Artificial Intelligence-Enhanced Analysis of Echocardiography-Based Radiomic Features for Myocardial Hypertrophy Detection and Etiology Differentiation
BACKGROUND: While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect...
Saved in:
Published in | Circulation. Cardiovascular imaging Vol. 18; no. 5; p. e017436 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1941-9651 1942-0080 1942-0080 |
DOI | 10.1161/CIRCIMAGING.124.017436 |
Cover
Abstract | BACKGROUND:
While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on echocardiographic images.
METHODS:
The developmental data sets from multiple medical centers included 867 subjects, with an independent external test set from a single tertiary medical center containing 619 subjects. Radiomic feature analysis was conducted on 4 echocardiographic views, extracting both conventional and harmonization-driven myocardial textures along with myocardial geographic features. Then, we developed classification models for each condition. Variable contributions were evaluated using Shapley Additive Explanations analysis.
RESULTS:
The radiomics-based LightGBM model, selected from internal validation, maintained strong performance in the external test set (area under the curve of 0.96 for HCM, 0.89 for CA, and 0.86 for HHD). Compared with the logistic regression model using conventional echocardiographic parameters (left ventricular ejection fraction, left ventricular mass index, left atrial volume index, and E/e′), the final model demonstrated superior sensitivity (0.89 versus 0.80 for HCM, 0.80 versus 0.80 for CA, and 0.75 versus 0.33 for HHD) and F1-score (0.87 versus 0.57 for HCM, 0.84 versus 0.72 for CA, and 0.82 versus 0.50 for HHD). Feature analysis highlighted that harmonization-driven textures played a key role in differentiating HCM, while conventional textures and myocardial thickness were influential in differentiating CA and HHD.
CONCLUSIONS:
This study confirms that artificial intelligence-enhanced echocardiography-based radiomics effectively differentiate the etiology of LVH, highlighting the potential of artificial intelligence-driven texture and geographic analysis in LVH evaluation. |
---|---|
AbstractList | While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on echocardiographic images.BACKGROUNDWhile echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on echocardiographic images.The developmental data sets from multiple medical centers included 867 subjects, with an independent external test set from a single tertiary medical center containing 619 subjects. Radiomic feature analysis was conducted on 4 echocardiographic views, extracting both conventional and harmonization-driven myocardial textures along with myocardial geographic features. Then, we developed classification models for each condition. Variable contributions were evaluated using Shapley Additive Explanations analysis.METHODSThe developmental data sets from multiple medical centers included 867 subjects, with an independent external test set from a single tertiary medical center containing 619 subjects. Radiomic feature analysis was conducted on 4 echocardiographic views, extracting both conventional and harmonization-driven myocardial textures along with myocardial geographic features. Then, we developed classification models for each condition. Variable contributions were evaluated using Shapley Additive Explanations analysis.The radiomics-based LightGBM model, selected from internal validation, maintained strong performance in the external test set (area under the curve of 0.96 for HCM, 0.89 for CA, and 0.86 for HHD). Compared with the logistic regression model using conventional echocardiographic parameters (left ventricular ejection fraction, left ventricular mass index, left atrial volume index, and E/e'), the final model demonstrated superior sensitivity (0.89 versus 0.80 for HCM, 0.80 versus 0.80 for CA, and 0.75 versus 0.33 for HHD) and F1-score (0.87 versus 0.57 for HCM, 0.84 versus 0.72 for CA, and 0.82 versus 0.50 for HHD). Feature analysis highlighted that harmonization-driven textures played a key role in differentiating HCM, while conventional textures and myocardial thickness were influential in differentiating CA and HHD.RESULTSThe radiomics-based LightGBM model, selected from internal validation, maintained strong performance in the external test set (area under the curve of 0.96 for HCM, 0.89 for CA, and 0.86 for HHD). Compared with the logistic regression model using conventional echocardiographic parameters (left ventricular ejection fraction, left ventricular mass index, left atrial volume index, and E/e'), the final model demonstrated superior sensitivity (0.89 versus 0.80 for HCM, 0.80 versus 0.80 for CA, and 0.75 versus 0.33 for HHD) and F1-score (0.87 versus 0.57 for HCM, 0.84 versus 0.72 for CA, and 0.82 versus 0.50 for HHD). Feature analysis highlighted that harmonization-driven textures played a key role in differentiating HCM, while conventional textures and myocardial thickness were influential in differentiating CA and HHD.This study confirms that artificial intelligence-enhanced echocardiography-based radiomics effectively differentiate the etiology of LVH, highlighting the potential of artificial intelligence-driven texture and geographic analysis in LVH evaluation.CONCLUSIONSThis study confirms that artificial intelligence-enhanced echocardiography-based radiomics effectively differentiate the etiology of LVH, highlighting the potential of artificial intelligence-driven texture and geographic analysis in LVH evaluation. While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on echocardiographic images. The developmental data sets from multiple medical centers included 867 subjects, with an independent external test set from a single tertiary medical center containing 619 subjects. Radiomic feature analysis was conducted on 4 echocardiographic views, extracting both conventional and harmonization-driven myocardial textures along with myocardial geographic features. Then, we developed classification models for each condition. Variable contributions were evaluated using Shapley Additive Explanations analysis. The radiomics-based LightGBM model, selected from internal validation, maintained strong performance in the external test set (area under the curve of 0.96 for HCM, 0.89 for CA, and 0.86 for HHD). Compared with the logistic regression model using conventional echocardiographic parameters (left ventricular ejection fraction, left ventricular mass index, left atrial volume index, and E/e'), the final model demonstrated superior sensitivity (0.89 versus 0.80 for HCM, 0.80 versus 0.80 for CA, and 0.75 versus 0.33 for HHD) and F1-score (0.87 versus 0.57 for HCM, 0.84 versus 0.72 for CA, and 0.82 versus 0.50 for HHD). Feature analysis highlighted that harmonization-driven textures played a key role in differentiating HCM, while conventional textures and myocardial thickness were influential in differentiating CA and HHD. This study confirms that artificial intelligence-enhanced echocardiography-based radiomics effectively differentiate the etiology of LVH, highlighting the potential of artificial intelligence-driven texture and geographic analysis in LVH evaluation. BACKGROUND: While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-based radiomics. This algorithm is designed to detect LVH and differentiate its common etiologies, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HHD), based on echocardiographic images. METHODS: The developmental data sets from multiple medical centers included 867 subjects, with an independent external test set from a single tertiary medical center containing 619 subjects. Radiomic feature analysis was conducted on 4 echocardiographic views, extracting both conventional and harmonization-driven myocardial textures along with myocardial geographic features. Then, we developed classification models for each condition. Variable contributions were evaluated using Shapley Additive Explanations analysis. RESULTS: The radiomics-based LightGBM model, selected from internal validation, maintained strong performance in the external test set (area under the curve of 0.96 for HCM, 0.89 for CA, and 0.86 for HHD). Compared with the logistic regression model using conventional echocardiographic parameters (left ventricular ejection fraction, left ventricular mass index, left atrial volume index, and E/e′), the final model demonstrated superior sensitivity (0.89 versus 0.80 for HCM, 0.80 versus 0.80 for CA, and 0.75 versus 0.33 for HHD) and F1-score (0.87 versus 0.57 for HCM, 0.84 versus 0.72 for CA, and 0.82 versus 0.50 for HHD). Feature analysis highlighted that harmonization-driven textures played a key role in differentiating HCM, while conventional textures and myocardial thickness were influential in differentiating CA and HHD. CONCLUSIONS: This study confirms that artificial intelligence-enhanced echocardiography-based radiomics effectively differentiate the etiology of LVH, highlighting the potential of artificial intelligence-driven texture and geographic analysis in LVH evaluation. |
Author | Cho, Goo-Yeong Hwang, In-Chang Lee, Seung-Ah Jang, Yeonggul Chang, Hyuk-Jae Kim, Jiyeon Lee, Jina Jeong, Sihyeon Jeon, Jaeik Jeong, Dawun Moon, Inki Hong, Youngtaek Choi, Hong-Mi Yoon, Yeonyee E. |
Author_xml | – sequence: 1 givenname: Inki orcidid: 0000-0002-3404-3012 surname: Moon fullname: Moon, Inki email: rokstone4330@gmail.com organization: Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea (I.M.) – sequence: 2 givenname: Jina orcidid: 0000-0003-1395-5474 surname: Lee fullname: Lee, Jina email: salee0602@gmail.com organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.L., S.-A.L., D.J., S.J., J.K., H.-J.C.) – sequence: 3 givenname: Seung-Ah orcidid: 0000-0001-6964-8356 surname: Lee fullname: Lee, Seung-Ah email: salee0602@gmail.com organization: Ontact Health, Seoul, Republic of Korea (S.-A.L., J.J., Y.J., Y.H., H.-J.C.) – sequence: 4 givenname: Dawun surname: Jeong fullname: Jeong, Dawun email: sihyeonjeong552@gmail.com organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.L., S.-A.L., D.J., S.J., J.K., H.-J.C.) – sequence: 5 givenname: Jaeik orcidid: 0000-0002-9737-3449 surname: Jeon fullname: Jeon, Jaeik email: jaeikjeon9919@gmail.com organization: Ontact Health, Seoul, Republic of Korea (S.-A.L., J.J., Y.J., Y.H., H.-J.C.) – sequence: 6 givenname: Yeonggul surname: Jang fullname: Jang, Yeonggul email: ygjang@ontacthealth.com organization: Ontact Health, Seoul, Republic of Korea (S.-A.L., J.J., Y.J., Y.H., H.-J.C.) – sequence: 7 givenname: Sihyeon orcidid: 0009-0007-5753-7799 surname: Jeong fullname: Jeong, Sihyeon email: sihyeonjeong552@gmail.com organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.L., S.-A.L., D.J., S.J., J.K., H.-J.C.) – sequence: 8 givenname: Jiyeon orcidid: 0009-0009-3419-9955 surname: Kim fullname: Kim, Jiyeon email: wer2956@gmail.com organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea (J.L., S.-A.L., D.J., S.J., J.K., H.-J.C.) – sequence: 9 givenname: Hong-Mi orcidid: 0000-0002-6856-2486 surname: Choi fullname: Choi, Hong-Mi email: redrice35@gmail.com organization: Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea (H.-M.C., I.-C.H., G.-Y.C., Y.E.Y.) – sequence: 10 givenname: In-Chang orcidid: 0000-0003-4966-3924 surname: Hwang fullname: Hwang, In-Chang email: inchang.hwang@gmail.com organization: Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea (H.-M.C., I.-C.H., G.-Y.C., Y.E.Y.) – sequence: 11 givenname: Youngtaek surname: Hong fullname: Hong, Youngtaek email: youngtaek@ontacthealth.com organization: Ontact Health, Seoul, Republic of Korea (S.-A.L., J.J., Y.J., Y.H., H.-J.C.) – sequence: 12 givenname: Goo-Yeong surname: Cho fullname: Cho, Goo-Yeong email: chogy@snubh.org organization: Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea (H.-M.C., I.-C.H., G.-Y.C., Y.E.Y.) – sequence: 13 givenname: Yeonyee E. surname: Yoon fullname: Yoon, Yeonyee E. organization: Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea (H.-M.C., I.-C.H., G.-Y.C., Y.E.Y.) – sequence: 14 givenname: Hyuk-Jae orcidid: 0000-0002-6139-7545 surname: Chang fullname: Chang, Hyuk-Jae email: hjchang@yuhs.ac organization: Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea (H.-J.C.) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40143828$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH_gFSov2WSwE09isxuG6TRSC1IFa8txbiYGjz3Yjqo8Ca-LSwpih7w4V9ffuYtzLtGZ8w4QuqZkRWlN323bh217v9m3n_YrWrIVoQ2r6hfoggpWFoRwcvZ7poWo1_QcXcb4jZC6Imv-Cp0zQlnFS36Bfm5CMoPRRlncugTWmgM4DcXOjSprjzdO2TmaiP2Ad3r0WoXe-ENQp3EuPqiYkQeVN0ej8Q2oNAWIePAB388Lmy_fzicIKfhswR8hgU7GO6xcj3d5sv6Q12YYIIBLRj19vkYvB2UjvHnWK_T1Zvdle1vcfd63281doaucQ6Fr0dOOUxBV11BgvCxZSRjv1mvSNdDUTU8BhiqLrqloGt50tCSCC-hK0enqCr1d7p6C_zFBTPJoos4xKAd-irKiPD_RMJ7R62d06o7Qy1MwRxVm-SfMDNQLoIOPMcDwF6FEPrUm_2lN5tbk0lo2vl-Mj94mCPG7nR4hyBGUTeP_zL8AV7Sf6g |
Cites_doi | 10.1053/euhj.1998.1314 10.48550/arXiv.1705.07874 10.1371/journal.pone.0227012 10.1016/j.amjcard.2016.02.044 10.1016/s0002-9149(83)80139-8 10.1038/s41591-021-01312-x 10.1016/j.jcmg.2020.03.025 10.1613/jair.953 10.4070/kcj.2024.0060 10.1161/CIRCULATIONAHA.108.845792 10.1016/0735-1097(89)90108-3 10.1097/HJH.0000000000000658 10.1038/ajh.2008.16 10.1016/j.jacc.2022.09.036 10.48550/arXiv.2308.16483 10.1109/CVPR52729.2023.01548 10.1001/jamacardio.2021.6059 10.1148/radiol.221693 10.1007/s00330-022-08653-2 10.1136/heartjnl-2011-301528 10.1038/s41598-022-25467-w 10.48550/arXiv.2310.08897 10.1007/s10554-021-02461-3 10.1093/eurheartj/ehad194 10.1016/j.echo.2024.02.005 10.21037/cdt-24-25 10.18637/jss.v036.i11 10.1007/11538059_91 10.1097/HJH.0b013e32835ac71b 10.1161/CIR.0000000000000792 10.1016/j.jcmg.2020.07.015 10.1016/j.ijrobp.2018.05.053 10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3 10.1016/j.echo.2010.05.020 10.1158/0008-5472.CAN-17-0339 10.1016/j.neuroimage.2017.11.024 |
ContentType | Journal Article |
Copyright | 2025 American Heart Association, Inc. |
Copyright_xml | – notice: 2025 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/CIRCIMAGING.124.017436 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1942-0080 |
ExternalDocumentID | 40143828 10_1161_CIRCIMAGING_124_017436 CIRCCVIM-2024-017436 |
Genre | research-article Multicenter Study Journal Article |
GroupedDBID | --- .XZ .Z2 0R~ 18M 29B 53G 5GY 5VS 6J9 AAAAV AAHPQ AAIQE AAJCS AARTV AASCR ABASU ABBUW ABDIG ABJNI ABPXF ABVCZ ABXVJ ABXYN ABZAD ABZZY ACDDN ACEWG ACGFO ACGFS ACILI ACWDW ACWRI ACXJB ACXNZ ADBBV ADGGA ADHPY ADNKB AEBDS AEETU AFBFQ AFDTB AFEXH AFNMH AFUWQ AGINI AHQNM AHQVU AHRYX AHVBC AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BQLVK C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD EX3 F5P FCALG FL- GNXGY GQDEL H13 HLJTE HZ~ IKREB IN~ IPNFZ KD2 KQ8 KQB L-C O9- ODMTH ODZKP OHYEH OK1 OPUJH OUVQU OVD OVDNE OXXIT P2P P6G RAH RIG RLZ S4S TEORI TR2 TSPGW V2I W2D W3M W8F WOW ZZMQN AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3116-c69d1b81e93b71e482242048b550b7e767d1eef37d1c6197787b120989eb29bc3 |
ISSN | 1941-9651 1942-0080 |
IngestDate | Wed Jul 02 05:13:57 EDT 2025 Sat Jun 07 01:34:17 EDT 2025 Tue Jul 01 04:51:51 EDT 2025 Mon May 19 20:30:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | hypertrophy, left ventricular radiomics artificial intelligence echocardiography |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3116-c69d1b81e93b71e482242048b550b7e767d1eef37d1c6197787b120989eb29bc3 |
Notes | I. Moon and J. Lee contributed equally. For Sources of Funding and Disclosures, see page 378. Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCIMAGING.124.017436. Correspondence to: Yeonyee E. Yoon, MD, PhD, Department of Cardiology, Cardiovascular Center Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Seongnam, Gyeonggi, 13620, Republic of Korea. Email yeonyeeyoon@snubh.org ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1395-5474 0000-0001-6964-8356 0000-0002-9737-3449 0009-0007-5753-7799 0000-0003-4966-3924 0009-0009-3419-9955 0000-0002-3404-3012 0000-0002-6856-2486 0000-0002-6139-7545 |
PMID | 40143828 |
PQID | 3181819748 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3181819748 pubmed_primary_40143828 crossref_primary_10_1161_CIRCIMAGING_124_017436 wolterskluwer_health_10_1161_CIRCIMAGING_124_017436 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-May |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May |
PublicationDecade | 2020 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation. Cardiovascular imaging |
PublicationTitleAlternate | Circ Cardiovasc Imaging |
PublicationYear | 2025 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | Han, Wang, Mao (R37) 2005 Fortin, Cullen, Sheline, Taylor, Aselcioglu, Cook, Adams, Cooper, Fava, McGrath (R33) 2018; 167 Duffy, Cheng, Yuan, He, Kwan, Shun-Shin, Alexander, Ebinger, Lungren, Rader (R7) 2022; 7 Lee, Jeong, Jang, Jeong, Jung, Yoon, Moon, Lee, Chang (R17) 2023 Arbelo, Protonotarios, Gimeno, Arbustini, Barriales-Villa, Basso, Bezzina, Biagini, Blom, de Boer (R26) 2023; 44 Hathaway, Yanamala, Siva, Adjeroh, Hollander, Sengupta (R29) 2022; 80 Jang, Choi, Yoon, Jeon, Kim, Kim, Jeong, Ha, Hong, Lee (R14) 2024; 54 Ruilope, Schmieder (R3) 2008; 21 Hwang, Choi, Choi, Ju, Kim, Hong, Lee, Yoon, Park, Lee (R8) 2022; 12 Al'Aref, Singh, Choi, Xu, Maliakal, van Rosendael, Lee, Fatima, Andreini, Bax (R36) 2020; 13 van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (R16) 2017; 77 Chen, Pan, Wang, Schoepf, Bidwell, Qiao, Feng, Xu, Xu, Xie (R18) 2023; 307 Traverso, Wee, Dekker, Gillies (R32) 2018; 102 Chawla, Bowyer, Hall, Kegelmeyer (R20) 2002; 16 Datar, Cuddy, Ovsak, Giblin, Maurer, Ruberg, Arnaout, Dorbala (R30) 2024; 37 Yilmaz, Sechtem (R6) 2014; 100 Park, Jeon, Yoon, Jang, Kim, Jeong, Lee, Hong, Ha, Reza (R15) 2024; 14 Youden (R40) 1950; 3 Jeon, H, Yoon, Kim, Jeong, Jeong, Jang, Hong, Chang (R13) 2023 Schirmer, Lunde, Rasmussen (R1) 1999; 20 Wu, Wu, Daneshjou, Ouyang, Ho, Zou (R31) 2021; 27 Bhandari, Nanda (R27) 1983; 51 He, Bai, Garcia, Li (R38) 2008 Kursa, Rudnicki (R35) 2010; 36 Moon, Lee, Kim, Han, Kwak, Kim, Lee, Hwang, Lee, Park (R24) 2020; 15 Cuspidi, Facchetti, Bombelli, Sala, Tadic, Grassi, Mancia (R2) 2015; 33 Sengupta, Shrestha, Berthon, Messas, Donal, Tison, Min, D'Hooge, Voigt, Dudley (R12) 2020; 13 Weidemann, Niemann, Ertl, Stork (R4) 2010; 23 Ke, Finley, Wang, Chen, Ma, Ye, Liu (R19) 2017; 30 Maron, Hellawell, Lucove, Farzaneh-Far, Olivotto (R23) 2016; 117 R10 Drazner (R22) 2011; 123 Scott, Lundberg (R21) 2017 Yu, Yao, Wu, Zhou, Xia, Su, Wu, Zheng (R9) 2022; 38 Kittleson, Maurer, Ambardekar, Bullock-Palmer, Chang, Eisen, Nair, Nativi-Nicolau, Ruberg (R25) 2020; 142 R11 Woo, Debnath, Hu, Chen, Liu, Kweon, Xie (R34) 2023 Angeli, Reboldi, Verdecchia (R5) 2012; 30 Pinamonti, Picano, Ferdeghini, Lattanzi, Slavich, Landini, Camerini, Benassi, Distante, L'Abbate (R28) 1989; 14 Luo, Piao, Li, Li, Xia, Bao, Liu, Geng, Wu, Yang (R39) 2022; 32 Ke G (e_1_3_3_20_2) 2017; 30 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 40326361 - Circ Cardiovasc Imaging. 2025 May;18(5):e018291. doi: 10.1161/CIRCIMAGING.125.018291. |
References_xml | – volume: 20 start-page: 429 year: 1999 end-page: 438 ident: R1 article-title: Prevalence of left ventricular hypertrophy in a general population; the Tromso Study. publication-title: Eur Heart J – ident: R11 article-title: Korea Research Institute of Standards and Science. – start-page: 16133 year: 2023 end-page: 16142 ident: R34 article-title: ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders. publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit – volume: 21 start-page: 500 year: 2008 end-page: 508 ident: R3 article-title: Left ventricular hypertrophy and clinical outcomes in hypertensive patients. publication-title: Am J Hypertens – volume: 14 start-page: 352 year: 2024 end-page: 366 ident: R15 article-title: Artificial intelligence-enhanced automation of left ventricular diastolic assessment: a pilot study for feasibility, diagnostic validation, and outcome prediction. publication-title: Cardiovasc Diagn Ther – volume: 32 start-page: 5700 year: 2022 end-page: 5710 ident: R39 article-title: Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus. publication-title: Eur Radiol – volume: 123 start-page: 327 year: 2011 end-page: 334 ident: R22 article-title: The progression of hypertensive heart disease. publication-title: Circulation – volume: 33 start-page: 2133 year: 2015 end-page: 2140 ident: R2 article-title: Risk of mortality in relation to an updated classification of left ventricular geometric abnormalities in a general population: the Pamela study. publication-title: J Hypertens – volume: 167 start-page: 104 year: 2018 end-page: 120 ident: R33 article-title: Harmonization of cortical thickness measurements across scanners and sites. publication-title: Neuroimage – year: 2005 ident: R37 article-title: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. – volume: 15 start-page: e0227012 year: 2020 ident: R24 article-title: Trends of the prevalence and incidence of hypertrophic cardiomyopathy in Korea: a nationwide population-based cohort study. publication-title: PLoS One – volume: 14 start-page: 666 year: 1989 end-page: 671 ident: R28 article-title: Quantitative texture analysis in two-dimensional echocardiography: application to the diagnosis of myocardial amyloidosis. publication-title: J Am Coll Cardiol – volume: 13 start-page: 2162 year: 2020 end-page: 2173 ident: R36 article-title: A boosted ensemble algorithm for determination of plaque stability in high-risk patients on coronary CTA. publication-title: JACC Cardiovasc Imaging – volume: 3 start-page: 32 year: 1950 end-page: 35 ident: R40 article-title: Index for rating diagnostic tests. publication-title: Cancer – volume: 307 start-page: e221693 year: 2023 ident: R18 article-title: A coronary CT angiography radiomics model to identify vulnerable plaque and predict cardiovascular events. publication-title: Radiology – volume: 7 start-page: 386 year: 2022 end-page: 395 ident: R7 article-title: High-Throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning. publication-title: JAMA Cardiol – start-page: 4768 year: 2017 end-page: 4777 ident: R21 article-title: A unified approach to interpreting model predictions. – volume: 77 start-page: e104 year: 2017 end-page: e107 ident: R16 article-title: Computational radiomics system to decode the radiographic phenotype. publication-title: Cancer Res – volume: 80 start-page: 2187 year: 2022 end-page: 2201 ident: R29 article-title: Ultrasonic texture features for assessing cardiac remodeling and dysfunction. publication-title: J Am Coll Cardiol – year: 2023 ident: R13 article-title: Improving out-of-distribution detection in echocardiographic view classification through enhancing semantic features. publication-title: arXiv preprint arXiv:230816483 – volume: 44 start-page: 3503 year: 2023 end-page: 3626 ident: R26 article-title: 2023 ESC Guidelines for the management of cardiomyopathies. publication-title: Eur Heart J – volume: 36 start-page: 1 year: 2010 end-page: 13 ident: R35 article-title: Feature selection with the Boruta package. publication-title: J Stat Softw – volume: 23 start-page: 793 year: 2010 end-page: 801 ident: R4 article-title: The different faces of echocardiographic left ventricular hypertrophy: clues to the etiology. publication-title: J Am Soc Echocardiogr – volume: 51 start-page: 817 year: 1983 end-page: 825 ident: R27 article-title: Myocardial texture characterization by two-dimensional echocardiography. publication-title: Am J Cardiol – volume: 12 start-page: 20998 year: 2022 ident: R8 article-title: Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model. publication-title: Sci Rep – volume: 30 start-page: 3149 year: 2017 end-page: 3157 ident: R19 article-title: LightGBM: a highly efficient gradient boosting decision tree. publication-title: Adv Neural Inf Process Syst – volume: 13 start-page: 2017 year: 2020 end-page: 2035 ident: R12 article-title: Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist: reviewed by the American College of Cardiology Healthcare Innovation Council. publication-title: JACC Cardiovasc Imaging – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: R20 article-title: SMOTE: synthetic minority over-sampling technique. publication-title: J Artif Intell Res – volume: 27 start-page: 582 year: 2021 end-page: 584 ident: R31 article-title: How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals. publication-title: Nat Med – volume: 38 start-page: 759 year: 2022 end-page: 769 ident: R9 article-title: Using deep learning method to identify left ventricular hypertrophy on echocardiography. publication-title: Int J Cardiovasc Imaging – year: 2023 ident: R17 article-title: Self supervised convolutional kernel based handcrafted feature harmonization: enhanced left ventricle hypertension disease phenotyping on echocardiography. publication-title: arXiv preprint arXiv:231008897 – volume: 142 start-page: e7 year: 2020 end-page: e22 ident: R25 article-title: Cardiac amyloidosis: evolving diagnosis and management: a scientific statement from the American Heart Association. publication-title: Circulation – volume: 54 start-page: 743 year: 2024 ident: R14 article-title: An artificial intelligence-based automated echocardiographic analysis: enhancing efficiency and prognostic evaluation in patients with revascularized STEMI. publication-title: Korean Circ J – volume: 37 start-page: 570 year: 2024 end-page: 573 ident: R30 article-title: Myocardial texture analysis of echocardiograms in cardiac transthyretin amyloidosis. publication-title: J Am Soc Echocardiogr – volume: 100 start-page: 662 year: 2014 end-page: 671 ident: R6 article-title: Diagnostic approach and differential diagnosis in patients with hypertrophied left ventricles. publication-title: Heart – ident: R10 article-title: National Information Society. – volume: 30 start-page: 2279 year: 2012 end-page: 2284 ident: R5 article-title: Echocardiographic left ventricular hypertrophy: implications for clinicians. publication-title: J Hypertens – volume: 117 start-page: 1651 year: 2016 end-page: 1654 ident: R23 article-title: Occurrence of clinically diagnosed hypertrophic cardiomyopathy in the United States. publication-title: Am J Cardiol – year: 2008 ident: R38 article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning. – volume: 102 start-page: 1143 year: 2018 end-page: 1158 ident: R32 article-title: Repeatability and reproducibility of radiomic features: a systematic review. publication-title: Int J Radiat Oncol Biol Phys – volume: 30 start-page: 3149 year: 2017 ident: e_1_3_3_20_2 article-title: LightGBM: a highly efficient gradient boosting decision tree. publication-title: Adv Neural Inf Process Syst – ident: e_1_3_3_2_2 doi: 10.1053/euhj.1998.1314 – ident: e_1_3_3_22_2 doi: 10.48550/arXiv.1705.07874 – ident: e_1_3_3_12_2 – ident: e_1_3_3_25_2 doi: 10.1371/journal.pone.0227012 – ident: e_1_3_3_24_2 doi: 10.1016/j.amjcard.2016.02.044 – ident: e_1_3_3_28_2 doi: 10.1016/s0002-9149(83)80139-8 – ident: e_1_3_3_32_2 doi: 10.1038/s41591-021-01312-x – ident: e_1_3_3_37_2 doi: 10.1016/j.jcmg.2020.03.025 – ident: e_1_3_3_21_2 doi: 10.1613/jair.953 – ident: e_1_3_3_15_2 doi: 10.4070/kcj.2024.0060 – ident: e_1_3_3_23_2 doi: 10.1161/CIRCULATIONAHA.108.845792 – ident: e_1_3_3_29_2 doi: 10.1016/0735-1097(89)90108-3 – ident: e_1_3_3_3_2 doi: 10.1097/HJH.0000000000000658 – ident: e_1_3_3_4_2 doi: 10.1038/ajh.2008.16 – ident: e_1_3_3_30_2 doi: 10.1016/j.jacc.2022.09.036 – ident: e_1_3_3_14_2 doi: 10.48550/arXiv.2308.16483 – ident: e_1_3_3_35_2 doi: 10.1109/CVPR52729.2023.01548 – ident: e_1_3_3_8_2 doi: 10.1001/jamacardio.2021.6059 – ident: e_1_3_3_11_2 – ident: e_1_3_3_19_2 doi: 10.1148/radiol.221693 – ident: e_1_3_3_40_2 doi: 10.1007/s00330-022-08653-2 – ident: e_1_3_3_7_2 doi: 10.1136/heartjnl-2011-301528 – ident: e_1_3_3_9_2 doi: 10.1038/s41598-022-25467-w – ident: e_1_3_3_18_2 doi: 10.48550/arXiv.2310.08897 – ident: e_1_3_3_10_2 doi: 10.1007/s10554-021-02461-3 – ident: e_1_3_3_27_2 doi: 10.1093/eurheartj/ehad194 – ident: e_1_3_3_31_2 doi: 10.1016/j.echo.2024.02.005 – ident: e_1_3_3_16_2 doi: 10.21037/cdt-24-25 – ident: e_1_3_3_36_2 doi: 10.18637/jss.v036.i11 – ident: e_1_3_3_39_2 – ident: e_1_3_3_38_2 doi: 10.1007/11538059_91 – ident: e_1_3_3_6_2 doi: 10.1097/HJH.0b013e32835ac71b – ident: e_1_3_3_26_2 doi: 10.1161/CIR.0000000000000792 – ident: e_1_3_3_13_2 doi: 10.1016/j.jcmg.2020.07.015 – ident: e_1_3_3_33_2 doi: 10.1016/j.ijrobp.2018.05.053 – ident: e_1_3_3_41_2 doi: 10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3 – ident: e_1_3_3_5_2 doi: 10.1016/j.echo.2010.05.020 – ident: e_1_3_3_17_2 doi: 10.1158/0008-5472.CAN-17-0339 – ident: e_1_3_3_34_2 doi: 10.1016/j.neuroimage.2017.11.024 – reference: 40326361 - Circ Cardiovasc Imaging. 2025 May;18(5):e018291. doi: 10.1161/CIRCIMAGING.125.018291. |
SSID | ssj0063058 |
Score | 2.4315412 |
Snippet | BACKGROUND:
While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH... While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e017436 |
SubjectTerms | Aged Algorithms Amyloidosis - complications Amyloidosis - diagnostic imaging Artificial Intelligence Cardiomyopathy, Hypertrophic - diagnostic imaging Diagnosis, Differential Echocardiography - methods Female Humans Hypertrophy, Left Ventricular - diagnostic imaging Hypertrophy, Left Ventricular - etiology Hypertrophy, Left Ventricular - physiopathology Male Middle Aged Predictive Value of Tests Radiomics Ventricular Function, Left |
Title | Artificial Intelligence-Enhanced Analysis of Echocardiography-Based Radiomic Features for Myocardial Hypertrophy Detection and Etiology Differentiation |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&DO=10.1161/CIRCIMAGING.124.017436 https://www.ncbi.nlm.nih.gov/pubmed/40143828 https://www.proquest.com/docview/3181819748 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLbKuAEhBOKwjoOMxN3krk7SHC5L220ZtMDY0O6i-BBRDZIpSzXBi_BuPA2_7RxHJGCqlFZO41T5vv4H-_NvhF5L30ucxKaE0WRCHM92SBCPEzVuBe6GjYXQgznLlXt46hydTc4Gg18t1dKmYCP-o3ddyU1QhTbAVa2S_Q9k606hAT4DvnAEhOH4TxhPc630MfUymtKaZJF-MRP77ZIjCzB0XKtPTZFq8gYcmNg9jqFFCeRVMLiB5FsLD5ffzXdV6WHIVPMiz-ASsE6FLPcWT8XuoigrOM3LXVaKFs5V9YN1zssdwkZKXdIRv37TWyTVmGflMrT0fH1dJ1Ru8t1q-iTBTJFpPZp9JEtx8Ty-2qTtwQxr0kgHzWBGT1EKPZix_qoUQ8ZnGUMdOBZR4W6_JW_myrVZlmOVeLn9LsNVLmMWHs_C5fQgXB2MIOQZNRd0a3Sv3kcf5vvRu3D1tntShwSql9nncAkstZS4R_VxC922PIjrlGDgYz3D5YKd9csV6_AL9vrv3w2W_siA7qJ7V5kSVVye6zUVrcjo5AG6X6Y0eGr4-RANZPoI_Wy4iXu5iStu4izB_dzEFTdxxU0M3MQNN3GLm7jmJgZu4oqb-Bo3H6PT_cXJ7JCUm4AQbsOTIdwNBGU-lYHNPCodpXpWxaYZpNbMk57rCSplYsMbdylkM77H1HpwP5DMChi3n6CtNEvlNsLCFTH1wZ-7VgJ-y_c5HQtOvUQEfMKFNUR71dOOLkytl0jnyC6NWvhEgE9k8BmiVxUoEZhlNdcWpzLbXEbgKuEFybo_RE8NWnWfjqqp6Vtwxu7AF5mlz3-5586NrnqG7jT_t-doq8g38gWE0wV7qXn5G9-90Fc |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Enhanced+Analysis+of+Echocardiography-Based+Radiomic+Features+for+Myocardial+Hypertrophy+Detection+and+Etiology+Differentiation&rft.jtitle=Circulation.+Cardiovascular+imaging&rft.au=Moon%2C+Inki&rft.au=Lee%2C+Jina&rft.au=Lee%2C+Seung-Ah&rft.au=Jeong%2C+Dawun&rft.date=2025-05-01&rft.pub=Lippincott+Williams+%26+Wilkins&rft.eissn=1942-0080&rft.volume=18&rft.issue=5&rft.spage=e017436&rft_id=info:doi/10.1161%2FCIRCIMAGING.124.017436&rft.externalDBID=NO_PDF_LINK&rft.externalDocID=CIRCCVIM-2024-017436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-9651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-9651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-9651&client=summon |