Theory of Free Fermions Dynamics under Partial Postselected Monitoring
Monitored quantum systems undergo measurement-induced phase transitions (MiPTs) stemming from the interplay between measurements and unitary dynamics. When the detector readout is postselected to match a given value, the dynamics is generated by a non-Hermitian Hamiltonian with MiPTs characterized b...
Saved in:
Published in | Physical review. X Vol. 15; no. 2; p. 021020 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
01.04.2025
|
Online Access | Get full text |
ISSN | 2160-3308 2160-3308 |
DOI | 10.1103/PhysRevX.15.021020 |
Cover
Abstract | Monitored quantum systems undergo measurement-induced phase transitions (MiPTs) stemming from the interplay between measurements and unitary dynamics. When the detector readout is postselected to match a given value, the dynamics is generated by a non-Hermitian Hamiltonian with MiPTs characterized by different universal features. Here, we derive a stochastic Schrödinger equation based on a microscopic description of continuous weak measurement. This formalism connects the monitored and postselected dynamics to a broader family of stochastic evolution. We apply the formalism to a chain of free fermions subject to partial postselected monitoring of local fermion parities. Within a two-replica approach, we obtain an effective bosonized Hamiltonian in the strong postselected limit. Using a renormalization group analysis, we find that the universality of the non-Hermitian MiPT is stable against a finite (weak) amount of stochasticity. We further show that the passage to the monitored universality occurs abruptly at finite partial postselection, which we confirm from the numerical finite size scaling of the MiPT. Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories and provides a potential route to tackle the experimental postselected problem. |
---|---|
AbstractList | Monitored quantum systems undergo measurement-induced phase transitions (MiPTs) stemming from the interplay between measurements and unitary dynamics. When the detector readout is postselected to match a given value, the dynamics is generated by a non-Hermitian Hamiltonian with MiPTs characterized by different universal features. Here, we derive a partial postselected stochastic Schrödinger equation based on a microscopic description of continuous weak measurement. This formalism connects the monitored and postselected dynamics to a broader family of stochastic evolution. We apply the formalism to a chain of free fermions subject to partial postselected monitoring of local fermion parities. Within a two-replica approach, we obtain an effective bosonized Hamiltonian in the strong postselected limit. Using a renormalization group analysis, we find that the universality of the non-Hermitian MiPT is stable against a finite (weak) amount of stochasticity. We further show that the passage to the monitored universality occurs abruptly at finite partial postselection, which we confirm from the numerical finite size scaling of the MiPT. Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories and provides a potential route to tackle the experimental postselected problem. Monitored quantum systems undergo measurement-induced phase transitions (MiPTs) stemming from the interplay between measurements and unitary dynamics. When the detector readout is postselected to match a given value, the dynamics is generated by a non-Hermitian Hamiltonian with MiPTs characterized by different universal features. Here, we derive a stochastic Schrödinger equation based on a microscopic description of continuous weak measurement. This formalism connects the monitored and postselected dynamics to a broader family of stochastic evolution. We apply the formalism to a chain of free fermions subject to partial postselected monitoring of local fermion parities. Within a two-replica approach, we obtain an effective bosonized Hamiltonian in the strong postselected limit. Using a renormalization group analysis, we find that the universality of the non-Hermitian MiPT is stable against a finite (weak) amount of stochasticity. We further show that the passage to the monitored universality occurs abruptly at finite partial postselection, which we confirm from the numerical finite size scaling of the MiPT. Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories and provides a potential route to tackle the experimental postselected problem. |
ArticleNumber | 021020 |
Author | Meidan, Dganit Leung, Chun Y. Romito, Alessandro |
Author_xml | – sequence: 1 givenname: Chun Y. orcidid: 0009-0000-9092-8213 surname: Leung fullname: Leung, Chun Y. – sequence: 2 givenname: Dganit surname: Meidan fullname: Meidan, Dganit – sequence: 3 givenname: Alessandro orcidid: 0000-0003-3082-6279 surname: Romito fullname: Romito, Alessandro |
BookMark | eNpNkN1Kw0AQhRepYK19Aa_yAqkzu_nZXEo1WqhYpIJ3y2520qakWdmNQt7e1qo4N2c4Fx-H75KNOtcRY9cIM0QQN6vtEF7o822G6Qw4AoczNuaYQSwEyNG__4JNQ9jB4TLAJM_HrFxvyfkhcnVUeqKoJL9vXBeiu6HT-6YK0UdnyUcr7ftGt9HKhT5QS1VPNnpyXdM733SbK3Ze6zbQ9Ccn7LW8X88f4-Xzw2J-u4wrgdDHtjZWgsQsr8lqK4y0Wc4zMLLiADKRhrjMJEBukRswaU2YY4Km1kVaZCQmbHHiWqd36t03e-0H5XSjvgvnN-o4tGpJ1YUwxugDpJCJMChFklmJurKJlKksDix-YlXeheCp_uMhqKNY9StWYapOYsUXBO9u0A |
Cites_doi | 10.1103/PhysRevLett.128.010605 10.1103/PhysRevLett.121.086803 10.1103/PhysRevB.101.104301 10.1103/PRXQuantum.5.030329 10.1103/PhysRevResearch.4.023146 10.21468/SciPostPhys.7.2.024 10.1016/j.physrep.2005.03.001 10.1063/1.3518900 10.1103/PhysRevB.110.054313 10.1103/PhysRevB.107.094309 10.1016/0034-4877(72)90011-0 10.1103/PhysRevLett.91.066801 10.1038/s41567-022-01619-7 10.1103/PhysRevB.105.L241114 10.1103/PhysRevResearch.6.L042022 10.1103/PhysRevResearch.5.L042031 10.1103/PhysRevResearch.2.013022 10.1103/PhysRevB.107.L020403 10.1103/PhysRevB.100.064204 10.1103/PhysRevB.109.L060302 10.22331/q-2024-12-23-1576 10.1209/0295-5075/105/27001 10.21468/SciPostPhys.7.5.069 10.1103/PhysRevResearch.2.033017 10.1038/s41567-020-01112-z 10.1103/PhysRevA.88.042110 10.1103/PhysRevB.103.195157 10.1103/PhysRevB.103.174303 10.1016/0024-3795(75)90075-0 10.1103/PhysRevB.108.165126 10.21468/SciPostPhys.14.3.031 10.1103/PhysRevResearch.2.033347 10.1146/annurev-conmatphys-031720-030658 10.1103/PhysRevResearch.3.023200 10.1103/PhysRevLett.126.170602 10.1093/acprof:oso/9780198525004.001.0001 10.1038/s41586-023-06505-7 10.1103/PhysRevX.13.021007 10.1103/PhysRevLett.115.200402 10.1103/PhysRevD.80.125005 10.1038/s41567-023-02076-6 10.1103/PhysRevX.9.031009 10.1103/PhysRevLett.123.090603 10.1103/PhysRevB.103.224210 10.1088/1742-5468/2009/10/P10020 10.21468/SciPostPhys.12.1.009 10.1088/0305-4470/13/2/024 10.21468/SciPostPhysLectNotes.82 10.1103/PhysRevLett.132.110201 10.1103/PhysRevB.110.L060202 10.1103/PhysRevLett.127.235701 10.1006/aphy.1996.0052 10.1103/PhysRevB.107.L220201 10.1103/PhysRevB.106.024304 10.21468/SciPostPhys.14.5.138 10.1103/PhysRevResearch.4.033001 10.1103/PhysRevB.57.5812 10.1103/PhysRevB.104.184422 10.1103/PhysRevLett.126.170503 10.1103/PhysRevB.98.205136 10.1103/PhysRevB.105.094303 10.1103/PhysRevB.106.104307 10.1103/PhysRevX.11.041004 10.1103/PhysRevB.106.134206 10.1103/PhysRevResearch.2.043420 10.1103/PhysRevResearch.6.013131 10.1103/PhysRevB.110.094304 10.1103/PhysRevX.13.041045 10.1017/CBO9781139179027 10.1103/PhysRevX.11.011030 10.1209/0295-5075/113/56001 10.1016/j.physrep.2021.08.003 10.1103/PhysRevLett.126.216407 10.1103/RevModPhys.80.1355 10.22331/q-2022-05-27-723 10.1103/PhysRevX.13.041046 10.1016/j.aop.2021.168618 10.1103/PhysRevX.13.041028 10.1103/PhysRevB.99.224307 10.1142/S0217984990000933 10.1038/s41467-020-18917-4 10.1103/PhysRevResearch.2.033512 10.1103/PhysRevB.16.1217 10.1103/PhysRevB.104.L161107 10.1103/PhysRevB.102.081115 10.1103/PhysRevLett.118.040401 10.1017/CBO9780511534843 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PhysRevX.15.021020 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_f93bbba0b59843b18346d81acd488589 10_1103_PhysRevX_15_021020 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS ROL S7W PUEGO |
ID | FETCH-LOGICAL-c310t-dfbd808167fedad3b8d67260b8c200848be2868007d12b0b5fe17141bfa9596e3 |
IEDL.DBID | DOA |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:24:11 EDT 2025 Wed Aug 06 19:34:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c310t-dfbd808167fedad3b8d67260b8c200848be2868007d12b0b5fe17141bfa9596e3 |
ORCID | 0000-0003-3082-6279 0009-0000-9092-8213 |
OpenAccessLink | https://doaj.org/article/f93bbba0b59843b18346d81acd488589 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f93bbba0b59843b18346d81acd488589 crossref_primary_10_1103_PhysRevX_15_021020 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physical review. X |
PublicationYear | 2025 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.15.021020Cc26R1 PhysRevX.15.021020Cc49R1 PhysRevX.15.021020Cc90R1 PhysRevX.15.021020Cc28R1 PhysRevX.15.021020Cc47R1 PhysRevX.15.021020Cc71R1 PhysRevX.15.021020Cc92R1 PhysRevX.15.021020Cc45R1 PhysRevX.15.021020Cc68R1 PhysRevX.15.021020Cc73R1 PhysRevX.15.021020Cc24R1 PhysRevX.15.021020Cc43R1 PhysRevX.15.021020Cc66R1 PhysRevX.15.021020Cc75R1 PhysRevX.15.021020Cc96R1 PhysRevX.15.021020Cc87R1 PhysRevX.15.021020Cc31R1 F. H. Essler (PhysRevX.15.021020Cc94R1) 2005 PhysRevX.15.021020Cc89R1 PhysRevX.15.021020Cc50R1 PhysRevX.15.021020Cc18R1 K. Jacobs (PhysRevX.15.021020Cc52R1) 2014 PhysRevX.15.021020Cc6R1 PhysRevX.15.021020Cc14R1 PhysRevX.15.021020Cc39R1 PhysRevX.15.021020Cc4R1 PhysRevX.15.021020Cc16R1 PhysRevX.15.021020Cc37R1 PhysRevX.15.021020Cc58R1 PhysRevX.15.021020Cc82R1 PhysRevX.15.021020Cc10R1 PhysRevX.15.021020Cc35R1 PhysRevX.15.021020Cc56R1 PhysRevX.15.021020Cc8R1 PhysRevX.15.021020Cc12R1 PhysRevX.15.021020Cc54R1 PhysRevX.15.021020Cc86R1 PhysRevX.15.021020Cc42R1 PhysRevX.15.021020Cc63R1 PhysRevX.15.021020Cc77R1 PhysRevX.15.021020Cc98R1 PhysRevX.15.021020Cc40R1 PhysRevX.15.021020Cc61R1 PhysRevX.15.021020Cc79R1 PhysRevX.15.021020Cc2R1 T. Giamarchi (PhysRevX.15.021020Cc69R1) 2003 PhysRevX.15.021020Cc29R1 PhysRevX.15.021020Cc91R1 PhysRevX.15.021020Cc70R1 PhysRevX.15.021020Cc93R1 PhysRevX.15.021020Cc27R1 PhysRevX.15.021020Cc48R1 PhysRevX.15.021020Cc95R1 PhysRevX.15.021020Cc21R1 PhysRevX.15.021020Cc46R1 PhysRevX.15.021020Cc67R1 PhysRevX.15.021020Cc74R1 PhysRevX.15.021020Cc97R1 PhysRevX.15.021020Cc23R1 PhysRevX.15.021020Cc44R1 PhysRevX.15.021020Cc30R1 PhysRevX.15.021020Cc53R1 PhysRevX.15.021020Cc88R1 PhysRevX.15.021020Cc51R1 P. Sprent (PhysRevX.15.021020Cc65R1) 2007 PhysRevX.15.021020Cc19R1 PhysRevX.15.021020Cc15R1 PhysRevX.15.021020Cc38R1 PhysRevX.15.021020Cc5R1 PhysRevX.15.021020Cc17R1 PhysRevX.15.021020Cc36R1 PhysRevX.15.021020Cc59R1 PhysRevX.15.021020Cc3R1 PhysRevX.15.021020Cc11R1 PhysRevX.15.021020Cc34R1 PhysRevX.15.021020Cc57R1 PhysRevX.15.021020Cc9R1 PhysRevX.15.021020Cc13R1 PhysRevX.15.021020Cc32R1 PhysRevX.15.021020Cc85R1 PhysRevX.15.021020Cc7R1 PhysRevX.15.021020Cc41R1 PhysRevX.15.021020Cc64R1 PhysRevX.15.021020Cc76R1 PhysRevX.15.021020Cc99R1 PhysRevX.15.021020Cc20R1 PhysRevX.15.021020Cc62R1 PhysRevX.15.021020Cc78R1 PhysRevX.15.021020Cc60R1 PhysRevX.15.021020Cc1R1 |
References_xml | – ident: PhysRevX.15.021020Cc28R1 doi: 10.1103/PhysRevLett.128.010605 – ident: PhysRevX.15.021020Cc51R1 doi: 10.1103/PhysRevLett.121.086803 – volume-title: Applied Nonparametric Statistical Methods year: 2007 ident: PhysRevX.15.021020Cc65R1 – ident: PhysRevX.15.021020Cc67R1 doi: 10.1103/PhysRevB.101.104301 – ident: PhysRevX.15.021020Cc91R1 doi: 10.1103/PRXQuantum.5.030329 – ident: PhysRevX.15.021020Cc21R1 doi: 10.1103/PhysRevResearch.4.023146 – ident: PhysRevX.15.021020Cc13R1 doi: 10.21468/SciPostPhys.7.2.024 – ident: PhysRevX.15.021020Cc76R1 doi: 10.1016/j.physrep.2005.03.001 – ident: PhysRevX.15.021020Cc89R1 doi: 10.1063/1.3518900 – ident: PhysRevX.15.021020Cc20R1 doi: 10.1103/PhysRevB.110.054313 – ident: PhysRevX.15.021020Cc59R1 doi: 10.1103/PhysRevB.107.094309 – ident: PhysRevX.15.021020Cc70R1 doi: 10.1016/0034-4877(72)90011-0 – ident: PhysRevX.15.021020Cc77R1 doi: 10.1103/PhysRevLett.91.066801 – ident: PhysRevX.15.021020Cc8R1 doi: 10.1038/s41567-022-01619-7 – ident: PhysRevX.15.021020Cc58R1 doi: 10.1103/PhysRevB.105.L241114 – ident: PhysRevX.15.021020Cc56R1 doi: 10.1103/PhysRevResearch.6.L042022 – ident: PhysRevX.15.021020Cc11R1 doi: 10.1103/PhysRevResearch.5.L042031 – ident: PhysRevX.15.021020Cc24R1 doi: 10.1103/PhysRevResearch.2.013022 – ident: PhysRevX.15.021020Cc42R1 doi: 10.1103/PhysRevB.107.L020403 – ident: PhysRevX.15.021020Cc4R1 doi: 10.1103/PhysRevB.100.064204 – ident: PhysRevX.15.021020Cc23R1 doi: 10.1103/PhysRevB.109.L060302 – ident: PhysRevX.15.021020Cc57R1 doi: 10.22331/q-2024-12-23-1576 – ident: PhysRevX.15.021020Cc79R1 doi: 10.1209/0295-5075/105/27001 – ident: PhysRevX.15.021020Cc49R1 doi: 10.21468/SciPostPhys.7.5.069 – ident: PhysRevX.15.021020Cc61R1 doi: 10.1103/PhysRevResearch.2.033017 – ident: PhysRevX.15.021020Cc39R1 doi: 10.1038/s41567-020-01112-z – ident: PhysRevX.15.021020Cc75R1 doi: 10.1103/PhysRevA.88.042110 – ident: PhysRevX.15.021020Cc47R1 doi: 10.1103/PhysRevB.103.195157 – ident: PhysRevX.15.021020Cc62R1 doi: 10.1103/PhysRevB.103.174303 – ident: PhysRevX.15.021020Cc71R1 doi: 10.1016/0024-3795(75)90075-0 – ident: PhysRevX.15.021020Cc17R1 doi: 10.1103/PhysRevB.108.165126 – ident: PhysRevX.15.021020Cc10R1 doi: 10.21468/SciPostPhys.14.3.031 – ident: PhysRevX.15.021020Cc35R1 doi: 10.1103/PhysRevResearch.2.033347 – ident: PhysRevX.15.021020Cc5R1 doi: 10.1146/annurev-conmatphys-031720-030658 – ident: PhysRevX.15.021020Cc37R1 doi: 10.1103/PhysRevResearch.3.023200 – ident: PhysRevX.15.021020Cc14R1 doi: 10.1103/PhysRevLett.126.170602 – volume-title: Quantum Physics in One Dimension year: 2003 ident: PhysRevX.15.021020Cc69R1 doi: 10.1093/acprof:oso/9780198525004.001.0001 – ident: PhysRevX.15.021020Cc7R1 doi: 10.1038/s41586-023-06505-7 – ident: PhysRevX.15.021020Cc41R1 doi: 10.1103/PhysRevX.13.021007 – ident: PhysRevX.15.021020Cc48R1 doi: 10.1103/PhysRevLett.115.200402 – ident: PhysRevX.15.021020Cc90R1 doi: 10.1103/PhysRevD.80.125005 – ident: PhysRevX.15.021020Cc6R1 doi: 10.1038/s41567-023-02076-6 – ident: PhysRevX.15.021020Cc1R1 doi: 10.1103/PhysRevX.9.031009 – ident: PhysRevX.15.021020Cc44R1 doi: 10.1103/PhysRevLett.123.090603 – ident: PhysRevX.15.021020Cc53R1 doi: 10.1103/PhysRevB.103.224210 – ident: PhysRevX.15.021020Cc97R1 doi: 10.1088/1742-5468/2009/10/P10020 – ident: PhysRevX.15.021020Cc92R1 doi: 10.1103/PRXQuantum.5.030329 – ident: PhysRevX.15.021020Cc27R1 doi: 10.21468/SciPostPhys.12.1.009 – ident: PhysRevX.15.021020Cc85R1 doi: 10.1088/0305-4470/13/2/024 – ident: PhysRevX.15.021020Cc96R1 doi: 10.21468/SciPostPhysLectNotes.82 – ident: PhysRevX.15.021020Cc99R1 doi: 10.1103/PhysRevLett.132.110201 – ident: PhysRevX.15.021020Cc29R1 doi: 10.1103/PhysRevB.110.L060202 – ident: PhysRevX.15.021020Cc34R1 doi: 10.1103/PhysRevLett.127.235701 – ident: PhysRevX.15.021020Cc78R1 doi: 10.1006/aphy.1996.0052 – ident: PhysRevX.15.021020Cc16R1 doi: 10.1103/PhysRevB.107.L220201 – ident: PhysRevX.15.021020Cc19R1 doi: 10.1103/PhysRevB.106.024304 – ident: PhysRevX.15.021020Cc54R1 doi: 10.21468/SciPostPhys.14.5.138 – ident: PhysRevX.15.021020Cc26R1 doi: 10.1103/PhysRevResearch.4.033001 – ident: PhysRevX.15.021020Cc95R1 doi: 10.1103/PhysRevB.57.5812 – ident: PhysRevX.15.021020Cc32R1 doi: 10.1103/PhysRevB.104.184422 – ident: PhysRevX.15.021020Cc43R1 doi: 10.1103/PhysRevLett.126.170503 – ident: PhysRevX.15.021020Cc3R1 doi: 10.1103/PhysRevB.98.205136 – ident: PhysRevX.15.021020Cc12R1 doi: 10.1103/PhysRevB.105.094303 – ident: PhysRevX.15.021020Cc87R1 doi: 10.1103/PhysRevB.106.104307 – ident: PhysRevX.15.021020Cc15R1 doi: 10.1103/PhysRevX.11.041004 – ident: PhysRevX.15.021020Cc30R1 doi: 10.1103/PhysRevB.106.134206 – ident: PhysRevX.15.021020Cc74R1 doi: 10.1103/PhysRevResearch.2.043420 – ident: PhysRevX.15.021020Cc60R1 doi: 10.1103/PhysRevResearch.6.013131 – ident: PhysRevX.15.021020Cc64R1 doi: 10.1103/PhysRevB.110.094304 – ident: PhysRevX.15.021020Cc93R1 – ident: PhysRevX.15.021020Cc18R1 doi: 10.1103/PhysRevX.13.041045 – volume-title: Quantum Measurement Theory and Its Applications year: 2014 ident: PhysRevX.15.021020Cc52R1 doi: 10.1017/CBO9781139179027 – ident: PhysRevX.15.021020Cc38R1 doi: 10.1103/PhysRevX.11.011030 – ident: PhysRevX.15.021020Cc98R1 doi: 10.1209/0295-5075/113/56001 – ident: PhysRevX.15.021020Cc36R1 doi: 10.1016/j.physrep.2021.08.003 – ident: PhysRevX.15.021020Cc46R1 doi: 10.1103/PhysRevLett.126.216407 – ident: PhysRevX.15.021020Cc68R1 doi: 10.1103/RevModPhys.80.1355 – ident: PhysRevX.15.021020Cc31R1 doi: 10.22331/q-2022-05-27-723 – ident: PhysRevX.15.021020Cc9R1 doi: 10.1103/PhysRevX.13.041046 – ident: PhysRevX.15.021020Cc66R1 doi: 10.1016/j.aop.2021.168618 – ident: PhysRevX.15.021020Cc88R1 doi: 10.1103/PhysRevX.13.041028 – ident: PhysRevX.15.021020Cc2R1 doi: 10.1103/PhysRevB.99.224307 – ident: PhysRevX.15.021020Cc82R1 doi: 10.1142/S0217984990000933 – ident: PhysRevX.15.021020Cc40R1 doi: 10.1038/s41467-020-18917-4 – ident: PhysRevX.15.021020Cc73R1 doi: 10.1103/PhysRevResearch.2.033512 – ident: PhysRevX.15.021020Cc86R1 doi: 10.1103/PhysRevB.16.1217 – ident: PhysRevX.15.021020Cc63R1 doi: 10.1103/PhysRevB.104.L161107 – ident: PhysRevX.15.021020Cc45R1 doi: 10.1103/PhysRevB.102.081115 – ident: PhysRevX.15.021020Cc50R1 doi: 10.1103/PhysRevLett.118.040401 – volume-title: The One-Dimensional Hubbard Model year: 2005 ident: PhysRevX.15.021020Cc94R1 doi: 10.1017/CBO9780511534843 |
SSID | ssj0000601477 |
Score | 2.4136567 |
Snippet | Monitored quantum systems undergo measurement-induced phase transitions (MiPTs) stemming from the interplay between measurements and unitary dynamics. When the... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 021020 |
Title | Theory of Free Fermions Dynamics under Partial Postselected Monitoring |
URI | https://doaj.org/article/f93bbba0b59843b18346d81acd488589 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvAmddOmTZqjryKCIuLC3kommRx3ZXf19ztJdmU9efFaQtJ8M2lmysz3MXZpsKmhRltYLauiNioU1tWmAKfRBDpcVsXe4ecX9Tiqn8bNeE3qK9aEZXrgDNwwGAkAVkBj2loCeWCtfFta58n1mja17gkj1pKp_A2m0F_rVZeMkMNYUPmGX-PrsrlOeY74dROtEfanm6XbZTvLkJDf5FfZYxs42WdbqTTTzQ9Yl9vn-TTwbobIu1i-Qr7C77OY_JzHPrAZf417oXmi_O48qdug5_nIxn93h2zUPbzfPRZL9YPCUci1KHwAn2QxdEBvvYTWK03ZB7SuSiz4gFWrKN7TvqyA8AkYxcxLCNY0RqE8YpuT6QSPGRdOg20jcX2gfEqRRQhIIWkFh15XYsCuVkj0H5nkok_JgZD9Cre-bPqM24DdRrB-RkaC6vSAzNYvzdb_ZbaT_5jklG1XUY43FdKcsc3F7BPPKUZYwEVyh2_SHbm9 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory+of+Free+Fermions+Dynamics+under+Partial+Postselected+Monitoring&rft.jtitle=Physical+review.+X&rft.au=Chun+Y.+Leung&rft.au=Dganit+Meidan&rft.au=Alessandro+Romito&rft.date=2025-04-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=15&rft.issue=2&rft.spage=021020&rft_id=info:doi/10.1103%2FPhysRevX.15.021020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f93bbba0b59843b18346d81acd488589 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |