Hybrid Red Deer with Moth Flame Optimization for Reconfiguration Process on Partially Shaded Photovoltaic Array

While the partial shading operation is observed in the photovoltaic (PV) panel, the solar radiation strikes the PV modules placed in a non-homogeneous PV array. Most of the array reconfiguration approaches for PV arrays use puzzle-based mathematical techniques to relocate the PV modules. While takin...

Full description

Saved in:
Bibliographic Details
Published inEnergy sources. Part A, Recovery, utilization, and environmental effects Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 27
Main Author Neelamkavil Pappachan, Sebi
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2024
Subjects
Online AccessGet full text
ISSN1556-7036
1556-7230
DOI10.1080/15567036.2022.2029626

Cover

Abstract While the partial shading operation is observed in the photovoltaic (PV) panel, the solar radiation strikes the PV modules placed in a non-homogeneous PV array. Most of the array reconfiguration approaches for PV arrays use puzzle-based mathematical techniques to relocate the PV modules. While taking size as the parameter, the existing array reconfiguration approach is not a reliable option for efficient shaded dispersion in large-scale sized PV arrays. The main intent of this paper is to implement a novel array reconfiguration model in PV systems using improved an hybrid meta-heuristic algorithm. In the proposed model, the optimal array reconfiguration is attained by a hybrid meta-heuristic algorithm called Red Deer-Moth-Flame Optimization (RD-MFO), which can prove its excellence in providing the optimal PV array. The proposed objective model with best array reconfiguration is focused on a multi-objective function that covers the constraints like maximizing the power, minimizing efficiency, and minimizing shading loss, and other constraints like fill factor, income generation, and mismatch losses. To validate the reconfiguration model, the proposed approach has experimented on a 9 × 9 PV array with four shade patterns. Furthermore, the comparative analysis of attaining the multi-objective function by the proposed RD-MFO over the conventional meta-heuristic algorithm proves the efficiency of the proposed arrangement. While considering the efficiency of the designed RD-MFO-based PV array for case 4 is 16.923% improved than IPM and 19.230% improved than SGDA. Thus, all the computations have been verified with all the methods, and the suggested model gets superior performance in PV array reconfiguration.
AbstractList While the partial shading operation is observed in the photovoltaic (PV) panel, the solar radiation strikes the PV modules placed in a non-homogeneous PV array. Most of the array reconfiguration approaches for PV arrays use puzzle-based mathematical techniques to relocate the PV modules. While taking size as the parameter, the existing array reconfiguration approach is not a reliable option for efficient shaded dispersion in large-scale sized PV arrays. The main intent of this paper is to implement a novel array reconfiguration model in PV systems using improved an hybrid meta-heuristic algorithm. In the proposed model, the optimal array reconfiguration is attained by a hybrid meta-heuristic algorithm called Red Deer-Moth-Flame Optimization (RD-MFO), which can prove its excellence in providing the optimal PV array. The proposed objective model with best array reconfiguration is focused on a multi-objective function that covers the constraints like maximizing the power, minimizing efficiency, and minimizing shading loss, and other constraints like fill factor, income generation, and mismatch losses. To validate the reconfiguration model, the proposed approach has experimented on a 9 × 9 PV array with four shade patterns. Furthermore, the comparative analysis of attaining the multi-objective function by the proposed RD-MFO over the conventional meta-heuristic algorithm proves the efficiency of the proposed arrangement. While considering the efficiency of the designed RD-MFO-based PV array for case 4 is 16.923% improved than IPM and 19.230% improved than SGDA. Thus, all the computations have been verified with all the methods, and the suggested model gets superior performance in PV array reconfiguration.
Author Neelamkavil Pappachan, Sebi
Author_xml – sequence: 1
  givenname: Sebi
  surname: Neelamkavil Pappachan
  fullname: Neelamkavil Pappachan, Sebi
  email: sebilaiby@gmail.com
  organization: Thiagarajar Polytechnic College
BookMark eNqFkM1KAzEUhYNUsK0-gpAXmJrMJPODG0u1Vqi0-LMOmUxiI5lJSaJlfHpnbLtxoZt7D4d7DpdvBAaNbSQAlxhNMMrRFaY0zVCSTmIUx_0o0jg9AcPej7I4QYOj7o7OwMj7d4QIpagYArtoS6cr-CQreCulgzsdNvDRdmNueC3haht0rb940LaByrruUthG6bcPt_fWzgrpPewld0FzY1r4vOFV17je2GA_rQlcCzh1jrfn4FRx4-XFYY_B6_zuZbaIlqv7h9l0GYkEoxBVAiVCEEpSUcpKplzxEhFMiyyTJc9imaic5HmOi5gqKVSVY0IEyYWQCEuZJmNwve8VznrvpGJCh5-Hg-PaMIxYz44d2bGeHTuw69L0V3rrdM1d-2_uZp_TTYeq5jvrTMUCb411yvFGaM-Svyu-AaZriis
CitedBy_id crossref_primary_10_1016_j_enconman_2023_117519
crossref_primary_10_1038_s41598_025_91508_9
crossref_primary_10_1016_j_egyr_2022_05_231
crossref_primary_10_1007_s11227_023_05413_x
crossref_primary_10_3233_JIFS_224137
crossref_primary_10_1002_jnm_3242
crossref_primary_10_1080_15567036_2023_2243860
crossref_primary_10_1080_02286203_2024_2403008
crossref_primary_10_1080_15567036_2023_2197853
Cites_doi 10.1007/s12065-018-0168-y
10.1007/s40815-020-01037-y
10.1007/s11708-016-0405-y
10.1016/j.solener.2018.07.014
10.1016/j.energy.2015.12.036
10.1016/j.mlwa.2021.100036
10.1109/ACCESS.2020.3036124
10.1109/TEC.2019.2921625
10.1109/TSTE.2014.2364230
10.1007/s00500-020-04812-z
10.1109/TSTE.2017.2714905
10.1109/TSTE.2012.2230033
10.1007/s00521-016-2757-y
10.1016/j.rser.2019.04.037
10.1007/s11708-015-0350-1
10.1007/s11276-020-02299-y
10.1109/TIA.2019.2956912
10.1109/ACCESS.2020.2978621
10.1007/s40031-015-0199-z
10.1109/TSTE.2012.2208128
10.1109/ACCESS.2020.3018722
10.1016/j.egyr.2020.11.035
10.1007/978-3-319-05708-8_13
10.1016/j.egypro.2017.05.229
10.1016/j.enconman.2020.113115
10.1016/j.knosys.2015.07.006
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
DBID AAYXX
CITATION
DOI 10.1080/15567036.2022.2029626
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-7230
EndPage 27
ExternalDocumentID 10_1080_15567036_2022_2029626
2029626
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJIA
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
ADMLS
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-dc03cc4546cbede6afab0415977eba72e3f848881925fecfd8144c48cce01ee63
ISSN 1556-7036
IngestDate Wed Oct 01 03:15:52 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Mon Oct 20 23:47:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue ahead-of-print
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-dc03cc4546cbede6afab0415977eba72e3f848881925fecfd8144c48cce01ee63
PageCount 27
ParticipantIDs crossref_citationtrail_10_1080_15567036_2022_2029626
informaworld_taylorfrancis_310_1080_15567036_2022_2029626
crossref_primary_10_1080_15567036_2022_2029626
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Energy sources. Part A, Recovery, utilization, and environmental effects
PublicationYear 2024
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
Laudani A. (e_1_3_2_18_1) 2019
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
Nihanth M. S. S. (e_1_3_2_20_1) 2019
e_1_3_2_26_1
Aghaie R. (e_1_3_2_2_1) 2019; 7
Dhanalakshmi B. (e_1_3_2_8_1) 2017
e_1_3_2_16_1
e_1_3_2_9_1
Farh H. M. H. (e_1_3_2_11_1) 2019
e_1_3_2_17_1
e_1_3_2_19_1
Shi J.-Y. (e_1_3_2_30_1) 2019; 19
e_1_3_2_31_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
Chang N. (e_1_3_2_7_1) 2015
Nowdeh S. A. (e_1_3_2_21_1) 2020
References_xml – start-page: 387
  year: 2019
  ident: e_1_3_2_20_1
  article-title: A new array reconfiguration scheme for solar PV systems under partial shading conditions
  publication-title: Intelligent Computing Techniques for Smart Energy Systems
– ident: e_1_3_2_6_1
  doi: 10.1007/s12065-018-0168-y
– ident: e_1_3_2_28_1
  doi: 10.1007/s40815-020-01037-y
– ident: e_1_3_2_24_1
  doi: 10.1007/s11708-016-0405-y
– ident: e_1_3_2_13_1
  doi: 10.1016/j.solener.2018.07.014
– ident: e_1_3_2_22_1
  doi: 10.1016/j.energy.2015.12.036
– volume: 19
  start-page: 1248
  issue: 5
  year: 2019
  ident: e_1_3_2_30_1
  article-title: Moth-flame optimization-based maximum power point tracking for photovoltaic systems under partial shading conditions
  publication-title: Journal of Power Electronics
– ident: e_1_3_2_3_1
  doi: 10.1016/j.mlwa.2021.100036
– ident: e_1_3_2_36_1
  doi: 10.1109/ACCESS.2020.3036124
– ident: e_1_3_2_17_1
  doi: 10.1109/TEC.2019.2921625
– ident: e_1_3_2_32_1
  doi: 10.1109/TSTE.2014.2364230
– ident: e_1_3_2_12_1
  doi: 10.1007/s00500-020-04812-z
– ident: e_1_3_2_5_1
  doi: 10.1109/TSTE.2017.2714905
– ident: e_1_3_2_25_1
  doi: 10.1109/TSTE.2012.2230033
– ident: e_1_3_2_15_1
  doi: 10.1007/s00521-016-2757-y
– ident: e_1_3_2_16_1
  doi: 10.1016/j.rser.2019.04.037
– start-page: 181
  year: 2015
  ident: e_1_3_2_7_1
  article-title: Reconfigurable photovoltaic array systems for adaptive and fault-tolerant energy harvesting
  publication-title: Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting
– ident: e_1_3_2_26_1
  doi: 10.1007/s11708-015-0350-1
– ident: e_1_3_2_29_1
  doi: 10.1007/s11276-020-02299-y
– volume: 7
  start-page: 176
  issue: 2
  year: 2019
  ident: e_1_3_2_2_1
  article-title: Maximum power point tracker for photovoltaic systems based on moth-flame optimization considering partial
  publication-title: Shading Conditions
– ident: e_1_3_2_4_1
  doi: 10.1109/TIA.2019.2956912
– volume-title: A new hybrid moth flame optimizer-perturb and observe method for maximum power point tracking in photovoltaic energy system
  year: 2020
  ident: e_1_3_2_21_1
– ident: e_1_3_2_33_1
  doi: 10.1109/ACCESS.2020.2978621
– ident: e_1_3_2_34_1
  doi: 10.1007/s40031-015-0199-z
– ident: e_1_3_2_9_1
  doi: 10.1109/TSTE.2012.2208128
– ident: e_1_3_2_35_1
  doi: 10.1109/ACCESS.2020.3018722
– start-page: 39
  year: 2017
  ident: e_1_3_2_8_1
  article-title: The particle swarm optimization algorithm for maximum power extraction of solar PV array
  publication-title: Advances in Smart Grid and Renewable Energy
– ident: e_1_3_2_27_1
  doi: 10.1016/j.egyr.2020.11.035
– ident: e_1_3_2_31_1
  doi: 10.1007/978-3-319-05708-8_13
– ident: e_1_3_2_23_1
  doi: 10.1016/j.egypro.2017.05.229
– start-page: 525
  year: 2019
  ident: e_1_3_2_18_1
  article-title: Optimal PV panel reconfiguration using wireless irradiance distributed sensing
  publication-title: Electrimacs
– ident: e_1_3_2_14_1
  doi: 10.1016/j.enconman.2020.113115
– ident: e_1_3_2_19_1
  doi: 10.1016/j.knosys.2015.07.006
– start-page: 107
  year: 2019
  ident: e_1_3_2_11_1
  article-title: Maximum power extraction from the photovoltaic system under partial shading conditions
  publication-title: Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems
– ident: e_1_3_2_10_1
  doi: 10.1109/TSTE.2012.2208128
SSID ssj0045509
Score 2.431146
Snippet While the partial shading operation is observed in the photovoltaic (PV) panel, the solar radiation strikes the PV modules placed in a non-homogeneous PV...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms array reconfiguration
global maximum power
meta-heuristic algorithm
multi-objective function
Photo voltaic system
red deer-moth-flame optimization
Title Hybrid Red Deer with Moth Flame Optimization for Reconfiguration Process on Partially Shaded Photovoltaic Array
URI https://www.tandfonline.com/doi/abs/10.1080/15567036.2022.2029626
Volume ahead-of-print
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1556-7230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045509
  issn: 1556-7036
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaWcoEDKi9RoJUP3FZesnESkuMKtVpVaulhK_UW-UlXhE21zSKVf8S_ZMZ2tt52xfMSRYn8iOeLZ8ae-UzIO51YkQtZsaLI0UGRlslKK8Y12PqWSy3dGUsnp8X0PDu-yC8Ggx9R1NKqkyP1fWteyb9IFZ6BXDFL9i8ku64UHsA9yBeuIGG4_pGMpzeYbwVDhNHEZukXVU9g7IdHIGgz_ATzwdeQaOniCdHZXNj551WQe0gTwB2DM6xfNM0NcjhrqPHssu1amLw6MVfDyXIpNjaAD33OoF_7vx654sNJMEQxLNQJD769Ce33YaJRZh2gI4ST3C5JG-j4F_Ft3kCNV-DPX4YFWiPn8QJFuqZBDJCa3TsrJJ5u84IhBZjXRtGzNOzWhDlagGbSrLUMVzu7CJdbXviZeBypdM8-cE9Z-OhKbA-7MIK-Y2ZeWhXpHXJup-7DmwfkYQoKBE8J4clpr_QxN7xy1Lzhg_pksTJ5v7WBDTNogyQ3Mm9mu-RJ8EvoxIPsKRmYxTPyOGKrfE5aDzcKcKMIN4pwowg36uBGY7hRaIregRsNcKN428ONerjRGG7Uwe0FOT86nH2csnBeB1PgJHRMq4QrleVZoaTRphBWSGSAABfDSPEhNdyWoC-Qgi8HcFldgjevslIpk4yNKfhLsrNoF-YVoTITsqzKEiw4Ay5FJsEstpynJq1KmEaSPZL1w1erQGaPZ6o09Thw3vajXuOo12HU98hoXezKs7n8rkAVy6buHJitx3HNf1n29X-UfUMe3f5Kb8lOt1yZfbB-O3ngcPcTWHuukQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oHtSDbyM-9-C1WLptbY9GJVUBjULCrdmnEBEMKQf89c70YYqJeuDWbDKbfUxnvtnMfEPIubIN97gILd_3MEARxhKhkhZTgPUNE0qkPZZabT_quvc9r1eqhcG0SoyhTUYUkdpq_LnxMbpIibsAH-gjcRSEdw4WUzkhwPJlsuIB2McuBsxuF9YYi3bDlDPV8y2UKap4fptmzj_NsZeW_E5jk8hixVm6yVttmoia_PxB5rjYlrbIRg5L6VWmR9tkSY92yHqJrHCXjKMZVnfRZ63oDQxSfMKlLbhp2gC10vQRrM97XtZJYUMUQ9uRGbxOMy2jeVECxU_UWD4czuhLnyuY8ak_TsZgKhM-kLCMCZ_tkW7jtnMdWXm7BksCRkwsJW0mpeu5vhRaaZ8bLpAAABCmFvzS0cwEYC6Qgc0zWhoVQDAn3UBKbde19tk-qYzGI31AqHC5CMIgAAeuAVG6AlCRYczRThiAFtlV4haXFMucyxxbagzjek55WpxnjOcZ5-dZJbVvsY-MzOM_gbCsAXGSvqKYrOVJzP6UPVxA9oysRp1WM27etR-OyBqM5uSSx6SSTKb6BIBQIk5TTf8CfB762Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJkYPvo343IPXYu1jbY9GJPgAiUrirdmnEBEIlgP-emfarQET9cCt2WQ2-5jOfNPOfEPIqXIND7mIHcZCDFCEcUSspOMrwPrGF0pkPZYaTVZvB7cvYZFN-GHTKjGGNjlRRGar8eUeKlNkxJ2BC2TIGwXRnYe1VF4MqHyRLDH8K4ZVHG6zMMZYsxtnlKkhc1CmKOL5bZoZ9zRDXjrldmrrRBQLzrNN3irjVFTk5w8ux7l2tEHWLCill7kWbZIF3d8iq1NUhdtkUJ9gbRd91IpWYZDiB1zagHumNVAqTR_A9rzbok4K-6EY2PZN93Wc6xi1JQkUH1Ffea83oU8drmDGVmeQDsBQprwrYRkjPtkh7dr181Xdsc0aHAkIMXWUdH0pgzBgUmilGTdcYPk_4Est-IWnfROBsUD-tdBoaVQEoZwMIim1e64183dJqT_o6z1CRcBFFEcRuG8NeDIQgImM73vaiyPQIbdMguKOEmmZzLGhRi85t4SnxXkmeJ6JPc8yqXyLDXMqj_8E4mkFSNLsG4rJG54k_p-y-3PInpDlVrWW3N807w7ICgxaZslDUkpHY30EKCgVx5mefwFgt_l9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Red+Deer+with+Moth+Flame+Optimization+for+Reconfiguration+Process+on+Partially+Shaded+Photovoltaic+Array&rft.jtitle=Energy+sources.+Part+A%2C+Recovery%2C+utilization%2C+and+environmental+effects&rft.au=Neelamkavil+Pappachan%2C+Sebi&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis&rft.issn=1556-7036&rft.eissn=1556-7230&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1080%2F15567036.2022.2029626&rft.externalDocID=2029626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-7036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-7036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-7036&client=summon