Evaluation of the accuracy of remote emission sensing measurements via real-world vehicle dynamic tests

To evaluate the measurement accuracy of horizontal and vertical remote emission sensing (RES) equipment, a real-world dynamic test was carried out in Chengdu by using electric vehicles equipped with various concentrations of standard gases. In addition, a new Image-based Spectral Processing Algorith...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 360; p. 124780
Main Authors Tian, Qili, Yang, Xinping, Jiang, Han, Wang, Xiaohu, Liu, Jin, Zhang, Yingzhi, Cao, Yang, Kang, Yu, Fu, Mingliang, Zhang, Hefeng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text
ISSN0269-7491
1873-6424
1873-6424
DOI10.1016/j.envpol.2024.124780

Cover

Abstract To evaluate the measurement accuracy of horizontal and vertical remote emission sensing (RES) equipment, a real-world dynamic test was carried out in Chengdu by using electric vehicles equipped with various concentrations of standard gases. In addition, a new Image-based Spectral Processing Algorithm (ISPA) for vertical remote sensing spectral data was developed to improve the measurement capability. The results showed that the ISPA provided a greater percentage of valid data and lower relative errors; thus, our new algorithm could more effectively analyze the spectral data to measure vehicle emission levels. The percentages of valid horizontal and vertical RES data were 71% and 84%, respectively. The mean relative errors of CO2, CO, HC and NO measured by the vertical RES were about 5%, 20%, 20% and 40%, respectively, and those of CO2, CO and NO measured by the horizontal RES were 3%, 13% and 15%, respectively. For the common vehicle emission concentration, the percentage of valid data for the two RES types increased with increasing gas concentration. As the vehicle speed increased, the relative errors of the horizontal RES equipment showed an increasing trend for the same concentration of gas. Furthermore, for the same speed segment, the relative errors of the horizontal RES equipment increased as the simulated emission concentration decreased. The vertical RES equipment did not exhibit a consistent trend in terms of changes. This study provides a data quality reference for further RES applications. [Display omitted] •Accuracy of horizontal and vertical remote emission sensing were evaluated.•A new vertical RES spectral data algorithm was developed to reduce NO error.•Mean relative errors of NO from V-RES and H-RES were 15% and 40%, respectively.•Both RES equipment can better evaluate fleet emissions and screen higher emitters.
AbstractList To evaluate the measurement accuracy of horizontal and vertical remote emission sensing (RES) equipment, a real-world dynamic test was carried out in Chengdu by using electric vehicles equipped with various concentrations of standard gases. In addition, a new Image-based Spectral Processing Algorithm (ISPA) for vertical remote sensing spectral data was developed to improve the measurement capability. The results showed that the ISPA provided a greater percentage of valid data and lower relative errors; thus, our new algorithm could more effectively analyze the spectral data to measure vehicle emission levels. The percentages of valid horizontal and vertical RES data were 71% and 84%, respectively. The mean relative errors of CO2, CO, HC and NO measured by the vertical RES were about 5%, 20%, 20% and 40%, respectively, and those of CO2, CO and NO measured by the horizontal RES were 3%, 13% and 15%, respectively. For the common vehicle emission concentration, the percentage of valid data for the two RES types increased with increasing gas concentration. As the vehicle speed increased, the relative errors of the horizontal RES equipment showed an increasing trend for the same concentration of gas. Furthermore, for the same speed segment, the relative errors of the horizontal RES equipment increased as the simulated emission concentration decreased. The vertical RES equipment did not exhibit a consistent trend in terms of changes. This study provides a data quality reference for further RES applications. [Display omitted] •Accuracy of horizontal and vertical remote emission sensing were evaluated.•A new vertical RES spectral data algorithm was developed to reduce NO error.•Mean relative errors of NO from V-RES and H-RES were 15% and 40%, respectively.•Both RES equipment can better evaluate fleet emissions and screen higher emitters.
To evaluate the measurement accuracy of horizontal and vertical remote emission sensing (RES) equipment, a real-world dynamic test was carried out in Chengdu by using electric vehicles equipped with various concentrations of standard gases. In addition, a new vertical remote sensing spectral data algorithm based on image processing (ISPA) was developed to improve the measurement capability. The results showed that the ISPA provided a greater percentage of valid data and lower relative errors; thus, our new algorithm could more effectively analyze the spectral data to measure vehicle emission levels. The percentages of valid horizontal and vertical RES data were 71% and 84%, respectively. The mean relative errors of CO , CO, HC and NO measured by the vertical RES were about 5%, 20%, 20% and 40%, respectively, and those of CO , CO and NO measured by the horizontal RES were 3%, 13% and 15%, respectively. For the common vehicle emission concentration, the percentage of valid data for the two RES types increased with increasing gas concentration. As the vehicle speed increased, the relative errors of the horizontal RES equipment showed an increasing trend for the same concentration of gas. Furthermore, for the same speed segment, the relative errors of the horizontal RES equipment increased as the simulated emission concentration decreased. The vertical RES equipment did not exhibit a consistent trend in terms of changes. This study provides a data quality reference for further RES applications.
To evaluate the measurement accuracy of horizontal and vertical remote emission sensing (RES) equipment, a real-world dynamic test was carried out in Chengdu by using electric vehicles equipped with various concentrations of standard gases. In addition, a new Image-based Spectral Processing Algorithm (ISPA) for vertical remote sensing spectral data was developed to improve the measurement capability. The results showed that the ISPA provided a greater percentage of valid data and lower relative errors; thus, our new algorithm could more effectively analyze the spectral data to measure vehicle emission levels. The percentages of valid horizontal and vertical RES data were 71% and 84%, respectively. The mean relative errors of CO2, CO, HC and NO measured by the vertical RES were about 5%, 20%, 20% and 40%, respectively, and those of CO2, CO and NO measured by the horizontal RES were 3%, 13% and 15%, respectively. For the common vehicle emission concentration, the percentage of valid data for the two RES types increased with increasing gas concentration. As the vehicle speed increased, the relative errors of the horizontal RES equipment showed an increasing trend for the same concentration of gas. Furthermore, for the same speed segment, the relative errors of the horizontal RES equipment increased as the simulated emission concentration decreased. The vertical RES equipment did not exhibit a consistent trend in terms of changes. This study provides a data quality reference for further RES applications.To evaluate the measurement accuracy of horizontal and vertical remote emission sensing (RES) equipment, a real-world dynamic test was carried out in Chengdu by using electric vehicles equipped with various concentrations of standard gases. In addition, a new Image-based Spectral Processing Algorithm (ISPA) for vertical remote sensing spectral data was developed to improve the measurement capability. The results showed that the ISPA provided a greater percentage of valid data and lower relative errors; thus, our new algorithm could more effectively analyze the spectral data to measure vehicle emission levels. The percentages of valid horizontal and vertical RES data were 71% and 84%, respectively. The mean relative errors of CO2, CO, HC and NO measured by the vertical RES were about 5%, 20%, 20% and 40%, respectively, and those of CO2, CO and NO measured by the horizontal RES were 3%, 13% and 15%, respectively. For the common vehicle emission concentration, the percentage of valid data for the two RES types increased with increasing gas concentration. As the vehicle speed increased, the relative errors of the horizontal RES equipment showed an increasing trend for the same concentration of gas. Furthermore, for the same speed segment, the relative errors of the horizontal RES equipment increased as the simulated emission concentration decreased. The vertical RES equipment did not exhibit a consistent trend in terms of changes. This study provides a data quality reference for further RES applications.
ArticleNumber 124780
Author Yang, Xinping
Fu, Mingliang
Zhang, Yingzhi
Tian, Qili
Zhang, Hefeng
Cao, Yang
Kang, Yu
Liu, Jin
Wang, Xiaohu
Jiang, Han
Author_xml – sequence: 1
  givenname: Qili
  surname: Tian
  fullname: Tian, Qili
  organization: State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
– sequence: 2
  givenname: Xinping
  surname: Yang
  fullname: Yang, Xinping
  organization: State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
– sequence: 3
  givenname: Han
  surname: Jiang
  fullname: Jiang, Han
  organization: State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
– sequence: 4
  givenname: Xiaohu
  surname: Wang
  fullname: Wang, Xiaohu
  organization: Anhui Baolong Environmental Protection Technology Co., Ltd, Hefei, 230000, China
– sequence: 5
  givenname: Jin
  surname: Liu
  fullname: Liu, Jin
  organization: Anhui Baolong Environmental Protection Technology Co., Ltd, Hefei, 230000, China
– sequence: 6
  givenname: Yingzhi
  surname: Zhang
  fullname: Zhang, Yingzhi
  organization: Anhui Baolong Environmental Protection Technology Co., Ltd, Hefei, 230000, China
– sequence: 7
  givenname: Yang
  surname: Cao
  fullname: Cao, Yang
  organization: Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230088, China
– sequence: 8
  givenname: Yu
  surname: Kang
  fullname: Kang, Yu
  organization: Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230088, China
– sequence: 9
  givenname: Mingliang
  surname: Fu
  fullname: Fu, Mingliang
  email: fumingliang160@163.com
  organization: State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
– sequence: 10
  givenname: Hefeng
  surname: Zhang
  fullname: Zhang, Hefeng
  email: zhanghf@vecc.org.cn
  organization: State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39173859$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOwzAQRS1UBG3hDxDykk2KHTtxskFCVXlISGzYW44zKa4Su9hJUP8eVyksWY1Gc-Zx5y7QzDoLCN1QsqKE5ve7Fdhx79pVSlK-oikXBTlDc1oIluQ85TM0J2leJoKX9BItQtgRQjhj7AJdspIKVmTlHG03o2oH1RtnsWtw_wlYaT14pQ_H3EPnesDQmRCOSAAbjN3iDlQYYhFsH_BoVARVm3w739Z4hE-jW8D1warOaNxD6MMVOm9UG-D6FJfo42nzsX5J3t6fX9ePb4lmlPYJZVpBySvKFQMQomIF0U2hKSci5TknBQGS6axKSVFXKhNM0LpuSspoA1HdEt1NY_fefQ1xsYyXa2hbZcENQTJS5qkoMyEientCh6qDWu696ZQ_yN_fRIBPgPYuBA_NH0KJPFogd3KyQB4tkJMFse1haoMoczTgZdAGrIbaeNC9rJ35f8APVNiRpQ
Cites_doi 10.1016/j.atmosenv.2016.09.021
10.1016/j.jclepro.2019.04.095
10.1016/j.envpol.2018.02.043
10.1016/j.scitotenv.2020.142088
10.1080/10962247.2012.699015
10.1016/j.atmosenv.2020.117877
10.1016/j.scitotenv.2021.146750
10.1016/j.envpol.2019.04.130
10.1016/j.atmosenv.2013.09.026
10.3390/atmos10090516
10.1016/j.envpol.2020.116384
10.1016/j.atmosenv.2015.09.048
10.1016/j.pecs.2016.12.004
10.1088/1748-9326/aa8850
10.1016/j.atmosenv.2021.118317
10.1016/j.atmosenv.2018.03.035
10.1016/j.scitotenv.2019.02.144
10.1016/j.scitotenv.2018.12.349
10.1016/j.atmosenv.2017.09.020
10.1016/j.scitotenv.2020.139868
10.1016/j.atmosenv.2013.01.006
10.1016/j.envpol.2020.113974
10.1021/ac00185a746
10.1016/j.envint.2021.106977
10.1016/j.enpol.2012.05.081
10.1088/1748-9326/ac5c9e
10.1016/j.jclepro.2020.122000
10.1016/j.scitotenv.2022.153699
10.1016/j.trpro.2023.11.295
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024. Published by Elsevier Ltd.
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024. Published by Elsevier Ltd.
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.envpol.2024.124780
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 39173859
10_1016_j_envpol_2024_124780
S0269749124014945
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
LW9
LY9
M41
OHT
R2-
SEN
VH1
WUQ
XJT
XOL
~HD
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c311t-13cae94b14a3ee77b380cf8c14072464080e05c5b208dba57371ddf9131fe043
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Sun Sep 28 07:30:21 EDT 2025
Mon Jul 21 05:56:00 EDT 2025
Wed Oct 01 03:11:10 EDT 2025
Sat Sep 14 18:13:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Remote emission sensing
Vehicle emissions
Accuracy evaluation
Dynamic test
Language English
License Copyright © 2024. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-13cae94b14a3ee77b380cf8c14072464080e05c5b208dba57371ddf9131fe043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 39173859
PQID 3096279577
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3096279577
pubmed_primary_39173859
crossref_primary_10_1016_j_envpol_2024_124780
elsevier_sciencedirect_doi_10_1016_j_envpol_2024_124780
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kang, Li, Lv, Xu, Zheng, Chang (bib17) 2021; 244
Lau, Rakowska, Townsend, Brimblecombe, Chan, Yam, Mocnik, Ning (bib18) 2015; 122
Mahesh, McNabola, Smith, Timoney, Ekhtiari, Fowler, Willis, Rose, Wareham, Walker, Ghosh (bib21) 2023; 117
O'Driscoll, ApSimon, Oxley, Molden, Stettler, Thiyagarajah (bib22) 2016; 145
Huang, Organ, Zhou, Surawski, Hong, Chan, Yam (bib12) 2018; 182
Buhigas, Alonso de Lomas, Lumoz (bib36) 2023; 72
Qiu, Borken-Kleefeld (bib23) 2022; 17
Bishop, Starkey, Ihlenfeldt, Williams, Stedman (bib2) 1989; 61
Huang, Organ, Zhou, Surawski, Hong, Chan, Yam (bib11) 2018; 237
Carslaw, Rhys-Tyler (bib3) 2013; 81
Stedman, Bishop (bib28) 1990
Rushton, Tate, Shepherd (bib24) 2021; 750
Yang, Tate, Rushton, Morganti, Shepherd (bib33) 2022; 823
Huang, Tao, Lou, Hu, Wang, Wang, Li, Wang, Liu, Quan, Zhou (bib9) 2017; 169
Li, Kang, Lv, Zhao (bib20) 2016
Smit, Bainbridge, Kennedy, Kingston (bib26) 2021; 252
Demuynck, Bosteels, De Paepe, Favre, May, Verhelst (bib4) 2012; 49
Huang, Organ, Zhou, Surawski, Yam, Chan (bib13) 2019; 252
Lee, Lee, Lee, Choi, Min (bib19) 2021; 782
Bishop, Schuchmann, Stedman, Lawson (bib1) 2012; 62
Franco, Kousoulidou, Muntean, Ntziachristos, Hausberger, Dilara (bib7) 2013; 70
Xu, Kang, Lv (bib32) 2017
Wei, Zhang, Zhang, Jin, Chang, Yang, Ma, Jia, Ren, Wu, Peng, Mao (bib31) 2022; 158
Environment (bib5) 2017
Smit, Kingston (bib27) 2019; 10
Huang, Surawski, Organ, Zhou, Tang, Chan (bib15) 2019; 659
Zhang, Wei, Zou, Mao (bib34) 2021; 271
Huang, Mok, Yam, Zhou, Surawski, Organ, Chan, Mofijur, Mahlia, Ong (bib14) 2020; 740
Triantafyllopoulos, Dimaratos, Ntziachristos, Bernard, Dornoff, Samaras (bib29) 2019; 666
Gruening, Bonnel, Clairotte, Giechaskiel, Valverde, Zardini, Carriero (bib37) 2019
Guo, Meng (bib8) 2019; 226
Huang, Ng, Surawski, Yam, Mok, Liu, Zhou, Organ, Chan (bib10) 2020; 259
(bib35) 2023
Schildknecht (bib25) 2020
Fontaras, Zacharof, Ciuffo (bib6) 2017; 60
Jonson, Borken-Kleefeld, Simpson, Nyíri, Posch, Heyes (bib16) 2017; 12
Wang, Wood, Wang, Geng, Long (bib30) 2020; 266
Demuynck (10.1016/j.envpol.2024.124780_bib4) 2012; 49
Lau (10.1016/j.envpol.2024.124780_bib18) 2015; 122
Guo (10.1016/j.envpol.2024.124780_bib8) 2019; 226
Huang (10.1016/j.envpol.2024.124780_bib10) 2020; 259
Wang (10.1016/j.envpol.2024.124780_bib30) 2020; 266
Huang (10.1016/j.envpol.2024.124780_bib9) 2017; 169
Fontaras (10.1016/j.envpol.2024.124780_bib6) 2017; 60
Lee (10.1016/j.envpol.2024.124780_bib19) 2021; 782
Yang (10.1016/j.envpol.2024.124780_bib33) 2022; 823
Franco (10.1016/j.envpol.2024.124780_bib7) 2013; 70
Wei (10.1016/j.envpol.2024.124780_bib31) 2022; 158
Bishop (10.1016/j.envpol.2024.124780_bib1) 2012; 62
Li (10.1016/j.envpol.2024.124780_bib20) 2016
Carslaw (10.1016/j.envpol.2024.124780_bib3) 2013; 81
Smit (10.1016/j.envpol.2024.124780_bib26) 2021; 252
Bishop (10.1016/j.envpol.2024.124780_bib2) 1989; 61
Jonson (10.1016/j.envpol.2024.124780_bib16) 2017; 12
(10.1016/j.envpol.2024.124780_bib35) 2023
Qiu (10.1016/j.envpol.2024.124780_bib23) 2022; 17
Huang (10.1016/j.envpol.2024.124780_bib13) 2019; 252
Kang (10.1016/j.envpol.2024.124780_bib17) 2021; 244
Huang (10.1016/j.envpol.2024.124780_bib12) 2018; 182
O'Driscoll (10.1016/j.envpol.2024.124780_bib22) 2016; 145
Triantafyllopoulos (10.1016/j.envpol.2024.124780_bib29) 2019; 666
Huang (10.1016/j.envpol.2024.124780_bib11) 2018; 237
Xu (10.1016/j.envpol.2024.124780_bib32) 2017
Buhigas (10.1016/j.envpol.2024.124780_bib36) 2023; 72
Rushton (10.1016/j.envpol.2024.124780_bib24) 2021; 750
Huang (10.1016/j.envpol.2024.124780_bib14) 2020; 740
Mahesh (10.1016/j.envpol.2024.124780_bib21) 2023; 117
Gruening (10.1016/j.envpol.2024.124780_bib37) 2019
Huang (10.1016/j.envpol.2024.124780_bib15) 2019; 659
Smit (10.1016/j.envpol.2024.124780_bib27) 2019; 10
Zhang (10.1016/j.envpol.2024.124780_bib34) 2021; 271
Schildknecht (10.1016/j.envpol.2024.124780_bib25) 2020
Environment (10.1016/j.envpol.2024.124780_bib5) 2017
Stedman (10.1016/j.envpol.2024.124780_bib28) 1990
References_xml – volume: 72
  start-page: 4484
  year: 2023
  end-page: 4491
  ident: bib36
  article-title: Performance of a remote sensing device based on a spectroscopic approach for the remote measurement of vehicle emissions
  publication-title: Transport. Res. Procedia
– volume: 145
  start-page: 81
  year: 2016
  end-page: 91
  ident: bib22
  article-title: A Portable Emissions Measurement System (PEMS) study of NOx and primary NO2 emissions from Euro 6 diesel passenger cars and comparison with COPERT emission factors
  publication-title: Atmos. Environ.
– volume: 12
  year: 2017
  ident: bib16
  article-title: Impact of excess NO
  publication-title: Environ. Res. Lett.
– year: 2023
  ident: bib35
  article-title: China Mobile Source Environmental Management Annual Report (2023)
– volume: 266
  year: 2020
  ident: bib30
  article-title: CO
  publication-title: J. Clean. Prod.
– volume: 60
  start-page: 97
  year: 2017
  end-page: 131
  ident: bib6
  article-title: Fuel consumption and CO
  publication-title: Prog. Energy Combust. Sci.
– volume: 122
  start-page: 171
  year: 2015
  end-page: 182
  ident: bib18
  article-title: Evaluation of diesel fleet emissions and control policies from plume chasing measurements of on-road vehicles
  publication-title: Atmos. Environ.
– volume: 10
  start-page: 516
  year: 2019
  ident: bib27
  article-title: Measuring on-road vehicle emissions with multiple instruments including remote sensing
  publication-title: Atmosphere
– volume: 117
  year: 2023
  ident: bib21
  article-title: On-road remote sensing of vehicles in Dublin: Measurement and emission factor estimation
  publication-title: Transport. Res. Transport Environ.
– year: 2017
  ident: bib5
  article-title: Measurement Method and Technical Specification for PEMS Test of Exhaust Pollutants from Heavy-Duty Diesel and Gas Fuelled Vehicles
– volume: 17
  year: 2022
  ident: bib23
  article-title: Using snapshot measurements to identify high-emitting vehicles
  publication-title: Environ. Res. Lett.
– volume: 782
  year: 2021
  ident: bib19
  article-title: Characteristics of NOx emission of light-duty diesel vehicle with LNT and SCR system by season and RDE phase
  publication-title: Sci. Total Environ.
– volume: 237
  start-page: 133
  year: 2018
  end-page: 142
  ident: bib11
  article-title: Emission measurement of diesel vehicles in Hong Kong through on-road remote sensing: performance review and identification of high-emitters
  publication-title: Environ. Pollut.
– volume: 750
  year: 2021
  ident: bib24
  article-title: A novel method for comparing passenger car fleets and identifying high-chance gross emitting vehicles using kerbside remote sensing data
  publication-title: Sci. Total Environ.
– volume: 226
  start-page: 692
  year: 2019
  end-page: 705
  ident: bib8
  article-title: Exploring the driving factors of carbon dioxide emission from transport sector in Beijing-Tianjin-Hebei region
  publication-title: J. Clean. Prod.
– year: 2020
  ident: bib25
  article-title: The Saturation of the Infrared Absorption by Carbon Dioxide in the Atmosphere
– volume: 169
  start-page: 193
  year: 2017
  end-page: 203
  ident: bib9
  article-title: Evaluation of emission factors for light-duty gasoline vehicles based on chassis dynamometer and tunnel studies in Shanghai, China
  publication-title: Atmos. Environ.
– volume: 244
  year: 2021
  ident: bib17
  article-title: High-emitting vehicle identification by on-road emission remote sensing with scarce positive labels
  publication-title: Atmos. Environ.
– volume: 252
  year: 2021
  ident: bib26
  article-title: A decade of measuring on-road vehicle emissions with remote sensing in Australia
  publication-title: Atmos. Environ.
– year: 2019
  ident: bib37
  article-title: Potential of Remote Sensing Devices (RSDs) to Screen Vehicle Emissions: Assessment of RSD Measurement Performance
– volume: 70
  start-page: 84
  year: 2013
  end-page: 97
  ident: bib7
  article-title: Road vehicle emission factors development: a review
  publication-title: Atmos. Environ.
– volume: 259
  year: 2020
  ident: bib10
  article-title: Large eddy simulation of vehicle emissions dispersion: implications for on-road remote sensing measurements
  publication-title: Environ. Pollut.
– start-page: 4029
  year: 2017
  end-page: 4033
  ident: bib32
  article-title: Analysis and prediction of vehicle exhaust emission using ANN
  publication-title: 2017 36th Chinese Control Conference (CCC)
– volume: 666
  start-page: 337
  year: 2019
  end-page: 346
  ident: bib29
  article-title: A study on the CO
  publication-title: Sci. Total Environ.
– volume: 659
  start-page: 275
  year: 2019
  end-page: 282
  ident: bib15
  article-title: Fuel consumption and emissions performance under real driving: comparison between hybrid and conventional vehicles
  publication-title: Sci. Total Environ.
– volume: 158
  year: 2022
  ident: bib31
  article-title: Super-learner model realizes the transient prediction of CO2 and NOx of diesel trucks: model development, evaluation and interpretation
  publication-title: Environ. Int.
– volume: 61
  start-page: 671A
  year: 1989
  end-page: 677A
  ident: bib2
  article-title: IR long-path photometry: a remote sensing tool for automobile emissions
  publication-title: Anal. Chem.
– volume: 81
  start-page: 339
  year: 2013
  end-page: 347
  ident: bib3
  article-title: New insights from comprehensive on-road measurements of NOx, NO2 and NH3 from vehicle emission remote sensing in London, UK
  publication-title: Atmos. Environ.
– volume: 62
  start-page: 1127
  year: 2012
  end-page: 1133
  ident: bib1
  article-title: Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van Nuys, California
  publication-title: J. Air Waste Manag. Assoc.
– volume: 271
  year: 2021
  ident: bib34
  article-title: Evaluating the ammonia emission from in-use vehicles using on-road remote sensing test
  publication-title: Environ. Pollut.
– volume: 49
  start-page: 234
  year: 2012
  end-page: 242
  ident: bib4
  article-title: Recommendations for the new WLTP cycle based on an analysis of vehicle emission measurements on NEDC and CADC
  publication-title: Energy Pol.
– volume: 252
  start-page: 31
  year: 2019
  end-page: 38
  ident: bib13
  article-title: Characterisation of diesel vehicle emissions and determination of remote sensing cutpoints for diesel high-emitters
  publication-title: Environ. Pollut.
– year: 1990
  ident: bib28
  article-title: Analysis of On-Road Remote Sensing as a Tool for Automobile Emissions Control
– volume: 182
  start-page: 58
  year: 2018
  end-page: 74
  ident: bib12
  article-title: Remote sensing of on-road vehicle emissions: mechanism, applications and a case study from Hong Kong
  publication-title: Atmos. Environ.
– volume: 823
  year: 2022
  ident: bib33
  article-title: Detecting candidate high NOx emitting light commercial vehicles using vehicle emission remote sensing
  publication-title: Sci. Total Environ.
– volume: 740
  year: 2020
  ident: bib14
  article-title: Evaluating in-use vehicle emissions using air quality monitoring stations and on-road remote sensing systems
  publication-title: Sci. Total Environ.
– start-page: 561
  year: 2016
  end-page: 566
  ident: bib20
  article-title: Remote sensing and artificial neural network estimation of on-road vehicle emissions
  publication-title: 2016 International Conference on Advanced Robotics and Mechatronics (ICARM)
– year: 2017
  ident: 10.1016/j.envpol.2024.124780_bib5
– volume: 145
  start-page: 81
  year: 2016
  ident: 10.1016/j.envpol.2024.124780_bib22
  article-title: A Portable Emissions Measurement System (PEMS) study of NOx and primary NO2 emissions from Euro 6 diesel passenger cars and comparison with COPERT emission factors
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.09.021
– volume: 226
  start-page: 692
  year: 2019
  ident: 10.1016/j.envpol.2024.124780_bib8
  article-title: Exploring the driving factors of carbon dioxide emission from transport sector in Beijing-Tianjin-Hebei region
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.095
– volume: 117
  year: 2023
  ident: 10.1016/j.envpol.2024.124780_bib21
  article-title: On-road remote sensing of vehicles in Dublin: Measurement and emission factor estimation
  publication-title: Transport. Res. Transport Environ.
– volume: 237
  start-page: 133
  year: 2018
  ident: 10.1016/j.envpol.2024.124780_bib11
  article-title: Emission measurement of diesel vehicles in Hong Kong through on-road remote sensing: performance review and identification of high-emitters
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.02.043
– volume: 750
  year: 2021
  ident: 10.1016/j.envpol.2024.124780_bib24
  article-title: A novel method for comparing passenger car fleets and identifying high-chance gross emitting vehicles using kerbside remote sensing data
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142088
– volume: 62
  start-page: 1127
  year: 2012
  ident: 10.1016/j.envpol.2024.124780_bib1
  article-title: Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van Nuys, California
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10962247.2012.699015
– year: 2019
  ident: 10.1016/j.envpol.2024.124780_bib37
  article-title: Potential of Remote Sensing Devices (RSDs) to Screen Vehicle Emissions: Assessment of RSD Measurement Performance
– volume: 244
  year: 2021
  ident: 10.1016/j.envpol.2024.124780_bib17
  article-title: High-emitting vehicle identification by on-road emission remote sensing with scarce positive labels
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2020.117877
– volume: 782
  year: 2021
  ident: 10.1016/j.envpol.2024.124780_bib19
  article-title: Characteristics of NOx emission of light-duty diesel vehicle with LNT and SCR system by season and RDE phase
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146750
– volume: 252
  start-page: 31
  year: 2019
  ident: 10.1016/j.envpol.2024.124780_bib13
  article-title: Characterisation of diesel vehicle emissions and determination of remote sensing cutpoints for diesel high-emitters
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.04.130
– volume: 81
  start-page: 339
  year: 2013
  ident: 10.1016/j.envpol.2024.124780_bib3
  article-title: New insights from comprehensive on-road measurements of NOx, NO2 and NH3 from vehicle emission remote sensing in London, UK
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.09.026
– volume: 10
  start-page: 516
  year: 2019
  ident: 10.1016/j.envpol.2024.124780_bib27
  article-title: Measuring on-road vehicle emissions with multiple instruments including remote sensing
  publication-title: Atmosphere
  doi: 10.3390/atmos10090516
– start-page: 561
  year: 2016
  ident: 10.1016/j.envpol.2024.124780_bib20
  article-title: Remote sensing and artificial neural network estimation of on-road vehicle emissions
– volume: 271
  year: 2021
  ident: 10.1016/j.envpol.2024.124780_bib34
  article-title: Evaluating the ammonia emission from in-use vehicles using on-road remote sensing test
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.116384
– volume: 122
  start-page: 171
  year: 2015
  ident: 10.1016/j.envpol.2024.124780_bib18
  article-title: Evaluation of diesel fleet emissions and control policies from plume chasing measurements of on-road vehicles
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.09.048
– volume: 60
  start-page: 97
  year: 2017
  ident: 10.1016/j.envpol.2024.124780_bib6
  article-title: Fuel consumption and CO2 emissions from passenger cars in Europe Laboratory versus real-world emissions
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2016.12.004
– volume: 12
  year: 2017
  ident: 10.1016/j.envpol.2024.124780_bib16
  article-title: Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa8850
– year: 2023
  ident: 10.1016/j.envpol.2024.124780_bib35
– volume: 252
  year: 2021
  ident: 10.1016/j.envpol.2024.124780_bib26
  article-title: A decade of measuring on-road vehicle emissions with remote sensing in Australia
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2021.118317
– volume: 182
  start-page: 58
  year: 2018
  ident: 10.1016/j.envpol.2024.124780_bib12
  article-title: Remote sensing of on-road vehicle emissions: mechanism, applications and a case study from Hong Kong
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.03.035
– year: 2020
  ident: 10.1016/j.envpol.2024.124780_bib25
– volume: 666
  start-page: 337
  year: 2019
  ident: 10.1016/j.envpol.2024.124780_bib29
  article-title: A study on the CO2 and NOx emissions performance of Euro 6 diesel vehicles under various chassis dynamometer and on-road conditions including latest regulatory provisions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.144
– start-page: 4029
  year: 2017
  ident: 10.1016/j.envpol.2024.124780_bib32
  article-title: Analysis and prediction of vehicle exhaust emission using ANN
– volume: 659
  start-page: 275
  year: 2019
  ident: 10.1016/j.envpol.2024.124780_bib15
  article-title: Fuel consumption and emissions performance under real driving: comparison between hybrid and conventional vehicles
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.349
– volume: 169
  start-page: 193
  year: 2017
  ident: 10.1016/j.envpol.2024.124780_bib9
  article-title: Evaluation of emission factors for light-duty gasoline vehicles based on chassis dynamometer and tunnel studies in Shanghai, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.09.020
– volume: 740
  year: 2020
  ident: 10.1016/j.envpol.2024.124780_bib14
  article-title: Evaluating in-use vehicle emissions using air quality monitoring stations and on-road remote sensing systems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139868
– year: 1990
  ident: 10.1016/j.envpol.2024.124780_bib28
– volume: 70
  start-page: 84
  year: 2013
  ident: 10.1016/j.envpol.2024.124780_bib7
  article-title: Road vehicle emission factors development: a review
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.01.006
– volume: 259
  year: 2020
  ident: 10.1016/j.envpol.2024.124780_bib10
  article-title: Large eddy simulation of vehicle emissions dispersion: implications for on-road remote sensing measurements
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.113974
– volume: 61
  start-page: 671A
  year: 1989
  ident: 10.1016/j.envpol.2024.124780_bib2
  article-title: IR long-path photometry: a remote sensing tool for automobile emissions
  publication-title: Anal. Chem.
  doi: 10.1021/ac00185a746
– volume: 158
  year: 2022
  ident: 10.1016/j.envpol.2024.124780_bib31
  article-title: Super-learner model realizes the transient prediction of CO2 and NOx of diesel trucks: model development, evaluation and interpretation
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2021.106977
– volume: 49
  start-page: 234
  year: 2012
  ident: 10.1016/j.envpol.2024.124780_bib4
  article-title: Recommendations for the new WLTP cycle based on an analysis of vehicle emission measurements on NEDC and CADC
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2012.05.081
– volume: 17
  year: 2022
  ident: 10.1016/j.envpol.2024.124780_bib23
  article-title: Using snapshot measurements to identify high-emitting vehicles
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac5c9e
– volume: 266
  year: 2020
  ident: 10.1016/j.envpol.2024.124780_bib30
  article-title: CO2 emission in transportation sector across 51 countries along the Belt and Road from 2000 to 2014
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122000
– volume: 823
  year: 2022
  ident: 10.1016/j.envpol.2024.124780_bib33
  article-title: Detecting candidate high NOx emitting light commercial vehicles using vehicle emission remote sensing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153699
– volume: 72
  start-page: 4484
  year: 2023
  ident: 10.1016/j.envpol.2024.124780_bib36
  article-title: Performance of a remote sensing device based on a spectroscopic approach for the remote measurement of vehicle emissions
  publication-title: Transport. Res. Procedia
  doi: 10.1016/j.trpro.2023.11.295
SSID ssj0004333
Score 2.4595175
Snippet To evaluate the measurement accuracy of horizontal and vertical remote emission sensing (RES) equipment, a real-world dynamic test was carried out in Chengdu...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 124780
SubjectTerms Accuracy evaluation
Dynamic test
Remote emission sensing
Vehicle emissions
Title Evaluation of the accuracy of remote emission sensing measurements via real-world vehicle dynamic tests
URI https://dx.doi.org/10.1016/j.envpol.2024.124780
https://www.ncbi.nlm.nih.gov/pubmed/39173859
https://www.proquest.com/docview/3096279577
Volume 360
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9K97I9jC1dt-yjaDD25saKZEt-DCUlbVlf1kHfhCxLXUbrhDgJ9GV_--4su9lgY9BHmbN83Mm6O-nufgCfqtyWVQguGXstExlckehAkIC5y6zMx8G3Va5fLvPZN3l-nV3vwUlfC0Npld3eH_f0drfunow6aY6W8_noK0YP6AwXaKDIzZdUaC6lIhSD45-7NA8pIpw8EidE3ZfPtTlevt4uF3QBMZbHOI-i5pB_N0__cj9bM3T6Ap53_iObRBZfwp6vB3AwqTF2vrtnn1mb0dkelQ_g2W_NBgdwON3VtOEM3U_dHMDN9KHjN1sEhh4hs85tVtbd03jlUZueES4cnayxhlLe6xt2tztdbNh2bpHQ3iZtB1a29d-JPVZFvHuG_uy6eQVXp9Ork1nS4S8kTnBOKPXO-kKWXFrhvVKl0KkL2nFqqiZzic6mTzOXleNUV6XNlFC8qkLBBQ8eBX8I-_Wi9m-ASV2WHIlV4bTkVuusCHmeylDkEiM4MYSkl7pZxi4bpk8_-2GilgxpyUQtDUH1qjF_rBaDhuA_b37sNWlQbnQ7Ymu_2DRGpIRDVGRKDeF1VPEDLwKDWoFMv330d9_BUxrFKsb3sL9ebfwHdGfW5VG7Xo_gyeTsYnb5C2RE9Yo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N8QA8IOjYKDAwEuItaxzbsfM4TZ0KbHuhSHuzHMceRVtaNW2lvfC3c46TFaQhJB6TXJzTneP7nX0fAB-q3JSV9zbJnOIJ97ZIlA8tAXMrDM8z79os1_OLfPKNf74Ulztw0ufChLDKbu2Pa3q7Wnd3Rp00R4vZbPQVvQcEwwUaqADzuXgAD7nIZPDAjn5u4zw4i_3kkToJ5H3-XBvk5erNYh5OIDJ-hAPJUB3yfvv0N_zZ2qHTZ_C0A5DkOPL4HHZcPYC94xqd55tb8pG0IZ3tXvkAnvxWbXAA--NtUhuO0P3VzR5cje9KfpO5JwgJibF2vTT2NlwvHarTkdAYLmytkSbEvNdX5Ga7vdiQzcwgoblO2hKsZOO-B_ZIFRveEwS0q-YFTE_H05NJ0jVgSCyjNLSpt8YVvKTcMOekLJlKrVeWhqpqPOeINl0qrCizVFWlEZJJWlW-oIx6h4Lfh916XruXQLgqS4rEsrCKU6OUKHyep9wXOUcXjg0h6aWuF7HMhu7jz37oqCUdtKSjloYge9XoP6aLRkvwjzff95rUKLdwPGJqN183mqWhEVEhpBzCQVTxHS8MvVqGTL_67---g0eT6fmZPvt08eU1PA5PYkrjG9hdLdfuELHNqnzbzt1fEmr3Hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+accuracy+of+remote+emission+sensing+measurements+via+real-world+vehicle+dynamic+tests&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Tian%2C+Qili&rft.au=Yang%2C+Xinping&rft.au=Jiang%2C+Han&rft.au=Wang%2C+Xiaohu&rft.date=2024-11-01&rft.issn=0269-7491&rft.volume=360&rft.spage=124780&rft_id=info:doi/10.1016%2Fj.envpol.2024.124780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2024_124780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon