Intellectual assessment of amyotrophic lateral sclerosis using deep resemble forward neural network

ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At pre...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 178; p. 106478
Main Authors Alqahtani, Abdullah, Alsubai, Shtwai, Sha, Mohemmed, Dutta, Ashit Kumar, Zhang, Yu-Dong
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2024.106478

Cover

Abstract ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At present, there are no disease-modifying therapies to cure ALS, and there is a lack of preventive tools. The general clinical assessments are based on symptom reports, neurophysiological tests, neurological examinations, and neuroimaging. But, these techniques possess various limitations of low reliability, lack of standardized protocols, and lack of sensitivity, especially in the early stages of disease. So, effective methods are required to detect the progression of the disease and minimize the suffering of patients. Extensive studies concentrated on investigating the causes of neurological disease, which creates a barrier to precise identification and classification of genes accompanied with ALS disease. Hence, the proposed system implements a deep RSFFNNCNN (Resemble Single Feed Forward Neural Network-Convolutional Neural Network) algorithm to effectively classify the clinical associations of ALS. It involves the addition of custom weights to the kernel initializer and neutralizer ‘k’ parameter to each hidden layer in the network. This is done to increase the stability and learning ability of the classifier. Additionally, the comparison of the proposed approach is performed with SFNN (Single Feed NN) and ML (Machine Learning) based algorithms, namely, NB (Naïve Bayes), XGBoost (Extreme Gradient Boosting) and RF (Random Forest), to estimate the efficacy of the proposed model. The reliability of the proposed algorithm is measured by deploying performance metrics such as precision, recall, F1 score, and accuracy.
AbstractList ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At present, there are no disease-modifying therapies to cure ALS, and there is a lack of preventive tools. The general clinical assessments are based on symptom reports, neurophysiological tests, neurological examinations, and neuroimaging. But, these techniques possess various limitations of low reliability, lack of standardized protocols, and lack of sensitivity, especially in the early stages of disease. So, effective methods are required to detect the progression of the disease and minimize the suffering of patients. Extensive studies concentrated on investigating the causes of neurological disease, which creates a barrier to precise identification and classification of genes accompanied with ALS disease. Hence, the proposed system implements a deep RSFFNNCNN (Resemble Single Feed Forward Neural Network-Convolutional Neural Network) algorithm to effectively classify the clinical associations of ALS. It involves the addition of custom weights to the kernel initializer and neutralizer 'k' parameter to each hidden layer in the network. This is done to increase the stability and learning ability of the classifier. Additionally, the comparison of the proposed approach is performed with SFNN (Single Feed NN) and ML (Machine Learning) based algorithms, namely, NB (Naïve Bayes), XGBoost (Extreme Gradient Boosting) and RF (Random Forest), to estimate the efficacy of the proposed model. The reliability of the proposed algorithm is measured by deploying performance metrics such as precision, recall, F1 score, and accuracy.
ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At present, there are no disease-modifying therapies to cure ALS, and there is a lack of preventive tools. The general clinical assessments are based on symptom reports, neurophysiological tests, neurological examinations, and neuroimaging. But, these techniques possess various limitations of low reliability, lack of standardized protocols, and lack of sensitivity, especially in the early stages of disease. So, effective methods are required to detect the progression of the disease and minimize the suffering of patients. Extensive studies concentrated on investigating the causes of neurological disease, which creates a barrier to precise identification and classification of genes accompanied with ALS disease. Hence, the proposed system implements a deep RSFFNNCNN (Resemble Single Feed Forward Neural Network-Convolutional Neural Network) algorithm to effectively classify the clinical associations of ALS. It involves the addition of custom weights to the kernel initializer and neutralizer 'k' parameter to each hidden layer in the network. This is done to increase the stability and learning ability of the classifier. Additionally, the comparison of the proposed approach is performed with SFNN (Single Feed NN) and ML (Machine Learning) based algorithms, namely, NB (Naïve Bayes), XGBoost (Extreme Gradient Boosting) and RF (Random Forest), to estimate the efficacy of the proposed model. The reliability of the proposed algorithm is measured by deploying performance metrics such as precision, recall, F1 score, and accuracy.ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At present, there are no disease-modifying therapies to cure ALS, and there is a lack of preventive tools. The general clinical assessments are based on symptom reports, neurophysiological tests, neurological examinations, and neuroimaging. But, these techniques possess various limitations of low reliability, lack of standardized protocols, and lack of sensitivity, especially in the early stages of disease. So, effective methods are required to detect the progression of the disease and minimize the suffering of patients. Extensive studies concentrated on investigating the causes of neurological disease, which creates a barrier to precise identification and classification of genes accompanied with ALS disease. Hence, the proposed system implements a deep RSFFNNCNN (Resemble Single Feed Forward Neural Network-Convolutional Neural Network) algorithm to effectively classify the clinical associations of ALS. It involves the addition of custom weights to the kernel initializer and neutralizer 'k' parameter to each hidden layer in the network. This is done to increase the stability and learning ability of the classifier. Additionally, the comparison of the proposed approach is performed with SFNN (Single Feed NN) and ML (Machine Learning) based algorithms, namely, NB (Naïve Bayes), XGBoost (Extreme Gradient Boosting) and RF (Random Forest), to estimate the efficacy of the proposed model. The reliability of the proposed algorithm is measured by deploying performance metrics such as precision, recall, F1 score, and accuracy.
ArticleNumber 106478
Author Alsubai, Shtwai
Zhang, Yu-Dong
Sha, Mohemmed
Dutta, Ashit Kumar
Alqahtani, Abdullah
Author_xml – sequence: 1
  givenname: Abdullah
  surname: Alqahtani
  fullname: Alqahtani, Abdullah
  email: aq.alqahtani@psau.edu.sa
  organization: Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
– sequence: 2
  givenname: Shtwai
  surname: Alsubai
  fullname: Alsubai, Shtwai
  email: sa.alsubai@psau.edu.sa
  organization: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
– sequence: 3
  givenname: Mohemmed
  surname: Sha
  fullname: Sha, Mohemmed
  email: ms.mohamed@psau.edu.sa
  organization: Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
– sequence: 4
  givenname: Ashit Kumar
  surname: Dutta
  fullname: Dutta, Ashit Kumar
  email: adotta@mcst.edu.sa
  organization: Department of Computer Science and Information System, College of Applied Sciences, Al Maarefa University, Riyadh, Saudi Arabia
– sequence: 5
  givenname: Yu-Dong
  surname: Zhang
  fullname: Zhang, Yu-Dong
  email: yudong.zhang@leicester.ac.uk
  organization: School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38996790$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtqHDEQRUVwiMd2_iAYLbPpsR49LWljCMZJDAZv4rXQo5Ro3C2Npe4Y_300tJNlVgXFuUXdc4ZOUk6A0CdKtpTQ4Wq_TbAkmLeMsL6thl7Id2hDpVAdE5KdoA2RincDkeQUndW6J4QMsucf0CmXSg1CkQ1yd2mGcQQ3L2bEplaodYI04xywmV7zXPLhV3R4NDOURlQ3Qsk1VrzUmH5iD3DABSpMdgQccnkxxeP22RFu373k8nSB3gczVvj4Ns_R49fbHzffu_uHb3c3X-47xymdOwa8t4Ib4pWRoKwifKDUGhJ6OXjrLRd2J4P14ImxQfRGGMMCsMAD3THHz9Hn9e6h5OcF6qynWF1rZxLkpWpOhJK7HeOsoZdv6GIn8PpQ4mTKq_4rpgH9CrjWthYI_xBK9NG_3uvVvz7616v_FrteY9B6_o5QdHURkgMfS3OsfY7_P_AHz6qS2A
Cites_doi 10.1044/2021_JSLHR-20-00743
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2024.106478
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 38996790
10_1016_j_neunet_2024_106478
S0893608024004027
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
NPM
7X8
ID FETCH-LOGICAL-c311t-2e34b73a0d9a8e9b903611ba0f486dbdb37b58fbded0abf74a7aa2fe2f3f152c3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Sat Sep 27 23:31:15 EDT 2025
Wed Feb 19 02:09:50 EST 2025
Wed Oct 01 04:09:15 EDT 2025
Sat Aug 10 15:30:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Amyotrophic lateral sclerosis
Neurotic disorders
Machine learning
Classification
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-2e34b73a0d9a8e9b903611ba0f486dbdb37b58fbded0abf74a7aa2fe2f3f152c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38996790
PQID 3079855232
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3079855232
pubmed_primary_38996790
crossref_primary_10_1016_j_neunet_2024_106478
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Benatar, Wuu, McHutchison, Postuma, Boeve, Petersen (bib0008) 2022; 145
Wiesenfarth, Günther, Müller, Witzel, Weiland, Mayer (bib0043) 2023; 5
Kushol, Luk, Dey, Benatar, Briemberg, Dionne (bib0021) 2023; 108
Kmetzsch, Anquetil, Saracino, Rinaldi, Camuzat, Gareau (bib0020) 2021; 92
Aldharman, Althagafi, Alzahrani, Alshahrani, Zahirah, Alharthi (bib0001) 2023; 15
Behler, Müller, Del Tredici, Braak, Ludolph, Lulé (bib0007) 2022; 9
Babateen, Aldharman, Mogharbel, Badawi, Aljohani, Alsharif (bib0004) 2023; 15
Erdaş, Sümer, Kibaroğlu (bib0013) 2022; 8
Lee, Stingone, Chan, Mitsumoto, Nerve (bib0022) 2023; 67
Suhas, Patel, Koluguri, Belur, Reddy, Nalini (bib0034) 2019
Bakiya, Anitha, Sridevi, Kamalanand (bib0005) 2022; 2022
Vashkevich, Petrovsky, Rushkevich (bib0039) 2019
Imamura, Yada, Izumi, Morita, Kawata, Arisato (bib0017) 2021; 89
Joilin, Gray, Thompson, Bobeva, Talbot, Weishaupt (bib0018) 2020; 2
Rowe, Gutz, Maffei, Green (bib0030) 2020
Wang, Duan, Zhou, Wang, Zhang, Cao (bib0042) 2022; 13
Thome, Steinbach, Grosskreutz, Durstewitz, b. m. Koppe (bib0037) 2022; 43
Bede, Murad, Hardiman (bib0006) 2021
Dubey, Kumar, Upadhyay, Pachori, Control (bib0011) 2022; 71
Alencar, Guedes, Pereira, Rangel, Abdo, Souza (bib0002) 2022; 35
Fraiwan, Hassanin (bib0014) 2021; 16
Pasetto, Callegaro, Corbelli, Fiordaliso, Ferrara, Brunelli (bib0027) 2021; 16
Mallela, Illa, Belur, Nalini, Yadav, Reddy (bib0024) 2020
Staats, Borchelt, Tansey, Wymer (bib0033) 2022; 17
Karim, Su, West, Keon, Consortium, Shamsani (bib0019) 2021; 12
Tena, Clarià, Solsona, Povedano (bib0036) 2022; 22
Cebola, Folgado, Carreiro, Gamboa (bib0010) 2023
Tondo, Mazzini, Caminiti, Sarnelli, Corrado, Matheoud (bib0038) 2022; 36
El Khoury, Collongues, De Sèze, Gulsari, Patte-Mensah, Marcou (bib0012) 2019; 144
Quintao, Vigario, Santos, Gomes, de Carvalho, Pinto (bib0028) 2021; 51
Ami, Duse, Mereghetti, Cozza, Ambrosio, Ponzini (bib0003) 2021; 93
Masrori, Van Damme (bib0025) 2020; 27
Vizza, Tradigo, Mirarchi, Bossio, Lombardo, Arabia (bib0041) 2019; 122
Yin, Balvert, van der Spek, Dutilh, Bohté, Veldink (bib0044) 2019; 35
Bereman, Kirkwood, Sabaretnam, Furlong, Rowe, Guillemin (bib0009) 2020; 19
Gutz, Wang, Yunusova, Green (bib0015) 2019
Liu, Xing, Yang, Kuo, Babu, El Fakhri (bib0023) 2021; 26
Nabais, Lin, Benyamin, Williams, Garton, Vinkhuyzen (bib0026) 2020; 5
Sung, Nahm, Lim, Noh, Lee, Hwang (bib0035) 2022; 4
Zeng, Shen, Chen, Zhou, Liao, Lu (bib0045) 2020; 10
Rong (bib0029) 2021; 64
Vashkevich, Rushkevich (bib0040) 2021; 65
Iazzolino, Peotta, Zucchetti, Canosa, Manera, Vasta (bib0016) 2021; 96
Ruffo, Perrone, Conforti (bib0031) 2022; 13
Sancho, Ferrer, Burés, Díaz, Torrecilla, Signes-Costa (bib0032) 2021; 186
Kushol (10.1016/j.neunet.2024.106478_bib0021) 2023; 108
Imamura (10.1016/j.neunet.2024.106478_bib0017) 2021; 89
Tena (10.1016/j.neunet.2024.106478_bib0036) 2022; 22
Liu (10.1016/j.neunet.2024.106478_bib0023) 2021; 26
Ruffo (10.1016/j.neunet.2024.106478_bib0031) 2022; 13
Suhas (10.1016/j.neunet.2024.106478_bib0034) 2019
El Khoury (10.1016/j.neunet.2024.106478_bib0012) 2019; 144
Mallela (10.1016/j.neunet.2024.106478_bib0024) 2020
Yin (10.1016/j.neunet.2024.106478_bib0044) 2019; 35
Behler (10.1016/j.neunet.2024.106478_bib0007) 2022; 9
Erdaş (10.1016/j.neunet.2024.106478_bib0013) 2022; 8
Staats (10.1016/j.neunet.2024.106478_bib0033) 2022; 17
Tondo (10.1016/j.neunet.2024.106478_bib0038) 2022; 36
Vashkevich (10.1016/j.neunet.2024.106478_bib0039) 2019
Benatar (10.1016/j.neunet.2024.106478_bib0008) 2022; 145
Bereman (10.1016/j.neunet.2024.106478_bib0009) 2020; 19
Rong (10.1016/j.neunet.2024.106478_bib0029) 2021; 64
Lee (10.1016/j.neunet.2024.106478_bib0022) 2023; 67
Ami (10.1016/j.neunet.2024.106478_bib0003) 2021; 93
Wiesenfarth (10.1016/j.neunet.2024.106478_bib0043) 2023; 5
Wang (10.1016/j.neunet.2024.106478_bib0042) 2022; 13
Vashkevich (10.1016/j.neunet.2024.106478_bib0040) 2021; 65
Aldharman (10.1016/j.neunet.2024.106478_bib0001) 2023; 15
Alencar (10.1016/j.neunet.2024.106478_bib0002) 2022; 35
Dubey (10.1016/j.neunet.2024.106478_bib0011) 2022; 71
Bakiya (10.1016/j.neunet.2024.106478_bib0005) 2022; 2022
Quintao (10.1016/j.neunet.2024.106478_bib0028) 2021; 51
Pasetto (10.1016/j.neunet.2024.106478_bib0027) 2021; 16
Cebola (10.1016/j.neunet.2024.106478_bib0010) 2023
Kmetzsch (10.1016/j.neunet.2024.106478_bib0020) 2021; 92
Masrori (10.1016/j.neunet.2024.106478_bib0025) 2020; 27
Bede (10.1016/j.neunet.2024.106478_bib0006) 2021
Karim (10.1016/j.neunet.2024.106478_bib0019) 2021; 12
Nabais (10.1016/j.neunet.2024.106478_bib0026) 2020; 5
Fraiwan (10.1016/j.neunet.2024.106478_bib0014) 2021; 16
Iazzolino (10.1016/j.neunet.2024.106478_bib0016) 2021; 96
Joilin (10.1016/j.neunet.2024.106478_bib0018) 2020; 2
Babateen (10.1016/j.neunet.2024.106478_bib0004) 2023; 15
Sancho (10.1016/j.neunet.2024.106478_bib0032) 2021; 186
Thome (10.1016/j.neunet.2024.106478_bib0037) 2022; 43
Sung (10.1016/j.neunet.2024.106478_bib0035) 2022; 4
Vizza (10.1016/j.neunet.2024.106478_bib0041) 2019; 122
Gutz (10.1016/j.neunet.2024.106478_bib0015) 2019
Zeng (10.1016/j.neunet.2024.106478_bib0045) 2020; 10
Rowe (10.1016/j.neunet.2024.106478_bib0030) 2020
References_xml – volume: 71
  year: 2022
  ident: bib0011
  publication-title: Automated diagnosis of muscle diseases from EMG signals using empirical mode decomposition based method
– volume: 144
  start-page: 4647
  year: 2019
  end-page: 4652
  ident: bib0012
  publication-title: Serum-based differentiation between multiple sclerosis and amyotrophic lateral sclerosis by random forest classification of FTIR spectra
– volume: 96
  start-page: e141
  year: 2021
  end-page: e152
  ident: bib0016
  publication-title: Differential neuropsychological profile of patients with amyotrophic lateral sclerosis with and without C9orf72 mutation
– volume: 15
  year: 2023
  ident: bib0004
  publication-title: Medication adherence status and its association with quality of life among individuals with neurological conditions in Saudi Arabia
– start-page: 4816
  year: 2020
  end-page: 4820
  ident: bib0030
  article-title: Acoustic-based articulatory phenotypes of amyotrophic lateral sclerosis and parkinson's disease: Towards an interpretable, hypothesis-driven framework of motor control
  publication-title: Interspeech
– volume: 13
  start-page: 537
  year: 2022
  ident: bib0031
  publication-title: SOD-1 variants in amyotrophic lateral sclerosis: Systematic re-evaluation according to ACMG-AMP guidelines
– volume: 12
  start-page: 1754
  year: 2021
  ident: bib0019
  publication-title: Molecular classification and interpretation of amyotrophic lateral sclerosis using deep convolution neural networks and shapley values
– start-page: 604
  year: 2019
  end-page: 608
  ident: bib0015
  article-title: Early identification of speech changes due to amyotrophic lateral sclerosis using machine classification
  publication-title: Interspeech
– volume: 8
  year: 2022
  ident: bib0013
  publication-title: CNN-based severity prediction of neurodegenerative diseases using gait data
– volume: 36
  year: 2022
  ident: bib0038
  publication-title: Clinical relevance of single-subject brain metabolism patterns in amyotrophic lateral sclerosis mutation carriers
– start-page: 4564
  year: 2019
  end-page: 4568
  ident: bib0034
  article-title: Comparison of speech tasks and recording devices for voice based automatic classification of healthy subjects and patients with amyotrophic lateral sclerosis
  publication-title: Interspeech
– volume: 89
  start-page: 1226
  year: 2021
  end-page: 1233
  ident: bib0017
  publication-title: Prediction model of amyotrophic lateral sclerosis by deep learning with patient induced pluripotent stem cells
– volume: 22
  start-page: 1137
  year: 2022
  ident: bib0036
  publication-title: Detecting bulbar involvement in patients with amyotrophic lateral sclerosis based on phonatory and time-frequency features
– volume: 65
  year: 2021
  ident: bib0040
  article-title: Control
  publication-title: Classification of ALS patients based on acoustic analysis of sustained vowel phonations
– volume: 35
  start-page: i538
  year: 2019
  end-page: i547
  ident: bib0044
  publication-title: Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype
– year: 2023
  ident: bib0010
  article-title: Speech-Based supervised learning towards the diagnosis of amyotrophic lateral sclerosis
– start-page: 267
  year: 2019
  end-page: 272
  ident: bib0039
  article-title: Bulbar ALS detection based on analysis of voice perturbation and vibrato
  publication-title: 2019 Signal processing: Algorithms, architectures, arrangements, and applications (SPA)
– volume: 186
  year: 2021
  ident: bib0032
  publication-title: Effect of one-year dextromethorphan/quinidine treatment on management of respiratory impairment in amyotrophic lateral sclerosis
– volume: 15
  year: 2023
  ident: bib0001
  publication-title: Online health information seeking by individuals with physical disabilities caused by neurological conditions in Saudi Arabia
– volume: 5
  start-page: 10
  year: 2020
  ident: bib0026
  publication-title: Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis
– volume: 64
  start-page: 2996
  year: 2021
  end-page: 3014
  ident: bib0029
  article-title: A novel hierarchical framework for measuring the complexity and irregularity of multimodal speech signals and its application in the assessment of speech impairment in amyotrophic lateral sclerosis
  publication-title: J. Speech Lang. Hear. Res.
– volume: 16
  year: 2021
  ident: bib0014
  publication-title: Computer-aided identification of degenerative neuromuscular diseases based on gait dynamics and ensemble decision tree classifiers
– volume: 43
  start-page: 681
  year: 2022
  end-page: 699
  ident: bib0037
  publication-title: Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics
– start-page: 1
  year: 2021
  end-page: 13
  ident: bib0006
  article-title: Pathological neural networks and artificial neural networks in ALS: Diagnostic classification based on pathognomonic neuroimaging features
– volume: 145
  start-page: 27
  year: 2022
  end-page: 44
  ident: bib0008
  publication-title: Preventing amyotrophic lateral sclerosis: Insights from pre-symptomatic neurodegenerative diseases
– volume: 92
  start-page: 485
  year: 2021
  end-page: 493
  ident: bib0020
  publication-title: Plasma microRNA signature in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis
– start-page: 4586
  year: 2020
  end-page: 4590
  ident: bib0024
  article-title: Raw speech waveform based classification of patients with ALS, Parkinson's disease and healthy controls using CNN-BLSTM
  publication-title: Interspeech
– volume: 2
  start-page: fcaa053
  year: 2020
  ident: bib0018
  publication-title: Identification of a potential non-coding RNA biomarker signature for amyotrophic lateral sclerosis
– volume: 2022
  year: 2022
  ident: bib0005
  publication-title: Classification of myopathy and amyotrophic lateral sclerosis electromyograms using bat algorithm and deep neural networks
– volume: 17
  start-page: 11
  year: 2022
  ident: bib0033
  publication-title: Blood-based biomarkers of inflammation in amyotrophic lateral sclerosis
– volume: 4
  start-page: fcac299
  year: 2022
  ident: bib0035
  publication-title: Clinical and genetic characteristics of amyotrophic lateral sclerosis patients with ANXA11 variants
– volume: 108
  year: 2023
  ident: bib0021
  publication-title: SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer
– volume: 51
  start-page: 454
  year: 2021
  end-page: 465
  ident: bib0028
  publication-title: Surface electromyography for testing motor dysfunction in amyotrophic lateral sclerosis
– volume: 35
  year: 2022
  ident: bib0002
  publication-title: Functional ambulation decline and factors associated in amyotrophic lateral sclerosis
– volume: 5
  start-page: fcad087
  year: 2023
  ident: bib0043
  publication-title: Clinical and genetic features of amyotrophic lateral sclerosis patients with C9orf72 mutations
– volume: 10
  start-page: 12998
  year: 2020
  ident: bib0045
  publication-title: The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients
– volume: 26
  start-page: 1128
  year: 2021
  end-page: 1139
  ident: bib0023
  publication-title: Voxelhop: Successive subspace learning for als disease classification using structural mri
– volume: 93
  start-page: 16995
  year: 2021
  end-page: 17002
  ident: bib0003
  publication-title: Tear-based vibrational spectroscopy applied to amyotrophic lateral sclerosis
– volume: 67
  start-page: 306
  year: 2023
  end-page: 310
  ident: bib0022
  publication-title: Utilizing machine learning and lipidomics to distinguish primary lateral sclerosis from amyotrophic lateral sclerosis
– volume: 16
  start-page: 1
  year: 2021
  end-page: 21
  ident: bib0027
  publication-title: Decoding distinctive features of plasma extracellular vesicles in amyotrophic lateral sclerosis
– volume: 9
  start-page: 1069
  year: 2022
  end-page: 1079
  ident: bib0007
  publication-title: Multimodal in vivo staging in amyotrophic lateral sclerosis using artificial intelligence
– volume: 27
  start-page: 1918
  year: 2020
  end-page: 1929
  ident: bib0025
  publication-title: Amyotrophic lateral sclerosis: A clinical review
– volume: 13
  year: 2022
  ident: bib0042
  publication-title: ANXA11 mutations are associated with amyotrophic lateral sclerosis–frontotemporal dementia
– volume: 122
  start-page: 45
  year: 2019
  end-page: 54
  ident: bib0041
  publication-title: Methodologies of speech analysis for neurodegenerative diseases evaluation
– volume: 19
  start-page: 3276
  year: 2020
  end-page: 3285
  ident: bib0009
  publication-title: Metabolite profiling reveals predictive biomarkers and the absence of β-methyl amino-l-alanine in plasma from individuals diagnosed with amyotrophic lateral sclerosis
– volume: 8
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0013
– volume: 92
  start-page: 485
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0020
– volume: 71
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0011
– volume: 122
  start-page: 45
  year: 2019
  ident: 10.1016/j.neunet.2024.106478_bib0041
– start-page: 604
  year: 2019
  ident: 10.1016/j.neunet.2024.106478_bib0015
  article-title: Early identification of speech changes due to amyotrophic lateral sclerosis using machine classification
  publication-title: Interspeech
– volume: 15
  year: 2023
  ident: 10.1016/j.neunet.2024.106478_bib0001
– volume: 35
  start-page: i538
  year: 2019
  ident: 10.1016/j.neunet.2024.106478_bib0044
– volume: 144
  start-page: 4647
  year: 2019
  ident: 10.1016/j.neunet.2024.106478_bib0012
– volume: 26
  start-page: 1128
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0023
– volume: 13
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0042
– volume: 51
  start-page: 454
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0028
– volume: 108
  year: 2023
  ident: 10.1016/j.neunet.2024.106478_bib0021
– volume: 5
  start-page: 10
  year: 2020
  ident: 10.1016/j.neunet.2024.106478_bib0026
– volume: 36
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0038
– volume: 186
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0032
– volume: 145
  start-page: 27
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0008
– volume: 2
  start-page: fcaa053
  year: 2020
  ident: 10.1016/j.neunet.2024.106478_bib0018
– volume: 22
  start-page: 1137
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0036
– volume: 43
  start-page: 681
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0037
– volume: 15
  year: 2023
  ident: 10.1016/j.neunet.2024.106478_bib0004
– year: 2023
  ident: 10.1016/j.neunet.2024.106478_bib0010
– volume: 93
  start-page: 16995
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0003
– volume: 16
  start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0027
– volume: 64
  start-page: 2996
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0029
  article-title: A novel hierarchical framework for measuring the complexity and irregularity of multimodal speech signals and its application in the assessment of speech impairment in amyotrophic lateral sclerosis
  publication-title: J. Speech Lang. Hear. Res.
  doi: 10.1044/2021_JSLHR-20-00743
– volume: 16
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0014
– volume: 12
  start-page: 1754
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0019
– volume: 2022
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0005
– volume: 89
  start-page: 1226
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0017
– volume: 27
  start-page: 1918
  year: 2020
  ident: 10.1016/j.neunet.2024.106478_bib0025
– volume: 35
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0002
– volume: 67
  start-page: 306
  year: 2023
  ident: 10.1016/j.neunet.2024.106478_bib0022
– volume: 13
  start-page: 537
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0031
– volume: 5
  start-page: fcad087
  year: 2023
  ident: 10.1016/j.neunet.2024.106478_bib0043
– volume: 96
  start-page: e141
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0016
– volume: 17
  start-page: 11
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0033
– volume: 4
  start-page: fcac299
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0035
– volume: 65
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0040
  article-title: Control
– volume: 9
  start-page: 1069
  year: 2022
  ident: 10.1016/j.neunet.2024.106478_bib0007
– start-page: 267
  year: 2019
  ident: 10.1016/j.neunet.2024.106478_bib0039
  article-title: Bulbar ALS detection based on analysis of voice perturbation and vibrato
– start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2024.106478_bib0006
– start-page: 4816
  year: 2020
  ident: 10.1016/j.neunet.2024.106478_bib0030
  article-title: Acoustic-based articulatory phenotypes of amyotrophic lateral sclerosis and parkinson's disease: Towards an interpretable, hypothesis-driven framework of motor control
  publication-title: Interspeech
– start-page: 4586
  year: 2020
  ident: 10.1016/j.neunet.2024.106478_bib0024
  article-title: Raw speech waveform based classification of patients with ALS, Parkinson's disease and healthy controls using CNN-BLSTM
  publication-title: Interspeech
– start-page: 4564
  year: 2019
  ident: 10.1016/j.neunet.2024.106478_bib0034
  article-title: Comparison of speech tasks and recording devices for voice based automatic classification of healthy subjects and patients with amyotrophic lateral sclerosis
  publication-title: Interspeech
– volume: 10
  start-page: 12998
  year: 2020
  ident: 10.1016/j.neunet.2024.106478_bib0045
– volume: 19
  start-page: 3276
  year: 2020
  ident: 10.1016/j.neunet.2024.106478_bib0009
SSID ssj0006843
Score 2.4463058
Snippet ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 106478
SubjectTerms Amyotrophic lateral sclerosis
Classification
Deep learning
Machine learning
Neurotic disorders
Title Intellectual assessment of amyotrophic lateral sclerosis using deep resemble forward neural network
URI https://dx.doi.org/10.1016/j.neunet.2024.106478
https://www.ncbi.nlm.nih.gov/pubmed/38996790
https://www.proquest.com/docview/3079855232
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT-QgFCfGvXhZXV11_AomXutQaKE9GqMZNXpRE28ECqxjxnbizBy87N--75XW1YMx8VgChTzeF-H3exBypJjLRZ6GBHSFJZCBg0nJIksMd9IqK01EE17fyNF9dvmQPyyR054Lg7DKzvdHn956665l2ElzOB2Ph7cMQq1EqiiqIZyukMGeKXzF4Pjvf5gHTNzeMkPnBHv39LkW41X7Re0RUckzaELa5Wfh6bP0sw1D52vkZ5c_0pO4xF9kydfrZLV_m4F2prpBqvf8EGre6m_SJlDz_NrMX5rp47iiE4MU5Amdwd9gReMZRST8H-q8n1KkJj3biaeQ2SK6lmL1S-hcR-z4b3J_fnZ3Okq6BxWSSqTpPOFeZFYJw1xpCl_aEsJXmlrDQlZIZ50VyuZFsM47ZmxQmVHG8OB5EAHifCU2yXLd1H6bUM9YELbgFatsVnBRYi7peCVFWknGzYAkvRz1NNbN0D2g7ElHuWuUu45yHxDVC1t_2H8Nrv2LkYf93mgwDbzvMLVvFjMN7qsscjhp8wHZipv2thYsKyhVyXa-Pe8uWcGvCOzbI8vzl4XfhwRlbg9aDTwgP04urkY3_wBNiuat
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXXuWxUMBIvabr2ImdHFHVaoG2F1qpN8uObVi0TVbd3QMXfjszcdKWQ4XE1bFjazwvy983BtjX3JeyzGOGusIzzMDRpFRVZFZ45bRTNqEJT8_U7KL4cllebsHhyIUhWOXg-5NP77310DIdpDldzufTbxxDrSKqKKkhnq4ewMOiFJpOYAe_b3EeOHN_zYy9M-o-8ud6kFcbNm0gSKUosIl4l_fFp_vyzz4OHT-Fx0MCyT6lNT6DrdA-hyfj4wxssNVdaO4SRJi9KcDJusjs1a9ufd0tf8wbtrDEQV6wFf4NVzRfMYLCf2c-hCUjbtKVWwSGqS3BaxmVv8TObQKPv4CL46Pzw1k2vKiQNTLP15kIsnBaWu5rW4Xa1Ri_8txZHotKeeed1K6sovPBc-uiLqy2VsQgoowY6Bv5Erbbrg2vgQXOo3SVaHjjikrImpJJLxol80ZxYSeQjXI0y1Q4w4yIsp8myd2Q3E2S-wT0KGzzlwIY9O3_GPlx3BuDtkEXHrYN3WZl0H_VVYlHbTGBV2nTbtZCdQWVrvmb_573A-zMzk9PzMnns69v4RF9SSi_PdheX2_CO8xW1u59r41_ALRW6EI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intellectual+assessment+of+amyotrophic+lateral+sclerosis+using+deep+resemble+forward+neural+network&rft.jtitle=Neural+networks&rft.au=Alqahtani%2C+Abdullah&rft.au=Alsubai%2C+Shtwai&rft.au=Sha%2C+Mohemmed&rft.au=Dutta%2C+Ashit+Kumar&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=178&rft_id=info:doi/10.1016%2Fj.neunet.2024.106478&rft.externalDocID=S0893608024004027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon