Trimmed Constrained Mixed Effects Models: Formulations and Algorithms
Mixed effects (ME) models inform a vast array of problems in the physical and social sciences, and are pervasive in meta-analysis. We consider ME models where the random effects component is linear. We then develop an efficient approach for a broad problem class that allows nonlinear measurements, p...
Saved in:
| Published in | Journal of computational and graphical statistics Vol. 30; no. 3; pp. 544 - 556 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Taylor & Francis
16.09.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1061-8600 1537-2715 |
| DOI | 10.1080/10618600.2020.1868303 |
Cover
| Abstract | Mixed effects (ME) models inform a vast array of problems in the physical and social sciences, and are pervasive in meta-analysis. We consider ME models where the random effects component is linear. We then develop an efficient approach for a broad problem class that allows nonlinear measurements, priors, and constraints, and finds robust estimates in all of these cases using trimming in the associated marginal likelihood. The software accompanying this article is disseminated as an open-source Python package called LimeTr. LimeTr is able to recover results more accurately in the presence of outliers compared to available packages for both standard longitudinal analysis and meta-analysis, and is also more computationally efficient than competing robust alternatives.
Supplementary materials
that reproduce the simulations, as well as run LimeTr and third party code are available online. We also present analyses of global health data, where we use advanced functionality of LimeTr, including constraints to impose monotonicity and concavity for dose-response relationships. Nonlinear observation models allow new analyses in place of classic approximations, such as log-linear models. Robust extensions in all analyses ensure that spurious data points do not drive our understanding of either mean relationships or between-study heterogeneity. |
|---|---|
| AbstractList | Mixed effects (ME) models inform a vast array of problems in the physical and social sciences, and are pervasive in meta-analysis. We consider ME models where the random effects component is linear. We then develop an efficient approach for a broad problem class that allows nonlinear measurements, priors, and constraints, and finds robust estimates in all of these cases using trimming in the associated marginal likelihood. The software accompanying this article is disseminated as an open-source Python package called LimeTr. LimeTr is able to recover results more accurately in the presence of outliers compared to available packages for both standard longitudinal analysis and meta-analysis, and is also more computationally efficient than competing robust alternatives.
Supplementary materials
that reproduce the simulations, as well as run LimeTr and third party code are available online. We also present analyses of global health data, where we use advanced functionality of LimeTr, including constraints to impose monotonicity and concavity for dose-response relationships. Nonlinear observation models allow new analyses in place of classic approximations, such as log-linear models. Robust extensions in all analyses ensure that spurious data points do not drive our understanding of either mean relationships or between-study heterogeneity. |
| Author | Murray, Christopher J. L. Barber, Ryan Sorensen, Reed J. D. Aravkin, Aleksandr Y. Zheng, Peng |
| Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0003-3313-215X surname: Zheng fullname: Zheng, Peng organization: Institute for Health Metrics and Evaluation, University of Washington – sequence: 2 givenname: Ryan surname: Barber fullname: Barber, Ryan organization: Institute for Health Metrics and Evaluation, University of Washington – sequence: 3 givenname: Reed J. D. surname: Sorensen fullname: Sorensen, Reed J. D. organization: Institute for Health Metrics and Evaluation, University of Washington – sequence: 4 givenname: Christopher J. L. surname: Murray fullname: Murray, Christopher J. L. organization: Institute for Health Metrics and Evaluation, University of Washington – sequence: 5 givenname: Aleksandr Y. orcidid: 0000-0002-1875-1801 surname: Aravkin fullname: Aravkin, Aleksandr Y. organization: Department of Applied Mathematics, University of Washington |
| BookMark | eNqFkE1OwzAQhS1UJNrCEZBygZRxnLgObKiqFpBasSlry_EPGCU2soOgt8ehZcMCNjOj0XujN98EjZx3GqFLDDMMDK4wUMwowKyAIq0YZQTICRrjiszzYo6rUZqTJh9EZ2gS4ysAYFrPx2i1C7brtMqW3sU-COvSvLWfqa6M0bKP2dYr3cbrbO1D996K3iZlJpzKFu2zD7Z_6eI5OjWijfri2Kfoab3aLe_zzePdw3KxySXB0OdYAiYNmJJQKI0sSS00k41kGnCjCSEVKwuFDQVZM0kLBQwLZRStSxC6qcgU3RzuyuBjDNpwafvvREP0lmPgAxH-Q4QPRPiRSHJXv9xv6XkR9v_6bg8-60xiID58aBXvxb71wQThpI2c_H3iC2VEeZY |
| CitedBy_id | crossref_primary_10_1016_j_nut_2024_112395 crossref_primary_10_1016_S0140_6736_23_01301_6 crossref_primary_10_1016_j_envres_2024_119324 crossref_primary_10_1038_s41591_022_01968_z crossref_primary_10_1016_S0140_6736_24_00757_8 crossref_primary_10_1016_S1473_3099_24_00176_2 crossref_primary_10_1016_S2213_8587_22_00186_3 crossref_primary_10_1080_10618600_2023_2231496 crossref_primary_10_1287_moor_2022_0122 crossref_primary_10_1016_j_genhosppsych_2024_03_003 crossref_primary_10_1016_S0140_6736_24_02246_3 crossref_primary_10_1186_s12894_024_01582_w crossref_primary_10_1016_j_vaccine_2022_05_042 crossref_primary_10_1016_S0140_6736_21_02143_7 crossref_primary_10_1016_S2468_1253_24_00157_2 crossref_primary_10_1016_S2666_7568_22_00213_6 crossref_primary_10_1016_S2468_2667_21_00249_8 crossref_primary_10_1016_j_lana_2023_100552 crossref_primary_10_1016_S2215_0366_23_00037_8 crossref_primary_10_1038_s41591_022_01970_5 crossref_primary_10_1038_s41591_022_01974_1 crossref_primary_10_1371_journal_pone_0260808 crossref_primary_10_1016_j_jacc_2023_11_007 crossref_primary_10_1038_s41467_024_47632_7 crossref_primary_10_1016_S0140_6736_21_00534_1 crossref_primary_10_1016_S2214_109X_24_00181_5 crossref_primary_10_1093_cdn_nzab141 crossref_primary_10_1016_S2542_5196_22_00122_X crossref_primary_10_1017_S1368980021004821 crossref_primary_10_1186_s40249_024_01247_8 crossref_primary_10_1038_s41591_022_01978_x crossref_primary_10_1016_S2352_3026_23_00160_6 crossref_primary_10_1016_S0140_6736_22_00518_9 crossref_primary_10_1016_S0140_6736_24_00550_6 crossref_primary_10_1126_sciadv_abm8954 crossref_primary_10_1016_S1473_3099_24_00007_0 crossref_primary_10_1016_S2665_9913_24_00151_6 crossref_primary_10_1016_S0140_6736_22_00936_9 crossref_primary_10_1016_S0140_6736_24_01446_6 crossref_primary_10_1016_j_neucom_2023_126237 crossref_primary_10_1016_S0140_6736_24_00685_8 crossref_primary_10_1016_S0140_6736_21_01337_4 crossref_primary_10_1016_S2215_0366_21_00395_3 crossref_primary_10_1016_S2468_2667_23_00306_7 crossref_primary_10_1016_j_psychres_2024_116150 crossref_primary_10_1016_S2215_0366_24_00363_8 crossref_primary_10_1016_S2468_1253_22_00124_8 crossref_primary_10_1016_S0140_6736_24_02840_X crossref_primary_10_1016_S1473_3099_24_00158_0 crossref_primary_10_1016_S2542_5196_21_00350_8 crossref_primary_10_1016_S0140_6736_24_01867_1 crossref_primary_10_1136_tobaccocontrol_2021_056535 crossref_primary_10_1136_bmj_2021_068208 crossref_primary_10_1016_j_envpol_2025_125682 crossref_primary_10_1016_j_lanwpc_2022_100493 crossref_primary_10_1016_S2214_109X_24_00093_7 crossref_primary_10_1016_S1474_4422_23_00195_3 crossref_primary_10_1016_S2213_2600_24_00295_9 crossref_primary_10_3389_ijph_2023_1605959 crossref_primary_10_1038_s41591_022_01973_2 crossref_primary_10_1038_s41591_022_01990_1 crossref_primary_10_1186_s12937_024_00957_x crossref_primary_10_1016_S0140_6736_22_02465_5 crossref_primary_10_1038_s41467_023_41086_z crossref_primary_10_1038_s43587_025_00844_y crossref_primary_10_1016_S0140_6736_22_00532_3 crossref_primary_10_1016_S0140_6736_24_00476_8 crossref_primary_10_1016_S2215_0366_24_00317_1 crossref_primary_10_1103_PhysRevApplied_18_044006 crossref_primary_10_1016_S0140_6736_24_00933_4 crossref_primary_10_1016_S0140_6736_21_01700_1 crossref_primary_10_1016_S0140_6736_24_01925_1 crossref_primary_10_1038_s41591_023_02743_4 crossref_primary_10_1016_S2215_0366_21_00040_7 crossref_primary_10_1136_bmjopen_2022_061248 crossref_primary_10_1161_STROKEAHA_124_048033 crossref_primary_10_1016_S2468_2667_24_00302_5 crossref_primary_10_1016_S2665_9913_23_00232_1 crossref_primary_10_1016_S2214_109X_23_00043_8 |
| Cites_doi | 10.1214/aos/1176347963 10.18637/jss.v075.i06 10.1002/0470011815.b2a15029 10.1214/18-EJS1470 10.1186/1471-2407-12-385 10.1007/s00453-012-9721-8 10.1109/TAC.2017.2754474 10.1201/9781351264686 10.1016/0197-2456(86)90046-2 10.1088/0266-5611/19/2/201 10.1201/9780429246593 10.1007/978-1-4612-6333-3 10.1198/10618600152628059 10.1080/01621459.1993.10476408 10.1214/12-AOAS575 10.1007/978-0-387-87458-6 10.1007/978-3-642-57338-5_24 10.1287/moor.2019.0992 10.18637/jss.v067.i01 10.1088/0266-5611/28/11/115016 10.1137/1026121 10.1007/s10107-011-0484-9 10.1007/978-94-009-5438-0_20 10.1007/s10618-005-0024-4 10.1002/ijc.23033 10.2307/2529876 10.1137/0710036 10.1007/s11222-013-9448-7 10.1007/s10107-004-0559-y 10.1016/j.ejca.2017.11.022 10.1002/bimj.200390034 |
| ContentType | Journal Article |
| Copyright | 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021 |
| Copyright_xml | – notice: 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/10618600.2020.1868303 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 556 |
| ExternalDocumentID | 10_1080_10618600_2020_1868303 1868303 |
| Genre | Research Article |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADXHL AEGXH AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c310t-1c013b0f43604fc439ae8cbc8e01be3335842d1f60c98c62d081adfd6940aeb53 |
| ISSN | 1061-8600 |
| IngestDate | Wed Oct 01 02:49:39 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Mon Oct 20 23:46:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c310t-1c013b0f43604fc439ae8cbc8e01be3335842d1f60c98c62d081adfd6940aeb53 |
| ORCID | 0000-0003-3313-215X 0000-0002-1875-1801 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1080_10618600_2020_1868303 informaworld_taylorfrancis_310_1080_10618600_2020_1868303 crossref_citationtrail_10_1080_10618600_2020_1868303 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-16 |
| PublicationDateYYYYMMDD | 2021-09-16 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0033 Bonnans J. F. (CIT0008) 2013 Davidian M. (CIT0011) 1995; 62 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 Yang E. (CIT0034) 2015 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 Imdad A. (CIT0020) 2017; 3 CIT0028 CIT0009 |
| References_xml | – ident: CIT0015 doi: 10.1214/aos/1176347963 – ident: CIT0021 doi: 10.18637/jss.v075.i06 – ident: CIT0009 doi: 10.1002/0470011815.b2a15029 – ident: CIT0035 doi: 10.1214/18-EJS1470 – ident: CIT0023 doi: 10.1186/1471-2407-12-385 – ident: CIT0024 doi: 10.1007/s00453-012-9721-8 – ident: CIT0004 doi: 10.1109/TAC.2017.2754474 – ident: CIT0019 doi: 10.1201/9781351264686 – ident: CIT0013 doi: 10.1016/0197-2456(86)90046-2 – ident: CIT0018 doi: 10.1088/0266-5611/19/2/201 – ident: CIT0014 doi: 10.1201/9780429246593 – ident: CIT0012 doi: 10.1007/978-1-4612-6333-3 – volume: 3 start-page: CD008524 year: 2017 ident: CIT0020 publication-title: Cochrane Database of Systematic Reviews – ident: CIT0026 doi: 10.1198/10618600152628059 – ident: CIT0030 doi: 10.1080/01621459.1993.10476408 – volume-title: Perturbation Analysis of Optimization Problems year: 2013 ident: CIT0008 – volume: 62 volume-title: Nonlinear Models for Repeated Measurement Data year: 1995 ident: CIT0011 – ident: CIT0001 doi: 10.1214/12-AOAS575 – ident: CIT0036 doi: 10.1007/978-0-387-87458-6 – ident: CIT0025 doi: 10.1007/978-3-642-57338-5_24 – ident: CIT0003 doi: 10.1287/moor.2019.0992 – ident: CIT0007 doi: 10.18637/jss.v067.i01 – ident: CIT0005 doi: 10.1088/0266-5611/28/11/115016 – ident: CIT0010 doi: 10.1137/1026121 – ident: CIT0006 doi: 10.1007/s10107-011-0484-9 – ident: CIT0029 doi: 10.1007/978-94-009-5438-0_20 – ident: CIT0031 doi: 10.1007/s10618-005-0024-4 – ident: CIT0032 – ident: CIT0016 doi: 10.1002/ijc.23033 – ident: CIT0022 doi: 10.2307/2529876 – start-page: 2602 year: 2015 ident: CIT0034 publication-title: Advances in Neural Information Processing Systems – ident: CIT0017 doi: 10.1137/0710036 – ident: CIT0027 doi: 10.1007/s11222-013-9448-7 – ident: CIT0033 doi: 10.1007/s10107-004-0559-y – ident: CIT0002 doi: 10.1016/j.ejca.2017.11.022 – ident: CIT0028 doi: 10.1002/bimj.200390034 |
| SSID | ssj0001697 |
| Score | 2.5878303 |
| Snippet | Mixed effects (ME) models inform a vast array of problems in the physical and social sciences, and are pervasive in meta-analysis. We consider ME models where... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 544 |
| SubjectTerms | Meta-analysis Mixed effects models Nonsmooth nonconvex optimization Trimming |
| Title | Trimmed Constrained Mixed Effects Models: Formulations and Algorithms |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2020.1868303 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1537-2715 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: AMVHM dateStart: 20121001 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcikHVAqIQkE-cKscHOexDreq3aqq2ArRVuotsh0HVtruopCVaP9Q_ybjV5I-VCgXK7JiO8lMZsbjmW8Q-igFz4tUjkmhioykuqKkAC1OCsYEq6RQWW0c-tPj_PAsPTrPzkej60HU0qqVkbq6N6_kf6gKfUBXkyX7CMp2k0IHXAN9oQUKQ_tvNG5mFxfGRWuMPFPrAa6ns9_QTnyYhil1NrdRbwdgnK5C4Jvxlu_Ovy-bWfvDw5XfNVCVLfgQnIVmiEW3dnmUpt9CPPeeZ-3ExlftlaH1jzbSF1e-7NnwZNnohff8fAPtuXMU7exHA9I34vIW8IG55Us0dFGw2MRTuAxKL1XBaCA8p-4ARgdJOyZs7HI5gyj2RzSz4U7dytXMgUR6FZ05LPI70t-FS5rVzGKw-WfQyXOe0KRXd-GI_5YW7GITYw-aGqYpzTSln-YJespAfZgaIQk97lR-7Kv4hPcMqWKcfrr3aW4YQTcgcgfGzekGeu6Jjncdi71AI73YRM-mHaTvr020ftKR_CWaeM7DA87DlvOw5zzsOO8zHvIdBibCPd-9QmcHk9O9Q-ILchAFu4CWxAo2DJLWaZLTtFZgywrNlVRc01jqJEnAmmVVXOdUFVzlrAJ7U1R1BdKACi2z5DVaWywX-g3CYEWqOuVSV4KmiiopxjUoA60NIGPFxBZKwxcqlUerN68zLx-kzxaKumE_HVzL3wYUw89fttZPVruiNmXy4Ni3j13sHVrvf49ttNY2K_0ebNpWfrD89AcCo5ZW |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOVAOLAVEWXPg6uKsTbhVqFWBpqdW6i2yHRsquqAmlRBfz0yWqkUCDr1EUaSJvIxnnq3xe4TcCe57gSOaNJCBSx0VMxpAFqeBZXErFly6Gg_0w77XHTrPI3e0dhcGyypxD61zoogsVuPixsPosiTuHrcxPmRq2N5Z8Mn3fBsJP3ddAPuoYmCz_ioam4XACphQtClv8fz2m438tMFeupZ3OodEli3Oy03eG8tUNOTXDzLH7bp0RA4KWGq0cj86JjtqViP74YrTNamRKuLSnNb5hLQHi_EUEqmBgp-ZzAS8h-NPeOZ8yImBKmuT5MHoQNcKjbDEgAYarcnrfDFO36bJKRl22oPHLi0UGagEGJhSUwJiFEw7tsccLQHMcOVLIX3FTKFs2wY4Y8Wm9pgMfOlZMQAOHusY3IFxJVz7jFRm85k6JwbACKkdX6iYM0cyKXhTQzRQChn5YovXiVPOQyQLunLsziQyC1bTcsgiHLKoGLI6aazMPnK-jv8MgvVJjtLsoETnqiaR_aftxRa2t2SvOwh7Ue-p_3JJqhaWyqAyhXdFKuliqa4B66TiJnPmbxY_7qU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB6kgtSDS1Wsaw5eUydrJ96KNri1eGjBW5hVi91oUhB_vW-SSWkF9dBLCIEXZst735u8-T6ErhglYeSzph3xKLB9KbAdQRS3I9elrmCUB0pv6He64X3ff3wNymrC1JRV6hxaFUQRua_WH_dUqLIi7lpnMQQCNWR3LjwiIfE03-dmqP-K6VMcuLtwxo7RVwETW9uUh3h-e81KeFohL10KO_EuYmWDi2qTj8Y8Yw3-9YPLca0e7aEdA0qtVrGK9tGGHNfQdmfB6JrWUFWj0oLU-QC1e7PBCMKopeU-c5EJuO8MPuFasCGnltZYG6Y3Vgw9MwphqQXts1rDt8lskL2P0kPUj9u923vb6DHYHEBgZjsc8CLDyvdC7CsOUIZKwhknEjtMep4HYMYVjgoxjwgPXQFwgwolYDFgKlngHaHKeDKWx8gCEMGVT5gUFPscc0abCnyBlJqPT7i0jvxyGhJuyMp1d4aJYzhNyyFL9JAlZsjqqLEwmxZsHf8ZRMtznGT5NokqNE0S70_bkzVsL9HWy12cPD90n05R1dV1MlqWIjxDlWw2l-cAdDJ2kS_lbyU17Uk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trimmed+Constrained+Mixed+Effects+Models%3A+Formulations+and+Algorithms&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Zheng%2C+Peng&rft.au=Barber%2C+Ryan&rft.au=Sorensen%2C+Reed+J.+D.&rft.au=Murray%2C+Christopher+J.+L.&rft.date=2021-09-16&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=30&rft.issue=3&rft.spage=544&rft.epage=556&rft_id=info:doi/10.1080%2F10618600.2020.1868303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2020_1868303 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |