Learning Expression Features via Deep Residual Attention Networks for Facial Expression Recognition From Video Sequences

Facial expression recognition from video sequences is currently an interesting research topic in computer vision, pattern recognition, artificial intelligence, etc. Considering the problem of semantic gap between the extracted hand-designed features in affective videos and subjective emotions, recog...

Full description

Saved in:
Bibliographic Details
Published inTechnical review - IETE Vol. 38; no. 6; pp. 602 - 610
Main Authors Zhao, Xiaoming, Chen, Gang, Chuang, Yuelong, Tao, Xin, Zhang, Shiqing
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.11.2021
Subjects
Online AccessGet full text
ISSN0256-4602
0974-5971
DOI10.1080/02564602.2020.1814168

Cover

Abstract Facial expression recognition from video sequences is currently an interesting research topic in computer vision, pattern recognition, artificial intelligence, etc. Considering the problem of semantic gap between the extracted hand-designed features in affective videos and subjective emotions, recognizing facial expressions from video sequences is a challenging subject. To tackle this problem, this paper proposes a new method of facial expression recognition from video sequences via deep residual attention network. Firstly, due to the difference in the intensity of emotional representation of each local area in a facial image, deep residual attention networks are employed to learn high-level affective expression features for each frame of facial expression images in video sequences. The used deep residual attention networks integrate deep residual networks with a spatial attention mechanism. Then, average-pooling is performed to produce fixed-length global video-level feature representations. Finally, the global video-level feature representations are utilized as inputs of a multi-layer perceptron to conduct facial expression classification tasks in video sequences. Experimental results on two public video emotional datasets, i.e. BAUM-1s and RML, demonstrate the effectiveness of the proposed method.
AbstractList Facial expression recognition from video sequences is currently an interesting research topic in computer vision, pattern recognition, artificial intelligence, etc. Considering the problem of semantic gap between the extracted hand-designed features in affective videos and subjective emotions, recognizing facial expressions from video sequences is a challenging subject. To tackle this problem, this paper proposes a new method of facial expression recognition from video sequences via deep residual attention network. Firstly, due to the difference in the intensity of emotional representation of each local area in a facial image, deep residual attention networks are employed to learn high-level affective expression features for each frame of facial expression images in video sequences. The used deep residual attention networks integrate deep residual networks with a spatial attention mechanism. Then, average-pooling is performed to produce fixed-length global video-level feature representations. Finally, the global video-level feature representations are utilized as inputs of a multi-layer perceptron to conduct facial expression classification tasks in video sequences. Experimental results on two public video emotional datasets, i.e. BAUM-1s and RML, demonstrate the effectiveness of the proposed method.
Author Zhao, Xiaoming
Chuang, Yuelong
Tao, Xin
Zhang, Shiqing
Chen, Gang
Author_xml – sequence: 1
  givenname: Xiaoming
  surname: Zhao
  fullname: Zhao, Xiaoming
  organization: Institute of Intelligent Information Processing, Taizhou University
– sequence: 2
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
  organization: School of Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University
– sequence: 3
  givenname: Yuelong
  surname: Chuang
  fullname: Chuang, Yuelong
  organization: Institute of Intelligent Information Processing, Taizhou University
– sequence: 4
  givenname: Xin
  surname: Tao
  fullname: Tao, Xin
  organization: Institute of Intelligent Information Processing, Taizhou University
– sequence: 5
  givenname: Shiqing
  surname: Zhang
  fullname: Zhang, Shiqing
  email: tzczsq@163.com
  organization: Institute of Intelligent Information Processing, Taizhou University
BookMark eNqFkF1LwzAUhoNMcJv-BCF_oDNpm7TDG8dcVRgKft2WND0d0S6ZSabbvzd1E8QLvUpO8j4vnGeAetpoQOiUkhElOTkjMeMpJ_EoJnF4ymlKeX6A-mScpREbZ7QX7iETdaEjNHDuhRCexoz20WYOwmqlF3i2WVlwThmNCxB-HQb8rgS-BFjhe3CqXosWT7wH7bvQLfgPY18dbozFhZAq_P7ouAdpFlp9RQtrlvhZ1WDwA7ytQUtwx-iwEa2Dk_05RE_F7HF6Hc3vrm6mk3kkE0p8RPOM8qqChuc8EcDGVU4zWtVVRlPGmyzmrGIyD3MiG9LkgeKUc5lmDFicJskQsV2vtMY5C025smop7LakpOz0ld_6yk5fudcXuPNfnFRedOt4K1T7L32xo5UOepYimGrr0otta2xjhZbKlcnfFZ-eJ4xO
CitedBy_id crossref_primary_10_1007_s00530_021_00849_8
crossref_primary_10_1016_j_engappai_2023_106730
crossref_primary_10_1007_s10489_025_06245_3
crossref_primary_10_1016_j_ins_2024_120138
crossref_primary_10_1007_s00530_023_01122_w
Cites_doi 10.1109/TMM.2012.2189550
10.1109/ICCV.2015.510
10.1016/j.inffus.2018.06.003
10.1109/CVPR.2016.90
10.1109/TCSVT.2017.2719043
10.1109/AICCSA.2018.8612873
10.1007/978-3-030-01234-2_1
10.1016/j.ins.2017.08.059
10.1007/978-3-030-36718-3_38
10.1016/j.compeleceng.2011.10.016
10.1049/iet-ipr.2015.0519
10.1007/s11760-015-0810-4
10.1007/11553595_123
10.1016/j.neucom.2015.10.096
10.1109/TMM.2018.2808760
10.1609/aaai.v34i01.5364
10.1109/TAFFC.2016.2553038
10.1023/B:VISI.0000013087.49260.fb
10.1109/TAFFC.2019.2961089
10.1109/CVPR.2019.01082
10.1109/CVPR.2015.7298594
10.1109/CVPR.2017.683
10.1109/CVPR.2018.00474
10.1109/ISCAS.2016.7527309
10.1109/FG.2018.00104
10.1007/s00138-018-0960-9
10.1145/3340555.3355719
10.1109/TAFFC.2019.2946540
10.1109/TIP.2018.2886767
10.1109/FG.2013.6553749
10.1016/j.imavis.2008.08.005
10.1007/s12652-017-0636-8
10.1146/annurev.neuro.23.1.315
10.1016/j.compedu.2019.103797
10.1109/ACCESS.2019.2901521
ContentType Journal Article
Copyright 2021 IETE 2021
Copyright_xml – notice: 2021 IETE 2021
DBID AAYXX
CITATION
DOI 10.1080/02564602.2020.1814168
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 0974-5971
EndPage 610
ExternalDocumentID 10_1080_02564602_2020_1814168
1814168
Genre Research Article
GroupedDBID .DC
0BK
0R~
29Q
2WC
30N
4.4
5GY
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEYOC
AFRVT
AGDLA
AHDZW
AIDUJ
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
DGEBU
DKSSO
DU5
E3Z
EBS
GTTXZ
H13
HZ~
IPNFZ
KYCEM
LJTGL
M4Z
O9-
P2P
RIG
RNANH
RNS
ROSJB
RTWRZ
SC5
SNACF
TAJZE
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TR2
TTHFI
TUROJ
ZGOLN
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-18716bbef6863ae59b8171bdb71456f7265b5c8db73cf0f8c316166c475e52433
ISSN 0256-4602
IngestDate Thu Apr 24 23:10:17 EDT 2025
Wed Oct 01 04:37:09 EDT 2025
Mon Oct 20 23:47:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-18716bbef6863ae59b8171bdb71456f7265b5c8db73cf0f8c316166c475e52433
PageCount 9
ParticipantIDs crossref_primary_10_1080_02564602_2020_1814168
crossref_citationtrail_10_1080_02564602_2020_1814168
informaworld_taylorfrancis_310_1080_02564602_2020_1814168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-02
PublicationDateYYYYMMDD 2021-11-02
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-02
  day: 02
PublicationDecade 2020
PublicationTitle Technical review - IETE
PublicationYear 2021
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0036
CIT0035
CIT0016
CIT0015
CIT0037
CIT0018
CIT0017
CIT0019
CIT0021
Krizhevsky A. (CIT0013) 2012; 25
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0026
  doi: 10.1109/TMM.2012.2189550
– ident: CIT0033
  doi: 10.1109/ICCV.2015.510
– ident: CIT0034
  doi: 10.1016/j.inffus.2018.06.003
– ident: CIT0016
  doi: 10.1109/CVPR.2016.90
– ident: CIT0018
  doi: 10.1109/TCSVT.2017.2719043
– ident: CIT0030
  doi: 10.1109/AICCSA.2018.8612873
– ident: CIT0024
  doi: 10.1007/978-3-030-01234-2_1
– ident: CIT0005
  doi: 10.1016/j.ins.2017.08.059
– ident: CIT0001
  doi: 10.1007/978-3-030-36718-3_38
– ident: CIT0007
  doi: 10.1016/j.compeleceng.2011.10.016
– ident: CIT0012
  doi: 10.1049/iet-ipr.2015.0519
– volume: 25
  start-page: 1106
  year: 2012
  ident: CIT0013
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: CIT0006
  doi: 10.1007/s11760-015-0810-4
– ident: CIT0028
  doi: 10.1007/11553595_123
– ident: CIT0010
  doi: 10.1016/j.neucom.2015.10.096
– ident: CIT0037
  doi: 10.1109/TMM.2018.2808760
– ident: CIT0036
  doi: 10.1609/aaai.v34i01.5364
– ident: CIT0025
  doi: 10.1109/TAFFC.2016.2553038
– ident: CIT0027
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: CIT0031
  doi: 10.1109/TAFFC.2019.2961089
– ident: CIT0014
– ident: CIT0022
  doi: 10.1109/CVPR.2019.01082
– ident: CIT0015
  doi: 10.1109/CVPR.2015.7298594
– ident: CIT0023
  doi: 10.1109/CVPR.2017.683
– ident: CIT0032
  doi: 10.1109/CVPR.2018.00474
– ident: CIT0008
  doi: 10.1109/ISCAS.2016.7527309
– ident: CIT0009
  doi: 10.1109/FG.2018.00104
– ident: CIT0035
  doi: 10.1007/s00138-018-0960-9
– ident: CIT0017
  doi: 10.1145/3340555.3355719
– ident: CIT0019
  doi: 10.1109/TAFFC.2019.2946540
– ident: CIT0021
  doi: 10.1109/TIP.2018.2886767
– ident: CIT0011
  doi: 10.1109/FG.2013.6553749
– ident: CIT0004
  doi: 10.1016/j.imavis.2008.08.005
– ident: CIT0002
  doi: 10.1007/s12652-017-0636-8
– ident: CIT0020
  doi: 10.1146/annurev.neuro.23.1.315
– ident: CIT0003
  doi: 10.1016/j.compedu.2019.103797
– ident: CIT0029
  doi: 10.1109/ACCESS.2019.2901521
SSID ssj0064251
Score 2.2832594
Snippet Facial expression recognition from video sequences is currently an interesting research topic in computer vision, pattern recognition, artificial intelligence,...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 602
SubjectTerms Attention mechanism
Deep residual attention networks
Facial expression recognition
Multi-layer perceptron
Video sequences
Title Learning Expression Features via Deep Residual Attention Networks for Facial Expression Recognition From Video Sequences
URI https://www.tandfonline.com/doi/abs/10.1080/02564602.2020.1814168
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 0974-5971
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064251
  issn: 0256-4602
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 0974-5971
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064251
  issn: 0256-4602
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4EDGl9isCEfuFWe4iR23GMF3QqCHVAHZZfIdhxRaaQTStDEf8R_ybNjpx5Mg3GJald-bvt-fV9-7xmhlxrMWk0lJ2DKMnBQpCZTITOSC64TldiTK3ui-_6EL07ztyu2Go1-RllLXasO9Y9r60r-h6swB3y1VbK34OxAFCbgNfAXnsBheP4Tj9-FuMb80uezNhNr03UwmHxfS5Am5sJG6PuKq1nb-uTGkz752_VimBxJFzaPaHwIWUWWnq0_-biuzAbkik-7ji1aF5t3nPZVMGTyZr4c6hvOvkgXjF2t5eZrUJMunaCXd8cynut89PpzZ8432zeWgUYTBylS6qr14rglWFYk537K-AhkkRPwZ2gsjDMRgS6WrMPaftTnwv4h_33CJOxmNwP3P4VJQcHqFFuFFw75f9ODQ3YiDW1TPZnSkik9mTtoJwUFkozRzmzx-uxTUPvgx7m7PodvGsrFbCP36z7PFUPoSpvcyMBZ7qL73jPBsx5mD9DINA_Rvahf5SN0GQCHt2DBAXAYAIct4HAAHB4AhwPgMOyPe8DFNCLAYQs47ACHB8A9RqdH8-WrBfFXdxAN_kJLqPXDlTI1FzyThk2VoAVVlSooWOx1kXKmmBYwznSd1AJWccq5zgtmWJpn2RM0bjaNeYow-L-2bWFhEi3zWrGpVlVaKVVUrAL1JPdQHn7HUvu-9vZ6lfPyRj7uocNh2UXf2OVvC6Yxk8rWRdTq_vqbMrtx7bPbbvYc3d3-jfbRuP3WmQOwflv1wuPuFy66ppE
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UD-rB30b82YPX4bqt3XYkCkGFHRAMt2XtOkNUIDAM8a-3b1vNMFEPHLvkNWvXtd97_d73ELoWCtYKEjFDQVmqHJRIGL4X2YbjMWFyE26u4Ea3E7BW33kY0EEpFwZoleBDJ7lQRLZXw88NwWhNibuBc9phWR6VpR55RKEKbx1tUAX2oYqBbQZ6N1bwOivBCCYG2Ogsnt-6WTqfltRLS-dOcxcJ_cY53eS1Nk95TXz-EHNcbUh7aKeApbier6N9tCZHB2i7JFZ4iBaFFOsLbiwK9uwIA4Kcqwb-GEb4TsoJ7spZlt-F62maUylxkFPNZ1iNEjcjCNKX--hqDhP0Nx2_4-dhLMf4SZO8j1C_2ejdtoyiboMhFFhMDQJOGOcyYR6zI0l97hGX8Ji7RMG1xLUY5VR4qm2LxEw8ZcUIY8JxqaSWY9vHqDIaj-QJwsr5Ac06V5oichJOfcFjK-bcjWms9qaoihz9tUJRiJpDbY23kGjt02JiQ5jYsJjYKqp9m01yVY__DPzyUgjTLJyS5LVPQvtP29MVbK_QZqvXaYft--DxDG1ZQKiBmLZ1jirpdC4vFCJK-WW25L8AFwD8Aw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46QfTBuzivefC1s7ek7eNwK_NWZDrxrTRpIkPtxtbJ8Neb0zayCerDHlM4hyZNk-8k3_kOQudcwVpuJdRQUJaoACXhRuAnjuH6lJvMhJsruNG9i2in514_E80mHFe0SoihZSkUUazV8HMPU6kZcRewTbu0SKOy1SPfUqDCX0YrFG7FIIvDjPRirNB1UYERTAyw0Uk8v7mZ257mxEtntp1wEzH9wiXb5LUxyVmDf_7QclyoR1toowKluFnOom20JLIdtD4jVbiLppUQ6wtuTyvubIYBP05UA3_0E9wSYoi7Ylxkd-FmnpdEShyVRPMxVp3EYQJH9LM-uprBBP5Gg3f81E_FAD9oivce6oXtx8uOUVVtMLiCirlhQQjGmJDUp04iSMB8y7NYyjxLgTXp2ZQwwn3Vdrg0pa-sqEUpdz0iiO06zj6qZYNMHCCsQh9QrPOEyRNXMhJwltopY15KUrUyJXXk6o8V80rSHCprvMWWVj6tBjaGgY2rga2jxrfZsNT0-M8gmJ0JcV4cpsiy8kns_Gl7uIDtGVq9b4Xx7VV0c4TWbGDTwIG2fYxq-WgiThQcytlpMeG_APQf-qc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Expression+Features+via+Deep+Residual+Attention+Networks+for+Facial+Expression+Recognition+From+Video+Sequences&rft.jtitle=Technical+review+-+IETE&rft.au=Zhao%2C+Xiaoming&rft.au=Chen%2C+Gang&rft.au=Chuang%2C+Yuelong&rft.au=Tao%2C+Xin&rft.date=2021-11-02&rft.issn=0256-4602&rft.eissn=0974-5971&rft.volume=38&rft.issue=6&rft.spage=602&rft.epage=610&rft_id=info:doi/10.1080%2F02564602.2020.1814168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02564602_2020_1814168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-4602&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-4602&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-4602&client=summon