RBF neural network disturbance observer-based backstepping boundary vibration control for Euler–Bernoulli beam model with input saturation
The main objective of this paper is to address the issue of vibration control for a class of Euler–Bernoulli beam systems that are subject to external disturbances and input saturation. The proposed controller differs from other backstepping methods in that it employs a radial basis function (RBF) n...
        Saved in:
      
    
          | Published in | ISA transactions Vol. 150; pp. 67 - 76 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.07.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0019-0578 1879-2022 1879-2022  | 
| DOI | 10.1016/j.isatra.2024.05.018 | 
Cover
| Abstract | The main objective of this paper is to address the issue of vibration control for a class of Euler–Bernoulli beam systems that are subject to external disturbances and input saturation. The proposed controller differs from other backstepping methods in that it employs a radial basis function (RBF) neural network to accurately estimate boundary disturbances and incorporates the hyperbolic tangent function to ensure input constraints. The nonlinear partial differential equation (PDE) model is initially derived based on Hamilton’s principle to capture the dominant dynamic characteristics of the flexible beam. In the framework of the Lyapunov direct approach, an adaptive RBF neural network-based law is subsequently designed to estimate the state-related boundary disturbances. The backstepping approach is then developed to propose sufficient conditions for ensuring the stability and convergence of closed-loop systems subject to input saturation. Finally, the effectiveness and superiority of the proposed methodology are further demonstrated by comparing the simulation results of constrained backstepping controllers.
[Display omitted]
•The paper addresses the issue of vibration control for Euler–Bernoulli beam models.•This system is susceptible to unknown external disturbances and input saturation.•A constrained boundary controller is developed based on backstepping technology.•An RBF neural network observer is proposed to estimate the boundary disturbances.•The closed-loop stability is established by considering the above constraints. | 
    
|---|---|
| AbstractList | The main objective of this paper is to address the issue of vibration control for a class of Euler-Bernoulli beam systems that are subject to external disturbances and input saturation. The proposed controller differs from other backstepping methods in that it employs a radial basis function (RBF) neural network to accurately estimate boundary disturbances and incorporates the hyperbolic tangent function to ensure input constraints. The nonlinear partial differential equation (PDE) model is initially derived based on Hamilton's principle to capture the dominant dynamic characteristics of the flexible beam. In the framework of the Lyapunov direct approach, an adaptive RBF neural network-based law is subsequently designed to estimate the state-related boundary disturbances. The backstepping approach is then developed to propose sufficient conditions for ensuring the stability and convergence of closed-loop systems subject to input saturation. Finally, the effectiveness and superiority of the proposed methodology are further demonstrated by comparing the simulation results of constrained backstepping controllers.The main objective of this paper is to address the issue of vibration control for a class of Euler-Bernoulli beam systems that are subject to external disturbances and input saturation. The proposed controller differs from other backstepping methods in that it employs a radial basis function (RBF) neural network to accurately estimate boundary disturbances and incorporates the hyperbolic tangent function to ensure input constraints. The nonlinear partial differential equation (PDE) model is initially derived based on Hamilton's principle to capture the dominant dynamic characteristics of the flexible beam. In the framework of the Lyapunov direct approach, an adaptive RBF neural network-based law is subsequently designed to estimate the state-related boundary disturbances. The backstepping approach is then developed to propose sufficient conditions for ensuring the stability and convergence of closed-loop systems subject to input saturation. Finally, the effectiveness and superiority of the proposed methodology are further demonstrated by comparing the simulation results of constrained backstepping controllers. The main objective of this paper is to address the issue of vibration control for a class of Euler–Bernoulli beam systems that are subject to external disturbances and input saturation. The proposed controller differs from other backstepping methods in that it employs a radial basis function (RBF) neural network to accurately estimate boundary disturbances and incorporates the hyperbolic tangent function to ensure input constraints. The nonlinear partial differential equation (PDE) model is initially derived based on Hamilton’s principle to capture the dominant dynamic characteristics of the flexible beam. In the framework of the Lyapunov direct approach, an adaptive RBF neural network-based law is subsequently designed to estimate the state-related boundary disturbances. The backstepping approach is then developed to propose sufficient conditions for ensuring the stability and convergence of closed-loop systems subject to input saturation. Finally, the effectiveness and superiority of the proposed methodology are further demonstrated by comparing the simulation results of constrained backstepping controllers. [Display omitted] •The paper addresses the issue of vibration control for Euler–Bernoulli beam models.•This system is susceptible to unknown external disturbances and input saturation.•A constrained boundary controller is developed based on backstepping technology.•An RBF neural network observer is proposed to estimate the boundary disturbances.•The closed-loop stability is established by considering the above constraints. The main objective of this paper is to address the issue of vibration control for a class of Euler-Bernoulli beam systems that are subject to external disturbances and input saturation. The proposed controller differs from other backstepping methods in that it employs a radial basis function (RBF) neural network to accurately estimate boundary disturbances and incorporates the hyperbolic tangent function to ensure input constraints. The nonlinear partial differential equation (PDE) model is initially derived based on Hamilton's principle to capture the dominant dynamic characteristics of the flexible beam. In the framework of the Lyapunov direct approach, an adaptive RBF neural network-based law is subsequently designed to estimate the state-related boundary disturbances. The backstepping approach is then developed to propose sufficient conditions for ensuring the stability and convergence of closed-loop systems subject to input saturation. Finally, the effectiveness and superiority of the proposed methodology are further demonstrated by comparing the simulation results of constrained backstepping controllers.  | 
    
| Author | Zhang, Jing Zhong, Jiaqi Yuan, Yupeng Chen, Xiaolei Wang, Dengpan  | 
    
| Author_xml | – sequence: 1 givenname: Jiaqi orcidid: 0000-0003-3471-0580 surname: Zhong fullname: Zhong, Jiaqi email: zhongjq@cqupt.edu.cn organization: School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 2 givenname: Jing orcidid: 0009-0001-5038-6998 surname: Zhang fullname: Zhang, Jing email: s220331145@stu.cqupt.edu.cn organization: School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 3 givenname: Xiaolei surname: Chen fullname: Chen, Xiaolei email: chenxiaolei@cqupt.edu.cn organization: School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 4 givenname: Dengpan surname: Wang fullname: Wang, Dengpan email: wangdp@cetccq.com.cn organization: Chips Technology CO., LTD, China Electronics Technology Group, Chongqing 401332, China – sequence: 5 givenname: Yupeng surname: Yuan fullname: Yuan, Yupeng email: yuanyp@cetccq.com.cn organization: Chips Technology CO., LTD, China Electronics Technology Group, Chongqing 401332, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38763782$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kc1u1TAUhC1URG8Lb4CQl2wSjhMncTZItGoBqRISgrVlOyfg28S--OdW7HgAdrwhT4KrFJasjnT0zUgzc0ZOnHdIyHMGNQPWv9rXNqoUVN1Aw2voamDiEdkxMYxVeTUnZAfAxgq6QZySsxj3ANB0o3hCTlsx9O0gmh35-fHimjrMQS3lpDsfbulkY8pBK2eQeh0xHDFUWkWcqFbmNiY8HKz7QrXPblLhOz1aHVSy3lHjXQp-obMP9CovGH7_-HWBwfm8LJZqVCtd_YQLvbPpK7XukBMtKfImf0oez2qJ-OzhnpPP11efLt9VNx_evr98c1OZlrFUNUZ0AIIPAD1MTHM-wzgyIZC3vB_Z3PU4C96x0bR87IRQeh5mEFop3kwjtOfk5eZ7CP5bxpjkaqPBZVEOfY6yLZ3B0PJhKOiLBzTrFSd5CHYtkeXfBgvAN8AEH2PA-R_CQN4PJfdyG0reDyWhk2WoInu9ybDkPFoMMhqLpfHJBjRJTt7-3-APVoSgfg | 
    
| Cites_doi | 10.1109/TPEL.2022.3205437 10.1080/00207179.2015.1060364 10.1016/j.automatica.2019.108640 10.1007/s11071-017-4031-y 10.1109/TSMC.2022.3147384 10.1016/j.automatica.2023.110978 10.1109/TCYB.2020.3021069 10.1080/00207179.2020.1775306 10.1080/00207721.2016.1152416 10.1109/70.782034 10.1007/s11071-021-06921-2 10.1109/TFUZZ.2018.2826475 10.1109/TCST.2018.2849072 10.1109/TSMC.2022.3213477 10.1016/j.automatica.2018.07.029 10.1016/j.conengprac.2018.12.012 10.1109/TCYB.2018.2828654 10.1177/09544062211003611 10.1109/TCYB.2020.3041727 10.1016/j.engstruct.2022.115323 10.1016/S0005-1098(03)00145-6 10.1016/j.isatra.2023.10.014 10.1016/j.ast.2018.03.049 10.1016/j.automatica.2016.11.002 10.1109/TNNLS.2022.3157950 10.1016/j.automatica.2019.108507 10.2514/1.J058102 10.1016/j.jfranklin.2017.10.004 10.1016/j.ast.2021.107062 10.1016/j.automatica.2011.01.064 10.1016/j.ijmecsci.2022.107634  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 ISA Copyright © 2024 ISA. Published by Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2024 ISA – notice: Copyright © 2024 ISA. Published by Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION NPM 7X8  | 
    
| DOI | 10.1016/j.isatra.2024.05.018 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 1879-2022 | 
    
| EndPage | 76 | 
    
| ExternalDocumentID | 38763782 10_1016_j_isatra_2024_05_018 S0019057824002222  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AFXIZ AGCQF AGRNS BNPGV NPM SSH 7X8  | 
    
| ID | FETCH-LOGICAL-c311t-2c85008470060d1b44f099188e434691f56ef84519c349588abf7f08baa42d903 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0019-0578 1879-2022  | 
    
| IngestDate | Mon Sep 29 05:52:18 EDT 2025 Mon Jul 21 06:05:58 EDT 2025 Wed Oct 01 05:12:25 EDT 2025 Tue Jun 18 08:50:56 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Backstepping control Boundary control Euler–Bernoulli beam Input saturation RBF neural network disturbance observer  | 
    
| Language | English | 
    
| License | Copyright © 2024 ISA. Published by Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c311t-2c85008470060d1b44f099188e434691f56ef84519c349588abf7f08baa42d903 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-3471-0580 0009-0001-5038-6998  | 
    
| PMID | 38763782 | 
    
| PQID | 3057073477 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_3057073477 pubmed_primary_38763782 crossref_primary_10_1016_j_isatra_2024_05_018 elsevier_sciencedirect_doi_10_1016_j_isatra_2024_05_018  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-07-01 | 
    
| PublicationDateYYYYMMDD | 2024-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | ISA transactions | 
    
| PublicationTitleAlternate | ISA Trans | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Zhang, Qian, Liu, Li, Li (b4) 2022; 52 Jing, Ma, Wu, He, Sun (b27) 2023; 53 Zhao, Liu, Li, Wang, Yang (b23) 2017; 354 Zhao, Li, Li, Liu (b16) 2024; 144 He, He, Ge (b22) 2015; 21 Ji, Liu, Liu, He (b25) 2018; 91 Cheng, Li, Wu, Hong (b14) 2023; 152 Lu, Wang, Liu (b11) 2022; 232 Kater, Meurer (b9) 2019; 84 Chen, Han, Zhu, Zeng (b19) 2023 Liu, Liu, He (b28) 2017; 48 Wang, Tang, Krstic (b2) 2020; 111 Yang, Peng, Li, Cui, Cheng, Li (b34) 2018; 49 Ji, Liu (b3) 2018; 77 Shen, Xu (b20) 2021; 119 Wu, Feng (b15) 2018; 26 Reyhanoglu (b32) 2003; 39 Zhong, Chen, Yuan, Tan (b6) 2021; 235 dM, Dawson, Agarwal, Zhang (b30) 1999; 15 Jin, Guo (b13) 2019; 109 You, Kim, Joe, Yun (b1) 2019; 57 He, Ge, How, Choo, Hong (b31) 2011; 47 Tavasoli (b12) 2015; 229 He, Yang, Meng, Sun (b35) 2016; 89 Wang, Liu, Sun (b29) 2019; 27 Xing, Yang, Liu, Wang (b21) 2022; 95 Ji, Liu (b26) 2022 Zhao, Zhang, Liu, Li (b8) 2022; 52 Liu, Liu, He (b33) 2017; 77 Liu, Wu, Yao, Zhao (b7) 2023; 34 Jokar, Vatankhah, Mahzoon (b17) 2023; 275 Pan, Peng, Yang, Wen, Huang (b18) 2023; 38 Wang, Wu, Görges, Lou (b5) 2022; 110 Lhachemi, Saussié, Zhu (b10) 2018; 97 Ren, Zhao, Zhang, Yang, Hong (b24) 2021; 51 Jing (10.1016/j.isatra.2024.05.018_b27) 2023; 53 Liu (10.1016/j.isatra.2024.05.018_b7) 2023; 34 He (10.1016/j.isatra.2024.05.018_b31) 2011; 47 He (10.1016/j.isatra.2024.05.018_b35) 2016; 89 Yang (10.1016/j.isatra.2024.05.018_b34) 2018; 49 Pan (10.1016/j.isatra.2024.05.018_b18) 2023; 38 Xing (10.1016/j.isatra.2024.05.018_b21) 2022; 95 Ren (10.1016/j.isatra.2024.05.018_b24) 2021; 51 Zhong (10.1016/j.isatra.2024.05.018_b6) 2021; 235 Kater (10.1016/j.isatra.2024.05.018_b9) 2019; 84 Lu (10.1016/j.isatra.2024.05.018_b11) 2022; 232 Liu (10.1016/j.isatra.2024.05.018_b28) 2017; 48 Chen (10.1016/j.isatra.2024.05.018_b19) 2023 Wang (10.1016/j.isatra.2024.05.018_b5) 2022; 110 Tavasoli (10.1016/j.isatra.2024.05.018_b12) 2015; 229 Ji (10.1016/j.isatra.2024.05.018_b3) 2018; 77 Zhao (10.1016/j.isatra.2024.05.018_b16) 2024; 144 Zhao (10.1016/j.isatra.2024.05.018_b8) 2022; 52 Cheng (10.1016/j.isatra.2024.05.018_b14) 2023; 152 You (10.1016/j.isatra.2024.05.018_b1) 2019; 57 Ji (10.1016/j.isatra.2024.05.018_b25) 2018; 91 Shen (10.1016/j.isatra.2024.05.018_b20) 2021; 119 Ji (10.1016/j.isatra.2024.05.018_b26) 2022 Liu (10.1016/j.isatra.2024.05.018_b33) 2017; 77 Jin (10.1016/j.isatra.2024.05.018_b13) 2019; 109 Jokar (10.1016/j.isatra.2024.05.018_b17) 2023; 275 dM (10.1016/j.isatra.2024.05.018_b30) 1999; 15 Lhachemi (10.1016/j.isatra.2024.05.018_b10) 2018; 97 Reyhanoglu (10.1016/j.isatra.2024.05.018_b32) 2003; 39 Wang (10.1016/j.isatra.2024.05.018_b29) 2019; 27 Zhang (10.1016/j.isatra.2024.05.018_b4) 2022; 52 Wu (10.1016/j.isatra.2024.05.018_b15) 2018; 26 Wang (10.1016/j.isatra.2024.05.018_b2) 2020; 111 He (10.1016/j.isatra.2024.05.018_b22) 2015; 21 Zhao (10.1016/j.isatra.2024.05.018_b23) 2017; 354  | 
    
| References_xml | – year: 2023 ident: b19 article-title: Neural network-based fixed-time tracking and containment control of second-order heterogeneous nonlinear multiagent systems publication-title: IEEE Trans Neural Netw Learn Syst – volume: 111 year: 2020 ident: b2 article-title: Adaptive output-feedback control of torsional vibration in off-shore rotary oil drilling systems publication-title: Automatica – volume: 21 start-page: 254 year: 2015 end-page: 265 ident: b22 article-title: Vibration control of flexible marine riser systems with input saturation publication-title: IEEE/ASME Trans Mechatronics – volume: 77 start-page: 563 year: 2018 end-page: 572 ident: b3 article-title: Vibration control for a flexible satellite with input constraint based on Nussbaum function via backstepping method publication-title: Aerosp Sci Technol – volume: 52 start-page: 7618 year: 2022 end-page: 7627 ident: b4 article-title: PDE modeling and tracking control for the flexible tail of an autonomous robotic fish publication-title: IEEE Trans Syst Man Cybern: Syst – volume: 235 start-page: 7859 year: 2021 end-page: 7869 ident: b6 article-title: LMI-based hybrid temporal-spatial differential control design for a class of Euler–Bernoulli beam system publication-title: Proc Inst Mech Eng C – volume: 97 start-page: 73 year: 2018 end-page: 81 ident: b10 article-title: Boundary feedback stabilization of a flexible wing model under unsteady aerodynamic loads publication-title: Automatica – volume: 229 start-page: 3 year: 2015 end-page: 15 ident: b12 article-title: Dynamic modeling and nonlinear boundary control of hybrid Euler–Bernoulli beam system with a tip mass publication-title: Proc Inst Mech Eng K: J Multi-body Dyn – volume: 51 start-page: 4796 year: 2021 end-page: 4807 ident: b24 article-title: Adaptive neural-network boundary control for a flexible manipulator with input constraints and model uncertainties publication-title: IEEE Trans Cybern – volume: 53 start-page: 2562 year: 2023 end-page: 2571 ident: b27 article-title: Backstepping control for vibration suppression of 2-D Euler–Bernoulli beam based on nonlinear saturation compensator publication-title: IEEE Trans Syst Man Cybern: Syst – volume: 110 start-page: 1393 year: 2022 end-page: 1404 ident: b5 article-title: Sliding mode vibration control of an Euler–Bernoulli beam with unknown external disturbances publication-title: Nonlinear Dynam – volume: 84 start-page: 389 year: 2019 end-page: 398 ident: b9 article-title: Motion planning and tracking control for coupled flexible beam structures publication-title: Control Eng Pract – volume: 109 year: 2019 ident: b13 article-title: Boundary output tracking for an Euler–Bernoulli beam equation with unmatched perturbations from a known exosystem publication-title: Automatica – volume: 95 start-page: 1 year: 2022 end-page: 10 ident: b21 article-title: LMI-based robust adaptive neural network control for Euler–Bernoulli beam with uncertain parameters and disturbances publication-title: Internat J Control – volume: 354 start-page: 8117 year: 2017 end-page: 8133 ident: b23 article-title: Control design for a vibrating flexible marine riser system publication-title: J Franklin Inst – volume: 91 start-page: 2551 year: 2018 end-page: 2570 ident: b25 article-title: Vibration control for a nonlinear three-dimensional Euler–Bernoulli beam under input magnitude and rate constraints publication-title: Nonlinear Dynam – volume: 26 start-page: 3379 year: 2018 end-page: 3390 ident: b15 article-title: Mixed fuzzy/boundary control design for nonlinear coupled systems of ODE and boundary-disturbed uncertain beam publication-title: IEEE Trans Fuzzy Syst – volume: 48 start-page: 53 year: 2017 end-page: 62 ident: b28 article-title: Partial differential equation boundary control of a flexible manipulator with input saturation publication-title: Int J Syst Sci – volume: 77 start-page: 302 year: 2017 end-page: 310 ident: b33 article-title: Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint publication-title: Automatica – volume: 152 year: 2023 ident: b14 article-title: Anti-disturbance control for a nonlinear flexible beam with velocity disturbance at the boundary publication-title: Automatica – volume: 232 year: 2022 ident: b11 article-title: An analytical and experimental study on adaptive active vibration control of sandwich beam publication-title: Int J Mech Sci – volume: 119 year: 2021 ident: b20 article-title: Adaptive neural network-based active disturbance rejection flight control of an unmanned helicopter publication-title: Aerosp Sci Technol – volume: 52 start-page: 7591 year: 2022 end-page: 7601 ident: b8 article-title: Vibration control for flexible manipulators with event-triggering mechanism and actuator failures publication-title: IEEE Trans Cybern – volume: 89 start-page: 128 year: 2016 end-page: 139 ident: b35 article-title: Distributed control of a class of flexible mechanical systems with global constraint publication-title: Internat J Control – year: 2022 ident: b26 article-title: Boundary control of flexible three-dimensional Euler–Bernoulli beams – volume: 38 start-page: 165 year: 2023 end-page: 176 ident: b18 article-title: Adaptive neural network-based prescribed-time observer for battery state-of-charge estimation publication-title: IEEE Trans Power Electron – volume: 275 year: 2023 ident: b17 article-title: Active vibration control of horizontal-axis wind turbine blades using disturbance observer-based boundary control approach publication-title: Eng Struct – volume: 15 start-page: 779 year: 1999 end-page: 787 ident: b30 article-title: Adaptive nonlinear boundary control of a flexible link robot arm publication-title: IEEE Trans Robot Autom – volume: 57 start-page: 1786 year: 2019 end-page: 1792 ident: b1 article-title: New concept for aircraft morphing wing skin: design, modeling, and analysis publication-title: AIAA J – volume: 144 start-page: 374 year: 2024 end-page: 384 ident: b16 article-title: Backstepping integral sliding mode control for pneumatic manipulators via adaptive extended state observers publication-title: ISA Trans – volume: 49 start-page: 2568 year: 2018 end-page: 2579 ident: b34 article-title: Neural networks enhanced adaptive admittance control of optimized robot-environment interaction publication-title: IEEE Trans Cybern – volume: 47 start-page: 722 year: 2011 end-page: 732 ident: b31 article-title: Robust adaptive boundary control of a flexible marine riser with vessel dynamics publication-title: Automatica – volume: 27 start-page: 2085 year: 2019 end-page: 2099 ident: b29 article-title: Adaptive neural boundary control design for nonlinear flexible distributed parameter systems publication-title: IEEE Trans Control Syst Technol – volume: 34 start-page: 9314 year: 2023 end-page: 9322 ident: b7 article-title: Backstepping technology-based adaptive boundary ILC for an input–output-constrained flexible beam publication-title: IEEE Trans Neural Netw Learn Syst – volume: 39 start-page: 1664 year: 2003 end-page: 1666 ident: b32 article-title: Mechatronic control of distributed noise and vibration: A Lyapunov approach publication-title: Automatica – volume: 38 start-page: 165 issue: 1 year: 2023 ident: 10.1016/j.isatra.2024.05.018_b18 article-title: Adaptive neural network-based prescribed-time observer for battery state-of-charge estimation publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2022.3205437 – year: 2022 ident: 10.1016/j.isatra.2024.05.018_b26 – volume: 89 start-page: 128 issue: 1 year: 2016 ident: 10.1016/j.isatra.2024.05.018_b35 article-title: Distributed control of a class of flexible mechanical systems with global constraint publication-title: Internat J Control doi: 10.1080/00207179.2015.1060364 – volume: 111 year: 2020 ident: 10.1016/j.isatra.2024.05.018_b2 article-title: Adaptive output-feedback control of torsional vibration in off-shore rotary oil drilling systems publication-title: Automatica doi: 10.1016/j.automatica.2019.108640 – volume: 91 start-page: 2551 issue: 4 year: 2018 ident: 10.1016/j.isatra.2024.05.018_b25 article-title: Vibration control for a nonlinear three-dimensional Euler–Bernoulli beam under input magnitude and rate constraints publication-title: Nonlinear Dynam doi: 10.1007/s11071-017-4031-y – volume: 52 start-page: 7618 issue: 12 year: 2022 ident: 10.1016/j.isatra.2024.05.018_b4 article-title: PDE modeling and tracking control for the flexible tail of an autonomous robotic fish publication-title: IEEE Trans Syst Man Cybern: Syst doi: 10.1109/TSMC.2022.3147384 – volume: 152 year: 2023 ident: 10.1016/j.isatra.2024.05.018_b14 article-title: Anti-disturbance control for a nonlinear flexible beam with velocity disturbance at the boundary publication-title: Automatica doi: 10.1016/j.automatica.2023.110978 – year: 2023 ident: 10.1016/j.isatra.2024.05.018_b19 article-title: Neural network-based fixed-time tracking and containment control of second-order heterogeneous nonlinear multiagent systems publication-title: IEEE Trans Neural Netw Learn Syst – volume: 21 start-page: 254 issue: 1 year: 2015 ident: 10.1016/j.isatra.2024.05.018_b22 article-title: Vibration control of flexible marine riser systems with input saturation publication-title: IEEE/ASME Trans Mechatronics – volume: 51 start-page: 4796 issue: 10 year: 2021 ident: 10.1016/j.isatra.2024.05.018_b24 article-title: Adaptive neural-network boundary control for a flexible manipulator with input constraints and model uncertainties publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.3021069 – volume: 95 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.isatra.2024.05.018_b21 article-title: LMI-based robust adaptive neural network control for Euler–Bernoulli beam with uncertain parameters and disturbances publication-title: Internat J Control doi: 10.1080/00207179.2020.1775306 – volume: 48 start-page: 53 issue: 1 year: 2017 ident: 10.1016/j.isatra.2024.05.018_b28 article-title: Partial differential equation boundary control of a flexible manipulator with input saturation publication-title: Int J Syst Sci doi: 10.1080/00207721.2016.1152416 – volume: 15 start-page: 779 issue: 4 year: 1999 ident: 10.1016/j.isatra.2024.05.018_b30 article-title: Adaptive nonlinear boundary control of a flexible link robot arm publication-title: IEEE Trans Robot Autom doi: 10.1109/70.782034 – volume: 110 start-page: 1393 issue: 2 year: 2022 ident: 10.1016/j.isatra.2024.05.018_b5 article-title: Sliding mode vibration control of an Euler–Bernoulli beam with unknown external disturbances publication-title: Nonlinear Dynam doi: 10.1007/s11071-021-06921-2 – volume: 26 start-page: 3379 issue: 6 year: 2018 ident: 10.1016/j.isatra.2024.05.018_b15 article-title: Mixed fuzzy/boundary control design for nonlinear coupled systems of ODE and boundary-disturbed uncertain beam publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2018.2826475 – volume: 27 start-page: 2085 issue: 5 year: 2019 ident: 10.1016/j.isatra.2024.05.018_b29 article-title: Adaptive neural boundary control design for nonlinear flexible distributed parameter systems publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2018.2849072 – volume: 53 start-page: 2562 issue: 5 year: 2023 ident: 10.1016/j.isatra.2024.05.018_b27 article-title: Backstepping control for vibration suppression of 2-D Euler–Bernoulli beam based on nonlinear saturation compensator publication-title: IEEE Trans Syst Man Cybern: Syst doi: 10.1109/TSMC.2022.3213477 – volume: 97 start-page: 73 year: 2018 ident: 10.1016/j.isatra.2024.05.018_b10 article-title: Boundary feedback stabilization of a flexible wing model under unsteady aerodynamic loads publication-title: Automatica doi: 10.1016/j.automatica.2018.07.029 – volume: 84 start-page: 389 year: 2019 ident: 10.1016/j.isatra.2024.05.018_b9 article-title: Motion planning and tracking control for coupled flexible beam structures publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2018.12.012 – volume: 49 start-page: 2568 issue: 7 year: 2018 ident: 10.1016/j.isatra.2024.05.018_b34 article-title: Neural networks enhanced adaptive admittance control of optimized robot-environment interaction publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2828654 – volume: 235 start-page: 7859 issue: 24 year: 2021 ident: 10.1016/j.isatra.2024.05.018_b6 article-title: LMI-based hybrid temporal-spatial differential control design for a class of Euler–Bernoulli beam system publication-title: Proc Inst Mech Eng C doi: 10.1177/09544062211003611 – volume: 52 start-page: 7591 issue: 8 year: 2022 ident: 10.1016/j.isatra.2024.05.018_b8 article-title: Vibration control for flexible manipulators with event-triggering mechanism and actuator failures publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.3041727 – volume: 275 year: 2023 ident: 10.1016/j.isatra.2024.05.018_b17 article-title: Active vibration control of horizontal-axis wind turbine blades using disturbance observer-based boundary control approach publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115323 – volume: 39 start-page: 1664 issue: 9 year: 2003 ident: 10.1016/j.isatra.2024.05.018_b32 article-title: Mechatronic control of distributed noise and vibration: A Lyapunov approach publication-title: Automatica doi: 10.1016/S0005-1098(03)00145-6 – volume: 144 start-page: 374 year: 2024 ident: 10.1016/j.isatra.2024.05.018_b16 article-title: Backstepping integral sliding mode control for pneumatic manipulators via adaptive extended state observers publication-title: ISA Trans doi: 10.1016/j.isatra.2023.10.014 – volume: 229 start-page: 3 issue: 1 year: 2015 ident: 10.1016/j.isatra.2024.05.018_b12 article-title: Dynamic modeling and nonlinear boundary control of hybrid Euler–Bernoulli beam system with a tip mass publication-title: Proc Inst Mech Eng K: J Multi-body Dyn – volume: 77 start-page: 563 year: 2018 ident: 10.1016/j.isatra.2024.05.018_b3 article-title: Vibration control for a flexible satellite with input constraint based on Nussbaum function via backstepping method publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2018.03.049 – volume: 77 start-page: 302 year: 2017 ident: 10.1016/j.isatra.2024.05.018_b33 article-title: Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint publication-title: Automatica doi: 10.1016/j.automatica.2016.11.002 – volume: 34 start-page: 9314 issue: 11 year: 2023 ident: 10.1016/j.isatra.2024.05.018_b7 article-title: Backstepping technology-based adaptive boundary ILC for an input–output-constrained flexible beam publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3157950 – volume: 109 year: 2019 ident: 10.1016/j.isatra.2024.05.018_b13 article-title: Boundary output tracking for an Euler–Bernoulli beam equation with unmatched perturbations from a known exosystem publication-title: Automatica doi: 10.1016/j.automatica.2019.108507 – volume: 57 start-page: 1786 issue: 5 year: 2019 ident: 10.1016/j.isatra.2024.05.018_b1 article-title: New concept for aircraft morphing wing skin: design, modeling, and analysis publication-title: AIAA J doi: 10.2514/1.J058102 – volume: 354 start-page: 8117 issue: 18 year: 2017 ident: 10.1016/j.isatra.2024.05.018_b23 article-title: Control design for a vibrating flexible marine riser system publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2017.10.004 – volume: 119 year: 2021 ident: 10.1016/j.isatra.2024.05.018_b20 article-title: Adaptive neural network-based active disturbance rejection flight control of an unmanned helicopter publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2021.107062 – volume: 47 start-page: 722 issue: 4 year: 2011 ident: 10.1016/j.isatra.2024.05.018_b31 article-title: Robust adaptive boundary control of a flexible marine riser with vessel dynamics publication-title: Automatica doi: 10.1016/j.automatica.2011.01.064 – volume: 232 year: 2022 ident: 10.1016/j.isatra.2024.05.018_b11 article-title: An analytical and experimental study on adaptive active vibration control of sandwich beam publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2022.107634  | 
    
| SSID | ssj0002598 | 
    
| Score | 2.4017496 | 
    
| Snippet | The main objective of this paper is to address the issue of vibration control for a class of Euler–Bernoulli beam systems that are subject to external... The main objective of this paper is to address the issue of vibration control for a class of Euler-Bernoulli beam systems that are subject to external...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 67 | 
    
| SubjectTerms | Backstepping control Boundary control Euler–Bernoulli beam Input saturation RBF neural network disturbance observer  | 
    
| Title | RBF neural network disturbance observer-based backstepping boundary vibration control for Euler–Bernoulli beam model with input saturation | 
    
| URI | https://dx.doi.org/10.1016/j.isatra.2024.05.018 https://www.ncbi.nlm.nih.gov/pubmed/38763782 https://www.proquest.com/docview/3057073477  | 
    
| Volume | 150 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CekkPoUn62D6CCj00BzX2WlrLx2TJsn2FEBrITUiWHDa03sVrF3op_QG99R_2l3RGlvs4hEJOxsayhb_xzCdp5hPACxxxicS7kqP1OC5sJrlFqs8L51SeEacNYjrvTyfzC_HmUl5uwHSohaG0yuj7e58evHW8chi_5uFqsaAaXwxmpMYuQkUn-WEhctrF4NXXP2keSO-jNy443T2Uz4UcL8qYaUh9aCx6_U51U3i6iX6GMDS7B9uRP7Kjvos7sOHrXbj7l6rgLuzE_3XNXkZR6YM9-H5-PGMkXomN6z71mzmEuGss4c6WlqZnfcMprDlmqfS-9STecMVs2Hqp-cI-09iakGQxw50h5WUn3Uff_Pz249g39ZLWlpj15hMLe-wwmudli3rVtWxNGqKh-X24mJ18mM553ImBl1matnxcKknK-znJt7jUClEhs0yV8iJDtNNKTnylSKmmzHDEpZSxVV4lyhojxq5IsgewWS9r_wjYRBnkiEUpjTBCFs4kxksnXYnPR3YiRsAHAPSqF9zQQybate4B0wSYTqRGwEaQDyjpfwxHY0z4T8vnA6ga_ylaKDG1X3ZrjT4wR9cn8nwED3u0f_clIwk_NLrHt37vE9iisz7n9ylstk3nnyGzae1-MN19uHM0PX93RsfXb-envwCljPtJ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5VA4IFo-upQPI3GAg2mysTfOkVZdbaHtAbVSb5YdO9VWkF1lEyQuFT-AG_-QX8KM49ByqJC4JnFi5Y1nnu2ZZ4DXOOMSiXclR-txXNhMcotUnxfOqTwjThvEdI5PJrMz8eFcnq_B_lALQ2mV0ff3Pj1463hlN_7N3eV8TjW-GMxIjV2Eik70w3eEHOc0A3t3dZ3ngfw-uuOC0-ND_VxI8qKUmYbkh8aiF_BUt8Wn2_hniEPTB3A_Ekj2vu_jJqz5egvu3ZAV3ILNOGBX7E1UlX77EH582psyUq_ExnWf-80cYtw1loBnC0vrs77hFNccs1R733pSb7hgNpy91HxjX2lyTVCymOLOkPOyg-6zb359_7nnm3pBm0vMevOFhUN2GC30snm97Fq2IhHR0PwRnE0PTvdnPB7FwMssTVs-LpUk6f2c9FtcaoWokFqmSnmRIdxpJSe-UiRVU2Y45VLK2CqvEmWNEWNXJNljWK8Xtd8GNlEGSWJRSiOMkIUzifHSSVfi-5GeiBHwAQC97BU39JCKdql7wDQBphOpEbAR5ANK-i_L0RgU_tHy1QCqxkFFOyWm9otupdEJ5uj7RJ6P4EmP9p--ZKThh1b39L-_-xI2ZqfHR_ro8OTjDtylO30C8DNYb5vOP0ea09oXwYx_A5GA-0k | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RBF+neural+network+disturbance+observer-based+backstepping+boundary+vibration+control+for+Euler-Bernoulli+beam+model+with+input+saturation&rft.jtitle=ISA+transactions&rft.au=Zhong%2C+Jiaqi&rft.au=Zhang%2C+Jing&rft.au=Chen%2C+Xiaolei&rft.au=Wang%2C+Dengpan&rft.date=2024-07-01&rft.issn=1879-2022&rft.eissn=1879-2022&rft.volume=150&rft.spage=67&rft_id=info:doi/10.1016%2Fj.isatra.2024.05.018&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |