Artificial Intelligence-Enhanced Analysis of Echocardiography-Based Radiomic Features for Myocardial Hypertrophy Detection and Etiology Differentiation

BACKGROUND: While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect...

Full description

Saved in:
Bibliographic Details
Published inCirculation. Cardiovascular imaging Vol. 18; no. 5; p. e017436
Main Authors Moon, Inki, Lee, Jina, Lee, Seung-Ah, Jeong, Dawun, Jeon, Jaeik, Jang, Yeonggul, Jeong, Sihyeon, Kim, Jiyeon, Choi, Hong-Mi, Hwang, In-Chang, Hong, Youngtaek, Cho, Goo-Yeong, Yoon, Yeonyee E., Chang, Hyuk-Jae
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 01.05.2025
Subjects
Online AccessGet full text
ISSN1941-9651
1942-0080
1942-0080
DOI10.1161/CIRCIMAGING.124.017436

Cover

Abstract BACKGROUND: While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on echocardiographic images. METHODS: The developmental data sets from multiple medical centers included 867 subjects, with an independent external test set from a single tertiary medical center containing 619 subjects. Radiomic feature analysis was conducted on 4 echocardiographic views, extracting both conventional and harmonization-driven myocardial textures along with myocardial geographic features. Then, we developed classification models for each condition. Variable contributions were evaluated using Shapley Additive Explanations analysis. RESULTS: The radiomics-based LightGBM model, selected from internal validation, maintained strong performance in the external test set (area under the curve of 0.96 for HCM, 0.89 for CA, and 0.86 for HHD). Compared with the logistic regression model using conventional echocardiographic parameters (left ventricular ejection fraction, left ventricular mass index, left atrial volume index, and E/e′), the final model demonstrated superior sensitivity (0.89 versus 0.80 for HCM, 0.80 versus 0.80 for CA, and 0.75 versus 0.33 for HHD) and F1-score (0.87 versus 0.57 for HCM, 0.84 versus 0.72 for CA, and 0.82 versus 0.50 for HHD). Feature analysis highlighted that harmonization-driven textures played a key role in differentiating HCM, while conventional textures and myocardial thickness were influential in differentiating CA and HHD. CONCLUSIONS: This study confirms that artificial intelligence-enhanced echocardiography-based radiomics effectively differentiate the etiology of LVH, highlighting the potential of artificial intelligence-driven texture and geographic analysis in LVH evaluation.
AbstractList While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on echocardiographic images.BACKGROUNDWhile echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on echocardiographic images.The developmental data sets from multiple medical centers included 867 subjects, with an independent external test set from a single tertiary medical center containing 619 subjects. Radiomic feature analysis was conducted on 4 echocardiographic views, extracting both conventional and harmonization-driven myocardial textures along with myocardial geographic features. Then, we developed classification models for each condition. Variable contributions were evaluated using Shapley Additive Explanations analysis.METHODSThe developmental data sets from multiple medical centers included 867 subjects, with an independent external test set from a single tertiary medical center containing 619 subjects. Radiomic feature analysis was conducted on 4 echocardiographic views, extracting both conventional and harmonization-driven myocardial textures along with myocardial geographic features. Then, we developed classification models for each condition. Variable contributions were evaluated using Shapley Additive Explanations analysis.The radiomics-based LightGBM model, selected from internal validation, maintained strong performance in the external test set (area under the curve of 0.96 for HCM, 0.89 for CA, and 0.86 for HHD). Compared with the logistic regression model using conventional echocardiographic parameters (left ventricular ejection fraction, left ventricular mass index, left atrial volume index, and E/e'), the final model demonstrated superior sensitivity (0.89 versus 0.80 for HCM, 0.80 versus 0.80 for CA, and 0.75 versus 0.33 for HHD) and F1-score (0.87 versus 0.57 for HCM, 0.84 versus 0.72 for CA, and 0.82 versus 0.50 for HHD). Feature analysis highlighted that harmonization-driven textures played a key role in differentiating HCM, while conventional textures and myocardial thickness were influential in differentiating CA and HHD.RESULTSThe radiomics-based LightGBM model, selected from internal validation, maintained strong performance in the external test set (area under the curve of 0.96 for HCM, 0.89 for CA, and 0.86 for HHD). Compared with the logistic regression model using conventional echocardiographic parameters (left ventricular ejection fraction, left ventricular mass index, left atrial volume index, and E/e'), the final model demonstrated superior sensitivity (0.89 versus 0.80 for HCM, 0.80 versus 0.80 for CA, and 0.75 versus 0.33 for HHD) and F1-score (0.87 versus 0.57 for HCM, 0.84 versus 0.72 for CA, and 0.82 versus 0.50 for HHD). Feature analysis highlighted that harmonization-driven textures played a key role in differentiating HCM, while conventional textures and myocardial thickness were influential in differentiating CA and HHD.This study confirms that artificial intelligence-enhanced echocardiography-based radiomics effectively differentiate the etiology of LVH, highlighting the potential of artificial intelligence-driven texture and geographic analysis in LVH evaluation.CONCLUSIONSThis study confirms that artificial intelligence-enhanced echocardiography-based radiomics effectively differentiate the etiology of LVH, highlighting the potential of artificial intelligence-driven texture and geographic analysis in LVH evaluation.
While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on echocardiographic images. The developmental data sets from multiple medical centers included 867 subjects, with an independent external test set from a single tertiary medical center containing 619 subjects. Radiomic feature analysis was conducted on 4 echocardiographic views, extracting both conventional and harmonization-driven myocardial textures along with myocardial geographic features. Then, we developed classification models for each condition. Variable contributions were evaluated using Shapley Additive Explanations analysis. The radiomics-based LightGBM model, selected from internal validation, maintained strong performance in the external test set (area under the curve of 0.96 for HCM, 0.89 for CA, and 0.86 for HHD). Compared with the logistic regression model using conventional echocardiographic parameters (left ventricular ejection fraction, left ventricular mass index, left atrial volume index, and E/e'), the final model demonstrated superior sensitivity (0.89 versus 0.80 for HCM, 0.80 versus 0.80 for CA, and 0.75 versus 0.33 for HHD) and F1-score (0.87 versus 0.57 for HCM, 0.84 versus 0.72 for CA, and 0.82 versus 0.50 for HHD). Feature analysis highlighted that harmonization-driven textures played a key role in differentiating HCM, while conventional textures and myocardial thickness were influential in differentiating CA and HHD. This study confirms that artificial intelligence-enhanced echocardiography-based radiomics effectively differentiate the etiology of LVH, highlighting the potential of artificial intelligence-driven texture and geographic analysis in LVH evaluation.
BACKGROUND: While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on echocardiographic images. METHODS: The developmental data sets from multiple medical centers included 867 subjects, with an independent external test set from a single tertiary medical center containing 619 subjects. Radiomic feature analysis was conducted on 4 echocardiographic views, extracting both conventional and harmonization-driven myocardial textures along with myocardial geographic features. Then, we developed classification models for each condition. Variable contributions were evaluated using Shapley Additive Explanations analysis. RESULTS: The radiomics-based LightGBM model, selected from internal validation, maintained strong performance in the external test set (area under the curve of 0.96 for HCM, 0.89 for CA, and 0.86 for HHD). Compared with the logistic regression model using conventional echocardiographic parameters (left ventricular ejection fraction, left ventricular mass index, left atrial volume index, and E/e′), the final model demonstrated superior sensitivity (0.89 versus 0.80 for HCM, 0.80 versus 0.80 for CA, and 0.75 versus 0.33 for HHD) and F1-score (0.87 versus 0.57 for HCM, 0.84 versus 0.72 for CA, and 0.82 versus 0.50 for HHD). Feature analysis highlighted that harmonization-driven textures played a key role in differentiating HCM, while conventional textures and myocardial thickness were influential in differentiating CA and HHD. CONCLUSIONS: This study confirms that artificial intelligence-enhanced echocardiography-based radiomics effectively differentiate the etiology of LVH, highlighting the potential of artificial intelligence-driven texture and geographic analysis in LVH evaluation.
Author Cho, Goo-Yeong
Hwang, In-Chang
Lee, Seung-Ah
Jang, Yeonggul
Chang, Hyuk-Jae
Kim, Jiyeon
Lee, Jina
Jeong, Sihyeon
Jeon, Jaeik
Jeong, Dawun
Moon, Inki
Hong, Youngtaek
Choi, Hong-Mi
Yoon, Yeonyee E.
Author_xml – sequence: 1
  givenname: Inki
  orcidid: 0000-0002-3404-3012
  surname: Moon
  fullname: Moon, Inki
  email: rokstone4330@gmail.com
  organization: Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (I.M.)
– sequence: 2
  givenname: Jina
  orcidid: 0000-0003-1395-5474
  surname: Lee
  fullname: Lee, Jina
  email: salee0602@gmail.com
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.L., S.-A.L., D.J., S.J., J.K., H.-J.C.)
– sequence: 3
  givenname: Seung-Ah
  orcidid: 0000-0001-6964-8356
  surname: Lee
  fullname: Lee, Seung-Ah
  email: salee0602@gmail.com
  organization: Ontact Health, Seoul, Republic of Korea (S.-A.L., J.J., Y.J., Y.H., H.-J.C.)
– sequence: 4
  givenname: Dawun
  surname: Jeong
  fullname: Jeong, Dawun
  email: sihyeonjeong552@gmail.com
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.L., S.-A.L., D.J., S.J., J.K., H.-J.C.)
– sequence: 5
  givenname: Jaeik
  orcidid: 0000-0002-9737-3449
  surname: Jeon
  fullname: Jeon, Jaeik
  email: jaeikjeon9919@gmail.com
  organization: Ontact Health, Seoul, Republic of Korea (S.-A.L., J.J., Y.J., Y.H., H.-J.C.)
– sequence: 6
  givenname: Yeonggul
  surname: Jang
  fullname: Jang, Yeonggul
  email: ygjang@ontacthealth.com
  organization: Ontact Health, Seoul, Republic of Korea (S.-A.L., J.J., Y.J., Y.H., H.-J.C.)
– sequence: 7
  givenname: Sihyeon
  orcidid: 0009-0007-5753-7799
  surname: Jeong
  fullname: Jeong, Sihyeon
  email: sihyeonjeong552@gmail.com
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.L., S.-A.L., D.J., S.J., J.K., H.-J.C.)
– sequence: 8
  givenname: Jiyeon
  orcidid: 0009-0009-3419-9955
  surname: Kim
  fullname: Kim, Jiyeon
  email: wer2956@gmail.com
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.L., S.-A.L., D.J., S.J., J.K., H.-J.C.)
– sequence: 9
  givenname: Hong-Mi
  orcidid: 0000-0002-6856-2486
  surname: Choi
  fullname: Choi, Hong-Mi
  email: redrice35@gmail.com
  organization: Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea (H.-M.C., I.-C.H., G.-Y.C., Y.E.Y.)
– sequence: 10
  givenname: In-Chang
  orcidid: 0000-0003-4966-3924
  surname: Hwang
  fullname: Hwang, In-Chang
  email: inchang.hwang@gmail.com
  organization: Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea (H.-M.C., I.-C.H., G.-Y.C., Y.E.Y.)
– sequence: 11
  givenname: Youngtaek
  surname: Hong
  fullname: Hong, Youngtaek
  email: youngtaek@ontacthealth.com
  organization: Ontact Health, Seoul, Republic of Korea (S.-A.L., J.J., Y.J., Y.H., H.-J.C.)
– sequence: 12
  givenname: Goo-Yeong
  surname: Cho
  fullname: Cho, Goo-Yeong
  email: chogy@snubh.org
  organization: Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea (H.-M.C., I.-C.H., G.-Y.C., Y.E.Y.)
– sequence: 13
  givenname: Yeonyee E.
  surname: Yoon
  fullname: Yoon, Yeonyee E.
  organization: Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea (H.-M.C., I.-C.H., G.-Y.C., Y.E.Y.)
– sequence: 14
  givenname: Hyuk-Jae
  orcidid: 0000-0002-6139-7545
  surname: Chang
  fullname: Chang, Hyuk-Jae
  email: hjchang@yuhs.ac
  organization: Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea (H.-J.C.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40143828$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH_gFSov2WSwE09isxuG6TRSC1IFa8txbiYGjz3Yjqo8Ca-LSwpih7w4V9ffuYtzLtGZ8w4QuqZkRWlN323bh217v9m3n_YrWrIVoQ2r6hfoggpWFoRwcvZ7poWo1_QcXcb4jZC6Imv-Cp0zQlnFS36Bfm5CMoPRRlncugTWmgM4DcXOjSprjzdO2TmaiP2Ad3r0WoXe-ENQp3EuPqiYkQeVN0ej8Q2oNAWIePAB388Lmy_fzicIKfhswR8hgU7GO6xcj3d5sv6Q12YYIIBLRj19vkYvB2UjvHnWK_T1Zvdle1vcfd63281doaucQ6Fr0dOOUxBV11BgvCxZSRjv1mvSNdDUTU8BhiqLrqloGt50tCSCC-hK0enqCr1d7p6C_zFBTPJoos4xKAd-irKiPD_RMJ7R62d06o7Qy1MwRxVm-SfMDNQLoIOPMcDwF6FEPrUm_2lN5tbk0lo2vl-Mj94mCPG7nR4hyBGUTeP_zL8AV7Sf6g
Cites_doi 10.1053/euhj.1998.1314
10.48550/arXiv.1705.07874
10.1371/journal.pone.0227012
10.1016/j.amjcard.2016.02.044
10.1016/s0002-9149(83)80139-8
10.1038/s41591-021-01312-x
10.1016/j.jcmg.2020.03.025
10.1613/jair.953
10.4070/kcj.2024.0060
10.1161/CIRCULATIONAHA.108.845792
10.1016/0735-1097(89)90108-3
10.1097/HJH.0000000000000658
10.1038/ajh.2008.16
10.1016/j.jacc.2022.09.036
10.48550/arXiv.2308.16483
10.1109/CVPR52729.2023.01548
10.1001/jamacardio.2021.6059
10.1148/radiol.221693
10.1007/s00330-022-08653-2
10.1136/heartjnl-2011-301528
10.1038/s41598-022-25467-w
10.48550/arXiv.2310.08897
10.1007/s10554-021-02461-3
10.1093/eurheartj/ehad194
10.1016/j.echo.2024.02.005
10.21037/cdt-24-25
10.18637/jss.v036.i11
10.1007/11538059_91
10.1097/HJH.0b013e32835ac71b
10.1161/CIR.0000000000000792
10.1016/j.jcmg.2020.07.015
10.1016/j.ijrobp.2018.05.053
10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3
10.1016/j.echo.2010.05.020
10.1158/0008-5472.CAN-17-0339
10.1016/j.neuroimage.2017.11.024
ContentType Journal Article
Copyright 2025 American Heart Association, Inc.
Copyright_xml – notice: 2025 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCIMAGING.124.017436
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1942-0080
ExternalDocumentID 40143828
10_1161_CIRCIMAGING_124_017436
CIRCCVIM-2024-017436
Genre research-article
Multicenter Study
Journal Article
GroupedDBID ---
.XZ
.Z2
0R~
18M
29B
53G
5GY
5VS
6J9
AAAAV
AAHPQ
AAIQE
AAJCS
AARTV
AASCR
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADBBV
ADGGA
ADHPY
ADNKB
AEBDS
AEETU
AFBFQ
AFDTB
AFEXH
AFNMH
AFUWQ
AGINI
AHQNM
AHQVU
AHRYX
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BQLVK
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
EX3
F5P
FCALG
FL-
GNXGY
GQDEL
H13
HLJTE
HZ~
IKREB
IN~
IPNFZ
KD2
KQ8
KQB
L-C
O9-
ODMTH
ODZKP
OHYEH
OK1
OPUJH
OUVQU
OVD
OVDNE
OXXIT
P2P
P6G
RAH
RIG
RLZ
S4S
TEORI
TR2
TSPGW
V2I
W2D
W3M
W8F
WOW
ZZMQN
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3116-c69d1b81e93b71e482242048b550b7e767d1eef37d1c6197787b120989eb29bc3
ISSN 1941-9651
1942-0080
IngestDate Wed Jul 02 05:13:57 EDT 2025
Sat Jun 07 01:34:17 EDT 2025
Tue Jul 01 04:51:51 EDT 2025
Mon May 19 20:30:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords hypertrophy, left ventricular
radiomics
artificial intelligence
echocardiography
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3116-c69d1b81e93b71e482242048b550b7e767d1eef37d1c6197787b120989eb29bc3
Notes I. Moon and J. Lee contributed equally. For Sources of Funding and Disclosures, see page 378. Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCIMAGING.124.017436. Correspondence to: Yeonyee E. Yoon, MD, PhD, Department of Cardiology, Cardiovascular Center Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Seongnam, Gyeonggi, 13620, Republic of Korea. Email yeonyeeyoon@snubh.org
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1395-5474
0000-0001-6964-8356
0000-0002-9737-3449
0009-0007-5753-7799
0000-0003-4966-3924
0009-0009-3419-9955
0000-0002-3404-3012
0000-0002-6856-2486
0000-0002-6139-7545
PMID 40143828
PQID 3181819748
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3181819748
pubmed_primary_40143828
crossref_primary_10_1161_CIRCIMAGING_124_017436
wolterskluwer_health_10_1161_CIRCIMAGING_124_017436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-May
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May
PublicationDecade 2020
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation. Cardiovascular imaging
PublicationTitleAlternate Circ Cardiovasc Imaging
PublicationYear 2025
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
References Han, Wang, Mao (R37) 2005
Fortin, Cullen, Sheline, Taylor, Aselcioglu, Cook, Adams, Cooper, Fava, McGrath (R33) 2018; 167
Duffy, Cheng, Yuan, He, Kwan, Shun-Shin, Alexander, Ebinger, Lungren, Rader (R7) 2022; 7
Lee, Jeong, Jang, Jeong, Jung, Yoon, Moon, Lee, Chang (R17) 2023
Arbelo, Protonotarios, Gimeno, Arbustini, Barriales-Villa, Basso, Bezzina, Biagini, Blom, de Boer (R26) 2023; 44
Hathaway, Yanamala, Siva, Adjeroh, Hollander, Sengupta (R29) 2022; 80
Jang, Choi, Yoon, Jeon, Kim, Kim, Jeong, Ha, Hong, Lee (R14) 2024; 54
Ruilope, Schmieder (R3) 2008; 21
Hwang, Choi, Choi, Ju, Kim, Hong, Lee, Yoon, Park, Lee (R8) 2022; 12
Al'Aref, Singh, Choi, Xu, Maliakal, van Rosendael, Lee, Fatima, Andreini, Bax (R36) 2020; 13
van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (R16) 2017; 77
Chen, Pan, Wang, Schoepf, Bidwell, Qiao, Feng, Xu, Xu, Xie (R18) 2023; 307
Traverso, Wee, Dekker, Gillies (R32) 2018; 102
Chawla, Bowyer, Hall, Kegelmeyer (R20) 2002; 16
Datar, Cuddy, Ovsak, Giblin, Maurer, Ruberg, Arnaout, Dorbala (R30) 2024; 37
Yilmaz, Sechtem (R6) 2014; 100
Park, Jeon, Yoon, Jang, Kim, Jeong, Lee, Hong, Ha, Reza (R15) 2024; 14
Youden (R40) 1950; 3
Jeon, H, Yoon, Kim, Jeong, Jeong, Jang, Hong, Chang (R13) 2023
Schirmer, Lunde, Rasmussen (R1) 1999; 20
Wu, Wu, Daneshjou, Ouyang, Ho, Zou (R31) 2021; 27
Bhandari, Nanda (R27) 1983; 51
He, Bai, Garcia, Li (R38) 2008
Kursa, Rudnicki (R35) 2010; 36
Moon, Lee, Kim, Han, Kwak, Kim, Lee, Hwang, Lee, Park (R24) 2020; 15
Cuspidi, Facchetti, Bombelli, Sala, Tadic, Grassi, Mancia (R2) 2015; 33
Sengupta, Shrestha, Berthon, Messas, Donal, Tison, Min, D'Hooge, Voigt, Dudley (R12) 2020; 13
Weidemann, Niemann, Ertl, Stork (R4) 2010; 23
Ke, Finley, Wang, Chen, Ma, Ye, Liu (R19) 2017; 30
Maron, Hellawell, Lucove, Farzaneh-Far, Olivotto (R23) 2016; 117
R10
Drazner (R22) 2011; 123
Scott, Lundberg (R21) 2017
Yu, Yao, Wu, Zhou, Xia, Su, Wu, Zheng (R9) 2022; 38
Kittleson, Maurer, Ambardekar, Bullock-Palmer, Chang, Eisen, Nair, Nativi-Nicolau, Ruberg (R25) 2020; 142
R11
Woo, Debnath, Hu, Chen, Liu, Kweon, Xie (R34) 2023
Angeli, Reboldi, Verdecchia (R5) 2012; 30
Pinamonti, Picano, Ferdeghini, Lattanzi, Slavich, Landini, Camerini, Benassi, Distante, L'Abbate (R28) 1989; 14
Luo, Piao, Li, Li, Xia, Bao, Liu, Geng, Wu, Yang (R39) 2022; 32
Ke G (e_1_3_3_20_2) 2017; 30
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
40326361 - Circ Cardiovasc Imaging. 2025 May;18(5):e018291. doi: 10.1161/CIRCIMAGING.125.018291.
References_xml – volume: 20
  start-page: 429
  year: 1999
  end-page: 438
  ident: R1
  article-title: Prevalence of left ventricular hypertrophy in a general population; the Tromso Study.
  publication-title: Eur Heart J
– ident: R11
  article-title: Korea Research Institute of Standards and Science.
– start-page: 16133
  year: 2023
  end-page: 16142
  ident: R34
  article-title: ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders.
  publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit
– volume: 21
  start-page: 500
  year: 2008
  end-page: 508
  ident: R3
  article-title: Left ventricular hypertrophy and clinical outcomes in hypertensive patients.
  publication-title: Am J Hypertens
– volume: 14
  start-page: 352
  year: 2024
  end-page: 366
  ident: R15
  article-title: Artificial intelligence-enhanced automation of left ventricular diastolic assessment: a pilot study for feasibility, diagnostic validation, and outcome prediction.
  publication-title: Cardiovasc Diagn Ther
– volume: 32
  start-page: 5700
  year: 2022
  end-page: 5710
  ident: R39
  article-title: Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus.
  publication-title: Eur Radiol
– volume: 123
  start-page: 327
  year: 2011
  end-page: 334
  ident: R22
  article-title: The progression of hypertensive heart disease.
  publication-title: Circulation
– volume: 33
  start-page: 2133
  year: 2015
  end-page: 2140
  ident: R2
  article-title: Risk of mortality in relation to an updated classification of left ventricular geometric abnormalities in a general population: the Pamela study.
  publication-title: J Hypertens
– volume: 167
  start-page: 104
  year: 2018
  end-page: 120
  ident: R33
  article-title: Harmonization of cortical thickness measurements across scanners and sites.
  publication-title: Neuroimage
– year: 2005
  ident: R37
  article-title: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning.
– volume: 15
  start-page: e0227012
  year: 2020
  ident: R24
  article-title: Trends of the prevalence and incidence of hypertrophic cardiomyopathy in Korea: a nationwide population-based cohort study.
  publication-title: PLoS One
– volume: 14
  start-page: 666
  year: 1989
  end-page: 671
  ident: R28
  article-title: Quantitative texture analysis in two-dimensional echocardiography: application to the diagnosis of myocardial amyloidosis.
  publication-title: J Am Coll Cardiol
– volume: 13
  start-page: 2162
  year: 2020
  end-page: 2173
  ident: R36
  article-title: A boosted ensemble algorithm for determination of plaque stability in high-risk patients on coronary CTA.
  publication-title: JACC Cardiovasc Imaging
– volume: 3
  start-page: 32
  year: 1950
  end-page: 35
  ident: R40
  article-title: Index for rating diagnostic tests.
  publication-title: Cancer
– volume: 307
  start-page: e221693
  year: 2023
  ident: R18
  article-title: A coronary CT angiography radiomics model to identify vulnerable plaque and predict cardiovascular events.
  publication-title: Radiology
– volume: 7
  start-page: 386
  year: 2022
  end-page: 395
  ident: R7
  article-title: High-Throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning.
  publication-title: JAMA Cardiol
– start-page: 4768
  year: 2017
  end-page: 4777
  ident: R21
  article-title: A unified approach to interpreting model predictions.
– volume: 77
  start-page: e104
  year: 2017
  end-page: e107
  ident: R16
  article-title: Computational radiomics system to decode the radiographic phenotype.
  publication-title: Cancer Res
– volume: 80
  start-page: 2187
  year: 2022
  end-page: 2201
  ident: R29
  article-title: Ultrasonic texture features for assessing cardiac remodeling and dysfunction.
  publication-title: J Am Coll Cardiol
– year: 2023
  ident: R13
  article-title: Improving out-of-distribution detection in echocardiographic view classification through enhancing semantic features.
  publication-title: arXiv preprint arXiv:230816483
– volume: 44
  start-page: 3503
  year: 2023
  end-page: 3626
  ident: R26
  article-title: 2023 ESC Guidelines for the management of cardiomyopathies.
  publication-title: Eur Heart J
– volume: 36
  start-page: 1
  year: 2010
  end-page: 13
  ident: R35
  article-title: Feature selection with the Boruta package.
  publication-title: J Stat Softw
– volume: 23
  start-page: 793
  year: 2010
  end-page: 801
  ident: R4
  article-title: The different faces of echocardiographic left ventricular hypertrophy: clues to the etiology.
  publication-title: J Am Soc Echocardiogr
– volume: 51
  start-page: 817
  year: 1983
  end-page: 825
  ident: R27
  article-title: Myocardial texture characterization by two-dimensional echocardiography.
  publication-title: Am J Cardiol
– volume: 12
  start-page: 20998
  year: 2022
  ident: R8
  article-title: Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model.
  publication-title: Sci Rep
– volume: 30
  start-page: 3149
  year: 2017
  end-page: 3157
  ident: R19
  article-title: LightGBM: a highly efficient gradient boosting decision tree.
  publication-title: Adv Neural Inf Process Syst
– volume: 13
  start-page: 2017
  year: 2020
  end-page: 2035
  ident: R12
  article-title: Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist: reviewed by the American College of Cardiology Healthcare Innovation Council.
  publication-title: JACC Cardiovasc Imaging
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: R20
  article-title: SMOTE: synthetic minority over-sampling technique.
  publication-title: J Artif Intell Res
– volume: 27
  start-page: 582
  year: 2021
  end-page: 584
  ident: R31
  article-title: How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals.
  publication-title: Nat Med
– volume: 38
  start-page: 759
  year: 2022
  end-page: 769
  ident: R9
  article-title: Using deep learning method to identify left ventricular hypertrophy on echocardiography.
  publication-title: Int J Cardiovasc Imaging
– year: 2023
  ident: R17
  article-title: Self supervised convolutional kernel based handcrafted feature harmonization: enhanced left ventricle hypertension disease phenotyping on echocardiography.
  publication-title: arXiv preprint arXiv:231008897
– volume: 142
  start-page: e7
  year: 2020
  end-page: e22
  ident: R25
  article-title: Cardiac amyloidosis: evolving diagnosis and management: a scientific statement from the American Heart Association.
  publication-title: Circulation
– volume: 54
  start-page: 743
  year: 2024
  ident: R14
  article-title: An artificial intelligence-based automated echocardiographic analysis: enhancing efficiency and prognostic evaluation in patients with revascularized STEMI.
  publication-title: Korean Circ J
– volume: 37
  start-page: 570
  year: 2024
  end-page: 573
  ident: R30
  article-title: Myocardial texture analysis of echocardiograms in cardiac transthyretin amyloidosis.
  publication-title: J Am Soc Echocardiogr
– volume: 100
  start-page: 662
  year: 2014
  end-page: 671
  ident: R6
  article-title: Diagnostic approach and differential diagnosis in patients with hypertrophied left ventricles.
  publication-title: Heart
– ident: R10
  article-title: National Information Society.
– volume: 30
  start-page: 2279
  year: 2012
  end-page: 2284
  ident: R5
  article-title: Echocardiographic left ventricular hypertrophy: implications for clinicians.
  publication-title: J Hypertens
– volume: 117
  start-page: 1651
  year: 2016
  end-page: 1654
  ident: R23
  article-title: Occurrence of clinically diagnosed hypertrophic cardiomyopathy in the United States.
  publication-title: Am J Cardiol
– year: 2008
  ident: R38
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning.
– volume: 102
  start-page: 1143
  year: 2018
  end-page: 1158
  ident: R32
  article-title: Repeatability and reproducibility of radiomic features: a systematic review.
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 30
  start-page: 3149
  year: 2017
  ident: e_1_3_3_20_2
  article-title: LightGBM: a highly efficient gradient boosting decision tree.
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_3_3_2_2
  doi: 10.1053/euhj.1998.1314
– ident: e_1_3_3_22_2
  doi: 10.48550/arXiv.1705.07874
– ident: e_1_3_3_12_2
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.pone.0227012
– ident: e_1_3_3_24_2
  doi: 10.1016/j.amjcard.2016.02.044
– ident: e_1_3_3_28_2
  doi: 10.1016/s0002-9149(83)80139-8
– ident: e_1_3_3_32_2
  doi: 10.1038/s41591-021-01312-x
– ident: e_1_3_3_37_2
  doi: 10.1016/j.jcmg.2020.03.025
– ident: e_1_3_3_21_2
  doi: 10.1613/jair.953
– ident: e_1_3_3_15_2
  doi: 10.4070/kcj.2024.0060
– ident: e_1_3_3_23_2
  doi: 10.1161/CIRCULATIONAHA.108.845792
– ident: e_1_3_3_29_2
  doi: 10.1016/0735-1097(89)90108-3
– ident: e_1_3_3_3_2
  doi: 10.1097/HJH.0000000000000658
– ident: e_1_3_3_4_2
  doi: 10.1038/ajh.2008.16
– ident: e_1_3_3_30_2
  doi: 10.1016/j.jacc.2022.09.036
– ident: e_1_3_3_14_2
  doi: 10.48550/arXiv.2308.16483
– ident: e_1_3_3_35_2
  doi: 10.1109/CVPR52729.2023.01548
– ident: e_1_3_3_8_2
  doi: 10.1001/jamacardio.2021.6059
– ident: e_1_3_3_11_2
– ident: e_1_3_3_19_2
  doi: 10.1148/radiol.221693
– ident: e_1_3_3_40_2
  doi: 10.1007/s00330-022-08653-2
– ident: e_1_3_3_7_2
  doi: 10.1136/heartjnl-2011-301528
– ident: e_1_3_3_9_2
  doi: 10.1038/s41598-022-25467-w
– ident: e_1_3_3_18_2
  doi: 10.48550/arXiv.2310.08897
– ident: e_1_3_3_10_2
  doi: 10.1007/s10554-021-02461-3
– ident: e_1_3_3_27_2
  doi: 10.1093/eurheartj/ehad194
– ident: e_1_3_3_31_2
  doi: 10.1016/j.echo.2024.02.005
– ident: e_1_3_3_16_2
  doi: 10.21037/cdt-24-25
– ident: e_1_3_3_36_2
  doi: 10.18637/jss.v036.i11
– ident: e_1_3_3_39_2
– ident: e_1_3_3_38_2
  doi: 10.1007/11538059_91
– ident: e_1_3_3_6_2
  doi: 10.1097/HJH.0b013e32835ac71b
– ident: e_1_3_3_26_2
  doi: 10.1161/CIR.0000000000000792
– ident: e_1_3_3_13_2
  doi: 10.1016/j.jcmg.2020.07.015
– ident: e_1_3_3_33_2
  doi: 10.1016/j.ijrobp.2018.05.053
– ident: e_1_3_3_41_2
  doi: 10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3
– ident: e_1_3_3_5_2
  doi: 10.1016/j.echo.2010.05.020
– ident: e_1_3_3_17_2
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: e_1_3_3_34_2
  doi: 10.1016/j.neuroimage.2017.11.024
– reference: 40326361 - Circ Cardiovasc Imaging. 2025 May;18(5):e018291. doi: 10.1161/CIRCIMAGING.125.018291.
SSID ssj0063058
Score 2.4315412
Snippet BACKGROUND: While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH...
While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we...
SourceID proquest
pubmed
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Publisher
StartPage e017436
SubjectTerms Aged
Algorithms
Amyloidosis - complications
Amyloidosis - diagnostic imaging
Artificial Intelligence
Cardiomyopathy, Hypertrophic - diagnostic imaging
Diagnosis, Differential
Echocardiography - methods
Female
Humans
Hypertrophy, Left Ventricular - diagnostic imaging
Hypertrophy, Left Ventricular - etiology
Hypertrophy, Left Ventricular - physiopathology
Male
Middle Aged
Predictive Value of Tests
Radiomics
Ventricular Function, Left
Title Artificial Intelligence-Enhanced Analysis of Echocardiography-Based Radiomic Features for Myocardial Hypertrophy Detection and Etiology Differentiation
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&DO=10.1161/CIRCIMAGING.124.017436
https://www.ncbi.nlm.nih.gov/pubmed/40143828
https://www.proquest.com/docview/3181819748
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLbKuAEhBOKwjoOMxN3krk7SHC5L220ZtMDY0O6i-BBRDZIpSzXBi_BuPA2_7RxHJGCqlFZO41T5vv4H-_NvhF5L30ucxKaE0WRCHM92SBCPEzVuBe6GjYXQgznLlXt46hydTc4Gg18t1dKmYCP-o3ddyU1QhTbAVa2S_Q9k606hAT4DvnAEhOH4TxhPc630MfUymtKaZJF-MRP77ZIjCzB0XKtPTZFq8gYcmNg9jqFFCeRVMLiB5FsLD5ffzXdV6WHIVPMiz-ASsE6FLPcWT8XuoigrOM3LXVaKFs5V9YN1zssdwkZKXdIRv37TWyTVmGflMrT0fH1dJ1Ru8t1q-iTBTJFpPZp9JEtx8Ty-2qTtwQxr0kgHzWBGT1EKPZix_qoUQ8ZnGUMdOBZR4W6_JW_myrVZlmOVeLn9LsNVLmMWHs_C5fQgXB2MIOQZNRd0a3Sv3kcf5vvRu3D1tntShwSql9nncAkstZS4R_VxC922PIjrlGDgYz3D5YKd9csV6_AL9vrv3w2W_siA7qJ7V5kSVVye6zUVrcjo5AG6X6Y0eGr4-RANZPoI_Wy4iXu5iStu4izB_dzEFTdxxU0M3MQNN3GLm7jmJgZu4oqb-Bo3H6PT_cXJ7JCUm4AQbsOTIdwNBGU-lYHNPCodpXpWxaYZpNbMk57rCSplYsMbdylkM77H1HpwP5DMChi3n6CtNEvlNsLCFTH1wZ-7VgJ-y_c5HQtOvUQEfMKFNUR71dOOLkytl0jnyC6NWvhEgE9k8BmiVxUoEZhlNdcWpzLbXEbgKuEFybo_RE8NWnWfjqqp6Vtwxu7AF5mlz3-5586NrnqG7jT_t-doq8g38gWE0wV7qXn5G9-90Fc
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Enhanced+Analysis+of+Echocardiography-Based+Radiomic+Features+for+Myocardial+Hypertrophy+Detection+and+Etiology+Differentiation&rft.jtitle=Circulation.+Cardiovascular+imaging&rft.au=Moon%2C+Inki&rft.au=Lee%2C+Jina&rft.au=Lee%2C+Seung-Ah&rft.au=Jeong%2C+Dawun&rft.date=2025-05-01&rft.pub=Lippincott+Williams+%26+Wilkins&rft.eissn=1942-0080&rft.volume=18&rft.issue=5&rft.spage=e017436&rft_id=info:doi/10.1161%2FCIRCIMAGING.124.017436&rft.externalDBID=NO_PDF_LINK&rft.externalDocID=CIRCCVIM-2024-017436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-9651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-9651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-9651&client=summon