Trimmed Constrained Mixed Effects Models: Formulations and Algorithms

Mixed effects (ME) models inform a vast array of problems in the physical and social sciences, and are pervasive in meta-analysis. We consider ME models where the random effects component is linear. We then develop an efficient approach for a broad problem class that allows nonlinear measurements, p...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 30; no. 3; pp. 544 - 556
Main Authors Zheng, Peng, Barber, Ryan, Sorensen, Reed J. D., Murray, Christopher J. L., Aravkin, Aleksandr Y.
Format Journal Article
LanguageEnglish
Published Taylor & Francis 16.09.2021
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2020.1868303

Cover

Abstract Mixed effects (ME) models inform a vast array of problems in the physical and social sciences, and are pervasive in meta-analysis. We consider ME models where the random effects component is linear. We then develop an efficient approach for a broad problem class that allows nonlinear measurements, priors, and constraints, and finds robust estimates in all of these cases using trimming in the associated marginal likelihood. The software accompanying this article is disseminated as an open-source Python package called LimeTr. LimeTr is able to recover results more accurately in the presence of outliers compared to available packages for both standard longitudinal analysis and meta-analysis, and is also more computationally efficient than competing robust alternatives. Supplementary materials that reproduce the simulations, as well as run LimeTr and third party code are available online. We also present analyses of global health data, where we use advanced functionality of LimeTr, including constraints to impose monotonicity and concavity for dose-response relationships. Nonlinear observation models allow new analyses in place of classic approximations, such as log-linear models. Robust extensions in all analyses ensure that spurious data points do not drive our understanding of either mean relationships or between-study heterogeneity.
AbstractList Mixed effects (ME) models inform a vast array of problems in the physical and social sciences, and are pervasive in meta-analysis. We consider ME models where the random effects component is linear. We then develop an efficient approach for a broad problem class that allows nonlinear measurements, priors, and constraints, and finds robust estimates in all of these cases using trimming in the associated marginal likelihood. The software accompanying this article is disseminated as an open-source Python package called LimeTr. LimeTr is able to recover results more accurately in the presence of outliers compared to available packages for both standard longitudinal analysis and meta-analysis, and is also more computationally efficient than competing robust alternatives. Supplementary materials that reproduce the simulations, as well as run LimeTr and third party code are available online. We also present analyses of global health data, where we use advanced functionality of LimeTr, including constraints to impose monotonicity and concavity for dose-response relationships. Nonlinear observation models allow new analyses in place of classic approximations, such as log-linear models. Robust extensions in all analyses ensure that spurious data points do not drive our understanding of either mean relationships or between-study heterogeneity.
Author Murray, Christopher J. L.
Barber, Ryan
Sorensen, Reed J. D.
Aravkin, Aleksandr Y.
Zheng, Peng
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0003-3313-215X
  surname: Zheng
  fullname: Zheng, Peng
  organization: Institute for Health Metrics and Evaluation, University of Washington
– sequence: 2
  givenname: Ryan
  surname: Barber
  fullname: Barber, Ryan
  organization: Institute for Health Metrics and Evaluation, University of Washington
– sequence: 3
  givenname: Reed J. D.
  surname: Sorensen
  fullname: Sorensen, Reed J. D.
  organization: Institute for Health Metrics and Evaluation, University of Washington
– sequence: 4
  givenname: Christopher J. L.
  surname: Murray
  fullname: Murray, Christopher J. L.
  organization: Institute for Health Metrics and Evaluation, University of Washington
– sequence: 5
  givenname: Aleksandr Y.
  orcidid: 0000-0002-1875-1801
  surname: Aravkin
  fullname: Aravkin, Aleksandr Y.
  organization: Department of Applied Mathematics, University of Washington
BookMark eNqFkE1OwzAQhS1UJNrCEZBygZRxnLgObKiqFpBasSlry_EPGCU2soOgt8ehZcMCNjOj0XujN98EjZx3GqFLDDMMDK4wUMwowKyAIq0YZQTICRrjiszzYo6rUZqTJh9EZ2gS4ysAYFrPx2i1C7brtMqW3sU-COvSvLWfqa6M0bKP2dYr3cbrbO1D996K3iZlJpzKFu2zD7Z_6eI5OjWijfri2Kfoab3aLe_zzePdw3KxySXB0OdYAiYNmJJQKI0sSS00k41kGnCjCSEVKwuFDQVZM0kLBQwLZRStSxC6qcgU3RzuyuBjDNpwafvvREP0lmPgAxH-Q4QPRPiRSHJXv9xv6XkR9v_6bg8-60xiID58aBXvxb71wQThpI2c_H3iC2VEeZY
CitedBy_id crossref_primary_10_1016_j_nut_2024_112395
crossref_primary_10_1016_S0140_6736_23_01301_6
crossref_primary_10_1016_j_envres_2024_119324
crossref_primary_10_1038_s41591_022_01968_z
crossref_primary_10_1016_S0140_6736_24_00757_8
crossref_primary_10_1016_S1473_3099_24_00176_2
crossref_primary_10_1016_S2213_8587_22_00186_3
crossref_primary_10_1080_10618600_2023_2231496
crossref_primary_10_1287_moor_2022_0122
crossref_primary_10_1016_j_genhosppsych_2024_03_003
crossref_primary_10_1016_S0140_6736_24_02246_3
crossref_primary_10_1186_s12894_024_01582_w
crossref_primary_10_1016_j_vaccine_2022_05_042
crossref_primary_10_1016_S0140_6736_21_02143_7
crossref_primary_10_1016_S2468_1253_24_00157_2
crossref_primary_10_1016_S2666_7568_22_00213_6
crossref_primary_10_1016_S2468_2667_21_00249_8
crossref_primary_10_1016_j_lana_2023_100552
crossref_primary_10_1016_S2215_0366_23_00037_8
crossref_primary_10_1038_s41591_022_01970_5
crossref_primary_10_1038_s41591_022_01974_1
crossref_primary_10_1371_journal_pone_0260808
crossref_primary_10_1016_j_jacc_2023_11_007
crossref_primary_10_1038_s41467_024_47632_7
crossref_primary_10_1016_S0140_6736_21_00534_1
crossref_primary_10_1016_S2214_109X_24_00181_5
crossref_primary_10_1093_cdn_nzab141
crossref_primary_10_1016_S2542_5196_22_00122_X
crossref_primary_10_1017_S1368980021004821
crossref_primary_10_1186_s40249_024_01247_8
crossref_primary_10_1038_s41591_022_01978_x
crossref_primary_10_1016_S2352_3026_23_00160_6
crossref_primary_10_1016_S0140_6736_22_00518_9
crossref_primary_10_1016_S0140_6736_24_00550_6
crossref_primary_10_1126_sciadv_abm8954
crossref_primary_10_1016_S1473_3099_24_00007_0
crossref_primary_10_1016_S2665_9913_24_00151_6
crossref_primary_10_1016_S0140_6736_22_00936_9
crossref_primary_10_1016_S0140_6736_24_01446_6
crossref_primary_10_1016_j_neucom_2023_126237
crossref_primary_10_1016_S0140_6736_24_00685_8
crossref_primary_10_1016_S0140_6736_21_01337_4
crossref_primary_10_1016_S2215_0366_21_00395_3
crossref_primary_10_1016_S2468_2667_23_00306_7
crossref_primary_10_1016_j_psychres_2024_116150
crossref_primary_10_1016_S2215_0366_24_00363_8
crossref_primary_10_1016_S2468_1253_22_00124_8
crossref_primary_10_1016_S0140_6736_24_02840_X
crossref_primary_10_1016_S1473_3099_24_00158_0
crossref_primary_10_1016_S2542_5196_21_00350_8
crossref_primary_10_1016_S0140_6736_24_01867_1
crossref_primary_10_1136_tobaccocontrol_2021_056535
crossref_primary_10_1136_bmj_2021_068208
crossref_primary_10_1016_j_envpol_2025_125682
crossref_primary_10_1016_j_lanwpc_2022_100493
crossref_primary_10_1016_S2214_109X_24_00093_7
crossref_primary_10_1016_S1474_4422_23_00195_3
crossref_primary_10_1016_S2213_2600_24_00295_9
crossref_primary_10_3389_ijph_2023_1605959
crossref_primary_10_1038_s41591_022_01973_2
crossref_primary_10_1038_s41591_022_01990_1
crossref_primary_10_1186_s12937_024_00957_x
crossref_primary_10_1016_S0140_6736_22_02465_5
crossref_primary_10_1038_s41467_023_41086_z
crossref_primary_10_1038_s43587_025_00844_y
crossref_primary_10_1016_S0140_6736_22_00532_3
crossref_primary_10_1016_S0140_6736_24_00476_8
crossref_primary_10_1016_S2215_0366_24_00317_1
crossref_primary_10_1103_PhysRevApplied_18_044006
crossref_primary_10_1016_S0140_6736_24_00933_4
crossref_primary_10_1016_S0140_6736_21_01700_1
crossref_primary_10_1016_S0140_6736_24_01925_1
crossref_primary_10_1038_s41591_023_02743_4
crossref_primary_10_1016_S2215_0366_21_00040_7
crossref_primary_10_1136_bmjopen_2022_061248
crossref_primary_10_1161_STROKEAHA_124_048033
crossref_primary_10_1016_S2468_2667_24_00302_5
crossref_primary_10_1016_S2665_9913_23_00232_1
crossref_primary_10_1016_S2214_109X_23_00043_8
Cites_doi 10.1214/aos/1176347963
10.18637/jss.v075.i06
10.1002/0470011815.b2a15029
10.1214/18-EJS1470
10.1186/1471-2407-12-385
10.1007/s00453-012-9721-8
10.1109/TAC.2017.2754474
10.1201/9781351264686
10.1016/0197-2456(86)90046-2
10.1088/0266-5611/19/2/201
10.1201/9780429246593
10.1007/978-1-4612-6333-3
10.1198/10618600152628059
10.1080/01621459.1993.10476408
10.1214/12-AOAS575
10.1007/978-0-387-87458-6
10.1007/978-3-642-57338-5_24
10.1287/moor.2019.0992
10.18637/jss.v067.i01
10.1088/0266-5611/28/11/115016
10.1137/1026121
10.1007/s10107-011-0484-9
10.1007/978-94-009-5438-0_20
10.1007/s10618-005-0024-4
10.1002/ijc.23033
10.2307/2529876
10.1137/0710036
10.1007/s11222-013-9448-7
10.1007/s10107-004-0559-y
10.1016/j.ejca.2017.11.022
10.1002/bimj.200390034
ContentType Journal Article
Copyright 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021
Copyright_xml – notice: 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021
DBID AAYXX
CITATION
DOI 10.1080/10618600.2020.1868303
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 556
ExternalDocumentID 10_1080_10618600_2020_1868303
1868303
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADXHL
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-1c013b0f43604fc439ae8cbc8e01be3335842d1f60c98c62d081adfd6940aeb53
ISSN 1061-8600
IngestDate Wed Oct 01 02:49:39 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
Mon Oct 20 23:46:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-1c013b0f43604fc439ae8cbc8e01be3335842d1f60c98c62d081adfd6940aeb53
ORCID 0000-0003-3313-215X
0000-0002-1875-1801
PageCount 13
ParticipantIDs crossref_primary_10_1080_10618600_2020_1868303
informaworld_taylorfrancis_310_1080_10618600_2020_1868303
crossref_citationtrail_10_1080_10618600_2020_1868303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-16
PublicationDateYYYYMMDD 2021-09-16
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-16
  day: 16
PublicationDecade 2020
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2021
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0033
Bonnans J. F. (CIT0008) 2013
Davidian M. (CIT0011) 1995; 62
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
Yang E. (CIT0034) 2015
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
Imdad A. (CIT0020) 2017; 3
CIT0028
CIT0009
References_xml – ident: CIT0015
  doi: 10.1214/aos/1176347963
– ident: CIT0021
  doi: 10.18637/jss.v075.i06
– ident: CIT0009
  doi: 10.1002/0470011815.b2a15029
– ident: CIT0035
  doi: 10.1214/18-EJS1470
– ident: CIT0023
  doi: 10.1186/1471-2407-12-385
– ident: CIT0024
  doi: 10.1007/s00453-012-9721-8
– ident: CIT0004
  doi: 10.1109/TAC.2017.2754474
– ident: CIT0019
  doi: 10.1201/9781351264686
– ident: CIT0013
  doi: 10.1016/0197-2456(86)90046-2
– ident: CIT0018
  doi: 10.1088/0266-5611/19/2/201
– ident: CIT0014
  doi: 10.1201/9780429246593
– ident: CIT0012
  doi: 10.1007/978-1-4612-6333-3
– volume: 3
  start-page: CD008524
  year: 2017
  ident: CIT0020
  publication-title: Cochrane Database of Systematic Reviews
– ident: CIT0026
  doi: 10.1198/10618600152628059
– ident: CIT0030
  doi: 10.1080/01621459.1993.10476408
– volume-title: Perturbation Analysis of Optimization Problems
  year: 2013
  ident: CIT0008
– volume: 62
  volume-title: Nonlinear Models for Repeated Measurement Data
  year: 1995
  ident: CIT0011
– ident: CIT0001
  doi: 10.1214/12-AOAS575
– ident: CIT0036
  doi: 10.1007/978-0-387-87458-6
– ident: CIT0025
  doi: 10.1007/978-3-642-57338-5_24
– ident: CIT0003
  doi: 10.1287/moor.2019.0992
– ident: CIT0007
  doi: 10.18637/jss.v067.i01
– ident: CIT0005
  doi: 10.1088/0266-5611/28/11/115016
– ident: CIT0010
  doi: 10.1137/1026121
– ident: CIT0006
  doi: 10.1007/s10107-011-0484-9
– ident: CIT0029
  doi: 10.1007/978-94-009-5438-0_20
– ident: CIT0031
  doi: 10.1007/s10618-005-0024-4
– ident: CIT0032
– ident: CIT0016
  doi: 10.1002/ijc.23033
– ident: CIT0022
  doi: 10.2307/2529876
– start-page: 2602
  year: 2015
  ident: CIT0034
  publication-title: Advances in Neural Information Processing Systems
– ident: CIT0017
  doi: 10.1137/0710036
– ident: CIT0027
  doi: 10.1007/s11222-013-9448-7
– ident: CIT0033
  doi: 10.1007/s10107-004-0559-y
– ident: CIT0002
  doi: 10.1016/j.ejca.2017.11.022
– ident: CIT0028
  doi: 10.1002/bimj.200390034
SSID ssj0001697
Score 2.5878303
Snippet Mixed effects (ME) models inform a vast array of problems in the physical and social sciences, and are pervasive in meta-analysis. We consider ME models where...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 544
SubjectTerms Meta-analysis
Mixed effects models
Nonsmooth nonconvex optimization
Trimming
Title Trimmed Constrained Mixed Effects Models: Formulations and Algorithms
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2020.1868303
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: AMVHM
  dateStart: 20121001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcikHVAqIQkE-cKscHOexDreq3aqq2ArRVuotsh0HVtruopCVaP9Q_ybjV5I-VCgXK7JiO8lMZsbjmW8Q-igFz4tUjkmhioykuqKkAC1OCsYEq6RQWW0c-tPj_PAsPTrPzkej60HU0qqVkbq6N6_kf6gKfUBXkyX7CMp2k0IHXAN9oQUKQ_tvNG5mFxfGRWuMPFPrAa6ns9_QTnyYhil1NrdRbwdgnK5C4Jvxlu_Ovy-bWfvDw5XfNVCVLfgQnIVmiEW3dnmUpt9CPPeeZ-3ExlftlaH1jzbSF1e-7NnwZNnohff8fAPtuXMU7exHA9I34vIW8IG55Us0dFGw2MRTuAxKL1XBaCA8p-4ARgdJOyZs7HI5gyj2RzSz4U7dytXMgUR6FZ05LPI70t-FS5rVzGKw-WfQyXOe0KRXd-GI_5YW7GITYw-aGqYpzTSln-YJespAfZgaIQk97lR-7Kv4hPcMqWKcfrr3aW4YQTcgcgfGzekGeu6Jjncdi71AI73YRM-mHaTvr020ftKR_CWaeM7DA87DlvOw5zzsOO8zHvIdBibCPd-9QmcHk9O9Q-ILchAFu4CWxAo2DJLWaZLTtFZgywrNlVRc01jqJEnAmmVVXOdUFVzlrAJ7U1R1BdKACi2z5DVaWywX-g3CYEWqOuVSV4KmiiopxjUoA60NIGPFxBZKwxcqlUerN68zLx-kzxaKumE_HVzL3wYUw89fttZPVruiNmXy4Ni3j13sHVrvf49ttNY2K_0ebNpWfrD89AcCo5ZW
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOVAOLAVEWXPg6uKsTbhVqFWBpqdW6i2yHRsquqAmlRBfz0yWqkUCDr1EUaSJvIxnnq3xe4TcCe57gSOaNJCBSx0VMxpAFqeBZXErFly6Gg_0w77XHTrPI3e0dhcGyypxD61zoogsVuPixsPosiTuHrcxPmRq2N5Z8Mn3fBsJP3ddAPuoYmCz_ioam4XACphQtClv8fz2m438tMFeupZ3OodEli3Oy03eG8tUNOTXDzLH7bp0RA4KWGq0cj86JjtqViP74YrTNamRKuLSnNb5hLQHi_EUEqmBgp-ZzAS8h-NPeOZ8yImBKmuT5MHoQNcKjbDEgAYarcnrfDFO36bJKRl22oPHLi0UGagEGJhSUwJiFEw7tsccLQHMcOVLIX3FTKFs2wY4Y8Wm9pgMfOlZMQAOHusY3IFxJVz7jFRm85k6JwbACKkdX6iYM0cyKXhTQzRQChn5YovXiVPOQyQLunLsziQyC1bTcsgiHLKoGLI6aazMPnK-jv8MgvVJjtLsoETnqiaR_aftxRa2t2SvOwh7Ue-p_3JJqhaWyqAyhXdFKuliqa4B66TiJnPmbxY_7qU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB6kgtSDS1Wsaw5eUydrJ96KNri1eGjBW5hVi91oUhB_vW-SSWkF9dBLCIEXZst735u8-T6ErhglYeSzph3xKLB9KbAdQRS3I9elrmCUB0pv6He64X3ff3wNymrC1JRV6hxaFUQRua_WH_dUqLIi7lpnMQQCNWR3LjwiIfE03-dmqP-K6VMcuLtwxo7RVwETW9uUh3h-e81KeFohL10KO_EuYmWDi2qTj8Y8Yw3-9YPLca0e7aEdA0qtVrGK9tGGHNfQdmfB6JrWUFWj0oLU-QC1e7PBCMKopeU-c5EJuO8MPuFasCGnltZYG6Y3Vgw9MwphqQXts1rDt8lskL2P0kPUj9u923vb6DHYHEBgZjsc8CLDyvdC7CsOUIZKwhknEjtMep4HYMYVjgoxjwgPXQFwgwolYDFgKlngHaHKeDKWx8gCEMGVT5gUFPscc0abCnyBlJqPT7i0jvxyGhJuyMp1d4aJYzhNyyFL9JAlZsjqqLEwmxZsHf8ZRMtznGT5NokqNE0S70_bkzVsL9HWy12cPD90n05R1dV1MlqWIjxDlWw2l-cAdDJ2kS_lbyU17Uk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trimmed+Constrained+Mixed+Effects+Models%3A+Formulations+and+Algorithms&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Zheng%2C+Peng&rft.au=Barber%2C+Ryan&rft.au=Sorensen%2C+Reed+J.+D.&rft.au=Murray%2C+Christopher+J.+L.&rft.date=2021-09-16&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=30&rft.issue=3&rft.spage=544&rft.epage=556&rft_id=info:doi/10.1080%2F10618600.2020.1868303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2020_1868303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon