0d9a8e9b903611ba0f486dbdb37b58fbded0abf74a7aa2fe2f3f152c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 38996790 |
| PQID | 3079855232 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3079855232 pubmed_primary_38996790 crossref_primary_10_1016_j_neunet_2024_106478 elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106478 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Benatar, Wuu, McHutchison, Postuma, Boeve, Petersen (bib0008) 2022; 145 Wiesenfarth, Günther, Müller, Witzel, Weiland, Mayer (bib0043) 2023; 5 Kushol, Luk, Dey, Benatar, Briemberg, Dionne (bib0021) 2023; 108 Kmetzsch, Anquetil, Saracino, Rinaldi, Camuzat, Gareau (bib0020) 2021; 92 Aldharman, Althagafi, Alzahrani, Alshahrani, Zahirah, Alharthi (bib0001) 2023; 15 Behler, Müller, Del Tredici, Braak, Ludolph, Lulé (bib0007) 2022; 9 Babateen, Aldharman, Mogharbel, Badawi, Aljohani, Alsharif (bib0004) 2023; 15 Erdaş, Sümer, Kibaroğlu (bib0013) 2022; 8 Lee, Stingone, Chan, Mitsumoto, Nerve (bib0022) 2023; 67 Suhas, Patel, Koluguri, Belur, Reddy, Nalini (bib0034) 2019 Bakiya, Anitha, Sridevi, Kamalanand (bib0005) 2022; 2022 Vashkevich, Petrovsky, Rushkevich (bib0039) 2019 Imamura, Yada, Izumi, Morita, Kawata, Arisato (bib0017) 2021; 89 Joilin, Gray, Thompson, Bobeva, Talbot, Weishaupt (bib0018) 2020; 2 Rowe, Gutz, Maffei, Green (bib0030) 2020 Wang, Duan, Zhou, Wang, Zhang, Cao (bib0042) 2022; 13 Thome, Steinbach, Grosskreutz, Durstewitz, b. m. Koppe (bib0037) 2022; 43 Bede, Murad, Hardiman (bib0006) 2021 Dubey, Kumar, Upadhyay, Pachori, Control (bib0011) 2022; 71 Alencar, Guedes, Pereira, Rangel, Abdo, Souza (bib0002) 2022; 35 Fraiwan, Hassanin (bib0014) 2021; 16 Pasetto, Callegaro, Corbelli, Fiordaliso, Ferrara, Brunelli (bib0027) 2021; 16 Mallela, Illa, Belur, Nalini, Yadav, Reddy (bib0024) 2020 Staats, Borchelt, Tansey, Wymer (bib0033) 2022; 17 Karim, Su, West, Keon, Consortium, Shamsani (bib0019) 2021; 12 Tena, Clarià, Solsona, Povedano (bib0036) 2022; 22 Cebola, Folgado, Carreiro, Gamboa (bib0010) 2023 Tondo, Mazzini, Caminiti, Sarnelli, Corrado, Matheoud (bib0038) 2022; 36 El Khoury, Collongues, De Sèze, Gulsari, Patte-Mensah, Marcou (bib0012) 2019; 144 Quintao, Vigario, Santos, Gomes, de Carvalho, Pinto (bib0028) 2021; 51 Ami, Duse, Mereghetti, Cozza, Ambrosio, Ponzini (bib0003) 2021; 93 Masrori, Van Damme (bib0025) 2020; 27 Vizza, Tradigo, Mirarchi, Bossio, Lombardo, Arabia (bib0041) 2019; 122 Yin, Balvert, van der Spek, Dutilh, Bohté, Veldink (bib0044) 2019; 35 Bereman, Kirkwood, Sabaretnam, Furlong, Rowe, Guillemin (bib0009) 2020; 19 Gutz, Wang, Yunusova, Green (bib0015) 2019 Liu, Xing, Yang, Kuo, Babu, El Fakhri (bib0023) 2021; 26 Nabais, Lin, Benyamin, Williams, Garton, Vinkhuyzen (bib0026) 2020; 5 Sung, Nahm, Lim, Noh, Lee, Hwang (bib0035) 2022; 4 Zeng, Shen, Chen, Zhou, Liao, Lu (bib0045) 2020; 10 Rong (bib0029) 2021; 64 Vashkevich, Rushkevich (bib0040) 2021; 65 Iazzolino, Peotta, Zucchetti, Canosa, Manera, Vasta (bib0016) 2021; 96 Ruffo, Perrone, Conforti (bib0031) 2022; 13 Sancho, Ferrer, Burés, Díaz, Torrecilla, Signes-Costa (bib0032) 2021; 186 Kushol (10.1016/j.neunet.2024.106478_bib0021) 2023; 108 Imamura (10.1016/j.neunet.2024.106478_bib0017) 2021; 89 Tena (10.1016/j.neunet.2024.106478_bib0036) 2022; 22 Liu (10.1016/j.neunet.2024.106478_bib0023) 2021; 26 Ruffo (10.1016/j.neunet.2024.106478_bib0031) 2022; 13 Suhas (10.1016/j.neunet.2024.106478_bib0034) 2019 El Khoury (10.1016/j.neunet.2024.106478_bib0012) 2019; 144 Mallela (10.1016/j.neunet.2024.106478_bib0024) 2020 Yin (10.1016/j.neunet.2024.106478_bib0044) 2019; 35 Behler (10.1016/j.neunet.2024.106478_bib0007) 2022; 9 Erdaş (10.1016/j.neunet.2024.106478_bib0013) 2022; 8 Staats (10.1016/j.neunet.2024.106478_bib0033) 2022; 17 Tondo (10.1016/j.neunet.2024.106478_bib0038) 2022; 36 Vashkevich (10.1016/j.neunet.2024.106478_bib0039) 2019 Benatar (10.1016/j.neunet.2024.106478_bib0008) 2022; 145 Bereman (10.1016/j.neunet.2024.106478_bib0009) 2020; 19 Rong (10.1016/j.neunet.2024.106478_bib0029) 2021; 64 Lee (10.1016/j.neunet.2024.106478_bib0022) 2023; 67 Ami (10.1016/j.neunet.2024.106478_bib0003) 2021; 93 Wiesenfarth (10.1016/j.neunet.2024.106478_bib0043) 2023; 5 Wang (10.1016/j.neunet.2024.106478_bib0042) 2022; 13 Vashkevich (10.1016/j.neunet.2024.106478_bib0040) 2021; 65 Aldharman (10.1016/j.neunet.2024.106478_bib0001) 2023; 15 Alencar (10.1016/j.neunet.2024.106478_bib0002) 2022; 35 Dubey (10.1016/j.neunet.2024.106478_bib0011) 2022; 71 Bakiya (10.1016/j.neunet.2024.106478_bib0005) 2022; 2022 Quintao (10.1016/j.neunet.2024.106478_bib0028) 2021; 51 Pasetto (10.1016/j.neunet.2024.106478_bib0027) 2021; 16 Cebola (10.1016/j.neunet.2024.106478_bib0010) 2023 Kmetzsch (10.1016/j.neunet.2024.106478_bib0020) 2021; 92 Masrori (10.1016/j.neunet.2024.106478_bib0025) 2020; 27 Bede (10.1016/j.neunet.2024.106478_bib0006) 2021 Karim (10.1016/j.neunet.2024.106478_bib0019) 2021; 12 Nabais (10.1016/j.neunet.2024.106478_bib0026) 2020; 5 Fraiwan (10.1016/j.neunet.2024.106478_bib0014) 2021; 16 Iazzolino (10.1016/j.neunet.2024.106478_bib0016) 2021; 96 Joilin (10.1016/j.neunet.2024.106478_bib0018) 2020; 2 Babateen (10.1016/j.neunet.2024.106478_bib0004) 2023; 15 Sancho (10.1016/j.neunet.2024.106478_bib0032) 2021; 186 Thome (10.1016/j.neunet.2024.106478_bib0037) 2022; 43 Sung (10.1016/j.neunet.2024.106478_bib0035) 2022; 4 Vizza (10.1016/j.neunet.2024.106478_bib0041) 2019; 122 Gutz (10.1016/j.neunet.2024.106478_bib0015) 2019 Zeng (10.1016/j.neunet.2024.106478_bib0045) 2020; 10 Rowe (10.1016/j.neunet.2024.106478_bib0030) 2020 |
| References_xml | – volume: 71 year: 2022 ident: bib0011 publication-title: Automated diagnosis of muscle diseases from EMG signals using empirical mode decomposition based method – volume: 144 start-page: 4647 year: 2019 end-page: 4652 ident: bib0012 publication-title: Serum-based differentiation between multiple sclerosis and amyotrophic lateral sclerosis by random forest classification of FTIR spectra – volume: 96 start-page: e141 year: 2021 end-page: e152 ident: bib0016 publication-title: Differential neuropsychological profile of patients with amyotrophic lateral sclerosis with and without C9orf72 mutation – volume: 15 year: 2023 ident: bib0004 publication-title: Medication adherence status and its association with quality of life among individuals with neurological conditions in Saudi Arabia – start-page: 4816 year: 2020 end-page: 4820 ident: bib0030 article-title: Acoustic-based articulatory phenotypes of amyotrophic lateral sclerosis and parkinson's disease: Towards an interpretable, hypothesis-driven framework of motor control publication-title: Interspeech – volume: 13 start-page: 537 year: 2022 ident: bib0031 publication-title: SOD-1 variants in amyotrophic lateral sclerosis: Systematic re-evaluation according to ACMG-AMP guidelines – volume: 12 start-page: 1754 year: 2021 ident: bib0019 publication-title: Molecular classification and interpretation of amyotrophic lateral sclerosis using deep convolution neural networks and shapley values – start-page: 604 year: 2019 end-page: 608 ident: bib0015 article-title: Early identification of speech changes due to amyotrophic lateral sclerosis using machine classification publication-title: Interspeech – volume: 8 year: 2022 ident: bib0013 publication-title: CNN-based severity prediction of neurodegenerative diseases using gait data – volume: 36 year: 2022 ident: bib0038 publication-title: Clinical relevance of single-subject brain metabolism patterns in amyotrophic lateral sclerosis mutation carriers – start-page: 4564 year: 2019 end-page: 4568 ident: bib0034 article-title: Comparison of speech tasks and recording devices for voice based automatic classification of healthy subjects and patients with amyotrophic lateral sclerosis publication-title: Interspeech – volume: 89 start-page: 1226 year: 2021 end-page: 1233 ident: bib0017 publication-title: Prediction model of amyotrophic lateral sclerosis by deep learning with patient induced pluripotent stem cells – volume: 22 start-page: 1137 year: 2022 ident: bib0036 publication-title: Detecting bulbar involvement in patients with amyotrophic lateral sclerosis based on phonatory and time-frequency features – volume: 65 year: 2021 ident: bib0040 article-title: Control publication-title: Classification of ALS patients based on acoustic analysis of sustained vowel phonations – volume: 35 start-page: i538 year: 2019 end-page: i547 ident: bib0044 publication-title: Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype – year: 2023 ident: bib0010 article-title: Speech-Based supervised learning towards the diagnosis of amyotrophic lateral sclerosis – start-page: 267 year: 2019 end-page: 272 ident: bib0039 article-title: Bulbar ALS detection based on analysis of voice perturbation and vibrato publication-title: 2019 Signal processing: Algorithms, architectures, arrangements, and applications (SPA) – volume: 186 year: 2021 ident: bib0032 publication-title: Effect of one-year dextromethorphan/quinidine treatment on management of respiratory impairment in amyotrophic lateral sclerosis – volume: 15 year: 2023 ident: bib0001 publication-title: Online health information seeking by individuals with physical disabilities caused by neurological conditions in Saudi Arabia – volume: 5 start-page: 10 year: 2020 ident: bib0026 publication-title: Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis – volume: 64 start-page: 2996 year: 2021 end-page: 3014 ident: bib0029 article-title: A novel hierarchical framework for measuring the complexity and irregularity of multimodal speech signals and its application in the assessment of speech impairment in amyotrophic lateral sclerosis publication-title: J. Speech Lang. Hear. Res. – volume: 16 year: 2021 ident: bib0014 publication-title: Computer-aided identification of degenerative neuromuscular diseases based on gait dynamics and ensemble decision tree classifiers – volume: 43 start-page: 681 year: 2022 end-page: 699 ident: bib0037 publication-title: Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics – start-page: 1 year: 2021 end-page: 13 ident: bib0006 article-title: Pathological neural networks and artificial neural networks in ALS: Diagnostic classification based on pathognomonic neuroimaging features – volume: 145 start-page: 27 year: 2022 end-page: 44 ident: bib0008 publication-title: Preventing amyotrophic lateral sclerosis: Insights from pre-symptomatic neurodegenerative diseases – volume: 92 start-page: 485 year: 2021 end-page: 493 ident: bib0020 publication-title: Plasma microRNA signature in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis – start-page: 4586 year: 2020 end-page: 4590 ident: bib0024 article-title: Raw speech waveform based classification of patients with ALS, Parkinson's disease and healthy controls using CNN-BLSTM publication-title: Interspeech – volume: 2 start-page: fcaa053 year: 2020 ident: bib0018 publication-title: Identification of a potential non-coding RNA biomarker signature for amyotrophic lateral sclerosis – volume: 2022 year: 2022 ident: bib0005 publication-title: Classification of myopathy and amyotrophic lateral sclerosis electromyograms using bat algorithm and deep neural networks – volume: 17 start-page: 11 year: 2022 ident: bib0033 publication-title: Blood-based biomarkers of inflammation in amyotrophic lateral sclerosis – volume: 4 start-page: fcac299 year: 2022 ident: bib0035 publication-title: Clinical and genetic characteristics of amyotrophic lateral sclerosis patients with ANXA11 variants – volume: 108 year: 2023 ident: bib0021 publication-title: SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer – volume: 51 start-page: 454 year: 2021 end-page: 465 ident: bib0028 publication-title: Surface electromyography for testing motor dysfunction in amyotrophic lateral sclerosis – volume: 35 year: 2022 ident: bib0002 publication-title: Functional ambulation decline and factors associated in amyotrophic lateral sclerosis – volume: 5 start-page: fcad087 year: 2023 ident: bib0043 publication-title: Clinical and genetic features of amyotrophic lateral sclerosis patients with C9orf72 mutations – volume: 10 start-page: 12998 year: 2020 ident: bib0045 publication-title: The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients – volume: 26 start-page: 1128 year: 2021 end-page: 1139 ident: bib0023 publication-title: Voxelhop: Successive subspace learning for als disease classification using structural mri – volume: 93 start-page: 16995 year: 2021 end-page: 17002 ident: bib0003 publication-title: Tear-based vibrational spectroscopy applied to amyotrophic lateral sclerosis – volume: 67 start-page: 306 year: 2023 end-page: 310 ident: bib0022 publication-title: Utilizing machine learning and lipidomics to distinguish primary lateral sclerosis from amyotrophic lateral sclerosis – volume: 16 start-page: 1 year: 2021 end-page: 21 ident: bib0027 publication-title: Decoding distinctive features of plasma extracellular vesicles in amyotrophic lateral sclerosis – volume: 9 start-page: 1069 year: 2022 end-page: 1079 ident: bib0007 publication-title: Multimodal in vivo staging in amyotrophic lateral sclerosis using artificial intelligence – volume: 27 start-page: 1918 year: 2020 end-page: 1929 ident: bib0025 publication-title: Amyotrophic lateral sclerosis: A clinical review – volume: 13 year: 2022 ident: bib0042 publication-title: ANXA11 mutations are associated with amyotrophic lateral sclerosis–frontotemporal dementia – volume: 122 start-page: 45 year: 2019 end-page: 54 ident: bib0041 publication-title: Methodologies of speech analysis for neurodegenerative diseases evaluation – volume: 19 start-page: 3276 year: 2020 end-page: 3285 ident: bib0009 publication-title: Metabolite profiling reveals predictive biomarkers and the absence of β-methyl amino-l-alanine in plasma from individuals diagnosed with amyotrophic lateral sclerosis – volume: 8 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0013 – volume: 92 start-page: 485 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0020 – volume: 71 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0011 – volume: 122 start-page: 45 year: 2019 ident: 10.1016/j.neunet.2024.106478_bib0041 – start-page: 604 year: 2019 ident: 10.1016/j.neunet.2024.106478_bib0015 article-title: Early identification of speech changes due to amyotrophic lateral sclerosis using machine classification publication-title: Interspeech – volume: 15 year: 2023 ident: 10.1016/j.neunet.2024.106478_bib0001 – volume: 35 start-page: i538 year: 2019 ident: 10.1016/j.neunet.2024.106478_bib0044 – volume: 144 start-page: 4647 year: 2019 ident: 10.1016/j.neunet.2024.106478_bib0012 – volume: 26 start-page: 1128 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0023 – volume: 13 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0042 – volume: 51 start-page: 454 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0028 – volume: 108 year: 2023 ident: 10.1016/j.neunet.2024.106478_bib0021 – volume: 5 start-page: 10 year: 2020 ident: 10.1016/j.neunet.2024.106478_bib0026 – volume: 36 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0038 – volume: 186 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0032 – volume: 145 start-page: 27 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0008 – volume: 2 start-page: fcaa053 year: 2020 ident: 10.1016/j.neunet.2024.106478_bib0018 – volume: 22 start-page: 1137 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0036 – volume: 43 start-page: 681 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0037 – volume: 15 year: 2023 ident: 10.1016/j.neunet.2024.106478_bib0004 – year: 2023 ident: 10.1016/j.neunet.2024.106478_bib0010 – volume: 93 start-page: 16995 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0003 – volume: 16 start-page: 1 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0027 – volume: 64 start-page: 2996 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0029 article-title: A novel hierarchical framework for measuring the complexity and irregularity of multimodal speech signals and its application in the assessment of speech impairment in amyotrophic lateral sclerosis publication-title: J. Speech Lang. Hear. Res. doi: 10.1044/2021_JSLHR-20-00743 – volume: 16 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0014 – volume: 12 start-page: 1754 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0019 – volume: 2022 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0005 – volume: 89 start-page: 1226 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0017 – volume: 27 start-page: 1918 year: 2020 ident: 10.1016/j.neunet.2024.106478_bib0025 – volume: 35 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0002 – volume: 67 start-page: 306 year: 2023 ident: 10.1016/j.neunet.2024.106478_bib0022 – volume: 13 start-page: 537 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0031 – volume: 5 start-page: fcad087 year: 2023 ident: 10.1016/j.neunet.2024.106478_bib0043 – volume: 96 start-page: e141 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0016 – volume: 17 start-page: 11 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0033 – volume: 4 start-page: fcac299 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0035 – volume: 65 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0040 article-title: Control – volume: 9 start-page: 1069 year: 2022 ident: 10.1016/j.neunet.2024.106478_bib0007 – start-page: 267 year: 2019 ident: 10.1016/j.neunet.2024.106478_bib0039 article-title: Bulbar ALS detection based on analysis of voice perturbation and vibrato – start-page: 1 year: 2021 ident: 10.1016/j.neunet.2024.106478_bib0006 – start-page: 4816 year: 2020 ident: 10.1016/j.neunet.2024.106478_bib0030 article-title: Acoustic-based articulatory phenotypes of amyotrophic lateral sclerosis and parkinson's disease: Towards an interpretable, hypothesis-driven framework of motor control publication-title: Interspeech – start-page: 4586 year: 2020 ident: 10.1016/j.neunet.2024.106478_bib0024 article-title: Raw speech waveform based classification of patients with ALS, Parkinson's disease and healthy controls using CNN-BLSTM publication-title: Interspeech – start-page: 4564 year: 2019 ident: 10.1016/j.neunet.2024.106478_bib0034 article-title: Comparison of speech tasks and recording devices for voice based automatic classification of healthy subjects and patients with amyotrophic lateral sclerosis publication-title: Interspeech – volume: 10 start-page: 12998 year: 2020 ident: 10.1016/j.neunet.2024.106478_bib0045 – volume: 19 start-page: 3276 year: 2020 ident: 10.1016/j.neunet.2024.106478_bib0009 |
| SSID | ssj0006843 |
| Score | 2.4463058 |
| Snippet | ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 106478 |
| SubjectTerms | Amyotrophic lateral sclerosis Classification Deep learning Machine learning Neurotic disorders |
| Title | Intellectual assessment of amyotrophic lateral sclerosis using deep resemble forward neural network |
| URI | https://dx.doi.org/10.1016/j.neunet.2024.106478 https://www.ncbi.nlm.nih.gov/pubmed/38996790 https://www.proquest.com/docview/3079855232 |
| Volume | 178 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT-QgFCfGvXhZXV11_AomXutQaKE9GqMZNXpRE28ECqxjxnbizBy87N--75XW1YMx8VgChTzeF-H3exBypJjLRZ6GBHSFJZCBg0nJIksMd9IqK01EE17fyNF9dvmQPyyR054Lg7DKzvdHn956665l2ElzOB2Ph7cMQq1EqiiqIZyukMGeKXzF4Pjvf5gHTNzeMkPnBHv39LkW41X7Re0RUckzaELa5Wfh6bP0sw1D52vkZ5c_0pO4xF9kydfrZLV_m4F2prpBqvf8EGre6m_SJlDz_NrMX5rp47iiE4MU5Amdwd9gReMZRST8H-q8n1KkJj3biaeQ2SK6lmL1S-hcR-z4b3J_fnZ3Okq6BxWSSqTpPOFeZFYJw1xpCl_aEsJXmlrDQlZIZ50VyuZFsM47ZmxQmVHG8OB5EAHifCU2yXLd1H6bUM9YELbgFatsVnBRYi7peCVFWknGzYAkvRz1NNbN0D2g7ElHuWuUu45yHxDVC1t_2H8Nrv2LkYf93mgwDbzvMLVvFjMN7qsscjhp8wHZipv2thYsKyhVyXa-Pe8uWcGvCOzbI8vzl4XfhwRlbg9aDTwgP04urkY3_wBNiuat |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXXuWxUMBIvabr2ImdHFHVaoG2F1qpN8uObVi0TVbd3QMXfjszcdKWQ4XE1bFjazwvy983BtjX3JeyzGOGusIzzMDRpFRVZFZ45bRTNqEJT8_U7KL4cllebsHhyIUhWOXg-5NP77310DIdpDldzufTbxxDrSKqKKkhnq4ewMOiFJpOYAe_b3EeOHN_zYy9M-o-8ud6kFcbNm0gSKUosIl4l_fFp_vyzz4OHT-Fx0MCyT6lNT6DrdA-hyfj4wxssNVdaO4SRJi9KcDJusjs1a9ufd0tf8wbtrDEQV6wFf4NVzRfMYLCf2c-hCUjbtKVWwSGqS3BaxmVv8TObQKPv4CL46Pzw1k2vKiQNTLP15kIsnBaWu5rW4Xa1Ri_8txZHotKeeed1K6sovPBc-uiLqy2VsQgoowY6Bv5Erbbrg2vgQXOo3SVaHjjikrImpJJLxol80ZxYSeQjXI0y1Q4w4yIsp8myd2Q3E2S-wT0KGzzlwIY9O3_GPlx3BuDtkEXHrYN3WZl0H_VVYlHbTGBV2nTbtZCdQWVrvmb_573A-zMzk9PzMnns69v4RF9SSi_PdheX2_CO8xW1u59r41_ALRW6EI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intellectual+assessment+of+amyotrophic+lateral+sclerosis+using+deep+resemble+forward+neural+network&rft.jtitle=Neural+networks&rft.au=Alqahtani%2C+Abdullah&rft.au=Alsubai%2C+Shtwai&rft.au=Sha%2C+Mohemmed&rft.au=Dutta%2C+Ashit+Kumar&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=178&rft_id=info:doi/10.1016%2Fj.neunet.2024.106478&rft.externalDocID=S0893608024004027 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |