Theory of Free Fermions Dynamics under Partial Postselected Monitoring

Monitored quantum systems undergo measurement-induced phase transitions (MiPTs) stemming from the interplay between measurements and unitary dynamics. When the detector readout is postselected to match a given value, the dynamics is generated by a non-Hermitian Hamiltonian with MiPTs characterized b...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 15; no. 2; p. 021020
Main Authors Leung, Chun Y., Meidan, Dganit, Romito, Alessandro
Format Journal Article
LanguageEnglish
Published American Physical Society 01.04.2025
Online AccessGet full text
ISSN2160-3308
2160-3308
DOI10.1103/PhysRevX.15.021020

Cover

Abstract Monitored quantum systems undergo measurement-induced phase transitions (MiPTs) stemming from the interplay between measurements and unitary dynamics. When the detector readout is postselected to match a given value, the dynamics is generated by a non-Hermitian Hamiltonian with MiPTs characterized by different universal features. Here, we derive a stochastic Schrödinger equation based on a microscopic description of continuous weak measurement. This formalism connects the monitored and postselected dynamics to a broader family of stochastic evolution. We apply the formalism to a chain of free fermions subject to partial postselected monitoring of local fermion parities. Within a two-replica approach, we obtain an effective bosonized Hamiltonian in the strong postselected limit. Using a renormalization group analysis, we find that the universality of the non-Hermitian MiPT is stable against a finite (weak) amount of stochasticity. We further show that the passage to the monitored universality occurs abruptly at finite partial postselection, which we confirm from the numerical finite size scaling of the MiPT. Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories and provides a potential route to tackle the experimental postselected problem.
AbstractList Monitored quantum systems undergo measurement-induced phase transitions (MiPTs) stemming from the interplay between measurements and unitary dynamics. When the detector readout is postselected to match a given value, the dynamics is generated by a non-Hermitian Hamiltonian with MiPTs characterized by different universal features. Here, we derive a partial postselected stochastic Schrödinger equation based on a microscopic description of continuous weak measurement. This formalism connects the monitored and postselected dynamics to a broader family of stochastic evolution. We apply the formalism to a chain of free fermions subject to partial postselected monitoring of local fermion parities. Within a two-replica approach, we obtain an effective bosonized Hamiltonian in the strong postselected limit. Using a renormalization group analysis, we find that the universality of the non-Hermitian MiPT is stable against a finite (weak) amount of stochasticity. We further show that the passage to the monitored universality occurs abruptly at finite partial postselection, which we confirm from the numerical finite size scaling of the MiPT. Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories and provides a potential route to tackle the experimental postselected problem.
Monitored quantum systems undergo measurement-induced phase transitions (MiPTs) stemming from the interplay between measurements and unitary dynamics. When the detector readout is postselected to match a given value, the dynamics is generated by a non-Hermitian Hamiltonian with MiPTs characterized by different universal features. Here, we derive a stochastic Schrödinger equation based on a microscopic description of continuous weak measurement. This formalism connects the monitored and postselected dynamics to a broader family of stochastic evolution. We apply the formalism to a chain of free fermions subject to partial postselected monitoring of local fermion parities. Within a two-replica approach, we obtain an effective bosonized Hamiltonian in the strong postselected limit. Using a renormalization group analysis, we find that the universality of the non-Hermitian MiPT is stable against a finite (weak) amount of stochasticity. We further show that the passage to the monitored universality occurs abruptly at finite partial postselection, which we confirm from the numerical finite size scaling of the MiPT. Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories and provides a potential route to tackle the experimental postselected problem.
ArticleNumber 021020
Author Meidan, Dganit
Leung, Chun Y.
Romito, Alessandro
Author_xml – sequence: 1
  givenname: Chun Y.
  orcidid: 0009-0000-9092-8213
  surname: Leung
  fullname: Leung, Chun Y.
– sequence: 2
  givenname: Dganit
  surname: Meidan
  fullname: Meidan, Dganit
– sequence: 3
  givenname: Alessandro
  orcidid: 0000-0003-3082-6279
  surname: Romito
  fullname: Romito, Alessandro
BookMark eNpNkN1Kw0AQhRepYK19Aa_yAqkzu_nZXEo1WqhYpIJ3y2520qakWdmNQt7e1qo4N2c4Fx-H75KNOtcRY9cIM0QQN6vtEF7o822G6Qw4AoczNuaYQSwEyNG__4JNQ9jB4TLAJM_HrFxvyfkhcnVUeqKoJL9vXBeiu6HT-6YK0UdnyUcr7ftGt9HKhT5QS1VPNnpyXdM733SbK3Ze6zbQ9Ccn7LW8X88f4-Xzw2J-u4wrgdDHtjZWgsQsr8lqK4y0Wc4zMLLiADKRhrjMJEBukRswaU2YY4Km1kVaZCQmbHHiWqd36t03e-0H5XSjvgvnN-o4tGpJ1YUwxugDpJCJMChFklmJurKJlKksDix-YlXeheCp_uMhqKNY9StWYapOYsUXBO9u0A
Cites_doi 10.1103/PhysRevLett.128.010605
10.1103/PhysRevLett.121.086803
10.1103/PhysRevB.101.104301
10.1103/PRXQuantum.5.030329
10.1103/PhysRevResearch.4.023146
10.21468/SciPostPhys.7.2.024
10.1016/j.physrep.2005.03.001
10.1063/1.3518900
10.1103/PhysRevB.110.054313
10.1103/PhysRevB.107.094309
10.1016/0034-4877(72)90011-0
10.1103/PhysRevLett.91.066801
10.1038/s41567-022-01619-7
10.1103/PhysRevB.105.L241114
10.1103/PhysRevResearch.6.L042022
10.1103/PhysRevResearch.5.L042031
10.1103/PhysRevResearch.2.013022
10.1103/PhysRevB.107.L020403
10.1103/PhysRevB.100.064204
10.1103/PhysRevB.109.L060302
10.22331/q-2024-12-23-1576
10.1209/0295-5075/105/27001
10.21468/SciPostPhys.7.5.069
10.1103/PhysRevResearch.2.033017
10.1038/s41567-020-01112-z
10.1103/PhysRevA.88.042110
10.1103/PhysRevB.103.195157
10.1103/PhysRevB.103.174303
10.1016/0024-3795(75)90075-0
10.1103/PhysRevB.108.165126
10.21468/SciPostPhys.14.3.031
10.1103/PhysRevResearch.2.033347
10.1146/annurev-conmatphys-031720-030658
10.1103/PhysRevResearch.3.023200
10.1103/PhysRevLett.126.170602
10.1093/acprof:oso/9780198525004.001.0001
10.1038/s41586-023-06505-7
10.1103/PhysRevX.13.021007
10.1103/PhysRevLett.115.200402
10.1103/PhysRevD.80.125005
10.1038/s41567-023-02076-6
10.1103/PhysRevX.9.031009
10.1103/PhysRevLett.123.090603
10.1103/PhysRevB.103.224210
10.1088/1742-5468/2009/10/P10020
10.21468/SciPostPhys.12.1.009
10.1088/0305-4470/13/2/024
10.21468/SciPostPhysLectNotes.82
10.1103/PhysRevLett.132.110201
10.1103/PhysRevB.110.L060202
10.1103/PhysRevLett.127.235701
10.1006/aphy.1996.0052
10.1103/PhysRevB.107.L220201
10.1103/PhysRevB.106.024304
10.21468/SciPostPhys.14.5.138
10.1103/PhysRevResearch.4.033001
10.1103/PhysRevB.57.5812
10.1103/PhysRevB.104.184422
10.1103/PhysRevLett.126.170503
10.1103/PhysRevB.98.205136
10.1103/PhysRevB.105.094303
10.1103/PhysRevB.106.104307
10.1103/PhysRevX.11.041004
10.1103/PhysRevB.106.134206
10.1103/PhysRevResearch.2.043420
10.1103/PhysRevResearch.6.013131
10.1103/PhysRevB.110.094304
10.1103/PhysRevX.13.041045
10.1017/CBO9781139179027
10.1103/PhysRevX.11.011030
10.1209/0295-5075/113/56001
10.1016/j.physrep.2021.08.003
10.1103/PhysRevLett.126.216407
10.1103/RevModPhys.80.1355
10.22331/q-2022-05-27-723
10.1103/PhysRevX.13.041046
10.1016/j.aop.2021.168618
10.1103/PhysRevX.13.041028
10.1103/PhysRevB.99.224307
10.1142/S0217984990000933
10.1038/s41467-020-18917-4
10.1103/PhysRevResearch.2.033512
10.1103/PhysRevB.16.1217
10.1103/PhysRevB.104.L161107
10.1103/PhysRevB.102.081115
10.1103/PhysRevLett.118.040401
10.1017/CBO9780511534843
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevX.15.021020
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_f93bbba0b59843b18346d81acd488589
10_1103_PhysRevX_15_021020
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
ROL
S7W
PUEGO
ID FETCH-LOGICAL-c310t-dfbd808167fedad3b8d67260b8c200848be2868007d12b0b5fe17141bfa9596e3
IEDL.DBID DOA
ISSN 2160-3308
IngestDate Wed Aug 27 01:24:11 EDT 2025
Wed Aug 06 19:34:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-dfbd808167fedad3b8d67260b8c200848be2868007d12b0b5fe17141bfa9596e3
ORCID 0000-0003-3082-6279
0009-0000-9092-8213
OpenAccessLink https://doaj.org/article/f93bbba0b59843b18346d81acd488589
ParticipantIDs doaj_primary_oai_doaj_org_article_f93bbba0b59843b18346d81acd488589
crossref_primary_10_1103_PhysRevX_15_021020
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Physical review. X
PublicationYear 2025
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.15.021020Cc26R1
PhysRevX.15.021020Cc49R1
PhysRevX.15.021020Cc90R1
PhysRevX.15.021020Cc28R1
PhysRevX.15.021020Cc47R1
PhysRevX.15.021020Cc71R1
PhysRevX.15.021020Cc92R1
PhysRevX.15.021020Cc45R1
PhysRevX.15.021020Cc68R1
PhysRevX.15.021020Cc73R1
PhysRevX.15.021020Cc24R1
PhysRevX.15.021020Cc43R1
PhysRevX.15.021020Cc66R1
PhysRevX.15.021020Cc75R1
PhysRevX.15.021020Cc96R1
PhysRevX.15.021020Cc87R1
PhysRevX.15.021020Cc31R1
F. H. Essler (PhysRevX.15.021020Cc94R1) 2005
PhysRevX.15.021020Cc89R1
PhysRevX.15.021020Cc50R1
PhysRevX.15.021020Cc18R1
K. Jacobs (PhysRevX.15.021020Cc52R1) 2014
PhysRevX.15.021020Cc6R1
PhysRevX.15.021020Cc14R1
PhysRevX.15.021020Cc39R1
PhysRevX.15.021020Cc4R1
PhysRevX.15.021020Cc16R1
PhysRevX.15.021020Cc37R1
PhysRevX.15.021020Cc58R1
PhysRevX.15.021020Cc82R1
PhysRevX.15.021020Cc10R1
PhysRevX.15.021020Cc35R1
PhysRevX.15.021020Cc56R1
PhysRevX.15.021020Cc8R1
PhysRevX.15.021020Cc12R1
PhysRevX.15.021020Cc54R1
PhysRevX.15.021020Cc86R1
PhysRevX.15.021020Cc42R1
PhysRevX.15.021020Cc63R1
PhysRevX.15.021020Cc77R1
PhysRevX.15.021020Cc98R1
PhysRevX.15.021020Cc40R1
PhysRevX.15.021020Cc61R1
PhysRevX.15.021020Cc79R1
PhysRevX.15.021020Cc2R1
T. Giamarchi (PhysRevX.15.021020Cc69R1) 2003
PhysRevX.15.021020Cc29R1
PhysRevX.15.021020Cc91R1
PhysRevX.15.021020Cc70R1
PhysRevX.15.021020Cc93R1
PhysRevX.15.021020Cc27R1
PhysRevX.15.021020Cc48R1
PhysRevX.15.021020Cc95R1
PhysRevX.15.021020Cc21R1
PhysRevX.15.021020Cc46R1
PhysRevX.15.021020Cc67R1
PhysRevX.15.021020Cc74R1
PhysRevX.15.021020Cc97R1
PhysRevX.15.021020Cc23R1
PhysRevX.15.021020Cc44R1
PhysRevX.15.021020Cc30R1
PhysRevX.15.021020Cc53R1
PhysRevX.15.021020Cc88R1
PhysRevX.15.021020Cc51R1
P. Sprent (PhysRevX.15.021020Cc65R1) 2007
PhysRevX.15.021020Cc19R1
PhysRevX.15.021020Cc15R1
PhysRevX.15.021020Cc38R1
PhysRevX.15.021020Cc5R1
PhysRevX.15.021020Cc17R1
PhysRevX.15.021020Cc36R1
PhysRevX.15.021020Cc59R1
PhysRevX.15.021020Cc3R1
PhysRevX.15.021020Cc11R1
PhysRevX.15.021020Cc34R1
PhysRevX.15.021020Cc57R1
PhysRevX.15.021020Cc9R1
PhysRevX.15.021020Cc13R1
PhysRevX.15.021020Cc32R1
PhysRevX.15.021020Cc85R1
PhysRevX.15.021020Cc7R1
PhysRevX.15.021020Cc41R1
PhysRevX.15.021020Cc64R1
PhysRevX.15.021020Cc76R1
PhysRevX.15.021020Cc99R1
PhysRevX.15.021020Cc20R1
PhysRevX.15.021020Cc62R1
PhysRevX.15.021020Cc78R1
PhysRevX.15.021020Cc60R1
PhysRevX.15.021020Cc1R1
References_xml – ident: PhysRevX.15.021020Cc28R1
  doi: 10.1103/PhysRevLett.128.010605
– ident: PhysRevX.15.021020Cc51R1
  doi: 10.1103/PhysRevLett.121.086803
– volume-title: Applied Nonparametric Statistical Methods
  year: 2007
  ident: PhysRevX.15.021020Cc65R1
– ident: PhysRevX.15.021020Cc67R1
  doi: 10.1103/PhysRevB.101.104301
– ident: PhysRevX.15.021020Cc91R1
  doi: 10.1103/PRXQuantum.5.030329
– ident: PhysRevX.15.021020Cc21R1
  doi: 10.1103/PhysRevResearch.4.023146
– ident: PhysRevX.15.021020Cc13R1
  doi: 10.21468/SciPostPhys.7.2.024
– ident: PhysRevX.15.021020Cc76R1
  doi: 10.1016/j.physrep.2005.03.001
– ident: PhysRevX.15.021020Cc89R1
  doi: 10.1063/1.3518900
– ident: PhysRevX.15.021020Cc20R1
  doi: 10.1103/PhysRevB.110.054313
– ident: PhysRevX.15.021020Cc59R1
  doi: 10.1103/PhysRevB.107.094309
– ident: PhysRevX.15.021020Cc70R1
  doi: 10.1016/0034-4877(72)90011-0
– ident: PhysRevX.15.021020Cc77R1
  doi: 10.1103/PhysRevLett.91.066801
– ident: PhysRevX.15.021020Cc8R1
  doi: 10.1038/s41567-022-01619-7
– ident: PhysRevX.15.021020Cc58R1
  doi: 10.1103/PhysRevB.105.L241114
– ident: PhysRevX.15.021020Cc56R1
  doi: 10.1103/PhysRevResearch.6.L042022
– ident: PhysRevX.15.021020Cc11R1
  doi: 10.1103/PhysRevResearch.5.L042031
– ident: PhysRevX.15.021020Cc24R1
  doi: 10.1103/PhysRevResearch.2.013022
– ident: PhysRevX.15.021020Cc42R1
  doi: 10.1103/PhysRevB.107.L020403
– ident: PhysRevX.15.021020Cc4R1
  doi: 10.1103/PhysRevB.100.064204
– ident: PhysRevX.15.021020Cc23R1
  doi: 10.1103/PhysRevB.109.L060302
– ident: PhysRevX.15.021020Cc57R1
  doi: 10.22331/q-2024-12-23-1576
– ident: PhysRevX.15.021020Cc79R1
  doi: 10.1209/0295-5075/105/27001
– ident: PhysRevX.15.021020Cc49R1
  doi: 10.21468/SciPostPhys.7.5.069
– ident: PhysRevX.15.021020Cc61R1
  doi: 10.1103/PhysRevResearch.2.033017
– ident: PhysRevX.15.021020Cc39R1
  doi: 10.1038/s41567-020-01112-z
– ident: PhysRevX.15.021020Cc75R1
  doi: 10.1103/PhysRevA.88.042110
– ident: PhysRevX.15.021020Cc47R1
  doi: 10.1103/PhysRevB.103.195157
– ident: PhysRevX.15.021020Cc62R1
  doi: 10.1103/PhysRevB.103.174303
– ident: PhysRevX.15.021020Cc71R1
  doi: 10.1016/0024-3795(75)90075-0
– ident: PhysRevX.15.021020Cc17R1
  doi: 10.1103/PhysRevB.108.165126
– ident: PhysRevX.15.021020Cc10R1
  doi: 10.21468/SciPostPhys.14.3.031
– ident: PhysRevX.15.021020Cc35R1
  doi: 10.1103/PhysRevResearch.2.033347
– ident: PhysRevX.15.021020Cc5R1
  doi: 10.1146/annurev-conmatphys-031720-030658
– ident: PhysRevX.15.021020Cc37R1
  doi: 10.1103/PhysRevResearch.3.023200
– ident: PhysRevX.15.021020Cc14R1
  doi: 10.1103/PhysRevLett.126.170602
– volume-title: Quantum Physics in One Dimension
  year: 2003
  ident: PhysRevX.15.021020Cc69R1
  doi: 10.1093/acprof:oso/9780198525004.001.0001
– ident: PhysRevX.15.021020Cc7R1
  doi: 10.1038/s41586-023-06505-7
– ident: PhysRevX.15.021020Cc41R1
  doi: 10.1103/PhysRevX.13.021007
– ident: PhysRevX.15.021020Cc48R1
  doi: 10.1103/PhysRevLett.115.200402
– ident: PhysRevX.15.021020Cc90R1
  doi: 10.1103/PhysRevD.80.125005
– ident: PhysRevX.15.021020Cc6R1
  doi: 10.1038/s41567-023-02076-6
– ident: PhysRevX.15.021020Cc1R1
  doi: 10.1103/PhysRevX.9.031009
– ident: PhysRevX.15.021020Cc44R1
  doi: 10.1103/PhysRevLett.123.090603
– ident: PhysRevX.15.021020Cc53R1
  doi: 10.1103/PhysRevB.103.224210
– ident: PhysRevX.15.021020Cc97R1
  doi: 10.1088/1742-5468/2009/10/P10020
– ident: PhysRevX.15.021020Cc92R1
  doi: 10.1103/PRXQuantum.5.030329
– ident: PhysRevX.15.021020Cc27R1
  doi: 10.21468/SciPostPhys.12.1.009
– ident: PhysRevX.15.021020Cc85R1
  doi: 10.1088/0305-4470/13/2/024
– ident: PhysRevX.15.021020Cc96R1
  doi: 10.21468/SciPostPhysLectNotes.82
– ident: PhysRevX.15.021020Cc99R1
  doi: 10.1103/PhysRevLett.132.110201
– ident: PhysRevX.15.021020Cc29R1
  doi: 10.1103/PhysRevB.110.L060202
– ident: PhysRevX.15.021020Cc34R1
  doi: 10.1103/PhysRevLett.127.235701
– ident: PhysRevX.15.021020Cc78R1
  doi: 10.1006/aphy.1996.0052
– ident: PhysRevX.15.021020Cc16R1
  doi: 10.1103/PhysRevB.107.L220201
– ident: PhysRevX.15.021020Cc19R1
  doi: 10.1103/PhysRevB.106.024304
– ident: PhysRevX.15.021020Cc54R1
  doi: 10.21468/SciPostPhys.14.5.138
– ident: PhysRevX.15.021020Cc26R1
  doi: 10.1103/PhysRevResearch.4.033001
– ident: PhysRevX.15.021020Cc95R1
  doi: 10.1103/PhysRevB.57.5812
– ident: PhysRevX.15.021020Cc32R1
  doi: 10.1103/PhysRevB.104.184422
– ident: PhysRevX.15.021020Cc43R1
  doi: 10.1103/PhysRevLett.126.170503
– ident: PhysRevX.15.021020Cc3R1
  doi: 10.1103/PhysRevB.98.205136
– ident: PhysRevX.15.021020Cc12R1
  doi: 10.1103/PhysRevB.105.094303
– ident: PhysRevX.15.021020Cc87R1
  doi: 10.1103/PhysRevB.106.104307
– ident: PhysRevX.15.021020Cc15R1
  doi: 10.1103/PhysRevX.11.041004
– ident: PhysRevX.15.021020Cc30R1
  doi: 10.1103/PhysRevB.106.134206
– ident: PhysRevX.15.021020Cc74R1
  doi: 10.1103/PhysRevResearch.2.043420
– ident: PhysRevX.15.021020Cc60R1
  doi: 10.1103/PhysRevResearch.6.013131
– ident: PhysRevX.15.021020Cc64R1
  doi: 10.1103/PhysRevB.110.094304
– ident: PhysRevX.15.021020Cc93R1
– ident: PhysRevX.15.021020Cc18R1
  doi: 10.1103/PhysRevX.13.041045
– volume-title: Quantum Measurement Theory and Its Applications
  year: 2014
  ident: PhysRevX.15.021020Cc52R1
  doi: 10.1017/CBO9781139179027
– ident: PhysRevX.15.021020Cc38R1
  doi: 10.1103/PhysRevX.11.011030
– ident: PhysRevX.15.021020Cc98R1
  doi: 10.1209/0295-5075/113/56001
– ident: PhysRevX.15.021020Cc36R1
  doi: 10.1016/j.physrep.2021.08.003
– ident: PhysRevX.15.021020Cc46R1
  doi: 10.1103/PhysRevLett.126.216407
– ident: PhysRevX.15.021020Cc68R1
  doi: 10.1103/RevModPhys.80.1355
– ident: PhysRevX.15.021020Cc31R1
  doi: 10.22331/q-2022-05-27-723
– ident: PhysRevX.15.021020Cc9R1
  doi: 10.1103/PhysRevX.13.041046
– ident: PhysRevX.15.021020Cc66R1
  doi: 10.1016/j.aop.2021.168618
– ident: PhysRevX.15.021020Cc88R1
  doi: 10.1103/PhysRevX.13.041028
– ident: PhysRevX.15.021020Cc2R1
  doi: 10.1103/PhysRevB.99.224307
– ident: PhysRevX.15.021020Cc82R1
  doi: 10.1142/S0217984990000933
– ident: PhysRevX.15.021020Cc40R1
  doi: 10.1038/s41467-020-18917-4
– ident: PhysRevX.15.021020Cc73R1
  doi: 10.1103/PhysRevResearch.2.033512
– ident: PhysRevX.15.021020Cc86R1
  doi: 10.1103/PhysRevB.16.1217
– ident: PhysRevX.15.021020Cc63R1
  doi: 10.1103/PhysRevB.104.L161107
– ident: PhysRevX.15.021020Cc45R1
  doi: 10.1103/PhysRevB.102.081115
– ident: PhysRevX.15.021020Cc50R1
  doi: 10.1103/PhysRevLett.118.040401
– volume-title: The One-Dimensional Hubbard Model
  year: 2005
  ident: PhysRevX.15.021020Cc94R1
  doi: 10.1017/CBO9780511534843
SSID ssj0000601477
Score 2.4136567
Snippet Monitored quantum systems undergo measurement-induced phase transitions (MiPTs) stemming from the interplay between measurements and unitary dynamics. When the...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 021020
Title Theory of Free Fermions Dynamics under Partial Postselected Monitoring
URI https://doaj.org/article/f93bbba0b59843b18346d81acd488589
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvAmddOmTZqjryKCIuLC3kommRx3ZXf19ztJdmU9efFaQtJ8M2lmysz3MXZpsKmhRltYLauiNioU1tWmAKfRBDpcVsXe4ecX9Tiqn8bNeE3qK9aEZXrgDNwwGAkAVkBj2loCeWCtfFta58n1mja17gkj1pKp_A2m0F_rVZeMkMNYUPmGX-PrsrlOeY74dROtEfanm6XbZTvLkJDf5FfZYxs42WdbqTTTzQ9Yl9vn-TTwbobIu1i-Qr7C77OY_JzHPrAZf417oXmi_O48qdug5_nIxn93h2zUPbzfPRZL9YPCUci1KHwAn2QxdEBvvYTWK03ZB7SuSiz4gFWrKN7TvqyA8AkYxcxLCNY0RqE8YpuT6QSPGRdOg20jcX2gfEqRRQhIIWkFh15XYsCuVkj0H5nkok_JgZD9Cre-bPqM24DdRrB-RkaC6vSAzNYvzdb_ZbaT_5jklG1XUY43FdKcsc3F7BPPKUZYwEVyh2_SHbm9
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory+of+Free+Fermions+Dynamics+under+Partial+Postselected+Monitoring&rft.jtitle=Physical+review.+X&rft.au=Chun+Y.+Leung&rft.au=Dganit+Meidan&rft.au=Alessandro+Romito&rft.date=2025-04-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=15&rft.issue=2&rft.spage=021020&rft_id=info:doi/10.1103%2FPhysRevX.15.021020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f93bbba0b59843b18346d81acd488589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon