Non-spatial Dynamics and Spatiotemporal Patterns Formation in a Predator–Prey Model with Double Allee and Dome-shaped Response Function
The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species c...
Saved in:
Published in | Bulletin of mathematical biology Vol. 87; no. 2; p. 35 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Springer Nature B.V
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0092-8240 1522-9602 1522-9602 |
DOI | 10.1007/s11538-025-01411-7 |
Cover
Abstract | The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently. The cooperative behavior which raises Allee effect in low population density, can create group defence in species to protect themselves from predation. This article focuses on the dynamics of a predator-prey system with double Allee effect in prey growth and simplified Monod-Haldane form of dome-shaped response function to incorporate group defence ability of prey as time and space vary. The study obtains that, to some extent, group defence of prey plays a positive role for the stability of both the species, but on negative side, if defensive ability exceeds a threshold value then both the population can not survive simultaneously and predator population dies out. The Allee effect produces bi-stability (weak Allee) even tri-stability (strong Allee) in phase space reflecting that the system dynamics is very sensitive subject to initial population of the species. The combined impact of double Allee and group defence of prey leads in populations enduring stable periods punctuated by oscillations. The species' mobility based on only its own population is insufficient to this model for Turing instability. The presence of double Allee effect increases the instability regions that enhances the likelihood of various patterns. Whereas increasing group defence of prey decreases the instability region in spatial system. The species distribution stabilizes in forms of spots, stripes and mixture of both in heterogeneous environment. But for prey, gathering decreases with increasing growth rate and gathering increases with increasing Allee effect due to cross-diffusion which results paradox to temporal system. In contrast, populations in the Hopf and Hopf-Turing regions fluctuate (oscillatory) or their distribution becomes unpredictable (chaotic). |
---|---|
AbstractList | The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently. The cooperative behavior which raises Allee effect in low population density, can create group defence in species to protect themselves from predation. This article focuses on the dynamics of a predator-prey system with double Allee effect in prey growth and simplified Monod-Haldane form of dome-shaped response function to incorporate group defence ability of prey as time and space vary. The study obtains that, to some extent, group defence of prey plays a positive role for the stability of both the species, but on negative side, if defensive ability exceeds a threshold value then both the population can not survive simultaneously and predator population dies out. The Allee effect produces bi-stability (weak Allee) even tri-stability (strong Allee) in phase space reflecting that the system dynamics is very sensitive subject to initial population of the species. The combined impact of double Allee and group defence of prey leads in populations enduring stable periods punctuated by oscillations. The species' mobility based on only its own population is insufficient to this model for Turing instability. The presence of double Allee effect increases the instability regions that enhances the likelihood of various patterns. Whereas increasing group defence of prey decreases the instability region in spatial system. The species distribution stabilizes in forms of spots, stripes and mixture of both in heterogeneous environment. But for prey, gathering decreases with increasing growth rate and gathering increases with increasing Allee effect due to cross-diffusion which results paradox to temporal system. In contrast, populations in the Hopf and Hopf-Turing regions fluctuate (oscillatory) or their distribution becomes unpredictable (chaotic).The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently. The cooperative behavior which raises Allee effect in low population density, can create group defence in species to protect themselves from predation. This article focuses on the dynamics of a predator-prey system with double Allee effect in prey growth and simplified Monod-Haldane form of dome-shaped response function to incorporate group defence ability of prey as time and space vary. The study obtains that, to some extent, group defence of prey plays a positive role for the stability of both the species, but on negative side, if defensive ability exceeds a threshold value then both the population can not survive simultaneously and predator population dies out. The Allee effect produces bi-stability (weak Allee) even tri-stability (strong Allee) in phase space reflecting that the system dynamics is very sensitive subject to initial population of the species. The combined impact of double Allee and group defence of prey leads in populations enduring stable periods punctuated by oscillations. The species' mobility based on only its own population is insufficient to this model for Turing instability. The presence of double Allee effect increases the instability regions that enhances the likelihood of various patterns. Whereas increasing group defence of prey decreases the instability region in spatial system. The species distribution stabilizes in forms of spots, stripes and mixture of both in heterogeneous environment. But for prey, gathering decreases with increasing growth rate and gathering increases with increasing Allee effect due to cross-diffusion which results paradox to temporal system. In contrast, populations in the Hopf and Hopf-Turing regions fluctuate (oscillatory) or their distribution becomes unpredictable (chaotic). The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently. The cooperative behavior which raises Allee effect in low population density, can create group defence in species to protect themselves from predation. This article focuses on the dynamics of a predator–prey system with double Allee effect in prey growth and simplified Monod-Haldane form of dome-shaped response function to incorporate group defence ability of prey as time and space vary. The study obtains that, to some extent, group defence of prey plays a positive role for the stability of both the species, but on negative side, if defensive ability exceeds a threshold value then both the population can not survive simultaneously and predator population dies out. The Allee effect produces bi-stability (weak Allee) even tri-stability (strong Allee) in phase space reflecting that the system dynamics is very sensitive subject to initial population of the species. The combined impact of double Allee and group defence of prey leads in populations enduring stable periods punctuated by oscillations. The species’ mobility based on only its own population is insufficient to this model for Turing instability. The presence of double Allee effect increases the instability regions that enhances the likelihood of various patterns. Whereas increasing group defence of prey decreases the instability region in spatial system. The species distribution stabilizes in forms of spots, stripes and mixture of both in heterogeneous environment. But for prey, gathering decreases with increasing growth rate and gathering increases with increasing Allee effect due to cross-diffusion which results paradox to temporal system. In contrast, populations in the Hopf and Hopf-Turing regions fluctuate (oscillatory) or their distribution becomes unpredictable (chaotic). |
ArticleNumber | 35 |
Author | Mondal, Ritwika Kesh, Dipak Mukherjee, Debasis Pal, Debjit |
Author_xml | – sequence: 1 givenname: Debjit surname: Pal fullname: Pal, Debjit – sequence: 2 givenname: Ritwika surname: Mondal fullname: Mondal, Ritwika – sequence: 3 givenname: Dipak surname: Kesh fullname: Kesh, Dipak – sequence: 4 givenname: Debasis surname: Mukherjee fullname: Mukherjee, Debasis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39847162$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtuFDEUhi0URDaBF6BAlmhoDMeXGY_LKMsGpAARl9ryjM8qE83Ygz2jaDta6rwhT4I3GygoqHzk_zu_jvSdkKMQAxLynMNrDqDfZM4r2TAQFQOuOGf6EVnxSghmahBHZAVgBGuEgmNykvMNlCUjzRNyLE2jNK_Fivz8GAPLk5t7N9D1Lrix7zJ1wdMv-8844zjFVLIrN8-YQqabmMZ9EmgfqKNXCb2bY_r1466MO_ohehzobT9f03Vc2gHp2TAg3leu44gsX7sJPf2MeYohI90sodvXPSWPt27I-OzhPSXfNm-_nr9jl58u3p-fXbJOcpiZrrCtQLdSGmid0srU6DuvfVty33quHJSkxho16q3spG9rLTUoREBU8pS8OvROKX5fMM927HOHw-ACxiVbyatGa-CCF_TlP-hNXFIo11kpKiW5AVH_l-KVUVxUjSjUiwdqaUf0dkr96NLO_lFRAHEAuhRzTrj9i3Cwe9_24NsW3_bet9XyN2fjngQ |
Cites_doi | 10.1016/S0169-5347(99)01683-3 10.1142/S1793524522500012 10.1016/j.jmaa.2018.03.074 10.1016/j.matcom.2022.09.002 10.3390/math10173171 10.1086/215731 10.1007/s11071-015-1927-2 10.1016/j.camwa.2014.08.025 10.1016/j.anbehav.2008.11.007 10.1111/j.1469-7998.1992.tb03838.x 10.3390/fractalfract5030084 10.1063/1.4907508 10.1017/S0952836903003583 10.1142/S0218127420300207 10.3934/mmc.2022027 10.1142/S0218127423501316 10.1007/BF02462320 10.1093/beheco/aru050 10.1016/j.ecocom.2018.09.001 10.1007/s002850050095 10.1006/jtbi.2002.3084 10.1002/bit.260230909 10.1137/S0036139999361896 10.2307/1941369 10.1007/s11071-020-06018-2 10.1016/j.chaos.2014.12.007 10.1016/j.matcom.2022.04.011 10.1007/s004420051026 10.1016/j.jmaa.2023.127569 10.1016/j.tree.2006.12.002 10.1016/j.camwa.2011.08.061 10.1016/j.jtbi.2018.09.028 10.1080/10236198.2021.1982920 10.1140/epjp/s13360-022-02358-7 10.1007/s11071-011-0201-5 10.1142/S0218127419501529 10.1007/s00265-002-0463-5 10.1016/j.anbehav.2013.03.004 10.1016/S0169-5347(99)01684-5 10.1016/j.matcom.2024.01.015 10.1093/acprof:oso/9780198570301.001.0001 10.1007/s00285-012-0546-5 10.1111/j.1523-1739.2007.00721.x 10.1007/s12190-020-01438-0 10.1016/j.tpb.2004.06.007 |
ContentType | Journal Article |
Copyright | 2025. The Author(s), under exclusive licence to the Society for Mathematical Biology. Copyright Springer Nature B.V. 2025 The Author(s), under exclusive licence to the Society for Mathematical Biology 2025. |
Copyright_xml | – notice: 2025. The Author(s), under exclusive licence to the Society for Mathematical Biology. – notice: Copyright Springer Nature B.V. 2025 – notice: The Author(s), under exclusive licence to the Society for Mathematical Biology 2025. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7TK JQ2 K9. 7X8 |
DOI | 10.1007/s11538-025-01411-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Neurosciences Abstracts ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Entomology Abstracts Entomology Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1522-9602 |
ExternalDocumentID | 39847162 10_1007_s11538_025_01411_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Human Resource Development Centre, Council of Scientific And Industrial Research grantid: 09/0096(12492)/2021-EMR-I – fundername: Human Resource Development Group grantid: SR/FST/MS-II/2021/101 (C) |
GroupedDBID | --- --K --Z -Y2 -~X .86 .GJ .VR 06D 0R~ 0VY 199 1B1 1N0 1RT 1~5 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3O- 4.4 406 408 40D 40E 4G. 53G 5GY 5RE 5VS 67Z 6J9 6NX 7-5 71M 78A 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALCJ AALRI AANZL AAPKM AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYWO AAYXX AAYZH ABAKF ABBBX ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMAC ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACRPL ACSTC ACZOJ ADBBV ADFGL ADHIR ADHKG ADKNI ADKPE ADMUD ADNMO ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHHHB AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGII AIGIU AIIXL AILAN AITGF AITUG AIXLP AJBLW AJRNO AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMVHM AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU CITATION COF CS3 CSCUP DDRTE DM4 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FIRID FNLPD FRRFC FSGXE FWDCC FYUFA G-2 GGCAI GGRSB GJIRD GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HLV HMCUK HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K6V K7- KDC KOV L6V LG5 LK8 LLZTM LW8 M1P M2P M4Y M7P M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O-L O9- O93 O9G O9I O9J OZT P19 P2P P62 P9R PF0 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PT4 PT5 PTHSS PUEGO Q2X QOK QOS R2- R89 R9I RHV RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAB SAP SCLPG SDD SDH SDM SEW SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSZ STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 WUQ XPP XSW YLTOR Z45 ZGI ZMT ZMTXR ZWQNP ZXP ~A9 ~EX ~KM ALIPV CGR CUY CVF ECM EIF NPM 7SS 7TK JQ2 K9. 7X8 |
ID | FETCH-LOGICAL-c310t-75eb507b3390ba47496edcd7dbc31dbd14a090b6e6e7e7f3c3db673704ee0ee43 |
ISSN | 0092-8240 1522-9602 |
IngestDate | Fri Sep 05 10:09:51 EDT 2025 Sat Sep 27 04:30:43 EDT 2025 Thu Sep 18 00:06:07 EDT 2025 Mon Jul 21 05:43:17 EDT 2025 Wed Oct 01 03:09:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Double Allee effect Multi-stability Bogdanov–Takens bifurcation Dome-shaped response function Spatiotemporal chaos Turing patterns |
Language | English |
License | 2025. The Author(s), under exclusive licence to the Society for Mathematical Biology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-75eb507b3390ba47496edcd7dbc31dbd14a090b6e6e7e7f3c3db673704ee0ee43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 39847162 |
PQID | 3159412582 |
PQPubID | 55445 |
ParticipantIDs | proquest_miscellaneous_3158770121 proquest_journals_3254319026 proquest_journals_3159412582 pubmed_primary_39847162 crossref_primary_10_1007_s11538_025_01411_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Bulletin of mathematical biology |
PublicationTitleAlternate | Bull Math Biol |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | MA Stevens (1411_CR28) 2003; 260 CC Hass (1411_CR1) 2002; 51 E González-Olivares (1411_CR30) 2011; 62 D Xiao (1411_CR12) 2001; 61 E González-Olivares (1411_CR44) 2012; 10 DS Boukal (1411_CR55) 2002; 218 L Cai (1411_CR23) 2013; 67 S-R Zhou (1411_CR54) 2005; 67 J Zu (1411_CR53) 2010; 217 LN Guin (1411_CR59) 2014; 68 J Huang (1411_CR15) 2018; 464 R Harcourt (1411_CR29) 1992; 226 E Rahmi (1411_CR34) 2021; 5 J Shi (1411_CR50) 2011; 1 L Berec (1411_CR26) 2007; 22 F Wang (1411_CR43) 2024; 220 M Kaur (1411_CR17) 2021; 66 E Líznarová (1411_CR7) 2013; 85 H Liu (1411_CR37) 2019; 2019 I Krams (1411_CR8) 2009; 77 H Wang (1411_CR49) 2023; 171 1411_CR3 S Creel (1411_CR2) 2014; 25 F Sánchez-Garduño (1411_CR9) 2024; 8 F Courchamp (1411_CR19) 1999; 14 1411_CR45 Y Cai (1411_CR38) 2013; 2013 B Tiwari (1411_CR48) 2020; 102 S Khajanchi (1411_CR14) 2017; 302 1411_CR40 S Rana (1411_CR41) 2022; 200 JM Jeschke (1411_CR6) 2000; 123 WC Allee (1411_CR18) 1931; 37 SK Sasmal (1411_CR25) 2023; 33 Q Song (1411_CR46) 2019; 29 JB Collings (1411_CR11) 1997; 36 F Sánchez-Garduno (1411_CR62) 2019; 481 W Sokol (1411_CR10) 1981; 23 PA Stephens (1411_CR21) 1999; 14 L Perko (1411_CR56) 2013 1411_CR58 W Li (1411_CR16) 2023; 204 1411_CR52 1411_CR51 P Turchin (1411_CR24) 1989; 70 G Hu (1411_CR61) 2020; 30 PJ Pal (1411_CR22) 2012; 68 K Manna (1411_CR39) 2018; 36 E Angulo (1411_CR27) 2007; 21 KC Patidar (1411_CR13) 2021; 27 J Xiao (1411_CR42) 2024; 529 HI Freedman (1411_CR4) 1986; 48 M Zhu (1411_CR36) 2022; 10 R Han (1411_CR60) 2022; 137 S-W Yao (1411_CR35) 2019; 527 H Li (1411_CR47) 2022; 15 D Pal (1411_CR63) 2023; 167 S Xia (1411_CR33) 2022; 2 P Feng (1411_CR31) 2015; 80 PJ Pal (1411_CR32) 2015; 73 YA Kuznetsov (1411_CR57) 1998 P Davidowicz (1411_CR5) 1988; 19 F Courchamp (1411_CR20) 2008 |
References_xml | – volume: 19 start-page: 21 issue: 1 year: 1988 ident: 1411_CR5 publication-title: Limnol Jena – volume: 14 start-page: 405 issue: 10 year: 1999 ident: 1411_CR19 publication-title: Trend Ecol Evolut doi: 10.1016/S0169-5347(99)01683-3 – volume-title: Diff Equ Dynam Syst year: 2013 ident: 1411_CR56 – volume: 15 start-page: 2250001 issue: 03 year: 2022 ident: 1411_CR47 publication-title: Int J Biomath doi: 10.1142/S1793524522500012 – volume: 464 start-page: 201 issue: 1 year: 2018 ident: 1411_CR15 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2018.03.074 – volume: 204 start-page: 529 year: 2023 ident: 1411_CR16 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.09.002 – volume: 10 start-page: 3171 issue: 17 year: 2022 ident: 1411_CR36 publication-title: Math doi: 10.3390/math10173171 – ident: 1411_CR52 – volume: 37 start-page: 386 issue: 3 year: 1931 ident: 1411_CR18 publication-title: Am J Sociol doi: 10.1086/215731 – volume: 80 start-page: 1051 year: 2015 ident: 1411_CR31 publication-title: Nonlin Dynam doi: 10.1007/s11071-015-1927-2 – volume: 68 start-page: 1325 issue: 10 year: 2014 ident: 1411_CR59 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2014.08.025 – volume: 527 year: 2019 ident: 1411_CR35 publication-title: Phys Statistic Mech Appl – volume: 77 start-page: 513 issue: 2 year: 2009 ident: 1411_CR8 publication-title: Animal Behav doi: 10.1016/j.anbehav.2008.11.007 – volume: 226 start-page: 259 issue: 2 year: 1992 ident: 1411_CR29 publication-title: J Zool doi: 10.1111/j.1469-7998.1992.tb03838.x – volume: 2013 start-page: 535746 issue: 1 year: 2013 ident: 1411_CR38 publication-title: J Appl Math – volume: 5 start-page: 84 issue: 3 year: 2021 ident: 1411_CR34 publication-title: Fract Fract doi: 10.3390/fractalfract5030084 – ident: 1411_CR45 doi: 10.1063/1.4907508 – volume: 260 start-page: 145 issue: 2 year: 2003 ident: 1411_CR28 publication-title: J Zool doi: 10.1017/S0952836903003583 – volume: 30 start-page: 2030020 issue: 08 year: 2020 ident: 1411_CR61 publication-title: Int J Bifurcat Chaos doi: 10.1142/S0218127420300207 – volume: 2 start-page: 282 issue: 4 year: 2022 ident: 1411_CR33 publication-title: Math Model Control doi: 10.3934/mmc.2022027 – volume: 33 start-page: 2350131 issue: 11 year: 2023 ident: 1411_CR25 publication-title: Int J Bifurcat Chaos doi: 10.1142/S0218127423501316 – volume: 48 start-page: 493 issue: 5–6 year: 1986 ident: 1411_CR4 publication-title: Bullet Math Biol doi: 10.1007/BF02462320 – volume: 25 start-page: 773 issue: 4 year: 2014 ident: 1411_CR2 publication-title: Behav Ecol doi: 10.1093/beheco/aru050 – volume: 36 start-page: 206 year: 2018 ident: 1411_CR39 publication-title: Ecol Compl doi: 10.1016/j.ecocom.2018.09.001 – volume: 36 start-page: 149 year: 1997 ident: 1411_CR11 publication-title: J Math Biol doi: 10.1007/s002850050095 – volume: 218 start-page: 375 issue: 3 year: 2002 ident: 1411_CR55 publication-title: J Theoret Biol doi: 10.1006/jtbi.2002.3084 – volume: 23 start-page: 2039 issue: 9 year: 1981 ident: 1411_CR10 publication-title: Biotechnol Bioengineer doi: 10.1002/bit.260230909 – volume: 61 start-page: 1445 issue: 4 year: 2001 ident: 1411_CR12 publication-title: SIAM J Appl Math doi: 10.1137/S0036139999361896 – volume-title: Element Appl Bifurcat Theory year: 1998 ident: 1411_CR57 – volume: 70 start-page: 1008 issue: 4 year: 1989 ident: 1411_CR24 publication-title: Ecology doi: 10.2307/1941369 – volume: 171 year: 2023 ident: 1411_CR49 publication-title: Chaos Solit Fract – volume: 102 start-page: 3013 year: 2020 ident: 1411_CR48 publication-title: Nonlin Dynam doi: 10.1007/s11071-020-06018-2 – ident: 1411_CR58 – volume: 217 start-page: 3542 issue: 7 year: 2010 ident: 1411_CR53 publication-title: Appl Math Comput – volume: 8 start-page: 1 year: 2024 ident: 1411_CR9 publication-title: Dynamics – ident: 1411_CR3 – volume: 73 start-page: 36 year: 2015 ident: 1411_CR32 publication-title: Chao Solit Fract doi: 10.1016/j.chaos.2014.12.007 – volume: 200 start-page: 32 year: 2022 ident: 1411_CR41 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.04.011 – volume: 123 start-page: 391 year: 2000 ident: 1411_CR6 publication-title: Oecologia doi: 10.1007/s004420051026 – volume: 10 start-page: 345 issue: 2 year: 2012 ident: 1411_CR44 publication-title: Math Biosci Eng – volume: 2019 start-page: 1 year: 2019 ident: 1411_CR37 publication-title: Complexity – volume: 529 issue: 1 year: 2024 ident: 1411_CR42 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2023.127569 – volume: 22 start-page: 185 issue: 4 year: 2007 ident: 1411_CR26 publication-title: Trend Ecol Evol doi: 10.1016/j.tree.2006.12.002 – volume: 62 start-page: 3449 issue: 9 year: 2011 ident: 1411_CR30 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2011.08.061 – volume: 481 start-page: 136 year: 2019 ident: 1411_CR62 publication-title: J Theoret Biol doi: 10.1016/j.jtbi.2018.09.028 – ident: 1411_CR51 – volume: 302 start-page: 122 year: 2017 ident: 1411_CR14 publication-title: Appl Math Comput – volume: 27 start-page: 1310 issue: 9 year: 2021 ident: 1411_CR13 publication-title: J Diff Equ Appl doi: 10.1080/10236198.2021.1982920 – volume: 137 start-page: 134 issue: 1 year: 2022 ident: 1411_CR60 publication-title: Europ Phys J Plus doi: 10.1140/epjp/s13360-022-02358-7 – volume: 68 start-page: 23 year: 2012 ident: 1411_CR22 publication-title: Nonlinear Dynam doi: 10.1007/s11071-011-0201-5 – volume: 29 start-page: 1950152 issue: 11 year: 2019 ident: 1411_CR46 publication-title: Int J Bifurcat Chaos doi: 10.1142/S0218127419501529 – volume: 51 start-page: 570 year: 2002 ident: 1411_CR1 publication-title: Behav Ecol Sociobiol doi: 10.1007/s00265-002-0463-5 – volume: 85 start-page: 1183 issue: 6 year: 2013 ident: 1411_CR7 publication-title: Animal behav doi: 10.1016/j.anbehav.2013.03.004 – volume: 14 start-page: 401 issue: 10 year: 1999 ident: 1411_CR21 publication-title: Trend Ecol Evolution doi: 10.1016/S0169-5347(99)01684-5 – volume: 220 start-page: 170 year: 2024 ident: 1411_CR43 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2024.01.015 – volume-title: Allee Effect Ecol Conservat year: 2008 ident: 1411_CR20 doi: 10.1093/acprof:oso/9780198570301.001.0001 – volume: 67 start-page: 185 issue: 2 year: 2013 ident: 1411_CR23 publication-title: J Math Biol doi: 10.1007/s00285-012-0546-5 – volume: 21 start-page: 1082 issue: 4 year: 2007 ident: 1411_CR27 publication-title: Conservat Biol doi: 10.1111/j.1523-1739.2007.00721.x – volume: 1 start-page: 95 issue: 1 year: 2011 ident: 1411_CR50 publication-title: J Appl Anal Comput – volume: 66 start-page: 397 year: 2021 ident: 1411_CR17 publication-title: J Appl Math Comput doi: 10.1007/s12190-020-01438-0 – ident: 1411_CR40 – volume: 67 start-page: 23 issue: 1 year: 2005 ident: 1411_CR54 publication-title: Theoret Populat Biol doi: 10.1016/j.tpb.2004.06.007 – volume: 167 year: 2023 ident: 1411_CR63 publication-title: Chaos Solit Fract |
SSID | ssj0007939 |
Score | 2.4143941 |
Snippet | The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | 35 |
SubjectTerms | Animals Biodiversity Computer Simulation Cooperative Behavior Defense Die forming Diffusion rate Domes Ecological effects Ecosystem Endangered & extinct species Extinction Extinction, Biological Food Chain Geographical distribution Group dynamics Instability Mathematical Concepts Models, Biological Oscillations Per capita Population Density Population Dynamics - statistics & numerical data Predation Predator-prey simulation Predators Predatory Behavior Prey Response functions Spatio-Temporal Analysis Species extinction Stability System dynamics |
Title | Non-spatial Dynamics and Spatiotemporal Patterns Formation in a Predator–Prey Model with Double Allee and Dome-shaped Response Function |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39847162 https://www.proquest.com/docview/3159412582 https://www.proquest.com/docview/3254319026 https://www.proquest.com/docview/3158770121 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1522-9602 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: AKRWK dateStart: 19730201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1522-9602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: AFBBN dateStart: 19390301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1522-9602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1522-9602 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ9B4QDBuhYGMxFsVlNRuXD9WjGpi2h7GJvYW2cmpyNqlFWmFxh_gH_B7Ob6lDWwS8BJFduVE_b6ci8_FhLyFvFBSqmkkpomOuMzNRpNiEaCpLyHVeTI1Ed3jk_TwnH-8GF50Oj-3spbWK_0u_35jXcn_oIpjiKupkv0HZJtFcQDvEV-8IsJ4_SuMTxZVVJuUaCO73NHyruXyJ5sn7dtOzU0ffrPvV_cnoVTRbHMok39RGKc7wptreyyaz1lHs9pUVI3nc3DhhYPFFUT1F7UEU85o02qhP0Gd2OAaAsO-nbeN2zctYfEdfLenTchq7sXdZdlk3qCAKdz4abn6Vs7URh3UdvvnoFyq2YYjMyTcpcskwoVUXbY2MQbDkPdsdJAXvOgUozfVksxeFZdbDrITs67DyR_SP_bV0FaK26ckPEkisf1jRHB5ZfnApNHMXhe0e26HqTtkZyDSdNAlO-Oj089HjY5HqSZ9CZYrxPz9kbvkXlikbfHc4sZYc-bsIXng_RA6dqR6RDpQ7ZG77mTS6z1y_7jBrn5MfmwRjQaiUeQFbRONBqLRhmi0rKiiLaJRSzRqiEYd0aglml1wi2g0EI0Goj0h55MPZ-8PI3-CR5Sj27CKxBA0OhyaMRlrxQWXKRR5IQqN84UuEq5inEkhBQFiynJWaHNwUswBYgDOnpJutajgOaEQSyETqdRIMc7YUI0K0LnWEmQs-XDaI_3wL2dL16gl27TkNvBkCE9m4clEj-wHIDL_QdcZQ9Oeo8E_Gtw8bftGyHiQ9sibZhqlsQmxqQoWa7vESAjTJ7FHnjl8m7cJfHhx68xLsrv5OPZJd_V1Da_Q5l3p156AvwCrqq82 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-spatial+Dynamics+and+Spatiotemporal+Patterns+Formation+in+a+Predator-Prey+Model+with+Double+Allee+and+Dome-shaped+Response+Function&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Pal%2C+Debjit&rft.au=Mondal%2C+Ritwika&rft.au=Kesh%2C+Dipak&rft.au=Mukherjee%2C+Debasis&rft.date=2025-02-01&rft.eissn=1522-9602&rft.volume=87&rft.issue=2&rft.spage=35&rft_id=info:doi/10.1007%2Fs11538-025-01411-7&rft_id=info%3Apmid%2F39847162&rft.externalDocID=39847162 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon |