A pragmatic approach to recover access time of Apriori algorithm by applying intersection on CSS for redefining FIS through matrix implementation in textual data
Nowadays data analytics OLAP (online Analytical Processing) is mostly accepted domain of current researchers and the concept of data mining serves better for the same. There are so many data mining methodologies defined for data analytics. Mining Association rule is widely used in data mining method...
        Saved in:
      
    
          | Published in | Journal of discrete mathematical sciences & cryptography Vol. 25; no. 4; pp. 871 - 878 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Taylor & Francis
    
        19.05.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0972-0529 2169-0065  | 
| DOI | 10.1080/09720529.2022.2068601 | 
Cover
| Abstract | Nowadays data analytics OLAP (online Analytical Processing) is mostly accepted domain of current researchers and the concept of data mining serves better for the same. There are so many data mining methodologies defined for data analytics. Mining Association rule is widely used in data mining methods for data categorization. Apriori Algorithm is popular method for defining n-element. Frequent item set form k number of huge transactional data set online transaction processing (OLTP) using Association Mining rule (AMR). In this paper, researchers executed original Apriori on transactional data set containing 35039 number of transactions, divided into three data sets DS-1 to DS-3 with 20039, 12000, 5000 number of transactions with variable length with minimum support of 30%, 60% and 80% respectively. Researchers carried out experimental work and compared results of Apriori Algorithm with our proposed algorithm (enhanced version of Apriori algorithm) on the same perimeter and state improvement with 11%, 30% and 27% of Rate of Improvements in DS-1 to Ds-3 respectively for 30% minimum support. Our proposed algorithm is working far much better then Apriori algorithm at each parameter which was included to conclude the results. | 
    
|---|---|
| AbstractList | Nowadays data analytics OLAP (online Analytical Processing) is mostly accepted domain of current researchers and the concept of data mining serves better for the same. There are so many data mining methodologies defined for data analytics. Mining Association rule is widely used in data mining methods for data categorization. Apriori Algorithm is popular method for defining n-element. Frequent item set form k number of huge transactional data set online transaction processing (OLTP) using Association Mining rule (AMR). In this paper, researchers executed original Apriori on transactional data set containing 35039 number of transactions, divided into three data sets DS-1 to DS-3 with 20039, 12000, 5000 number of transactions with variable length with minimum support of 30%, 60% and 80% respectively. Researchers carried out experimental work and compared results of Apriori Algorithm with our proposed algorithm (enhanced version of Apriori algorithm) on the same perimeter and state improvement with 11%, 30% and 27% of Rate of Improvements in DS-1 to Ds-3 respectively for 30% minimum support. Our proposed algorithm is working far much better then Apriori algorithm at each parameter which was included to conclude the results. | 
    
| Author | Verma, Neeraj Kumar Singh, Vaishali  | 
    
| Author_xml | – sequence: 1 givenname: Neeraj Kumar surname: Verma fullname: Verma, Neeraj Kumar email: er.neerajkumar@gmail.com organization: Maharishi University of Information Technology – sequence: 2 givenname: Vaishali surname: Singh fullname: Singh, Vaishali organization: Maharishi University of Information Technology  | 
    
| BookMark | eNqFkMFu1DAQhi1UJLaFR0CaF0hxnMRJxIXVikKlSj0snKNZ73jXKLGjsQvdx-mb4rDthQNII8_l__6xvktx4YMnId6X8rqUnfwg-1bJRvXXSiqVH91pWb4SK1XqvpBSNxditWSKJfRGXMb4Q8qmV2W_Ek9rmBkPEyZnAOeZA5ojpABMJvwkBjSGYoTkJoJgYT2zC-wAx0Ne6TjB7rRw48n5AzifiCOZ5IKHPJvtFmzgXLYn6_wSubndQjpyeDgcIV9l9whumkeayCf8wzkPiR7TA46wx4RvxWuLY6R3z_tKfL_5_G3ztbi7_3K7Wd8VpiplKqysiXaqV9jpqlXUY9011JaKtO5J6tbWVNvsC9u6baQi1FYrs7PYYoeVrq7Ex3Ov4RAjkx2MO_8oMbpxKOWw2B5ebA-L7eHZdqabv-gsakI-_Zf7dOacz6Im_BV43A8JT2Ngy-iNi0P174rf_wKb_Q | 
    
| CitedBy_id | crossref_primary_10_1007_s41870_024_02214_0 crossref_primary_10_1142_S0218539324500360  | 
    
| Cites_doi | 10.1080/02522667.2012.10700162 10.1109/ICRAIE51050.2020.9358344 10.46610/JoDMM.2021.v06i01.003 10.1080/09720502.2017.1420575 10.1016/j.fss.2004.03.028 10.1080/02522667.2017.1372143 10.1007/s10115-007-0114-2  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Taru Publications 2022 | 
    
| Copyright_xml | – notice: 2022 Taru Publications 2022 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1080/09720529.2022.2068601 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2169-0065 | 
    
| EndPage | 878 | 
    
| ExternalDocumentID | 10_1080_09720529_2022_2068601 2068601  | 
    
| Genre | Research Article | 
    
| GroupedDBID | 30N 4.4 ABCCY ABFIM ABPEM ABTAI ABXYU ACGFS ACTIO ADCVX AEYOC AGDLA AIJEM AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG DGEBU DKSSO EBS E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J9A KYCEM LJTGL M4Z O9- P2P S-T SNACF TDBHL TFW TTHFI UT5 AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c310t-f04eeb292a86372e9a485e712e669e067f4e4f108a747502ea6f62cbfa7a8a363 | 
    
| ISSN | 0972-0529 | 
    
| IngestDate | Wed Oct 01 01:46:49 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 Mon Oct 20 23:48:17 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c310t-f04eeb292a86372e9a485e712e669e067f4e4f108a747502ea6f62cbfa7a8a363 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | crossref_citationtrail_10_1080_09720529_2022_2068601 crossref_primary_10_1080_09720529_2022_2068601 informaworld_taylorfrancis_310_1080_09720529_2022_2068601  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-05-19 | 
    
| PublicationDateYYYYMMDD | 2022-05-19 | 
    
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-19 day: 19  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of discrete mathematical sciences & cryptography | 
    
| PublicationYear | 2022 | 
    
| Publisher | Taylor & Francis | 
    
| Publisher_xml | – name: Taylor & Francis | 
    
| References | Maimon Oded (CIT0005) 2009 CIT0001 Han J. (CIT0009) 2000 CIT0011 CIT0003 Verma N.K (CIT0006) 2020; 12 CIT0002 Fayyad U. (CIT0010) 1996; 17 CIT0004 CIT0007 CIT0008  | 
    
| References_xml | – volume: 17 start-page: 37 issue: 3 year: 1996 ident: CIT0010 publication-title: AI Magazine – ident: CIT0007 doi: 10.1080/02522667.2012.10700162 – volume: 12 start-page: 1047 issue: 11 year: 2020 ident: CIT0006 publication-title: Turkish Journal of Computer and Mathematics Education – volume-title: Data Mining: Concepts and Techniques year: 2000 ident: CIT0009 – ident: CIT0004 doi: 10.1109/ICRAIE51050.2020.9358344 – ident: CIT0011 doi: 10.46610/JoDMM.2021.v06i01.003 – ident: CIT0008 doi: 10.1080/09720502.2017.1420575 – ident: CIT0001 doi: 10.1016/j.fss.2004.03.028 – ident: CIT0002 doi: 10.1080/02522667.2017.1372143 – ident: CIT0003 doi: 10.1007/s10115-007-0114-2 – start-page: 1 year: 2009 ident: CIT0005 publication-title: Data Mining and Knowledge Discovery Handbook  | 
    
| SSID | ssj0059219 | 
    
| Score | 2.2022827 | 
    
| Snippet | Nowadays data analytics OLAP (online Analytical Processing) is mostly accepted domain of current researchers and the concept of data mining serves better for... | 
    
| SourceID | crossref informaworld  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 871 | 
    
| SubjectTerms | Apriori Frequent item set Matrix Minimum threshold OLAP OLTP Primary 93A30 Secondary 49K15  | 
    
| Title | A pragmatic approach to recover access time of Apriori algorithm by applying intersection on CSS for redefining FIS through matrix implementation in textual data | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/09720529.2022.2068601 | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 2169-0065 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059219 issn: 0972-0529 databaseCode: 30N dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbp9tJL36XbF3PozTgksizLx7B02Ra6l2TL3ozsSNuUbBKMFzb9N_0r_WWdkWTHoaFPMEpQIlvxfJZGE833MfY24ZpXjnzQVDoWOsVxUBgbK51Ypee8zOYU0P94Ls8uxIfL9HIw-N7btXTTlMPq68G8kn-xKtahXSlL9i8s250UK_A92hdLtDCWf2TjCSU5XQXS1c0uOYpWufhjIu3UEJ1-vPc468W6XkR6eYUvzedr8j3pH-ytT2whok3jpcPxOJlO3R7E2syNdTIS0en7aSfsc03c_reUZRk2oHe7JnG4p5yUkPV2yPWlVOAavXU6SSCNbXMzKxcGllFVbzdNn06bRMFoFnHwNabWXyK3PbwLEWEHXYjokxOUXi768QxcChMV6m7UnP0kLdKPWWb09RAiMa6Oj2UekyPVH9J9LnWAruiNz8rrvXRTvTo4i4Rtl3g1utiQeomFVDLEXfYJusMnd9hdjjMLyYcko_PWG0hzPvZ8j6HrbRYZ8bsfusCef7THntvze2YP2f1gNZh49D1iA7N6zB60YiAQ5oYn7NsEOjBCC0Zo1hDACB6MQGCEtYUARujACOUWWjBCH4yAB4IRsI-wAyMgGCGAETwYYR-MeBIIYAQC41N2cfpudnIWB_2PuMJFRxPbkTCm5DnXSiYZN7kWKjXZmBspc4NulhVGWLyVGtfE6YgbLa3kVWl1pnGskckzdrRar8xzBpUaJTaVSUJ0S7jqVlJUgousFKmYl0IdM9He9aIK5Pik0bIsxi2HbjBWQcYqgrGO2bBrtvHsML9rkPdNWjQO7dYDvUh-2fbFf7R9ye7tnrVX7Kipb8xr9Kab8o2D6w-LYcoX | 
    
| linkProvider | Taylor & Francis | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYQO7ALbGwThQ3egWu61nac5FihVWVALwWJW-S4NlRr0yqk0sa_2T_de048FaSxA1KkHKJnJX72s5_zve9j7FRwzY0nH7RGR1LHGAeldVGqhUv1lBfJlA70r8ZqdCO_38a3G7UwBKukHNo1RBE-VtPkpsPoAIn7SpQz9IcK0ztOxVQqVVTC9SbGzT6pGIjeOETjOOP9hm8v4RHZhCqefzXzZH16wl66se4M95gJb9zATX5013XRNY_PyBxf90nv2G67LYVBM47esy1b7rO9IPkAbQT4wH4PYFXpO8_zCoGPHOolUGKNswK0F2AEkqyHpYPBqpotqxno-R3e6vsFFL_Ibk7VVUBcFdWDB4OVgNfZZALYE9jY1DqvXAHD8wm0WkKwIDmBnzBbBMy7t5uVQOiVNb4-wV0_spvht-uzUdSqPEQGt5Z15HrSYnqfcZ0qkXCbaZnGNulzq1RmcTF10kqHnaQx84l73GrlFDeF04nGEaXEJ7ZdLkt7wMCkPeFiJQSR6mBulSppJJdJIWM5LWTaYTL4NjctBTopcczzfmBKbd2Qkxvy1g0d1v1rtmo4QP5nkG0OnLz2hy-uUUrJxYu2h6-wPWE7o-ury_zyfHxxxN7SIwI69LPPbLuu1vYL7p_q4thPkD-kGA1L | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQXzxLs7refC1c0vTtH0c6nBehjAF30raJnO4daN2oP4b_6k5aSMqqA-DQh_KCWlObif5zvcRcuxSQRNDPigT4TDh6XmQSeUEwlWBSGnsp3igf9PjF_fs8sGzaMLnClaJMbQqiSLMXI2De5oqi4g7QcYZvKDS0R3FXCoecMzgWuR4K4ZZHM2enYy9kLZKuj2fOmhjk3h-K-bb8vSNvPTLstNZJbGtcIk2eWrMiriRvP3gcpzrj9bISrUphXbZi9bJgsw2yKoVfIBq_G-S9zZMczEwLK9g2cihmACG1XpMgDDyi4CC9TBR0J7mw0k-BDEa6FfxOIb4Fe1GmFsFyFSRPxsoWAb6Oe33QTeELiyVyuhWQKfbh0pJCMYoJvACw7FFvBu7YQaIXZnp6iPYdYvcd87vTi-cSuPBSfTGsnBUk0kd3IdUBNz1qQwFCzzpt6jkPJR6KVVMMqUbSei4x2tSKbjiNImV8IXuT9zdJrVskskdAknQdJXHXRcpdXRkFXCWMMr8mHksjVlQJ8y6NkoqAnTU4RhFLcuTWrkhQjdElRvqpPFpNi0ZQP4zCL_2m6gwRy-q1EmJ3D9td-ewPSJLt2ed6Lrbu9ojy_gFUQ6tcJ_UinwmD_TmqYgPzfD4AD_CC-8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pragmatic+approach+to+recover+access+time+of+Apriori+algorithm+by+applying+intersection+on+CSS+for+redefining+FIS+through+matrix+implementation+in+textual+data&rft.jtitle=Journal+of+discrete+mathematical+sciences+%26+cryptography&rft.au=Verma%2C+Neeraj+Kumar&rft.au=Singh%2C+Vaishali&rft.date=2022-05-19&rft.pub=Taylor+%26+Francis&rft.issn=0972-0529&rft.eissn=2169-0065&rft.volume=25&rft.issue=4&rft.spage=871&rft.epage=878&rft_id=info:doi/10.1080%2F09720529.2022.2068601&rft.externalDocID=2068601 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0972-0529&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0972-0529&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0972-0529&client=summon |