Non-spatial Dynamics and Spatiotemporal Patterns Formation in a Predator–Prey Model with Double Allee and Dome-shaped Response Function

The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species c...

Full description

Saved in:
Bibliographic Details
Published inBulletin of mathematical biology Vol. 87; no. 2; p. 35
Main Authors Pal, Debjit, Mondal, Ritwika, Kesh, Dipak, Mukherjee, Debasis
Format Journal Article
LanguageEnglish
Published United States Springer Nature B.V 01.02.2025
Subjects
Online AccessGet full text
ISSN0092-8240
1522-9602
1522-9602
DOI10.1007/s11538-025-01411-7

Cover

Abstract The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently. The cooperative behavior which raises Allee effect in low population density, can create group defence in species to protect themselves from predation. This article focuses on the dynamics of a predator-prey system with double Allee effect in prey growth and simplified Monod-Haldane form of dome-shaped response function to incorporate group defence ability of prey as time and space vary. The study obtains that, to some extent, group defence of prey plays a positive role for the stability of both the species, but on negative side, if defensive ability exceeds a threshold value then both the population can not survive simultaneously and predator population dies out. The Allee effect produces bi-stability (weak Allee) even tri-stability (strong Allee) in phase space reflecting that the system dynamics is very sensitive subject to initial population of the species. The combined impact of double Allee and group defence of prey leads in populations enduring stable periods punctuated by oscillations. The species' mobility based on only its own population is insufficient to this model for Turing instability. The presence of double Allee effect increases the instability regions that enhances the likelihood of various patterns. Whereas increasing group defence of prey decreases the instability region in spatial system. The species distribution stabilizes in forms of spots, stripes and mixture of both in heterogeneous environment. But for prey, gathering decreases with increasing growth rate and gathering increases with increasing Allee effect due to cross-diffusion which results paradox to temporal system. In contrast, populations in the Hopf and Hopf-Turing regions fluctuate (oscillatory) or their distribution becomes unpredictable (chaotic).
AbstractList The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently. The cooperative behavior which raises Allee effect in low population density, can create group defence in species to protect themselves from predation. This article focuses on the dynamics of a predator-prey system with double Allee effect in prey growth and simplified Monod-Haldane form of dome-shaped response function to incorporate group defence ability of prey as time and space vary. The study obtains that, to some extent, group defence of prey plays a positive role for the stability of both the species, but on negative side, if defensive ability exceeds a threshold value then both the population can not survive simultaneously and predator population dies out. The Allee effect produces bi-stability (weak Allee) even tri-stability (strong Allee) in phase space reflecting that the system dynamics is very sensitive subject to initial population of the species. The combined impact of double Allee and group defence of prey leads in populations enduring stable periods punctuated by oscillations. The species' mobility based on only its own population is insufficient to this model for Turing instability. The presence of double Allee effect increases the instability regions that enhances the likelihood of various patterns. Whereas increasing group defence of prey decreases the instability region in spatial system. The species distribution stabilizes in forms of spots, stripes and mixture of both in heterogeneous environment. But for prey, gathering decreases with increasing growth rate and gathering increases with increasing Allee effect due to cross-diffusion which results paradox to temporal system. In contrast, populations in the Hopf and Hopf-Turing regions fluctuate (oscillatory) or their distribution becomes unpredictable (chaotic).The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently. The cooperative behavior which raises Allee effect in low population density, can create group defence in species to protect themselves from predation. This article focuses on the dynamics of a predator-prey system with double Allee effect in prey growth and simplified Monod-Haldane form of dome-shaped response function to incorporate group defence ability of prey as time and space vary. The study obtains that, to some extent, group defence of prey plays a positive role for the stability of both the species, but on negative side, if defensive ability exceeds a threshold value then both the population can not survive simultaneously and predator population dies out. The Allee effect produces bi-stability (weak Allee) even tri-stability (strong Allee) in phase space reflecting that the system dynamics is very sensitive subject to initial population of the species. The combined impact of double Allee and group defence of prey leads in populations enduring stable periods punctuated by oscillations. The species' mobility based on only its own population is insufficient to this model for Turing instability. The presence of double Allee effect increases the instability regions that enhances the likelihood of various patterns. Whereas increasing group defence of prey decreases the instability region in spatial system. The species distribution stabilizes in forms of spots, stripes and mixture of both in heterogeneous environment. But for prey, gathering decreases with increasing growth rate and gathering increases with increasing Allee effect due to cross-diffusion which results paradox to temporal system. In contrast, populations in the Hopf and Hopf-Turing regions fluctuate (oscillatory) or their distribution becomes unpredictable (chaotic).
The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently. The cooperative behavior which raises Allee effect in low population density, can create group defence in species to protect themselves from predation. This article focuses on the dynamics of a predator–prey system with double Allee effect in prey growth and simplified Monod-Haldane form of dome-shaped response function to incorporate group defence ability of prey as time and space vary. The study obtains that, to some extent, group defence of prey plays a positive role for the stability of both the species, but on negative side, if defensive ability exceeds a threshold value then both the population can not survive simultaneously and predator population dies out. The Allee effect produces bi-stability (weak Allee) even tri-stability (strong Allee) in phase space reflecting that the system dynamics is very sensitive subject to initial population of the species. The combined impact of double Allee and group defence of prey leads in populations enduring stable periods punctuated by oscillations. The species’ mobility based on only its own population is insufficient to this model for Turing instability. The presence of double Allee effect increases the instability regions that enhances the likelihood of various patterns. Whereas increasing group defence of prey decreases the instability region in spatial system. The species distribution stabilizes in forms of spots, stripes and mixture of both in heterogeneous environment. But for prey, gathering decreases with increasing growth rate and gathering increases with increasing Allee effect due to cross-diffusion which results paradox to temporal system. In contrast, populations in the Hopf and Hopf-Turing regions fluctuate (oscillatory) or their distribution becomes unpredictable (chaotic).
ArticleNumber 35
Author Mondal, Ritwika
Kesh, Dipak
Mukherjee, Debasis
Pal, Debjit
Author_xml – sequence: 1
  givenname: Debjit
  surname: Pal
  fullname: Pal, Debjit
– sequence: 2
  givenname: Ritwika
  surname: Mondal
  fullname: Mondal, Ritwika
– sequence: 3
  givenname: Dipak
  surname: Kesh
  fullname: Kesh, Dipak
– sequence: 4
  givenname: Debasis
  surname: Mukherjee
  fullname: Mukherjee, Debasis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39847162$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtuFDEUhi0URDaBF6BAlmhoDMeXGY_LKMsGpAARl9ryjM8qE83Ygz2jaDta6rwhT4I3GygoqHzk_zu_jvSdkKMQAxLynMNrDqDfZM4r2TAQFQOuOGf6EVnxSghmahBHZAVgBGuEgmNykvMNlCUjzRNyLE2jNK_Fivz8GAPLk5t7N9D1Lrix7zJ1wdMv-8844zjFVLIrN8-YQqabmMZ9EmgfqKNXCb2bY_r1466MO_ohehzobT9f03Vc2gHp2TAg3leu44gsX7sJPf2MeYohI90sodvXPSWPt27I-OzhPSXfNm-_nr9jl58u3p-fXbJOcpiZrrCtQLdSGmid0srU6DuvfVty33quHJSkxho16q3spG9rLTUoREBU8pS8OvROKX5fMM927HOHw-ACxiVbyatGa-CCF_TlP-hNXFIo11kpKiW5AVH_l-KVUVxUjSjUiwdqaUf0dkr96NLO_lFRAHEAuhRzTrj9i3Cwe9_24NsW3_bet9XyN2fjngQ
Cites_doi 10.1016/S0169-5347(99)01683-3
10.1142/S1793524522500012
10.1016/j.jmaa.2018.03.074
10.1016/j.matcom.2022.09.002
10.3390/math10173171
10.1086/215731
10.1007/s11071-015-1927-2
10.1016/j.camwa.2014.08.025
10.1016/j.anbehav.2008.11.007
10.1111/j.1469-7998.1992.tb03838.x
10.3390/fractalfract5030084
10.1063/1.4907508
10.1017/S0952836903003583
10.1142/S0218127420300207
10.3934/mmc.2022027
10.1142/S0218127423501316
10.1007/BF02462320
10.1093/beheco/aru050
10.1016/j.ecocom.2018.09.001
10.1007/s002850050095
10.1006/jtbi.2002.3084
10.1002/bit.260230909
10.1137/S0036139999361896
10.2307/1941369
10.1007/s11071-020-06018-2
10.1016/j.chaos.2014.12.007
10.1016/j.matcom.2022.04.011
10.1007/s004420051026
10.1016/j.jmaa.2023.127569
10.1016/j.tree.2006.12.002
10.1016/j.camwa.2011.08.061
10.1016/j.jtbi.2018.09.028
10.1080/10236198.2021.1982920
10.1140/epjp/s13360-022-02358-7
10.1007/s11071-011-0201-5
10.1142/S0218127419501529
10.1007/s00265-002-0463-5
10.1016/j.anbehav.2013.03.004
10.1016/S0169-5347(99)01684-5
10.1016/j.matcom.2024.01.015
10.1093/acprof:oso/9780198570301.001.0001
10.1007/s00285-012-0546-5
10.1111/j.1523-1739.2007.00721.x
10.1007/s12190-020-01438-0
10.1016/j.tpb.2004.06.007
ContentType Journal Article
Copyright 2025. The Author(s), under exclusive licence to the Society for Mathematical Biology.
Copyright Springer Nature B.V. 2025
The Author(s), under exclusive licence to the Society for Mathematical Biology 2025.
Copyright_xml – notice: 2025. The Author(s), under exclusive licence to the Society for Mathematical Biology.
– notice: Copyright Springer Nature B.V. 2025
– notice: The Author(s), under exclusive licence to the Society for Mathematical Biology 2025.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
JQ2
K9.
7X8
DOI 10.1007/s11538-025-01411-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Neurosciences Abstracts
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Entomology Abstracts
Entomology Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1522-9602
ExternalDocumentID 39847162
10_1007_s11538_025_01411_7
Genre Journal Article
GrantInformation_xml – fundername: Human Resource Development Centre, Council of Scientific And Industrial Research
  grantid: 09/0096(12492)/2021-EMR-I
– fundername: Human Resource Development Group
  grantid: SR/FST/MS-II/2021/101 (C)
GroupedDBID ---
--K
--Z
-Y2
-~X
.86
.GJ
.VR
06D
0R~
0VY
199
1B1
1N0
1RT
1~5
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3O-
4.4
406
408
40D
40E
4G.
53G
5GY
5RE
5VS
67Z
6J9
6NX
7-5
71M
78A
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALCJ
AALRI
AANZL
AAPKM
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYWO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMAC
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACRPL
ACSTC
ACZOJ
ADBBV
ADFGL
ADHIR
ADHKG
ADKNI
ADKPE
ADMUD
ADNMO
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHHHB
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGII
AIGIU
AIIXL
AILAN
AITGF
AITUG
AIXLP
AJBLW
AJRNO
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMVHM
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DM4
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FIRID
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-2
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HLV
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K6V
K7-
KDC
KOV
L6V
LG5
LK8
LLZTM
LW8
M1P
M2P
M4Y
M7P
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O-L
O9-
O93
O9G
O9I
O9J
OZT
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOS
R2-
R89
R9I
RHV
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAB
SAP
SCLPG
SDD
SDH
SDM
SEW
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSZ
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
WUQ
XPP
XSW
YLTOR
Z45
ZGI
ZMT
ZMTXR
ZWQNP
ZXP
~A9
~EX
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
JQ2
K9.
7X8
ID FETCH-LOGICAL-c310t-75eb507b3390ba47496edcd7dbc31dbd14a090b6e6e7e7f3c3db673704ee0ee43
ISSN 0092-8240
1522-9602
IngestDate Fri Sep 05 10:09:51 EDT 2025
Sat Sep 27 04:30:43 EDT 2025
Thu Sep 18 00:06:07 EDT 2025
Mon Jul 21 05:43:17 EDT 2025
Wed Oct 01 03:09:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Double Allee effect
Multi-stability
Bogdanov–Takens bifurcation
Dome-shaped response function
Spatiotemporal chaos
Turing patterns
Language English
License 2025. The Author(s), under exclusive licence to the Society for Mathematical Biology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-75eb507b3390ba47496edcd7dbc31dbd14a090b6e6e7e7f3c3db673704ee0ee43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 39847162
PQID 3159412582
PQPubID 55445
ParticipantIDs proquest_miscellaneous_3158770121
proquest_journals_3254319026
proquest_journals_3159412582
pubmed_primary_39847162
crossref_primary_10_1007_s11538_025_01411_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Bulletin of mathematical biology
PublicationTitleAlternate Bull Math Biol
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References MA Stevens (1411_CR28) 2003; 260
CC Hass (1411_CR1) 2002; 51
E González-Olivares (1411_CR30) 2011; 62
D Xiao (1411_CR12) 2001; 61
E González-Olivares (1411_CR44) 2012; 10
DS Boukal (1411_CR55) 2002; 218
L Cai (1411_CR23) 2013; 67
S-R Zhou (1411_CR54) 2005; 67
J Zu (1411_CR53) 2010; 217
LN Guin (1411_CR59) 2014; 68
J Huang (1411_CR15) 2018; 464
R Harcourt (1411_CR29) 1992; 226
E Rahmi (1411_CR34) 2021; 5
J Shi (1411_CR50) 2011; 1
L Berec (1411_CR26) 2007; 22
F Wang (1411_CR43) 2024; 220
M Kaur (1411_CR17) 2021; 66
E Líznarová (1411_CR7) 2013; 85
H Liu (1411_CR37) 2019; 2019
I Krams (1411_CR8) 2009; 77
H Wang (1411_CR49) 2023; 171
1411_CR3
S Creel (1411_CR2) 2014; 25
F Sánchez-Garduño (1411_CR9) 2024; 8
F Courchamp (1411_CR19) 1999; 14
1411_CR45
Y Cai (1411_CR38) 2013; 2013
B Tiwari (1411_CR48) 2020; 102
S Khajanchi (1411_CR14) 2017; 302
1411_CR40
S Rana (1411_CR41) 2022; 200
JM Jeschke (1411_CR6) 2000; 123
WC Allee (1411_CR18) 1931; 37
SK Sasmal (1411_CR25) 2023; 33
Q Song (1411_CR46) 2019; 29
JB Collings (1411_CR11) 1997; 36
F Sánchez-Garduno (1411_CR62) 2019; 481
W Sokol (1411_CR10) 1981; 23
PA Stephens (1411_CR21) 1999; 14
L Perko (1411_CR56) 2013
1411_CR58
W Li (1411_CR16) 2023; 204
1411_CR52
1411_CR51
P Turchin (1411_CR24) 1989; 70
G Hu (1411_CR61) 2020; 30
PJ Pal (1411_CR22) 2012; 68
K Manna (1411_CR39) 2018; 36
E Angulo (1411_CR27) 2007; 21
KC Patidar (1411_CR13) 2021; 27
J Xiao (1411_CR42) 2024; 529
HI Freedman (1411_CR4) 1986; 48
M Zhu (1411_CR36) 2022; 10
R Han (1411_CR60) 2022; 137
S-W Yao (1411_CR35) 2019; 527
H Li (1411_CR47) 2022; 15
D Pal (1411_CR63) 2023; 167
S Xia (1411_CR33) 2022; 2
P Feng (1411_CR31) 2015; 80
PJ Pal (1411_CR32) 2015; 73
YA Kuznetsov (1411_CR57) 1998
P Davidowicz (1411_CR5) 1988; 19
F Courchamp (1411_CR20) 2008
References_xml – volume: 19
  start-page: 21
  issue: 1
  year: 1988
  ident: 1411_CR5
  publication-title: Limnol Jena
– volume: 14
  start-page: 405
  issue: 10
  year: 1999
  ident: 1411_CR19
  publication-title: Trend Ecol Evolut
  doi: 10.1016/S0169-5347(99)01683-3
– volume-title: Diff Equ Dynam Syst
  year: 2013
  ident: 1411_CR56
– volume: 15
  start-page: 2250001
  issue: 03
  year: 2022
  ident: 1411_CR47
  publication-title: Int J Biomath
  doi: 10.1142/S1793524522500012
– volume: 464
  start-page: 201
  issue: 1
  year: 2018
  ident: 1411_CR15
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2018.03.074
– volume: 204
  start-page: 529
  year: 2023
  ident: 1411_CR16
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.09.002
– volume: 10
  start-page: 3171
  issue: 17
  year: 2022
  ident: 1411_CR36
  publication-title: Math
  doi: 10.3390/math10173171
– ident: 1411_CR52
– volume: 37
  start-page: 386
  issue: 3
  year: 1931
  ident: 1411_CR18
  publication-title: Am J Sociol
  doi: 10.1086/215731
– volume: 80
  start-page: 1051
  year: 2015
  ident: 1411_CR31
  publication-title: Nonlin Dynam
  doi: 10.1007/s11071-015-1927-2
– volume: 68
  start-page: 1325
  issue: 10
  year: 2014
  ident: 1411_CR59
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2014.08.025
– volume: 527
  year: 2019
  ident: 1411_CR35
  publication-title: Phys Statistic Mech Appl
– volume: 77
  start-page: 513
  issue: 2
  year: 2009
  ident: 1411_CR8
  publication-title: Animal Behav
  doi: 10.1016/j.anbehav.2008.11.007
– volume: 226
  start-page: 259
  issue: 2
  year: 1992
  ident: 1411_CR29
  publication-title: J Zool
  doi: 10.1111/j.1469-7998.1992.tb03838.x
– volume: 2013
  start-page: 535746
  issue: 1
  year: 2013
  ident: 1411_CR38
  publication-title: J Appl Math
– volume: 5
  start-page: 84
  issue: 3
  year: 2021
  ident: 1411_CR34
  publication-title: Fract Fract
  doi: 10.3390/fractalfract5030084
– ident: 1411_CR45
  doi: 10.1063/1.4907508
– volume: 260
  start-page: 145
  issue: 2
  year: 2003
  ident: 1411_CR28
  publication-title: J Zool
  doi: 10.1017/S0952836903003583
– volume: 30
  start-page: 2030020
  issue: 08
  year: 2020
  ident: 1411_CR61
  publication-title: Int J Bifurcat Chaos
  doi: 10.1142/S0218127420300207
– volume: 2
  start-page: 282
  issue: 4
  year: 2022
  ident: 1411_CR33
  publication-title: Math Model Control
  doi: 10.3934/mmc.2022027
– volume: 33
  start-page: 2350131
  issue: 11
  year: 2023
  ident: 1411_CR25
  publication-title: Int J Bifurcat Chaos
  doi: 10.1142/S0218127423501316
– volume: 48
  start-page: 493
  issue: 5–6
  year: 1986
  ident: 1411_CR4
  publication-title: Bullet Math Biol
  doi: 10.1007/BF02462320
– volume: 25
  start-page: 773
  issue: 4
  year: 2014
  ident: 1411_CR2
  publication-title: Behav Ecol
  doi: 10.1093/beheco/aru050
– volume: 36
  start-page: 206
  year: 2018
  ident: 1411_CR39
  publication-title: Ecol Compl
  doi: 10.1016/j.ecocom.2018.09.001
– volume: 36
  start-page: 149
  year: 1997
  ident: 1411_CR11
  publication-title: J Math Biol
  doi: 10.1007/s002850050095
– volume: 218
  start-page: 375
  issue: 3
  year: 2002
  ident: 1411_CR55
  publication-title: J Theoret Biol
  doi: 10.1006/jtbi.2002.3084
– volume: 23
  start-page: 2039
  issue: 9
  year: 1981
  ident: 1411_CR10
  publication-title: Biotechnol Bioengineer
  doi: 10.1002/bit.260230909
– volume: 61
  start-page: 1445
  issue: 4
  year: 2001
  ident: 1411_CR12
  publication-title: SIAM J Appl Math
  doi: 10.1137/S0036139999361896
– volume-title: Element Appl Bifurcat Theory
  year: 1998
  ident: 1411_CR57
– volume: 70
  start-page: 1008
  issue: 4
  year: 1989
  ident: 1411_CR24
  publication-title: Ecology
  doi: 10.2307/1941369
– volume: 171
  year: 2023
  ident: 1411_CR49
  publication-title: Chaos Solit Fract
– volume: 102
  start-page: 3013
  year: 2020
  ident: 1411_CR48
  publication-title: Nonlin Dynam
  doi: 10.1007/s11071-020-06018-2
– ident: 1411_CR58
– volume: 217
  start-page: 3542
  issue: 7
  year: 2010
  ident: 1411_CR53
  publication-title: Appl Math Comput
– volume: 8
  start-page: 1
  year: 2024
  ident: 1411_CR9
  publication-title: Dynamics
– ident: 1411_CR3
– volume: 73
  start-page: 36
  year: 2015
  ident: 1411_CR32
  publication-title: Chao Solit Fract
  doi: 10.1016/j.chaos.2014.12.007
– volume: 200
  start-page: 32
  year: 2022
  ident: 1411_CR41
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.04.011
– volume: 123
  start-page: 391
  year: 2000
  ident: 1411_CR6
  publication-title: Oecologia
  doi: 10.1007/s004420051026
– volume: 10
  start-page: 345
  issue: 2
  year: 2012
  ident: 1411_CR44
  publication-title: Math Biosci Eng
– volume: 2019
  start-page: 1
  year: 2019
  ident: 1411_CR37
  publication-title: Complexity
– volume: 529
  issue: 1
  year: 2024
  ident: 1411_CR42
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2023.127569
– volume: 22
  start-page: 185
  issue: 4
  year: 2007
  ident: 1411_CR26
  publication-title: Trend Ecol Evol
  doi: 10.1016/j.tree.2006.12.002
– volume: 62
  start-page: 3449
  issue: 9
  year: 2011
  ident: 1411_CR30
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2011.08.061
– volume: 481
  start-page: 136
  year: 2019
  ident: 1411_CR62
  publication-title: J Theoret Biol
  doi: 10.1016/j.jtbi.2018.09.028
– ident: 1411_CR51
– volume: 302
  start-page: 122
  year: 2017
  ident: 1411_CR14
  publication-title: Appl Math Comput
– volume: 27
  start-page: 1310
  issue: 9
  year: 2021
  ident: 1411_CR13
  publication-title: J Diff Equ Appl
  doi: 10.1080/10236198.2021.1982920
– volume: 137
  start-page: 134
  issue: 1
  year: 2022
  ident: 1411_CR60
  publication-title: Europ Phys J Plus
  doi: 10.1140/epjp/s13360-022-02358-7
– volume: 68
  start-page: 23
  year: 2012
  ident: 1411_CR22
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-011-0201-5
– volume: 29
  start-page: 1950152
  issue: 11
  year: 2019
  ident: 1411_CR46
  publication-title: Int J Bifurcat Chaos
  doi: 10.1142/S0218127419501529
– volume: 51
  start-page: 570
  year: 2002
  ident: 1411_CR1
  publication-title: Behav Ecol Sociobiol
  doi: 10.1007/s00265-002-0463-5
– volume: 85
  start-page: 1183
  issue: 6
  year: 2013
  ident: 1411_CR7
  publication-title: Animal behav
  doi: 10.1016/j.anbehav.2013.03.004
– volume: 14
  start-page: 401
  issue: 10
  year: 1999
  ident: 1411_CR21
  publication-title: Trend Ecol Evolution
  doi: 10.1016/S0169-5347(99)01684-5
– volume: 220
  start-page: 170
  year: 2024
  ident: 1411_CR43
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2024.01.015
– volume-title: Allee Effect Ecol Conservat
  year: 2008
  ident: 1411_CR20
  doi: 10.1093/acprof:oso/9780198570301.001.0001
– volume: 67
  start-page: 185
  issue: 2
  year: 2013
  ident: 1411_CR23
  publication-title: J Math Biol
  doi: 10.1007/s00285-012-0546-5
– volume: 21
  start-page: 1082
  issue: 4
  year: 2007
  ident: 1411_CR27
  publication-title: Conservat Biol
  doi: 10.1111/j.1523-1739.2007.00721.x
– volume: 1
  start-page: 95
  issue: 1
  year: 2011
  ident: 1411_CR50
  publication-title: J Appl Anal Comput
– volume: 66
  start-page: 397
  year: 2021
  ident: 1411_CR17
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-020-01438-0
– ident: 1411_CR40
– volume: 67
  start-page: 23
  issue: 1
  year: 2005
  ident: 1411_CR54
  publication-title: Theoret Populat Biol
  doi: 10.1016/j.tpb.2004.06.007
– volume: 167
  year: 2023
  ident: 1411_CR63
  publication-title: Chaos Solit Fract
SSID ssj0007939
Score 2.4143941
Snippet The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 35
SubjectTerms Animals
Biodiversity
Computer Simulation
Cooperative Behavior
Defense
Die forming
Diffusion rate
Domes
Ecological effects
Ecosystem
Endangered & extinct species
Extinction
Extinction, Biological
Food Chain
Geographical distribution
Group dynamics
Instability
Mathematical Concepts
Models, Biological
Oscillations
Per capita
Population Density
Population Dynamics - statistics & numerical data
Predation
Predator-prey simulation
Predators
Predatory Behavior
Prey
Response functions
Spatio-Temporal Analysis
Species extinction
Stability
System dynamics
Title Non-spatial Dynamics and Spatiotemporal Patterns Formation in a Predator–Prey Model with Double Allee and Dome-shaped Response Function
URI https://www.ncbi.nlm.nih.gov/pubmed/39847162
https://www.proquest.com/docview/3159412582
https://www.proquest.com/docview/3254319026
https://www.proquest.com/docview/3158770121
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1522-9602
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: AKRWK
  dateStart: 19730201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1522-9602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: AFBBN
  dateStart: 19390301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ9B4QDBuhYGMxFsVlNRuXD9WjGpi2h7GJvYW2cmpyNqlFWmFxh_gH_B7Ob6lDWwS8BJFduVE_b6ci8_FhLyFvFBSqmkkpomOuMzNRpNiEaCpLyHVeTI1Ed3jk_TwnH-8GF50Oj-3spbWK_0u_35jXcn_oIpjiKupkv0HZJtFcQDvEV-8IsJ4_SuMTxZVVJuUaCO73NHyruXyJ5sn7dtOzU0ffrPvV_cnoVTRbHMok39RGKc7wptreyyaz1lHs9pUVI3nc3DhhYPFFUT1F7UEU85o02qhP0Gd2OAaAsO-nbeN2zctYfEdfLenTchq7sXdZdlk3qCAKdz4abn6Vs7URh3UdvvnoFyq2YYjMyTcpcskwoVUXbY2MQbDkPdsdJAXvOgUozfVksxeFZdbDrITs67DyR_SP_bV0FaK26ckPEkisf1jRHB5ZfnApNHMXhe0e26HqTtkZyDSdNAlO-Oj089HjY5HqSZ9CZYrxPz9kbvkXlikbfHc4sZYc-bsIXng_RA6dqR6RDpQ7ZG77mTS6z1y_7jBrn5MfmwRjQaiUeQFbRONBqLRhmi0rKiiLaJRSzRqiEYd0aglml1wi2g0EI0Goj0h55MPZ-8PI3-CR5Sj27CKxBA0OhyaMRlrxQWXKRR5IQqN84UuEq5inEkhBQFiynJWaHNwUswBYgDOnpJutajgOaEQSyETqdRIMc7YUI0K0LnWEmQs-XDaI_3wL2dL16gl27TkNvBkCE9m4clEj-wHIDL_QdcZQ9Oeo8E_Gtw8bftGyHiQ9sibZhqlsQmxqQoWa7vESAjTJ7FHnjl8m7cJfHhx68xLsrv5OPZJd_V1Da_Q5l3p156AvwCrqq82
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-spatial+Dynamics+and+Spatiotemporal+Patterns+Formation+in+a+Predator-Prey+Model+with+Double+Allee+and+Dome-shaped+Response+Function&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Pal%2C+Debjit&rft.au=Mondal%2C+Ritwika&rft.au=Kesh%2C+Dipak&rft.au=Mukherjee%2C+Debasis&rft.date=2025-02-01&rft.eissn=1522-9602&rft.volume=87&rft.issue=2&rft.spage=35&rft_id=info:doi/10.1007%2Fs11538-025-01411-7&rft_id=info%3Apmid%2F39847162&rft.externalDocID=39847162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon