Network-based likelihood modeling of event occurrences in space and time: a case study of traffic accidents in Dallas, Texas, USA

We propose a novel approach to network-based event likelihood modeling that estimates the probabilities of event occurrences on a network and identifies the influences of site and situation characteristics. Our premise is that the occurrences of events that involve human activities are subject to si...

Full description

Saved in:
Bibliographic Details
Published inCartography and geographic information science Vol. 46; no. 1; pp. 21 - 38
Main Authors Acker, Benjamin, Yuan, May
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.01.2019
Subjects
Online AccessGet full text
ISSN1523-0406
1545-0465
DOI10.1080/15230406.2018.1515037

Cover

Abstract We propose a novel approach to network-based event likelihood modeling that estimates the probabilities of event occurrences on a network and identifies the influences of site and situation characteristics. Our premise is that the occurrences of events that involve human activities are subject to site and situational characteristics, and an understanding of event occurrences serves the basis for preparation or mitigation. Using data from Dallas, Texas, USA, we take the proposed approach to estimate the likelihood of traffic accidents based on binary (event or nonevent) space-time atoms of 100-m road segments and 1-h intervals. We choose 12 variables representing time, site characteristics, and situational conditions based on literature reviews to develop logistic regression and random forest models. The traffic accident data on even days were used for model construction and data on odd days for model testing. Both models result in comparable accuracy at 84.11% (logistic regression) and 85.42% (random forest) with significant differences in the spatial patterns of how site and situation correlate to traffic accidents. The difference signals the dynamic influence of site and situation characteristics on the event likelihood over time. The proposed approach shall be applicable to other point events on a network.
AbstractList We propose a novel approach to network-based event likelihood modeling that estimates the probabilities of event occurrences on a network and identifies the influences of site and situation characteristics. Our premise is that the occurrences of events that involve human activities are subject to site and situational characteristics, and an understanding of event occurrences serves the basis for preparation or mitigation. Using data from Dallas, Texas, USA, we take the proposed approach to estimate the likelihood of traffic accidents based on binary (event or nonevent) space-time atoms of 100-m road segments and 1-h intervals. We choose 12 variables representing time, site characteristics, and situational conditions based on literature reviews to develop logistic regression and random forest models. The traffic accident data on even days were used for model construction and data on odd days for model testing. Both models result in comparable accuracy at 84.11% (logistic regression) and 85.42% (random forest) with significant differences in the spatial patterns of how site and situation correlate to traffic accidents. The difference signals the dynamic influence of site and situation characteristics on the event likelihood over time. The proposed approach shall be applicable to other point events on a network.
Author Yuan, May
Acker, Benjamin
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0000-0002-3475-6178
  surname: Acker
  fullname: Acker, Benjamin
  organization: School of Economic, Political and Policy Sciences, The University of Texas at Dallas
– sequence: 2
  givenname: May
  orcidid: 0000-0002-9006-2920
  surname: Yuan
  fullname: Yuan, May
  email: myuan@utdallas.edu
  organization: School of Economic, Political and Policy Sciences, The University of Texas at Dallas
BookMark eNqFkL1OwzAUhS1UJNrCIyD5AUi5duL8wELFv1TBQDtHju2AaWJXtgt05M1JaFkYYDpnuN_R1TdCA2ONQuiYwIRADqeE0RgSSCcUSD4hjDCIsz00JCxhESQpG_SdxlF_dIBG3r8CQBqTbIg-H1R4t24ZVdwriRu9VI1-sVbi1sqummdsa6zelAnYCrF2ThmhPNYG-xUXCnMjcdCtOsMci24D-7CWmx4Kjte1FpgLoWXHf0NXvGm4P8Fz9dHH4ml6iPZr3nh1tMsxWtxczy_votnj7f3ldBaJmECICikVLWRGCMgKlKigokVeiKJiSUUTqJIs4XENICgTWUoZlVnGKSUyh6QoaDxG59td4az3TtWl0IEHbU33qG5KAmVvs_yxWfY2y53Njma_6JXTLXebf7mLLadNbV3LO9eNLAPfNNbVjhuhfRn_PfEFlKCNvg
CitedBy_id crossref_primary_10_1111_rssc_12450
crossref_primary_10_1111_sjtg_12344
crossref_primary_10_3390_su15075939
crossref_primary_10_1016_j_physa_2021_126416
crossref_primary_10_3390_ijgi11040242
crossref_primary_10_3390_ijgi13110410
crossref_primary_10_1080_17457300_2024_2409638
crossref_primary_10_1007_s13253_024_00615_z
crossref_primary_10_1007_s12469_022_00310_7
Cites_doi 10.1023/A:1010933404324
10.3141/2055-16
10.1080/13658816.2017.1283505
10.1175/2008WAF2007111.1
10.1016/j.aap.2008.12.014
10.1198/016214504000002078
10.1007/s11116-011-9343-z
10.1080/13658810802475491
10.1016/j.trf.2015.07.002
10.1111/tgis.2006.10.issue-3
10.1068/b030147
10.1016/S0167-9473(00)00028-1
10.1093/oxfordjournals.pan.a004868
10.1080/19475683.2015.1085440
10.1002/9780470725160
10.1214/11-AOAS530
10.1007/978-1-4614-7138-7
10.1017/S1350482705001957
10.1016/j.csda.2006.11.008
10.1111/rssa.12178
10.1080/13658810600965271
10.1007/978-1-4612-1578-3_14
10.1016/j.compenvurbsys.2008.05.001
10.1068/b32067
10.1016/j.ssci.2013.02.012
10.1016/j.jtte.2016.01.005
10.1007/978-0-387-84858-7
10.1002/9781118527085
10.1111/gean.12128
10.3141/2061-07
10.1111/j.1467-9469.2007.00569.x
10.1093/bjc/43.3.615
10.1201/b19708
ContentType Journal Article
Copyright 2018 Cartography and Geographic Information Society 2018
Copyright_xml – notice: 2018 Cartography and Geographic Information Society 2018
DBID AAYXX
CITATION
DOI 10.1080/15230406.2018.1515037
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1545-0465
EndPage 38
ExternalDocumentID 10_1080_15230406_2018_1515037
1515037
Genre Article
GrantInformation_xml – fundername: National Institute of Standards and Technology (NIST) Public Safety Innovation Accelerator Program (PSIAP)
  funderid: 10.13039/100000161
GroupedDBID ..I
0BK
29B
2FS
30N
4.4
5GY
6J9
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABPPZ
ABRLO
ABTAI
ABUFD
ABXUL
ABXYU
ACGFO
ACGFS
ACHQT
ACTIO
ADCVX
ADGTB
AEISY
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IAO
IEA
IOF
IPNFZ
IPO
KYCEM
LJTGL
M4Z
O9-
RIG
RNANH
ROSJB
RSW
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
UHB
UT5
WH7
X6Y
ZCG
ZGOLN
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-9dde29d7110db0ecb0b2989c9b54b240b474a3f00c25c76252d77a221d8049923
ISSN 1523-0406
IngestDate Thu Apr 24 23:03:42 EDT 2025
Wed Oct 01 03:18:57 EDT 2025
Mon Oct 20 23:50:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-9dde29d7110db0ecb0b2989c9b54b240b474a3f00c25c76252d77a221d8049923
ORCID 0000-0002-3475-6178
0000-0002-9006-2920
PageCount 18
ParticipantIDs crossref_citationtrail_10_1080_15230406_2018_1515037
informaworld_taylorfrancis_310_1080_15230406_2018_1515037
crossref_primary_10_1080_15230406_2018_1515037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1/2/2019
2019-01-02
PublicationDateYYYYMMDD 2019-01-02
PublicationDate_xml – month: 01
  year: 2019
  text: 1/2/2019
  day: 02
PublicationDecade 2010
PublicationTitle Cartography and geographic information science
PublicationYear 2019
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0010
CIT0032
CIT0031
CIT0012
CIT0011
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0037
CIT0018
CIT0017
CIT0019
CIT0041
Arias S. (CIT0003) 2008
CIT0040
CIT0021
CIT0020
CIT0042
CIT0001
CIT0022
Ullman E. L. (CIT0039) 1954
Parimala M. (CIT0030) 2011; 31
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
Liaw A. (CIT0023) 2002; 2
CIT0007
CIT0029
CIT0006
CIT0028
CIT0008
References_xml – ident: CIT0006
  doi: 10.1023/A:1010933404324
– ident: CIT0031
  doi: 10.3141/2055-16
– ident: CIT0035
  doi: 10.1080/13658816.2017.1283505
– ident: CIT0007
  doi: 10.1175/2008WAF2007111.1
– ident: CIT0002
  doi: 10.1016/j.aap.2008.12.014
– ident: CIT0010
  doi: 10.1198/016214504000002078
– ident: CIT0036
  doi: 10.1007/s11116-011-9343-z
– ident: CIT0027
  doi: 10.1080/13658810802475491
– start-page: 248
  volume-title: A posthumous collection of articles by Edward Ullman (1912-1976) published in 1980
  year: 1954
  ident: CIT0039
– ident: CIT0020
  doi: 10.1016/j.trf.2015.07.002
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: CIT0023
  publication-title: R News
– ident: CIT0012
  doi: 10.1111/tgis.2006.10.issue-3
– ident: CIT0016
  doi: 10.1068/b030147
– ident: CIT0032
  doi: 10.1016/S0167-9473(00)00028-1
– ident: CIT0021
  doi: 10.1093/oxfordjournals.pan.a004868
– ident: CIT0042
  doi: 10.1080/19475683.2015.1085440
– ident: CIT0017
  doi: 10.1002/9780470725160
– ident: CIT0018
  doi: 10.1214/11-AOAS530
– ident: CIT0019
  doi: 10.1007/978-1-4614-7138-7
– ident: CIT0008
  doi: 10.1017/S1350482705001957
– ident: CIT0029
  doi: 10.1016/j.csda.2006.11.008
– ident: CIT0005
  doi: 10.1111/rssa.12178
– ident: CIT0011
  doi: 10.1080/13658810600965271
– ident: CIT0022
  doi: 10.1007/978-1-4612-1578-3_14
– ident: CIT0041
  doi: 10.1016/j.compenvurbsys.2008.05.001
– start-page: 17
  volume-title: The spatial turn
  year: 2008
  ident: CIT0003
– ident: CIT0038
  doi: 10.1068/b32067
– ident: CIT0040
  doi: 10.1016/j.ssci.2013.02.012
– ident: CIT0013
  doi: 10.1016/j.jtte.2016.01.005
– ident: CIT0014
  doi: 10.1007/978-0-387-84858-7
– ident: CIT0025
  doi: 10.1002/9781118527085
– ident: CIT0028
  doi: 10.1111/gean.12128
– ident: CIT0001
  doi: 10.3141/2061-07
– ident: CIT0024
  doi: 10.1111/j.1467-9469.2007.00569.x
– ident: CIT0037
  doi: 10.1093/bjc/43.3.615
– volume: 31
  start-page: 59
  issue: 1
  year: 2011
  ident: CIT0030
  publication-title: International Journal of Advanced Science and Technology
– ident: CIT0004
  doi: 10.1201/b19708
SSID ssj0006317
Score 2.2337446
Snippet We propose a novel approach to network-based event likelihood modeling that estimates the probabilities of event occurrences on a network and identifies the...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 21
SubjectTerms Events
likelihood
network
space syntax analysis
space-time
spatiotemporal modeling
traffic
Traffic accident
urban transportation
Title Network-based likelihood modeling of event occurrences in space and time: a case study of traffic accidents in Dallas, Texas, USA
URI https://www.tandfonline.com/doi/abs/10.1080/15230406.2018.1515037
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1545-0465
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006317
  issn: 1523-0406
  databaseCode: AHDZW
  dateStart: 19990101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1545-0465
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006317
  issn: 1523-0406
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxFOUl_bALd2w3vU6dm-hBSIkeqERhYu1DxsCwUGVI9He-lf4pcw-7G6gKpSLZa00E9vzZWZ2NPsNQs-0ghjL84wUOecEvJ8gqpaC5EKCw6whp6gd2-dBNpunb47E0WDwM-paWrdqrE8vPFfyP1aFNbCrPSV7Bcv2SmEB7sG-cAULw_WfbHzge7iJDUVmtFx8rZYLR1Ps5tuEfmZH0TRaae2YmHwD1gj8SDgpYIfL-xPPGrR4ulnXOHAsLbvESGpt5462Tmzflt19Y1H1w9_M303jBHcPHjOwYDv1n_yQ9c-gKXC0OsCFwNvDrWvueFE1X-S3RY_YD2tfoH0ben1CfcIeiUoIZbFLZZyAqwiE12EtFbapVMR-OJQiY7x1TjUKz54L5g_H7zslE1fjprb1JMnHNlejnlJmk2j7twDYtyUmgS-1U1NaNWVQcw1tMYgcdIi2prP9j-_7eJ9xN9e5f8_unFhOn1_4PBsZ0AY_bpTZHN5CN8OWBE89vm6jQdXcQddfB8Od3EVnGzjD5zjDHc7wqsYOZzjCGV402OEMAxCwxdkultiiDDuUWaGAMtyjzAp5lO1gh7EdDAi7h-avXh7uzUgY3UE07BdaUkDUZIWZQHJpFK20ospS_etCiVRBEqnSSSp5TalmQsNXFcxMJpKxxOR2D874fTRsVk31AGEQg5TXKGNUnVacS56pOhMGfExquMq2Udp9zlIHXns7XmVZXmrObTTuxb57Ype_CRSxrcrWVdRqP_6m5JfKPrzqjz1CN87_S4_RsD1eV08g-23V0wC_X6FvpWA
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DGXhjXjjgRGHNI7zYEM8VKBkoZXYotiORdUqRSVIwMY_585JUEECBqYM0Wc5jvPd5XT-PkIOlYQYy6OAxRHnDNhPMGkywSKRAWEayCmMVftMgk7fv74X91NnYbCtEv-hTSUUYbkaP24sRjctccdtW8p0scOgHTkYkl0ezpJ5Ack-uhhwN_lk44Bb112EMMQ0p3h-GuZLfPqiXjoVdy6XiGpmXLWbDJ3nUjrq7ZuY4_8eaZks1mkpPa320QqZyYtV0qod0h9e18h7UvWLMwx7mo4Gw3w0QElkar10IADSsaFWDoqOlbKqT0BBdFBQ4CyVU5gaRSP7E5pRBWNQK2yLoHKSoY4FzZRCh9PSgs6xwP90RHv5C176d6frpH950TvrsNq-gSnIGUsWA3N6sQ4hwdDSzZV0Jcq9q1gKX0IiIf3Qz7hxXeUJBZwsPB2Gmee1dYT_YR7fIHPFuMg3CQUYpD1aai2Nn3Oe8UCaQGjYZ77mMtgifvPSUlVrm6PFxiht1xKozfqmuL5pvb5bxPmEPVbiHn8B4ukdkZa2qmIqC5SU_4rd_gf2gLQ6vdtu2r1KbnbIAtyKbRnI2yVz5eQ534PEqJT7dud_ABF1_Jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJurFtxGfe_DoYun26Y2IBB8hJkLirenudiOBAIGSqDf_uTPbloCJeuDUQ_NtttvpN7PT2W8IuZQCfCwPPBYGnDNgP5cJHbsscGMgTA0xhTZqny2v2XEeXt2imnCSl1XiHlpnQhGGq_HjHildVMRdV00m08ICg2pQQY9scX-VrHn4VwxPcVitGRl73DTdRQhDTHGI57dhFtzTgnjpnNtpbBNRTDirNulVpqmoyM8fWo5LPdEO2cqDUlrLrGiXrCSDPbKR90d_-9gnX62sWpyh01O03-0l_S4KIlPTSQfcHx1qasSg6FBKo_kEBES7AwqMJRMKM6PYxv6GxlTCGNTI2iIoHceoYkFjKbG_aWpAdUzvT65oO3nHS-eldkA6jbv2bZPlzRuYhIgxZSHwph0qH8ILJaxECkug2LsMhesICCOE4zsx15YlbVcCI7u28v3YtqsqwF2YzQ9JaTAcJEeEAgyCHiWUEtpJOI-5J7TnKrAyR3HhlYlTvLNI5srm2GCjH1VzAdRifSNc3yhf3zKpzGCjTNrjP0A4bxBRanIqOmuAEvE_scdLYC_I-nO9ET3dtx5PyCbcCU0OyD4lpXQ8Tc4gKkrFubH7b-by-0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network-based+likelihood+modeling+of+event+occurrences+in+space+and+time%3A+a+case+study+of+traffic+accidents+in+Dallas%2C+Texas%2C+USA&rft.jtitle=Cartography+and+geographic+information+science&rft.au=Acker%2C+Benjamin&rft.au=Yuan%2C+May&rft.date=2019-01-02&rft.issn=1523-0406&rft.eissn=1545-0465&rft.volume=46&rft.issue=1&rft.spage=21&rft.epage=38&rft_id=info:doi/10.1080%2F15230406.2018.1515037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15230406_2018_1515037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1523-0406&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1523-0406&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1523-0406&client=summon