Network-based likelihood modeling of event occurrences in space and time: a case study of traffic accidents in Dallas, Texas, USA
We propose a novel approach to network-based event likelihood modeling that estimates the probabilities of event occurrences on a network and identifies the influences of site and situation characteristics. Our premise is that the occurrences of events that involve human activities are subject to si...
Saved in:
| Published in | Cartography and geographic information science Vol. 46; no. 1; pp. 21 - 38 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Taylor & Francis
02.01.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1523-0406 1545-0465 |
| DOI | 10.1080/15230406.2018.1515037 |
Cover
| Abstract | We propose a novel approach to network-based event likelihood modeling that estimates the probabilities of event occurrences on a network and identifies the influences of site and situation characteristics. Our premise is that the occurrences of events that involve human activities are subject to site and situational characteristics, and an understanding of event occurrences serves the basis for preparation or mitigation. Using data from Dallas, Texas, USA, we take the proposed approach to estimate the likelihood of traffic accidents based on binary (event or nonevent) space-time atoms of 100-m road segments and 1-h intervals. We choose 12 variables representing time, site characteristics, and situational conditions based on literature reviews to develop logistic regression and random forest models. The traffic accident data on even days were used for model construction and data on odd days for model testing. Both models result in comparable accuracy at 84.11% (logistic regression) and 85.42% (random forest) with significant differences in the spatial patterns of how site and situation correlate to traffic accidents. The difference signals the dynamic influence of site and situation characteristics on the event likelihood over time. The proposed approach shall be applicable to other point events on a network. |
|---|---|
| AbstractList | We propose a novel approach to network-based event likelihood modeling that estimates the probabilities of event occurrences on a network and identifies the influences of site and situation characteristics. Our premise is that the occurrences of events that involve human activities are subject to site and situational characteristics, and an understanding of event occurrences serves the basis for preparation or mitigation. Using data from Dallas, Texas, USA, we take the proposed approach to estimate the likelihood of traffic accidents based on binary (event or nonevent) space-time atoms of 100-m road segments and 1-h intervals. We choose 12 variables representing time, site characteristics, and situational conditions based on literature reviews to develop logistic regression and random forest models. The traffic accident data on even days were used for model construction and data on odd days for model testing. Both models result in comparable accuracy at 84.11% (logistic regression) and 85.42% (random forest) with significant differences in the spatial patterns of how site and situation correlate to traffic accidents. The difference signals the dynamic influence of site and situation characteristics on the event likelihood over time. The proposed approach shall be applicable to other point events on a network. |
| Author | Yuan, May Acker, Benjamin |
| Author_xml | – sequence: 1 givenname: Benjamin orcidid: 0000-0002-3475-6178 surname: Acker fullname: Acker, Benjamin organization: School of Economic, Political and Policy Sciences, The University of Texas at Dallas – sequence: 2 givenname: May orcidid: 0000-0002-9006-2920 surname: Yuan fullname: Yuan, May email: myuan@utdallas.edu organization: School of Economic, Political and Policy Sciences, The University of Texas at Dallas |
| BookMark | eNqFkL1OwzAUhS1UJNrCIyD5AUi5duL8wELFv1TBQDtHju2AaWJXtgt05M1JaFkYYDpnuN_R1TdCA2ONQuiYwIRADqeE0RgSSCcUSD4hjDCIsz00JCxhESQpG_SdxlF_dIBG3r8CQBqTbIg-H1R4t24ZVdwriRu9VI1-sVbi1sqummdsa6zelAnYCrF2ThmhPNYG-xUXCnMjcdCtOsMci24D-7CWmx4Kjte1FpgLoWXHf0NXvGm4P8Fz9dHH4ml6iPZr3nh1tMsxWtxczy_votnj7f3ldBaJmECICikVLWRGCMgKlKigokVeiKJiSUUTqJIs4XENICgTWUoZlVnGKSUyh6QoaDxG59td4az3TtWl0IEHbU33qG5KAmVvs_yxWfY2y53Njma_6JXTLXebf7mLLadNbV3LO9eNLAPfNNbVjhuhfRn_PfEFlKCNvg |
| CitedBy_id | crossref_primary_10_1111_rssc_12450 crossref_primary_10_1111_sjtg_12344 crossref_primary_10_3390_su15075939 crossref_primary_10_1016_j_physa_2021_126416 crossref_primary_10_3390_ijgi11040242 crossref_primary_10_3390_ijgi13110410 crossref_primary_10_1080_17457300_2024_2409638 crossref_primary_10_1007_s13253_024_00615_z crossref_primary_10_1007_s12469_022_00310_7 |
| Cites_doi | 10.1023/A:1010933404324 10.3141/2055-16 10.1080/13658816.2017.1283505 10.1175/2008WAF2007111.1 10.1016/j.aap.2008.12.014 10.1198/016214504000002078 10.1007/s11116-011-9343-z 10.1080/13658810802475491 10.1016/j.trf.2015.07.002 10.1111/tgis.2006.10.issue-3 10.1068/b030147 10.1016/S0167-9473(00)00028-1 10.1093/oxfordjournals.pan.a004868 10.1080/19475683.2015.1085440 10.1002/9780470725160 10.1214/11-AOAS530 10.1007/978-1-4614-7138-7 10.1017/S1350482705001957 10.1016/j.csda.2006.11.008 10.1111/rssa.12178 10.1080/13658810600965271 10.1007/978-1-4612-1578-3_14 10.1016/j.compenvurbsys.2008.05.001 10.1068/b32067 10.1016/j.ssci.2013.02.012 10.1016/j.jtte.2016.01.005 10.1007/978-0-387-84858-7 10.1002/9781118527085 10.1111/gean.12128 10.3141/2061-07 10.1111/j.1467-9469.2007.00569.x 10.1093/bjc/43.3.615 10.1201/b19708 |
| ContentType | Journal Article |
| Copyright | 2018 Cartography and Geographic Information Society 2018 |
| Copyright_xml | – notice: 2018 Cartography and Geographic Information Society 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/15230406.2018.1515037 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1545-0465 |
| EndPage | 38 |
| ExternalDocumentID | 10_1080_15230406_2018_1515037 1515037 |
| Genre | Article |
| GrantInformation_xml | – fundername: National Institute of Standards and Technology (NIST) Public Safety Innovation Accelerator Program (PSIAP) funderid: 10.13039/100000161 |
| GroupedDBID | ..I 0BK 29B 2FS 30N 4.4 5GY 6J9 AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABPPZ ABRLO ABTAI ABUFD ABXUL ABXYU ACGFO ACGFS ACHQT ACTIO ADCVX ADGTB AEISY AEYOC AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P GTTXZ H13 HZ~ H~P IAO IEA IOF IPNFZ IPO KYCEM LJTGL M4Z O9- RIG RNANH ROSJB RSW RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEI TFL TFT TFW TQWBC TTHFI TUROJ UHB UT5 WH7 X6Y ZCG ZGOLN ~02 AAYXX CITATION |
| ID | FETCH-LOGICAL-c310t-9dde29d7110db0ecb0b2989c9b54b240b474a3f00c25c76252d77a221d8049923 |
| ISSN | 1523-0406 |
| IngestDate | Thu Apr 24 23:03:42 EDT 2025 Wed Oct 01 03:18:57 EDT 2025 Mon Oct 20 23:50:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c310t-9dde29d7110db0ecb0b2989c9b54b240b474a3f00c25c76252d77a221d8049923 |
| ORCID | 0000-0002-3475-6178 0000-0002-9006-2920 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1080_15230406_2018_1515037 informaworld_taylorfrancis_310_1080_15230406_2018_1515037 crossref_primary_10_1080_15230406_2018_1515037 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 1/2/2019 2019-01-02 |
| PublicationDateYYYYMMDD | 2019-01-02 |
| PublicationDate_xml | – month: 01 year: 2019 text: 1/2/2019 day: 02 |
| PublicationDecade | 2010 |
| PublicationTitle | Cartography and geographic information science |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0010 CIT0032 CIT0031 CIT0012 CIT0011 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0037 CIT0018 CIT0017 CIT0019 CIT0041 Arias S. (CIT0003) 2008 CIT0040 CIT0021 CIT0020 CIT0042 CIT0001 CIT0022 Ullman E. L. (CIT0039) 1954 Parimala M. (CIT0030) 2011; 31 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 Liaw A. (CIT0023) 2002; 2 CIT0007 CIT0029 CIT0006 CIT0028 CIT0008 |
| References_xml | – ident: CIT0006 doi: 10.1023/A:1010933404324 – ident: CIT0031 doi: 10.3141/2055-16 – ident: CIT0035 doi: 10.1080/13658816.2017.1283505 – ident: CIT0007 doi: 10.1175/2008WAF2007111.1 – ident: CIT0002 doi: 10.1016/j.aap.2008.12.014 – ident: CIT0010 doi: 10.1198/016214504000002078 – ident: CIT0036 doi: 10.1007/s11116-011-9343-z – ident: CIT0027 doi: 10.1080/13658810802475491 – start-page: 248 volume-title: A posthumous collection of articles by Edward Ullman (1912-1976) published in 1980 year: 1954 ident: CIT0039 – ident: CIT0020 doi: 10.1016/j.trf.2015.07.002 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: CIT0023 publication-title: R News – ident: CIT0012 doi: 10.1111/tgis.2006.10.issue-3 – ident: CIT0016 doi: 10.1068/b030147 – ident: CIT0032 doi: 10.1016/S0167-9473(00)00028-1 – ident: CIT0021 doi: 10.1093/oxfordjournals.pan.a004868 – ident: CIT0042 doi: 10.1080/19475683.2015.1085440 – ident: CIT0017 doi: 10.1002/9780470725160 – ident: CIT0018 doi: 10.1214/11-AOAS530 – ident: CIT0019 doi: 10.1007/978-1-4614-7138-7 – ident: CIT0008 doi: 10.1017/S1350482705001957 – ident: CIT0029 doi: 10.1016/j.csda.2006.11.008 – ident: CIT0005 doi: 10.1111/rssa.12178 – ident: CIT0011 doi: 10.1080/13658810600965271 – ident: CIT0022 doi: 10.1007/978-1-4612-1578-3_14 – ident: CIT0041 doi: 10.1016/j.compenvurbsys.2008.05.001 – start-page: 17 volume-title: The spatial turn year: 2008 ident: CIT0003 – ident: CIT0038 doi: 10.1068/b32067 – ident: CIT0040 doi: 10.1016/j.ssci.2013.02.012 – ident: CIT0013 doi: 10.1016/j.jtte.2016.01.005 – ident: CIT0014 doi: 10.1007/978-0-387-84858-7 – ident: CIT0025 doi: 10.1002/9781118527085 – ident: CIT0028 doi: 10.1111/gean.12128 – ident: CIT0001 doi: 10.3141/2061-07 – ident: CIT0024 doi: 10.1111/j.1467-9469.2007.00569.x – ident: CIT0037 doi: 10.1093/bjc/43.3.615 – volume: 31 start-page: 59 issue: 1 year: 2011 ident: CIT0030 publication-title: International Journal of Advanced Science and Technology – ident: CIT0004 doi: 10.1201/b19708 |
| SSID | ssj0006317 |
| Score | 2.2337446 |
| Snippet | We propose a novel approach to network-based event likelihood modeling that estimates the probabilities of event occurrences on a network and identifies the... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 21 |
| SubjectTerms | Events likelihood network space syntax analysis space-time spatiotemporal modeling traffic Traffic accident urban transportation |
| Title | Network-based likelihood modeling of event occurrences in space and time: a case study of traffic accidents in Dallas, Texas, USA |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15230406.2018.1515037 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1545-0465 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006317 issn: 1523-0406 databaseCode: AHDZW dateStart: 19990101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1545-0465 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006317 issn: 1523-0406 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxFOUl_bALd2w3vU6dm-hBSIkeqERhYu1DxsCwUGVI9He-lf4pcw-7G6gKpSLZa00E9vzZWZ2NPsNQs-0ghjL84wUOecEvJ8gqpaC5EKCw6whp6gd2-dBNpunb47E0WDwM-paWrdqrE8vPFfyP1aFNbCrPSV7Bcv2SmEB7sG-cAULw_WfbHzge7iJDUVmtFx8rZYLR1Ps5tuEfmZH0TRaae2YmHwD1gj8SDgpYIfL-xPPGrR4ulnXOHAsLbvESGpt5462Tmzflt19Y1H1w9_M303jBHcPHjOwYDv1n_yQ9c-gKXC0OsCFwNvDrWvueFE1X-S3RY_YD2tfoH0ben1CfcIeiUoIZbFLZZyAqwiE12EtFbapVMR-OJQiY7x1TjUKz54L5g_H7zslE1fjprb1JMnHNlejnlJmk2j7twDYtyUmgS-1U1NaNWVQcw1tMYgcdIi2prP9j-_7eJ9xN9e5f8_unFhOn1_4PBsZ0AY_bpTZHN5CN8OWBE89vm6jQdXcQddfB8Od3EVnGzjD5zjDHc7wqsYOZzjCGV402OEMAxCwxdkultiiDDuUWaGAMtyjzAp5lO1gh7EdDAi7h-avXh7uzUgY3UE07BdaUkDUZIWZQHJpFK20ospS_etCiVRBEqnSSSp5TalmQsNXFcxMJpKxxOR2D874fTRsVk31AGEQg5TXKGNUnVacS56pOhMGfExquMq2Udp9zlIHXns7XmVZXmrObTTuxb57Ype_CRSxrcrWVdRqP_6m5JfKPrzqjz1CN87_S4_RsD1eV08g-23V0wC_X6FvpWA |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DGXhjXjjgRGHNI7zYEM8VKBkoZXYotiORdUqRSVIwMY_585JUEECBqYM0Wc5jvPd5XT-PkIOlYQYy6OAxRHnDNhPMGkywSKRAWEayCmMVftMgk7fv74X91NnYbCtEv-hTSUUYbkaP24sRjctccdtW8p0scOgHTkYkl0ezpJ5Ack-uhhwN_lk44Bb112EMMQ0p3h-GuZLfPqiXjoVdy6XiGpmXLWbDJ3nUjrq7ZuY4_8eaZks1mkpPa320QqZyYtV0qod0h9e18h7UvWLMwx7mo4Gw3w0QElkar10IADSsaFWDoqOlbKqT0BBdFBQ4CyVU5gaRSP7E5pRBWNQK2yLoHKSoY4FzZRCh9PSgs6xwP90RHv5C176d6frpH950TvrsNq-gSnIGUsWA3N6sQ4hwdDSzZV0Jcq9q1gKX0IiIf3Qz7hxXeUJBZwsPB2Gmee1dYT_YR7fIHPFuMg3CQUYpD1aai2Nn3Oe8UCaQGjYZ77mMtgifvPSUlVrm6PFxiht1xKozfqmuL5pvb5bxPmEPVbiHn8B4ukdkZa2qmIqC5SU_4rd_gf2gLQ6vdtu2r1KbnbIAtyKbRnI2yVz5eQ534PEqJT7dud_ABF1_Jw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJurFtxGfe_DoYun26Y2IBB8hJkLirenudiOBAIGSqDf_uTPbloCJeuDUQ_NtttvpN7PT2W8IuZQCfCwPPBYGnDNgP5cJHbsscGMgTA0xhTZqny2v2XEeXt2imnCSl1XiHlpnQhGGq_HjHildVMRdV00m08ICg2pQQY9scX-VrHn4VwxPcVitGRl73DTdRQhDTHGI57dhFtzTgnjpnNtpbBNRTDirNulVpqmoyM8fWo5LPdEO2cqDUlrLrGiXrCSDPbKR90d_-9gnX62sWpyh01O03-0l_S4KIlPTSQfcHx1qasSg6FBKo_kEBES7AwqMJRMKM6PYxv6GxlTCGNTI2iIoHceoYkFjKbG_aWpAdUzvT65oO3nHS-eldkA6jbv2bZPlzRuYhIgxZSHwph0qH8ILJaxECkug2LsMhesICCOE4zsx15YlbVcCI7u28v3YtqsqwF2YzQ9JaTAcJEeEAgyCHiWUEtpJOI-5J7TnKrAyR3HhlYlTvLNI5srm2GCjH1VzAdRifSNc3yhf3zKpzGCjTNrjP0A4bxBRanIqOmuAEvE_scdLYC_I-nO9ET3dtx5PyCbcCU0OyD4lpXQ8Tc4gKkrFubH7b-by-0A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network-based+likelihood+modeling+of+event+occurrences+in+space+and+time%3A+a+case+study+of+traffic+accidents+in+Dallas%2C+Texas%2C+USA&rft.jtitle=Cartography+and+geographic+information+science&rft.au=Acker%2C+Benjamin&rft.au=Yuan%2C+May&rft.date=2019-01-02&rft.issn=1523-0406&rft.eissn=1545-0465&rft.volume=46&rft.issue=1&rft.spage=21&rft.epage=38&rft_id=info:doi/10.1080%2F15230406.2018.1515037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15230406_2018_1515037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1523-0406&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1523-0406&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1523-0406&client=summon |