Association Rules Discovery of Deviant Events in Multivariate Time Series: An Analysis and Implementation of the SAX-ARM Algorithm

In this work, we propose an open-source Python implementation of the SAX-ARM algorithm introduced by Park and Jung (2019). This algorithm mines association rules efficiently among the deviant events of multivariate time series. To do so, the algorithm combines two existing methods, namely the Symbol...

Full description

Saved in:
Bibliographic Details
Published inImage processing on line Vol. 12; pp. 604 - 624
Main Authors Roques, Axel, Zhao, Anne
Format Journal Article
LanguageEnglish
Published IPOL - Image Processing on Line 23.12.2022
Subjects
Online AccessGet full text
ISSN2105-1232
2105-1232
DOI10.5201/ipol.2022.437

Cover

Abstract In this work, we propose an open-source Python implementation of the SAX-ARM algorithm introduced by Park and Jung (2019). This algorithm mines association rules efficiently among the deviant events of multivariate time series. To do so, the algorithm combines two existing methods, namely the Symbolic Aggregate approXimation (SAX) from Lin et al. (2003)-a symbolic representation of time series-and the Apriori algorithm from Agrawal et al. (1996)-a data mining method which outputs all frequent itemsets and association rules from a transactional dataset. A detailed description of the underlying principles is given along with their numerical implementation. The choice of relevant parameters is thoroughly discussed and evaluated using a public dataset on the topic of temperature and energy consumption. Source Code The reviewed source code and documentation for this algorithm are available from the web page of this article 1. Usage instructions are included in the archive.
AbstractList In this work, we propose an open-source Python implementation of the SAX-ARM algorithm introduced by Park and Jung (2019). This algorithm mines association rules efficiently among the deviant events of multivariate time series. To do so, the algorithm combines two existing methods, namely the Symbolic Aggregate approXimation (SAX) from Lin et al. (2003)-a symbolic representation of time series-and the Apriori algorithm from Agrawal et al. (1996)-a data mining method which outputs all frequent itemsets and association rules from a transactional dataset. A detailed description of the underlying principles is given along with their numerical implementation. The choice of relevant parameters is thoroughly discussed and evaluated using a public dataset on the topic of temperature and energy consumption. Source Code The reviewed source code and documentation for this algorithm are available from the web page of this article 1. Usage instructions are included in the archive.
Author Roques, Axel
Zhao, Anne
Author_xml – sequence: 1
  givenname: Axel
  surname: Roques
  fullname: Roques, Axel
– sequence: 2
  givenname: Anne
  surname: Zhao
  fullname: Zhao, Anne
BackLink https://cnam.hal.science/hal-04071436$$DView record in HAL
BookMark eNqFkEtLAzEURoMoWB9L99m6mHqTmUwbd0N9tFARfIC74XaasZFMUpLpSLf-clNGUATxEriXcM63-I7IvnVWEXLGYCg4sAu9dmbIgfNhlo72yIAzEAnjKd__cR-S0xDeII6UHAQMyEcRgqs0ttpZ-rAxKtArHSrXKb-lrqZXqtNoW3rdKdsGqi2925hWd-ijo-iTbhR9VF6rcEkLGx-abdCBol3SWbM2qolenx7T2lWki5ekeLijhXl1Xrer5oQc1GiCOv3ax-T55vppMk3m97ezSTFPqpRBm0iBHEZizMeiQikrmQOwTMlsgYKJupY8X-S4wGwBalmrcS2FAsyXsKxYKiBNj8mwz93YNW7f0Zhy7XWDflsyKHcllrsSy12JZSwxCue9sMJv1KEup8W83P1BBiOWpXnHIpv0bOVdCF7V_2anv_hK9z21HrX5w_oER3yWRQ
CitedBy_id crossref_primary_10_52693_jsas_1510230
crossref_primary_10_17798_bitlisfen_1395411
ContentType Journal Article
Copyright Attribution - NonCommercial - ShareAlike
Copyright_xml – notice: Attribution - NonCommercial - ShareAlike
DBID AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.5201/ipol.2022.437
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2105-1232
EndPage 624
ExternalDocumentID 10.5201/ipol.2022.437
oai:HAL:hal-04071436v1
10_5201_ipol_2022_437
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
1XC
VOOES
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c310t-95a20758285ca99c960014e94ba515ff926b6aba4b0edfe8f95e0a6d0dc135033
IEDL.DBID UNPAY
ISSN 2105-1232
IngestDate Mon Sep 15 10:10:03 EDT 2025
Tue Oct 14 20:45:54 EDT 2025
Tue Jul 01 01:02:25 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Apriori algorithm
deviant event discovery
Symbolic Aggregate approXimation (SAX)
multivariate time series
association rule mining deviant event discovery multivariate time series Apriori algorithm Symbolic Aggregate approXimation (SAX)
association rule mining
Language English
License Attribution - NonCommercial - ShareAlike: http://creativecommons.org/licenses/by-nc-sa
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-95a20758285ca99c960014e94ba515ff926b6aba4b0edfe8f95e0a6d0dc135033
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ipol.im/pub/art/2022/437//article.pdf
PageCount 21
ParticipantIDs unpaywall_primary_10_5201_ipol_2022_437
hal_primary_oai_HAL_hal_04071436v1
crossref_primary_10_5201_ipol_2022_437
crossref_citationtrail_10_5201_ipol_2022_437
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-23
PublicationDateYYYYMMDD 2022-12-23
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-23
  day: 23
PublicationDecade 2020
PublicationTitle Image processing on line
PublicationYear 2022
Publisher IPOL - Image Processing on Line
Publisher_xml – name: IPOL - Image Processing on Line
SSID ssj0000992050
Score 2.2144756
Snippet In this work, we propose an open-source Python implementation of the SAX-ARM algorithm introduced by Park and Jung (2019). This algorithm mines association...
SourceID unpaywall
hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 604
SubjectTerms Computer Science
Title Association Rules Discovery of Deviant Events in Multivariate Time Series: An Analysis and Implementation of the SAX-ARM Algorithm
URI https://cnam.hal.science/hal-04071436
https://www.ipol.im/pub/art/2022/437//article.pdf
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2105-1232
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000992050
  issn: 2105-1232
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2105-1232
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000992050
  issn: 2105-1232
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5i59DmkKSPEOfFUkp7qSxLWkne3ETiYEodiluDexK7q93GVJZNLCekhx7yyzNjy8YUWtqbWIZhmFk030gz3wC8lbHmiOqpUo0lFijCOkLIjCaWA6kR48eLCe_eddQd8I_DcLgF3moWhtoqR9MJws6xiwa56D-qz32XB7HrVt5sTjNbg-0oRPhdh-3B9efkGy2R84hVEyHCkkszxNzmLnSRgianVecbuad2Q52Pz-bFVD7cyzzfSCtXe9BfGbTsJvnRnJeqqX_-xtX4Xxbvw24FMlmyPH0BW6Z4CTsb1IOv4HEjLqw_z82MXY5mmho6H9jEsktMmOh01qF-yBkbFWwxqnuHpTWiU0aTI4y-rJnZOUsKtuI2YbLI2IJxeFwNNRWkDVEm-5IMnaTfY0n-fXI7Km_Gr2Fw1fl60XWqfQyORhBYOiKUPiIM4rzTUggtCCxxI7iSiIqsFX6kIqkkVy2TWdO2IjQtGWWtTHsB_S49gHoxKcwhMNXOQnyxUr1nufVVm4vYs5loSy20ingDPqwileqKrJx2ZuQpFi0U2JRcnpKfU_RzA96txadLlo4_Cb7BsK9liFu7m3xK6axFpS0PojuvAe_Xt-Lv6o7-WfIYntMjNcL4wQnUy9u5OUU4U6ozqPV-dc6qa_wEBWL2Og
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9NADLe27gF4GJ8THQxZCMELaZrkkvT2Fu1DFWITKlQqT9Hd5Y5VpGm1pkPjkb98dptWFRII3qKTZVn2Kf45sX8GeKNSIwjVc6WaKipQpPOkVAVPLEfKEMZPlxPeF5dJfyg-jOLRDgTrWRhuqxzPpgQ7Jz4Z5JP_uD4PfRGlvt94szMr3C7sJTHB7xbsDS8_ZV95iVzArJoEEVZcmjHlNn-pixV0BK8638o9u1fc-XhvUc3U7Q9Vlltp5fwhDNYGrbpJvncWte6Yn79xNf6XxY9gvwGZmK1OH8OOrZ7Agy3qwafwaysuOFiUdo6n47nhhs5bnDo8pYRJTscz7oec47jC5ajuDZXWhE6RJ0eQv6zZ-TFmFa65TVBVBS4ZhyfNUFPF2ghl4uds5GWDC8zKb9PrcX01eQbD87MvJ32v2cfgGQKBtSdjFRLCYM47o6Q0ksGSsFJoRajIORkmOlFaCd21hbM9J2PbVUnRLUwQ8e_SA2hV08o-B9S9IqYXK9d7TrhQ94RMA1fInjLS6ES04f06UrlpyMp5Z0aZU9HCgc3Z5Tn7OSc_t-HtRny2Yun4k-BrCvtGhrm1-9nHnM-6XNqKKLkJ2vBucyv-ru7wnyVfwH1-5EaYMHoJrfp6YY8IztT6VXOB7wBEgvUJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+Rules+Discovery+of+Deviant+Events+in+Multivariate+Time+Series%3A+An+Analysis+and+Implementation+of+the+SAX-ARM+Algorithm&rft.jtitle=Image+processing+on+line&rft.au=Roques%2C+Axel&rft.au=Zhao%2C+Anne&rft.date=2022-12-23&rft.pub=IPOL+-+Image+Processing+on+Line&rft.issn=2105-1232&rft.eissn=2105-1232&rft.volume=12&rft.spage=604&rft.epage=624&rft_id=info:doi/10.5201%2Fipol.2022.437&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04071436v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2105-1232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2105-1232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2105-1232&client=summon