Learning Expression Features via Deep Residual Attention Networks for Facial Expression Recognition From Video Sequences
Facial expression recognition from video sequences is currently an interesting research topic in computer vision, pattern recognition, artificial intelligence, etc. Considering the problem of semantic gap between the extracted hand-designed features in affective videos and subjective emotions, recog...
        Saved in:
      
    
          | Published in | Technical review - IETE Vol. 38; no. 6; pp. 602 - 610 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Taylor & Francis
    
        02.11.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0256-4602 0974-5971  | 
| DOI | 10.1080/02564602.2020.1814168 | 
Cover
| Abstract | Facial expression recognition from video sequences is currently an interesting research topic in computer vision, pattern recognition, artificial intelligence, etc. Considering the problem of semantic gap between the extracted hand-designed features in affective videos and subjective emotions, recognizing facial expressions from video sequences is a challenging subject. To tackle this problem, this paper proposes a new method of facial expression recognition from video sequences via deep residual attention network. Firstly, due to the difference in the intensity of emotional representation of each local area in a facial image, deep residual attention networks are employed to learn high-level affective expression features for each frame of facial expression images in video sequences. The used deep residual attention networks integrate deep residual networks with a spatial attention mechanism. Then, average-pooling is performed to produce fixed-length global video-level feature representations. Finally, the global video-level feature representations are utilized as inputs of a multi-layer perceptron to conduct facial expression classification tasks in video sequences. Experimental results on two public video emotional datasets, i.e. BAUM-1s and RML, demonstrate the effectiveness of the proposed method. | 
    
|---|---|
| AbstractList | Facial expression recognition from video sequences is currently an interesting research topic in computer vision, pattern recognition, artificial intelligence, etc. Considering the problem of semantic gap between the extracted hand-designed features in affective videos and subjective emotions, recognizing facial expressions from video sequences is a challenging subject. To tackle this problem, this paper proposes a new method of facial expression recognition from video sequences via deep residual attention network. Firstly, due to the difference in the intensity of emotional representation of each local area in a facial image, deep residual attention networks are employed to learn high-level affective expression features for each frame of facial expression images in video sequences. The used deep residual attention networks integrate deep residual networks with a spatial attention mechanism. Then, average-pooling is performed to produce fixed-length global video-level feature representations. Finally, the global video-level feature representations are utilized as inputs of a multi-layer perceptron to conduct facial expression classification tasks in video sequences. Experimental results on two public video emotional datasets, i.e. BAUM-1s and RML, demonstrate the effectiveness of the proposed method. | 
    
| Author | Zhao, Xiaoming Chuang, Yuelong Tao, Xin Zhang, Shiqing Chen, Gang  | 
    
| Author_xml | – sequence: 1 givenname: Xiaoming surname: Zhao fullname: Zhao, Xiaoming organization: Institute of Intelligent Information Processing, Taizhou University – sequence: 2 givenname: Gang surname: Chen fullname: Chen, Gang organization: School of Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University – sequence: 3 givenname: Yuelong surname: Chuang fullname: Chuang, Yuelong organization: Institute of Intelligent Information Processing, Taizhou University – sequence: 4 givenname: Xin surname: Tao fullname: Tao, Xin organization: Institute of Intelligent Information Processing, Taizhou University – sequence: 5 givenname: Shiqing surname: Zhang fullname: Zhang, Shiqing email: tzczsq@163.com organization: Institute of Intelligent Information Processing, Taizhou University  | 
    
| BookMark | eNqFkF1LwzAUhoNMcJv-BCF_oDNpm7TDG8dcVRgKft2WND0d0S6ZSabbvzd1E8QLvUpO8j4vnGeAetpoQOiUkhElOTkjMeMpJ_EoJnF4ymlKeX6A-mScpREbZ7QX7iETdaEjNHDuhRCexoz20WYOwmqlF3i2WVlwThmNCxB-HQb8rgS-BFjhe3CqXosWT7wH7bvQLfgPY18dbozFhZAq_P7ouAdpFlp9RQtrlvhZ1WDwA7ytQUtwx-iwEa2Dk_05RE_F7HF6Hc3vrm6mk3kkE0p8RPOM8qqChuc8EcDGVU4zWtVVRlPGmyzmrGIyD3MiG9LkgeKUc5lmDFicJskQsV2vtMY5C025smop7LakpOz0ld_6yk5fudcXuPNfnFRedOt4K1T7L32xo5UOepYimGrr0otta2xjhZbKlcnfFZ-eJ4xO | 
    
| CitedBy_id | crossref_primary_10_1007_s00530_021_00849_8 crossref_primary_10_1016_j_engappai_2023_106730 crossref_primary_10_1007_s10489_025_06245_3 crossref_primary_10_1016_j_ins_2024_120138 crossref_primary_10_1007_s00530_023_01122_w  | 
    
| Cites_doi | 10.1109/TMM.2012.2189550 10.1109/ICCV.2015.510 10.1016/j.inffus.2018.06.003 10.1109/CVPR.2016.90 10.1109/TCSVT.2017.2719043 10.1109/AICCSA.2018.8612873 10.1007/978-3-030-01234-2_1 10.1016/j.ins.2017.08.059 10.1007/978-3-030-36718-3_38 10.1016/j.compeleceng.2011.10.016 10.1049/iet-ipr.2015.0519 10.1007/s11760-015-0810-4 10.1007/11553595_123 10.1016/j.neucom.2015.10.096 10.1109/TMM.2018.2808760 10.1609/aaai.v34i01.5364 10.1109/TAFFC.2016.2553038 10.1023/B:VISI.0000013087.49260.fb 10.1109/TAFFC.2019.2961089 10.1109/CVPR.2019.01082 10.1109/CVPR.2015.7298594 10.1109/CVPR.2017.683 10.1109/CVPR.2018.00474 10.1109/ISCAS.2016.7527309 10.1109/FG.2018.00104 10.1007/s00138-018-0960-9 10.1145/3340555.3355719 10.1109/TAFFC.2019.2946540 10.1109/TIP.2018.2886767 10.1109/FG.2013.6553749 10.1016/j.imavis.2008.08.005 10.1007/s12652-017-0636-8 10.1146/annurev.neuro.23.1.315 10.1016/j.compedu.2019.103797 10.1109/ACCESS.2019.2901521  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 IETE 2021 | 
    
| Copyright_xml | – notice: 2021 IETE 2021 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1080/02564602.2020.1814168 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 0974-5971 | 
    
| EndPage | 610 | 
    
| ExternalDocumentID | 10_1080_02564602_2020_1814168 1814168  | 
    
| Genre | Research Article | 
    
| GroupedDBID | .DC 0BK 0R~ 29Q 2WC 30N 4.4 5GY AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEYOC AFRVT AGDLA AHDZW AIDUJ AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG DGEBU DKSSO DU5 E3Z EBS GTTXZ H13 HZ~ IPNFZ KYCEM LJTGL M4Z O9- P2P RIG RNANH RNS ROSJB RTWRZ SC5 SNACF TAJZE TASJS TBQAZ TDBHL TEN TFL TFT TFW TR2 TTHFI TUROJ ZGOLN AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c310t-18716bbef6863ae59b8171bdb71456f7265b5c8db73cf0f8c316166c475e52433 | 
    
| ISSN | 0256-4602 | 
    
| IngestDate | Thu Apr 24 23:10:17 EDT 2025 Wed Oct 01 04:37:09 EDT 2025 Mon Oct 20 23:47:51 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c310t-18716bbef6863ae59b8171bdb71456f7265b5c8db73cf0f8c316166c475e52433 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | crossref_primary_10_1080_02564602_2020_1814168 crossref_citationtrail_10_1080_02564602_2020_1814168 informaworld_taylorfrancis_310_1080_02564602_2020_1814168  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-11-02 | 
    
| PublicationDateYYYYMMDD | 2021-11-02 | 
    
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-02 day: 02  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Technical review - IETE | 
    
| PublicationYear | 2021 | 
    
| Publisher | Taylor & Francis | 
    
| Publisher_xml | – name: Taylor & Francis | 
    
| References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0036 CIT0035 CIT0016 CIT0015 CIT0037 CIT0018 CIT0017 CIT0019 CIT0021 Krizhevsky A. (CIT0013) 2012; 25 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008  | 
    
| References_xml | – ident: CIT0026 doi: 10.1109/TMM.2012.2189550 – ident: CIT0033 doi: 10.1109/ICCV.2015.510 – ident: CIT0034 doi: 10.1016/j.inffus.2018.06.003 – ident: CIT0016 doi: 10.1109/CVPR.2016.90 – ident: CIT0018 doi: 10.1109/TCSVT.2017.2719043 – ident: CIT0030 doi: 10.1109/AICCSA.2018.8612873 – ident: CIT0024 doi: 10.1007/978-3-030-01234-2_1 – ident: CIT0005 doi: 10.1016/j.ins.2017.08.059 – ident: CIT0001 doi: 10.1007/978-3-030-36718-3_38 – ident: CIT0007 doi: 10.1016/j.compeleceng.2011.10.016 – ident: CIT0012 doi: 10.1049/iet-ipr.2015.0519 – volume: 25 start-page: 1106 year: 2012 ident: CIT0013 publication-title: Adv. Neural. Inf. Process. Syst. – ident: CIT0006 doi: 10.1007/s11760-015-0810-4 – ident: CIT0028 doi: 10.1007/11553595_123 – ident: CIT0010 doi: 10.1016/j.neucom.2015.10.096 – ident: CIT0037 doi: 10.1109/TMM.2018.2808760 – ident: CIT0036 doi: 10.1609/aaai.v34i01.5364 – ident: CIT0025 doi: 10.1109/TAFFC.2016.2553038 – ident: CIT0027 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: CIT0031 doi: 10.1109/TAFFC.2019.2961089 – ident: CIT0014 – ident: CIT0022 doi: 10.1109/CVPR.2019.01082 – ident: CIT0015 doi: 10.1109/CVPR.2015.7298594 – ident: CIT0023 doi: 10.1109/CVPR.2017.683 – ident: CIT0032 doi: 10.1109/CVPR.2018.00474 – ident: CIT0008 doi: 10.1109/ISCAS.2016.7527309 – ident: CIT0009 doi: 10.1109/FG.2018.00104 – ident: CIT0035 doi: 10.1007/s00138-018-0960-9 – ident: CIT0017 doi: 10.1145/3340555.3355719 – ident: CIT0019 doi: 10.1109/TAFFC.2019.2946540 – ident: CIT0021 doi: 10.1109/TIP.2018.2886767 – ident: CIT0011 doi: 10.1109/FG.2013.6553749 – ident: CIT0004 doi: 10.1016/j.imavis.2008.08.005 – ident: CIT0002 doi: 10.1007/s12652-017-0636-8 – ident: CIT0020 doi: 10.1146/annurev.neuro.23.1.315 – ident: CIT0003 doi: 10.1016/j.compedu.2019.103797 – ident: CIT0029 doi: 10.1109/ACCESS.2019.2901521  | 
    
| SSID | ssj0064251 | 
    
| Score | 2.2832594 | 
    
| Snippet | Facial expression recognition from video sequences is currently an interesting research topic in computer vision, pattern recognition, artificial intelligence,... | 
    
| SourceID | crossref informaworld  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 602 | 
    
| SubjectTerms | Attention mechanism Deep residual attention networks Facial expression recognition Multi-layer perceptron Video sequences  | 
    
| Title | Learning Expression Features via Deep Residual Attention Networks for Facial Expression Recognition From Video Sequences | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/02564602.2020.1814168 | 
    
| Volume | 38 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 0974-5971 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064251 issn: 0256-4602 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 0974-5971 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064251 issn: 0256-4602 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4EDGl9isCEfuFWe4iR23GMF3QqCHVAHZZfIdhxRaaQTStDEf8R_ybNjpx5Mg3GJald-bvt-fV9-7xmhlxrMWk0lJ2DKMnBQpCZTITOSC64TldiTK3ui-_6EL07ztyu2Go1-RllLXasO9Y9r60r-h6swB3y1VbK34OxAFCbgNfAXnsBheP4Tj9-FuMb80uezNhNr03UwmHxfS5Am5sJG6PuKq1nb-uTGkz752_VimBxJFzaPaHwIWUWWnq0_-biuzAbkik-7ji1aF5t3nPZVMGTyZr4c6hvOvkgXjF2t5eZrUJMunaCXd8cynut89PpzZ8432zeWgUYTBylS6qr14rglWFYk537K-AhkkRPwZ2gsjDMRgS6WrMPaftTnwv4h_33CJOxmNwP3P4VJQcHqFFuFFw75f9ODQ3YiDW1TPZnSkik9mTtoJwUFkozRzmzx-uxTUPvgx7m7PodvGsrFbCP36z7PFUPoSpvcyMBZ7qL73jPBsx5mD9DINA_Rvahf5SN0GQCHt2DBAXAYAIct4HAAHB4AhwPgMOyPe8DFNCLAYQs47ACHB8A9RqdH8-WrBfFXdxAN_kJLqPXDlTI1FzyThk2VoAVVlSooWOx1kXKmmBYwznSd1AJWccq5zgtmWJpn2RM0bjaNeYow-L-2bWFhEi3zWrGpVlVaKVVUrAL1JPdQHn7HUvu-9vZ6lfPyRj7uocNh2UXf2OVvC6Yxk8rWRdTq_vqbMrtx7bPbbvYc3d3-jfbRuP3WmQOwflv1wuPuFy66ppE | 
    
| linkProvider | Library Specific Holdings | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UD-rB30b82YPX4bqt3XYkCkGFHRAMt2XtOkNUIDAM8a-3b1vNMFEPHLvkNWvXtd97_d73ELoWCtYKEjFDQVmqHJRIGL4X2YbjMWFyE26u4Ea3E7BW33kY0EEpFwZoleBDJ7lQRLZXw88NwWhNibuBc9phWR6VpR55RKEKbx1tUAX2oYqBbQZ6N1bwOivBCCYG2Ogsnt-6WTqfltRLS-dOcxcJ_cY53eS1Nk95TXz-EHNcbUh7aKeApbier6N9tCZHB2i7JFZ4iBaFFOsLbiwK9uwIA4Kcqwb-GEb4TsoJ7spZlt-F62maUylxkFPNZ1iNEjcjCNKX--hqDhP0Nx2_4-dhLMf4SZO8j1C_2ejdtoyiboMhFFhMDQJOGOcyYR6zI0l97hGX8Ji7RMG1xLUY5VR4qm2LxEw8ZcUIY8JxqaSWY9vHqDIaj-QJwsr5Ac06V5oichJOfcFjK-bcjWms9qaoihz9tUJRiJpDbY23kGjt02JiQ5jYsJjYKqp9m01yVY__DPzyUgjTLJyS5LVPQvtP29MVbK_QZqvXaYft--DxDG1ZQKiBmLZ1jirpdC4vFCJK-WW25L8AFwD8Aw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46QfTBuzivefC1s7ek7eNwK_NWZDrxrTRpIkPtxtbJ8Neb0zayCerDHlM4hyZNk-8k3_kOQudcwVpuJdRQUJaoACXhRuAnjuH6lJvMhJsruNG9i2in514_E80mHFe0SoihZSkUUazV8HMPU6kZcRewTbu0SKOy1SPfUqDCX0YrFG7FIIvDjPRirNB1UYERTAyw0Uk8v7mZ257mxEtntp1wEzH9wiXb5LUxyVmDf_7QclyoR1toowKluFnOom20JLIdtD4jVbiLppUQ6wtuTyvubIYBP05UA3_0E9wSYoi7Ylxkd-FmnpdEShyVRPMxVp3EYQJH9LM-uprBBP5Gg3f81E_FAD9oivce6oXtx8uOUVVtMLiCirlhQQjGmJDUp04iSMB8y7NYyjxLgTXp2ZQwwn3Vdrg0pa-sqEUpdz0iiO06zj6qZYNMHCCsQh9QrPOEyRNXMhJwltopY15KUrUyJXXk6o8V80rSHCprvMWWVj6tBjaGgY2rga2jxrfZsNT0-M8gmJ0JcV4cpsiy8kns_Gl7uIDtGVq9b4Xx7VV0c4TWbGDTwIG2fYxq-WgiThQcytlpMeG_APQf-qc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Expression+Features+via+Deep+Residual+Attention+Networks+for+Facial+Expression+Recognition+From+Video+Sequences&rft.jtitle=Technical+review+-+IETE&rft.au=Zhao%2C+Xiaoming&rft.au=Chen%2C+Gang&rft.au=Chuang%2C+Yuelong&rft.au=Tao%2C+Xin&rft.date=2021-11-02&rft.issn=0256-4602&rft.eissn=0974-5971&rft.volume=38&rft.issue=6&rft.spage=602&rft.epage=610&rft_id=info:doi/10.1080%2F02564602.2020.1814168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02564602_2020_1814168 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-4602&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-4602&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-4602&client=summon |