Association Rules Discovery of Deviant Events in Multivariate Time Series: An Analysis and Implementation of the SAX-ARM Algorithm
In this work, we propose an open-source Python implementation of the SAX-ARM algorithm introduced by Park and Jung (2019). This algorithm mines association rules efficiently among the deviant events of multivariate time series. To do so, the algorithm combines two existing methods, namely the Symbol...
        Saved in:
      
    
          | Published in | Image processing on line Vol. 12; pp. 604 - 624 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IPOL - Image Processing on Line
    
        23.12.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2105-1232 2105-1232  | 
| DOI | 10.5201/ipol.2022.437 | 
Cover
| Abstract | In this work, we propose an open-source Python implementation of the SAX-ARM algorithm introduced by Park and Jung (2019). This algorithm mines association rules efficiently among the deviant events of multivariate time series. To do so, the algorithm combines two existing methods, namely the Symbolic Aggregate approXimation (SAX) from Lin et al. (2003)-a symbolic representation of time series-and the Apriori algorithm from Agrawal et al. (1996)-a data mining method which outputs all frequent itemsets and association rules from a transactional dataset. A detailed description of the underlying principles is given along with their numerical implementation. The choice of relevant parameters is thoroughly discussed and evaluated using a public dataset on the topic of temperature and energy consumption. Source Code The reviewed source code and documentation for this algorithm are available from the web page of this article 1. Usage instructions are included in the archive. | 
    
|---|---|
| AbstractList | In this work, we propose an open-source Python implementation of the SAX-ARM algorithm introduced by Park and Jung (2019). This algorithm mines association rules efficiently among the deviant events of multivariate time series. To do so, the algorithm combines two existing methods, namely the Symbolic Aggregate approXimation (SAX) from Lin et al. (2003)-a symbolic representation of time series-and the Apriori algorithm from Agrawal et al. (1996)-a data mining method which outputs all frequent itemsets and association rules from a transactional dataset. A detailed description of the underlying principles is given along with their numerical implementation. The choice of relevant parameters is thoroughly discussed and evaluated using a public dataset on the topic of temperature and energy consumption. Source Code The reviewed source code and documentation for this algorithm are available from the web page of this article 1. Usage instructions are included in the archive. | 
    
| Author | Roques, Axel Zhao, Anne  | 
    
| Author_xml | – sequence: 1 givenname: Axel surname: Roques fullname: Roques, Axel – sequence: 2 givenname: Anne surname: Zhao fullname: Zhao, Anne  | 
    
| BackLink | https://cnam.hal.science/hal-04071436$$DView record in HAL | 
    
| BookMark | eNqFkEtLAzEURoMoWB9L99m6mHqTmUwbd0N9tFARfIC74XaasZFMUpLpSLf-clNGUATxEriXcM63-I7IvnVWEXLGYCg4sAu9dmbIgfNhlo72yIAzEAnjKd__cR-S0xDeII6UHAQMyEcRgqs0ttpZ-rAxKtArHSrXKb-lrqZXqtNoW3rdKdsGqi2925hWd-ijo-iTbhR9VF6rcEkLGx-abdCBol3SWbM2qolenx7T2lWki5ekeLijhXl1Xrer5oQc1GiCOv3ax-T55vppMk3m97ezSTFPqpRBm0iBHEZizMeiQikrmQOwTMlsgYKJupY8X-S4wGwBalmrcS2FAsyXsKxYKiBNj8mwz93YNW7f0Zhy7XWDflsyKHcllrsSy12JZSwxCue9sMJv1KEup8W83P1BBiOWpXnHIpv0bOVdCF7V_2anv_hK9z21HrX5w_oER3yWRQ | 
    
| CitedBy_id | crossref_primary_10_52693_jsas_1510230 crossref_primary_10_17798_bitlisfen_1395411  | 
    
| ContentType | Journal Article | 
    
| Copyright | Attribution - NonCommercial - ShareAlike | 
    
| Copyright_xml | – notice: Attribution - NonCommercial - ShareAlike | 
    
| DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.5201/ipol.2022.437 | 
    
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 2105-1232 | 
    
| EndPage | 624 | 
    
| ExternalDocumentID | 10.5201/ipol.2022.437 oai:HAL:hal-04071436v1 10_5201_ipol_2022_437  | 
    
| GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 1XC VOOES ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c310t-95a20758285ca99c960014e94ba515ff926b6aba4b0edfe8f95e0a6d0dc135033 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2105-1232 | 
    
| IngestDate | Mon Sep 15 10:10:03 EDT 2025 Tue Oct 14 20:45:54 EDT 2025 Tue Jul 01 01:02:25 EDT 2025 Thu Apr 24 23:09:47 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Apriori algorithm deviant event discovery Symbolic Aggregate approXimation (SAX) multivariate time series association rule mining deviant event discovery multivariate time series Apriori algorithm Symbolic Aggregate approXimation (SAX) association rule mining  | 
    
| Language | English | 
    
| License | Attribution - NonCommercial - ShareAlike: http://creativecommons.org/licenses/by-nc-sa cc-by-nc-sa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c310t-95a20758285ca99c960014e94ba515ff926b6aba4b0edfe8f95e0a6d0dc135033 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ipol.im/pub/art/2022/437//article.pdf | 
    
| PageCount | 21 | 
    
| ParticipantIDs | unpaywall_primary_10_5201_ipol_2022_437 hal_primary_oai_HAL_hal_04071436v1 crossref_primary_10_5201_ipol_2022_437 crossref_citationtrail_10_5201_ipol_2022_437  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-12-23 | 
    
| PublicationDateYYYYMMDD | 2022-12-23 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-23 day: 23  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Image processing on line | 
    
| PublicationYear | 2022 | 
    
| Publisher | IPOL - Image Processing on Line | 
    
| Publisher_xml | – name: IPOL - Image Processing on Line | 
    
| SSID | ssj0000992050 | 
    
| Score | 2.2144756 | 
    
| Snippet | In this work, we propose an open-source Python implementation of the SAX-ARM algorithm introduced by Park and Jung (2019). This algorithm mines association... | 
    
| SourceID | unpaywall hal crossref  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database  | 
    
| StartPage | 604 | 
    
| SubjectTerms | Computer Science | 
    
| Title | Association Rules Discovery of Deviant Events in Multivariate Time Series: An Analysis and Implementation of the SAX-ARM Algorithm | 
    
| URI | https://cnam.hal.science/hal-04071436 https://www.ipol.im/pub/art/2022/437//article.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2105-1232 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000992050 issn: 2105-1232 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2105-1232 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000992050 issn: 2105-1232 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5i59DmkKSPEOfFUkp7qSxLWkne3ETiYEodiluDexK7q93GVJZNLCekhx7yyzNjy8YUWtqbWIZhmFk030gz3wC8lbHmiOqpUo0lFijCOkLIjCaWA6kR48eLCe_eddQd8I_DcLgF3moWhtoqR9MJws6xiwa56D-qz32XB7HrVt5sTjNbg-0oRPhdh-3B9efkGy2R84hVEyHCkkszxNzmLnSRgianVecbuad2Q52Pz-bFVD7cyzzfSCtXe9BfGbTsJvnRnJeqqX_-xtX4Xxbvw24FMlmyPH0BW6Z4CTsb1IOv4HEjLqw_z82MXY5mmho6H9jEsktMmOh01qF-yBkbFWwxqnuHpTWiU0aTI4y-rJnZOUsKtuI2YbLI2IJxeFwNNRWkDVEm-5IMnaTfY0n-fXI7Km_Gr2Fw1fl60XWqfQyORhBYOiKUPiIM4rzTUggtCCxxI7iSiIqsFX6kIqkkVy2TWdO2IjQtGWWtTHsB_S49gHoxKcwhMNXOQnyxUr1nufVVm4vYs5loSy20ingDPqwileqKrJx2ZuQpFi0U2JRcnpKfU_RzA96txadLlo4_Cb7BsK9liFu7m3xK6axFpS0PojuvAe_Xt-Lv6o7-WfIYntMjNcL4wQnUy9u5OUU4U6ozqPV-dc6qa_wEBWL2Og | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9NADLe27gF4GJ8THQxZCMELaZrkkvT2Fu1DFWITKlQqT9Hd5Y5VpGm1pkPjkb98dptWFRII3qKTZVn2Kf45sX8GeKNSIwjVc6WaKipQpPOkVAVPLEfKEMZPlxPeF5dJfyg-jOLRDgTrWRhuqxzPpgQ7Jz4Z5JP_uD4PfRGlvt94szMr3C7sJTHB7xbsDS8_ZV95iVzArJoEEVZcmjHlNn-pixV0BK8638o9u1fc-XhvUc3U7Q9Vlltp5fwhDNYGrbpJvncWte6Yn79xNf6XxY9gvwGZmK1OH8OOrZ7Agy3qwafwaysuOFiUdo6n47nhhs5bnDo8pYRJTscz7oec47jC5ajuDZXWhE6RJ0eQv6zZ-TFmFa65TVBVBS4ZhyfNUFPF2ghl4uds5GWDC8zKb9PrcX01eQbD87MvJ32v2cfgGQKBtSdjFRLCYM47o6Q0ksGSsFJoRajIORkmOlFaCd21hbM9J2PbVUnRLUwQ8e_SA2hV08o-B9S9IqYXK9d7TrhQ94RMA1fInjLS6ES04f06UrlpyMp5Z0aZU9HCgc3Z5Tn7OSc_t-HtRny2Yun4k-BrCvtGhrm1-9nHnM-6XNqKKLkJ2vBucyv-ru7wnyVfwH1-5EaYMHoJrfp6YY8IztT6VXOB7wBEgvUJ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+Rules+Discovery+of+Deviant+Events+in+Multivariate+Time+Series%3A+An+Analysis+and+Implementation+of+the+SAX-ARM+Algorithm&rft.jtitle=Image+processing+on+line&rft.au=Roques%2C+Axel&rft.au=Zhao%2C+Anne&rft.date=2022-12-23&rft.pub=IPOL+-+Image+Processing+on+Line&rft.issn=2105-1232&rft.eissn=2105-1232&rft.volume=12&rft.spage=604&rft.epage=624&rft_id=info:doi/10.5201%2Fipol.2022.437&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04071436v1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2105-1232&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2105-1232&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2105-1232&client=summon |