Automated White Matter Fiber Tract Segmentation for the Brainstem

ABSTRACT This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). Al...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 38; no. 2; pp. e5312 - n/a
Main Authors Li, Mingchu, Zeng, Qingrun, Zhang, Jiawei, Huang, Ying, Wang, Xu, Ribas, Eduardo Carvalhal, Wu, Xiaolong, Liu, Xiaohai, Liang, Jiantao, Chen, Ge, Feng, Yuanjing, Li, Mengjun
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2025
Subjects
Online AccessGet full text
ISSN0952-3480
1099-1492
1099-1492
DOI10.1002/nbm.5312

Cover

Abstract ABSTRACT This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation–based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto‐occipital‐pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations. This study developed a method for automatic segmentation of brainstem fiber bundles across subjects and reduces labor costs and interoperator bias resulting from manual reconstruction and selection. The proposed method is robust enough to visualize and identify brainstem fiber tracts surrounding the BCM.
AbstractList This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation–based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto‐occipital‐pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations.
This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation-based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto-occipital-pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations.This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation-based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto-occipital-pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations.
ABSTRACT This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation–based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto‐occipital‐pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations. This study developed a method for automatic segmentation of brainstem fiber bundles across subjects and reduces labor costs and interoperator bias resulting from manual reconstruction and selection. The proposed method is robust enough to visualize and identify brainstem fiber tracts surrounding the BCM.
Author Wu, Xiaolong
Li, Mingchu
Chen, Ge
Wang, Xu
Li, Mengjun
Zeng, Qingrun
Liang, Jiantao
Zhang, Jiawei
Ribas, Eduardo Carvalhal
Feng, Yuanjing
Liu, Xiaohai
Huang, Ying
Author_xml – sequence: 1
  givenname: Mingchu
  surname: Li
  fullname: Li, Mingchu
  organization: Capital Medical University Xuanwu Hospital
– sequence: 2
  givenname: Qingrun
  orcidid: 0000-0001-6485-8178
  surname: Zeng
  fullname: Zeng, Qingrun
  organization: Zhejiang University of Technology
– sequence: 3
  givenname: Jiawei
  surname: Zhang
  fullname: Zhang, Jiawei
  organization: Zhejiang University of Technology
– sequence: 4
  givenname: Ying
  surname: Huang
  fullname: Huang, Ying
  organization: Shenzhen Samii Medical Center
– sequence: 5
  givenname: Xu
  surname: Wang
  fullname: Wang, Xu
  organization: Capital Medical University Xuanwu Hospital
– sequence: 6
  givenname: Eduardo Carvalhal
  surname: Ribas
  fullname: Ribas, Eduardo Carvalhal
  organization: University of São Paulo Medical School
– sequence: 7
  givenname: Xiaolong
  surname: Wu
  fullname: Wu, Xiaolong
  organization: Capital Medical University Xuanwu Hospital
– sequence: 8
  givenname: Xiaohai
  surname: Liu
  fullname: Liu, Xiaohai
  organization: Capital Medical University Xuanwu Hospital
– sequence: 9
  givenname: Jiantao
  surname: Liang
  fullname: Liang, Jiantao
  organization: Capital Medical University Xuanwu Hospital
– sequence: 10
  givenname: Ge
  surname: Chen
  fullname: Chen, Ge
  organization: Capital Medical University Xuanwu Hospital
– sequence: 11
  givenname: Yuanjing
  surname: Feng
  fullname: Feng, Yuanjing
  email: fyjing@zjut.edu.cn
  organization: Zhejiang University of Technology
– sequence: 12
  givenname: Mengjun
  orcidid: 0000-0003-1674-9369
  surname: Li
  fullname: Li, Mengjun
  email: mengjun@csu.edu.cn
  organization: Central South University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39716347$$D View this record in MEDLINE/PubMed
BookMark eNp10E1Lw0AQBuBFFG2r4C-QgBcv0dnZTbJ7bItfYPWg4jFskolNyUfd3SD998ZvELzMXB7mHd4x2267lhg75HDKAfCszZrTSHDcYiMOWodcatxmI9ARhkIq2GNj51YAoKTAXbYndMJjIZMRm0573zXGUxE8LStPwcJ4Tza4qLJhPliT--CenhtqvfFV1wZlZwO_pGBmTdU6T80-2ylN7ejga0_Y48X5w_wqvLm7vJ5Pb8JccMAQFeRQJAUMsYmKRV5EUnOSVKJWRkjQpdGYA1CGFAteqghVIfMSM54gGjFhJ59317Z76cn5tKlcTnVtWup6lwoulZKIPBno8R-66nrbDt8NKlIodSzFoI6-VJ81VKRrWzXGbtLvcn4Tc9s5Z6n8IRzS997Toff0vfeBhp_0tapp869Lb2eLD_8GU9N_1w
Cites_doi 10.3171/2015.4.jns141945
10.1007/s00701‐007‐1282‐2
10.1109/ISBI.2017.7950638
10.1016/j.neuroimage.2015.09.014
10.1016/j.nicl.2016.11.023
10.7554/eLife.62929
10.1038/ncomms5932
10.1016/j.neuroimage.2020.117063
10.1152/jn.00056.2019
10.1016/j.neuroimage.2017.07.015
10.1016/j.neuroimage.2015.10.019
10.1016/j.clineuro.2014.11.021
10.1016/j.neuroimage.2019.116137
10.3389/fnhum.2013.00400
10.1016/j.neuroimage.2007.02.016
10.1038/s41598‐020‐74054‐4
10.1016/j.neuroimage.2004.07.037
10.1002/mrm.20147
10.1007/978‐3‐642‐33454‐2_16
10.1016/j.neuroimage.2017.10.029
10.1016/j.neuroimage.2018.06.019
10.1016/j.neuropsychologia.2021.107847
10.3171/2014.11.jns13680
10.1093/cercor/bhn102
10.1016/j.neuroimage.2018.01.006
10.1016/j.neuroimage.2018.06.027
10.1227/neu.0000000000000466
10.1109/tmi.2007.906785
10.1227/neu.0000000000001224
10.1097/wnr.0000000000000362
10.1093/neuros/nyz259
10.1007/978-3-662-10343-2
10.1016/j.neuroimage.2012.01.021
10.1016/j.neuroimage.2014.07.061
10.3171/2017.8.jns17854
10.1016/j.neuroimage.2017.12.042
10.1016/j.nicl.2017.07.020
10.1227/01.neu.0000317368.69523.40
10.3389/fnana.2012.00034
10.1007/978-3-7091-3078-0
10.1055/s‐0028‐1087212
10.1109/embc.2016.7590899
10.1002/hbm.22836
10.1016/j.wneu.2016.06.019
10.1016/j.neuroimage.2004.07.051
10.1016/j.media.2007.06.004
10.3171/2014.12.jns142169
10.1016/j.media.2007.10.003
10.1371/journal.pone.0049790
10.1002/jmri.25866
10.1097/NEN.0b013e3182588293
10.1227/NEU.0b013e3181ff9cde
10.1007/s10143‐014‐0550‐x
10.1007/s00429‐014‐0754‐4
10.1016/j.neuroimage.2013.04.066
10.1016/j.neuroimage.2013.01.061
10.1002/hbm.24579
10.1007/s00429‐015‐1179‐4
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/nbm.5312
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage n/a
ExternalDocumentID 39716347
10_1002_nbm_5312
NBM5312
Genre article
Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Special Support Program for High‐Level Talents
  funderid: 2021R52004
– fundername: Natural Science Foundation of Hunan Province
  funderid: 2022JJ30814
– fundername: Science and Technology Innovation Program of Hunan Province
  funderid: 2021SK53503
– fundername: National Natural Science Foundation of China
  funderid: U22A2040; U23A20334; 62403428
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LQ23F030017
– fundername: Science and Technology Innovation Program of Hunan Province
  grantid: 2021SK53503
– fundername: National Natural Science Foundation of China
  grantid: U22A2040
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LQ23F030017
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2022JJ30814
– fundername: National Natural Science Foundation of China
  grantid: 62403428
– fundername: National Natural Science Foundation of China
  grantid: U23A20334
– fundername: Zhejiang Provincial Special Support Program for High-Level Talents
  grantid: 2021R52004
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3102-280c0d7d03477863cd5491e4ef298a3409fa92c00eb2e631f8528d4cf2b1722a3
IEDL.DBID DR2
ISSN 0952-3480
1099-1492
IngestDate Fri Jul 11 03:25:39 EDT 2025
Fri Jul 25 09:53:12 EDT 2025
Wed Feb 19 01:58:45 EST 2025
Wed Oct 01 03:28:23 EDT 2025
Thu Jan 23 09:59:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords tractography
brainstem
automatic segmentation
fiber tracts
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3102-280c0d7d03477863cd5491e4ef298a3409fa92c00eb2e631f8528d4cf2b1722a3
Notes This research was supported by the National Natural Science Foundation of China (Grant Nos. U22A2040, U23A20334, 62403428), the Science and Technology Innovation Program of Hunan Province (Grant No. 2021SK53503), the Natural Science Foundation of Hunan Province (Grant No. 2022JJ30814), the Zhejiang Provincial Special Support Program for High‐Level Talents (Grant No. 2021R52004), and the Natural Science Foundation of Zhejiang Province (Grant No. LQ23F030017).
Mingchu Li and Qingrun Zeng contributed equally to this work.
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6485-8178
0000-0003-1674-9369
PMID 39716347
PQID 3158249643
PQPubID 2029982
PageCount 19
ParticipantIDs proquest_miscellaneous_3148842217
proquest_journals_3158249643
pubmed_primary_39716347
crossref_primary_10_1002_nbm_5312
wiley_primary_10_1002_nbm_5312_NBM5312
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
2025-Feb
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 36
2007; 149
2004; 23
2015; 220
2018; 169
2016; 221
2019; 202
2016; 2016
2020; 10
2012; 15
2013; 7
2007; 35
2016; 79
2018; 47
2019; 121
2018; 130
2012; 71
2014; 5
2018; 171
2018; 170
2018; 172
2021; 156
2018; 179
2006; 27
2011; 68
2008; 62
2009; 19
2007; 26
1988
2012; 62
2018; 181
2020; 86
2020; 220
2015; 122
2015; 123
2014; 10 Suppl 4
2016; 124
2008; 12
1995
2005
2016; 93
2015; 129
2016; 125
2015; 26
2004; 52
2021; 10
2019; 40
2009; 70
2017; 16
2017; 13
2013; 74
2013; 80
2014; 37
2017
2012; 6
2012; 7
2014; 103
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_51_1
e_1_2_13_30_1
e_1_2_13_2_1
Lazar M. (e_1_2_13_48_1) 2006; 27
e_1_2_13_29_1
e_1_2_13_25_1
Noback C. R. (e_1_2_13_4_1) 2005
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_58_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_52_1
e_1_2_13_50_1
e_1_2_13_5_1
e_1_2_13_3_1
e_1_2_13_28_1
References_xml – volume: 80
  start-page: 283
  year: 2013
  end-page: 289
  article-title: Fiber Clustering Versus the Parcellation‐Based Connectome
  publication-title: NeuroImage
– volume: 93
  start-page: 377
  year: 2016
  end-page: 388
  article-title: The Usefulness of Diffusion Tensor Imaging and Tractography in Surgery of Brainstem Cavernous Malformations
  publication-title: World Neurosurgery
– volume: 47
  start-page: 1601
  issue: 6
  year: 2018
  end-page: 1609
  article-title: Differential Brainstem Atrophy Patterns in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 7
  issue: 11
  year: 2012
  article-title: Tract Profiles of White Matter Properties: Automating fiber‐Tract Quantification
  publication-title: PLoS ONE
– volume: 26
  start-page: 1562
  issue: 11
  year: 2007
  end-page: 1575
  article-title: Automatic Tractography Segmentation Using a High‐Dimensional White Matter Atlas
  publication-title: IEEE Transactions on Medical Imaging
– volume: 171
  start-page: 341
  year: 2018
  end-page: 354
  article-title: Suprathreshold Fiber Cluster Statistics: Leveraging White Matter Geometry to Enhance Tractography Statistical Analysis
  publication-title: NeuroImage
– year: 2005
– volume: 13
  start-page: 138
  year: 2017
  end-page: 153
  article-title: Automated White Matter fiber Tract Identification in Patients With Brain Tumors
  publication-title: NeuroImage: Clinical
– volume: 156
  year: 2021
  article-title: Diffusion Property and Functional Connectivity of Superior Longitudinal Fasciculus Underpin Human Metacognition
  publication-title: Neuropsychologia
– volume: 74
  start-page: 117
  year: 2013
  end-page: 127
  article-title: Feasibility of Creating a High‐Resolution 3D Diffusion Tensor Imaging Based Atlas of the Human Brainstem: A Case Study at 11.7 T
  publication-title: NeuroImage
– volume: 62
  start-page: 9
  issue: 3 Suppl 1
  year: 2008
  end-page: 15
  article-title: Microsurgical Anatomy of the Safe Entry Zones on the Anterolateral Brainstem Related to Surgical Approaches to Cavernous Malformations
  publication-title: Neurosurgery
– volume: 6
  year: 2012
  article-title: Connectivity‐Based Structural and Functional Parcellation of the Human Cortex Using Diffusion Imaging and Tractography
  publication-title: Frontiers in Neuroanatomy
– volume: 36
  start-page: 3167
  issue: 8
  year: 2015
  end-page: 3178
  article-title: Postmortem Diffusion MRI of the Human Brainstem and Thalamus for Deep Brain Stimulator Electrode Localization
  publication-title: Human Brain Mapping
– volume: 23
  start-page: S208
  issue: Suppl 1
  year: 2004
  end-page: S219
  article-title: Advances in Functional and Structural MR Image Analysis and Implementation as FSL
  publication-title: NeuroImage
– volume: 23
  start-page: 1176
  issue: 3
  year: 2004
  end-page: 1185
  article-title: Direct Estimation of the Fiber Orientation Density Function From Diffusion‐Weighted MRI Data Using Spherical Deconvolution
  publication-title: NeuroImage
– volume: 179
  start-page: 429
  year: 2018
  end-page: 447
  article-title: An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation Across the Lifespan
  publication-title: NeuroImage
– volume: 7
  issue: 400
  year: 2013
  article-title: Imaging White Matter in Human Brainstem
  publication-title: Frontiers in Human Neuroscience
– volume: 123
  start-page: 1133
  issue: 5
  year: 2015
  end-page: 1144
  article-title: Longitudinal Evaluation of Corticospinal Tract in Patients With Resected Brainstem Cavernous Malformations Using High‐Definition Fiber Tractography and Diffusion Connectometry Analysis: Preliminary Experience
  publication-title: Journal of Neurosurgery
– volume: 71
  start-page: 531
  issue: 6
  year: 2012
  end-page: 546
  article-title: Neuroanatomic Connectivity of the Human Ascending Arousal System Critical to Consciousness and Its Disorders
  publication-title: Journal of Neuropathology and Experimental Neurology
– volume: 40
  start-page: 3041
  issue: 10
  year: 2019
  end-page: 3057
  article-title: Test–Retest Reproducibility of White Matter Parcellation Using Diffusion MRI Tractography Fiber Clustering
  publication-title: Human Brain Mapping
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  end-page: 41
  article-title: Symmetric Diffeomorphic Image Registration With Cross‐Correlation: Evaluating Automated Labeling of Elderly and Neurodegenerative Brain
  publication-title: Medical Image Analysis
– volume: 169
  start-page: 227
  year: 2018
  end-page: 239
  article-title: A Probabilistic Atlas of Human Brainstem Pathways Based on Connectome Imaging Data
  publication-title: NeuroImage
– volume: 103
  start-page: 411
  year: 2014
  end-page: 426
  article-title: Multi‐Tissue Constrained Spherical Deconvolution for Improved Analysis of Multi‐Shell Diffusion MRI Data
  publication-title: NeuroImage
– volume: 16
  start-page: 222
  year: 2017
  end-page: 233
  article-title: A Test‐Retest Study on Parkinson's PPMI Dataset Yields Statistically Significant White Matter Fascicles
  publication-title: NeuroImage. Clinical
– volume: 124
  start-page: 724
  issue: Pt A
  year: 2016
  end-page: 732
  article-title: A Probabilistic Atlas of the Cerebellar White Matter
  publication-title: NeuroImage
– volume: 221
  start-page: 4705
  issue: 9
  year: 2016
  end-page: 4721
  article-title: The White Matter Query Language: A Novel Approach for Describing Human White Matter Anatomy
  publication-title: Brain Structure & Function
– volume: 10
  year: 2021
  article-title: Bundle‐Specific Associations Between White Matter Microstructure and Aβ and tau Pathology in Preclinical Alzheimer's Disease
  publication-title: eLife
– volume: 220
  start-page: 1695
  issue: 3
  year: 2015
  end-page: 1703
  article-title: Spatial Normalization of Ultrahigh Resolution 7 T Magnetic Resonance Imaging Data of the Postmortem Human Subthalamic Nucleus: A Multistage Approach
  publication-title: Brain Structure & Function
– volume: 26
  start-page: 411
  issue: 7
  year: 2015
  end-page: 415
  article-title: Brainstem Morphological Changes in Alzheimer's Disease
  publication-title: Neuroreport
– volume: 19
  start-page: 524
  issue: 3
  year: 2009
  end-page: 536
  article-title: Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using in Vivo Diffusion Tensor Imaging Tractography
  publication-title: Cerebral Cortex
– volume: 12
  start-page: 191
  issue: 2
  year: 2008
  end-page: 202
  article-title: A Unified Framework for Clustering and Quantitative Analysis of White Matter fiber Tracts
  publication-title: Medical Image Analysis
– volume: 149
  start-page: 1117
  issue: 11
  year: 2007
  end-page: 1131
  article-title: Diffusion Tensor Imaging and White Matter Tractography in Patients With Brainstem Lesions
  publication-title: Acta Neurochirurgica
– volume: 181
  start-page: 16
  year: 2018
  end-page: 29
  article-title: Investigation Into Local White Matter Abnormality in Emotional Processing and Sensorimotor Areas Using an Automatically Annotated fiber Clustering in Major Depressive Disorder
  publication-title: NeuroImage
– volume: 35
  start-page: 1459
  issue: 4
  year: 2007
  end-page: 1472
  article-title: Robust Determination of the Fibre Orientation Distribution in Diffusion MRI: Non‐Negativity Constrained Super‐Resolved Spherical Deconvolution
  publication-title: NeuroImage
– volume: 5
  start-page: 4932
  year: 2014
  article-title: Lifespan Maturation and Degeneration of Human Brain White Matter
  publication-title: Nature Communications
– volume: 10
  start-page: 17149
  issue: 1
  year: 2020
  article-title: Bundle Analytics, a Computational Framework for Investigating the Shapes and Profiles of Brain Pathways Across Populations
  publication-title: Scientific Reports
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  article-title: An Integrated Approach to Correction for Off‐Resonance Effects and Subject Movement in Diffusion MR Imaging
  publication-title: NeuroImage
– volume: 172
  start-page: 826
  year: 2018
  end-page: 837
  article-title: Whole Brain White Matter Connectivity Analysis Using Machine Learning: An Application to Autism
  publication-title: NeuroImage
– volume: 15
  start-page: 123
  issue: Pt 3
  year: 2012
  end-page: 130
  article-title: Unbiased Groupwise Registration of White Matter Tractography
  publication-title: Medical Image Computing and Computer‐Assisted Intervention
– volume: 121
  start-page: 1856
  issue: 5
  year: 2019
  end-page: 1864
  article-title: Neurophysiology of the Brain Stem in Parkinson's Disease
  publication-title: Journal of Neurophysiology
– volume: 70
  start-page: 27
  issue: 1
  year: 2009
  end-page: 35
  article-title: Fiber Tracking With Distinct Software Tools Results in a Clear Diversity in Anatomical Fiber Tract Portrayal
  publication-title: Central European Neurosurgery
– volume: 27
  start-page: 1258
  issue: 6
  year: 2006
  end-page: 1271
  article-title: White Matter Reorganization After Surgical Resection of Brain Tumors and Vascular Malformations
  publication-title: AJNR. American Journal of Neuroradiology
– volume: 68
  start-page: 403
  issue: 2
  year: 2011
  end-page: 414
  article-title: Advances in the Treatment and Outcome of Brainstem Cavernous Malformation Surgery: A Single‐Center Case Series of 300 Surgically Treated Patients
  publication-title: Neurosurgery
– volume: 10 Suppl 4
  start-page: 602
  year: 2014
  end-page: 619
  article-title: Three‐Dimensional Microsurgical Anatomy and the Safe Entry Zones of the Brainstem
  publication-title: Neurosurgery
– volume: 52
  start-page: 559
  issue: 3
  year: 2004
  end-page: 565
  article-title: Analysis of Noise Effects on DTI‐Based Tractography Using the Brute‐Force and Multi‐ROI Approach
  publication-title: Magnetic Resonance in Medicine
– volume: 130
  start-page: 286
  issue: 1
  year: 2018
  end-page: 301
  article-title: Surgical Outcome of Motor Deficits and Neurological Status in Brainstem Cavernous Malformations Based on Preoperative Diffusion Tensor Imaging: A Prospective Randomized Clinical Trial
  publication-title: Journal of Neurosurgery
– start-page: 796
  year: 2017
  end-page: 799
– volume: 202
  year: 2019
  article-title: MRtrix3: A Fast, Flexible and Open Software Framework for Medical Image Processing and Visualisation
  publication-title: NeuroImage
– volume: 170
  start-page: 283
  year: 2018
  end-page: 295
  article-title: Recognition of White Matter Bundles Using Local and Global Streamline‐Based Registration and Clustering
  publication-title: NeuroImage
– volume: 86
  start-page: 665
  issue: 5
  year: 2020
  end-page: 675
  article-title: Utility of a Quantitative Approach Using Diffusion Tensor Imaging for Prognostication Regarding Motor and Functional Outcomes in Patients With Surgically Resected Deep Intracranial Cavernous Malformations
  publication-title: Neurosurgery
– year: 1988
– volume: 79
  start-page: 437
  issue: 3
  year: 2016
  end-page: 455
  article-title: Human Connectome‐Based Tractographic Atlas of the Brainstem Connections and Surgical Approaches
  publication-title: Neurosurgery
– volume: 129
  start-page: 44
  year: 2015
  end-page: 49
  article-title: Comparison of Seeding Methods for Visualization of the Corticospinal Tracts Using Single Tensor Tractography
  publication-title: Clinical Neurology and Neurosurgery
– year: 1995
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  end-page: 781
  article-title: FreeSurfer
  publication-title: NeuroImage
– volume: 2016
  start-page: 1115
  year: 2016
  end-page: 1119
  article-title: Creation of a Whole Brain Short Association Bundle Atlas Using a Hybrid Approach
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 124
  start-page: 1359
  issue: 5
  year: 2016
  end-page: 1376
  article-title: Microsurgical Anatomy of Safe Entry Zones to the Brainstem
  publication-title: Journal of Neurosurgery
– volume: 37
  start-page: 481
  issue: 3
  year: 2014
  end-page: 491
  article-title: Brainstem Cavernoma Surgery With the Support of Pre‐ and Postoperative Diffusion Tensor Imaging: Initial Experiences and Clinical Course of 23 Patients
  publication-title: Neurosurgical Review
– volume: 220
  year: 2020
  article-title: Creation of a Novel Trigeminal Tractography Atlas for Automated Trigeminal Nerve Identification
  publication-title: NeuroImage
– volume: 122
  start-page: 653
  issue: 3
  year: 2015
  end-page: 662
  article-title: The Utility of Preoperative Diffusion Tensor Imaging in the Surgical Management of Brainstem Cavernous Malformations
  publication-title: Journal of Neurosurgery
– ident: e_1_2_13_8_1
  doi: 10.3171/2015.4.jns141945
– ident: e_1_2_13_14_1
  doi: 10.1007/s00701‐007‐1282‐2
– ident: e_1_2_13_28_1
  doi: 10.1109/ISBI.2017.7950638
– ident: e_1_2_13_20_1
  doi: 10.1016/j.neuroimage.2015.09.014
– ident: e_1_2_13_33_1
  doi: 10.1016/j.nicl.2016.11.023
– ident: e_1_2_13_49_1
  doi: 10.7554/eLife.62929
– ident: e_1_2_13_30_1
  doi: 10.1038/ncomms5932
– ident: e_1_2_13_52_1
  doi: 10.1016/j.neuroimage.2020.117063
– ident: e_1_2_13_5_1
  doi: 10.1152/jn.00056.2019
– ident: e_1_2_13_32_1
  doi: 10.1016/j.neuroimage.2017.07.015
– ident: e_1_2_13_40_1
  doi: 10.1016/j.neuroimage.2015.10.019
– ident: e_1_2_13_23_1
  doi: 10.1016/j.clineuro.2014.11.021
– ident: e_1_2_13_39_1
  doi: 10.1016/j.neuroimage.2019.116137
– ident: e_1_2_13_60_1
  doi: 10.3389/fnhum.2013.00400
– ident: e_1_2_13_11_1
  doi: 10.1016/j.neuroimage.2007.02.016
– ident: e_1_2_13_31_1
  doi: 10.1038/s41598‐020‐74054‐4
– ident: e_1_2_13_12_1
  doi: 10.1016/j.neuroimage.2004.07.037
– ident: e_1_2_13_22_1
  doi: 10.1002/mrm.20147
– ident: e_1_2_13_46_1
  doi: 10.1007/978‐3‐642‐33454‐2_16
– ident: e_1_2_13_37_1
  doi: 10.1016/j.neuroimage.2017.10.029
– ident: e_1_2_13_36_1
  doi: 10.1016/j.neuroimage.2018.06.019
– ident: e_1_2_13_50_1
  doi: 10.1016/j.neuropsychologia.2021.107847
– ident: e_1_2_13_53_1
  doi: 10.3171/2014.11.jns13680
– ident: e_1_2_13_27_1
  doi: 10.1093/cercor/bhn102
– ident: e_1_2_13_38_1
  doi: 10.1016/j.neuroimage.2018.01.006
– ident: e_1_2_13_43_1
  doi: 10.1016/j.neuroimage.2018.06.027
– volume: 27
  start-page: 1258
  issue: 6
  year: 2006
  ident: e_1_2_13_48_1
  article-title: White Matter Reorganization After Surgical Resection of Brain Tumors and Vascular Malformations
  publication-title: AJNR. American Journal of Neuroradiology
– ident: e_1_2_13_10_1
  doi: 10.1227/neu.0000000000000466
– ident: e_1_2_13_35_1
  doi: 10.1109/tmi.2007.906785
– ident: e_1_2_13_18_1
  doi: 10.1227/neu.0000000000001224
– ident: e_1_2_13_7_1
  doi: 10.1097/wnr.0000000000000362
– ident: e_1_2_13_56_1
  doi: 10.1093/neuros/nyz259
– ident: e_1_2_13_3_1
  doi: 10.1007/978-3-662-10343-2
– ident: e_1_2_13_45_1
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: e_1_2_13_17_1
  doi: 10.1016/j.neuroimage.2014.07.061
– ident: e_1_2_13_55_1
  doi: 10.3171/2017.8.jns17854
– ident: e_1_2_13_19_1
  doi: 10.1016/j.neuroimage.2017.12.042
– ident: e_1_2_13_47_1
  doi: 10.1016/j.nicl.2017.07.020
– ident: e_1_2_13_9_1
  doi: 10.1227/01.neu.0000317368.69523.40
– ident: e_1_2_13_24_1
  doi: 10.3389/fnana.2012.00034
– ident: e_1_2_13_2_1
  doi: 10.1007/978-3-7091-3078-0
– ident: e_1_2_13_21_1
  doi: 10.1055/s‐0028‐1087212
– volume-title: The Human Nervous System. Structure and Function
  year: 2005
  ident: e_1_2_13_4_1
– ident: e_1_2_13_51_1
  doi: 10.1109/embc.2016.7590899
– ident: e_1_2_13_58_1
  doi: 10.1002/hbm.22836
– ident: e_1_2_13_54_1
  doi: 10.1016/j.wneu.2016.06.019
– ident: e_1_2_13_41_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_13_42_1
  doi: 10.1016/j.media.2007.06.004
– ident: e_1_2_13_15_1
  doi: 10.3171/2014.12.jns142169
– ident: e_1_2_13_34_1
  doi: 10.1016/j.media.2007.10.003
– ident: e_1_2_13_29_1
  doi: 10.1371/journal.pone.0049790
– ident: e_1_2_13_6_1
  doi: 10.1002/jmri.25866
– ident: e_1_2_13_59_1
  doi: 10.1097/NEN.0b013e3182588293
– ident: e_1_2_13_13_1
  doi: 10.1227/NEU.0b013e3181ff9cde
– ident: e_1_2_13_16_1
  doi: 10.1007/s10143‐014‐0550‐x
– ident: e_1_2_13_61_1
  doi: 10.1007/s00429‐014‐0754‐4
– ident: e_1_2_13_25_1
  doi: 10.1016/j.neuroimage.2013.04.066
– ident: e_1_2_13_57_1
  doi: 10.1016/j.neuroimage.2013.01.061
– ident: e_1_2_13_44_1
  doi: 10.1002/hbm.24579
– ident: e_1_2_13_26_1
  doi: 10.1007/s00429‐015‐1179‐4
SSID ssj0008432
Score 2.4379814
Snippet ABSTRACT This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic...
This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e5312
SubjectTerms Adult
automatic segmentation
Automation
Brain stem
Brain Stem - diagnostic imaging
brainstem
Cerebellum
Clusters
Connectome
Diffusion Tensor Imaging - methods
Female
fiber tracts
Humans
Lemniscus (medial)
Male
Middle Aged
Pyramidal tracts
Reconstruction
Segmentation
Substantia alba
tractography
White Matter - diagnostic imaging
Young Adult
Title Automated White Matter Fiber Tract Segmentation for the Brainstem
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.5312
https://www.ncbi.nlm.nih.gov/pubmed/39716347
https://www.proquest.com/docview/3158249643
https://www.proquest.com/docview/3148842217
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0952-3480
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008432
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hJFouQFNoUyhaJNSbw74c1seAGiGkcOAhIfVg7cscEE7VJBd-fWfWdoBWSIiTZXnt8e7s45vdmW8ADvPCFEFGmzleoYGio85MgbdCOOFjLvnQ0n7H5GJ4dqPPb_Pb1quSYmEafojlhhuNjDRf0wC3bnb0jDTUPQywA9H0K1SeTmgvn5ijjE65yRBAyExpwzveWS6PuhdfrkT_wcuXaDUtN-NN-NX9aONlcj9YzN3AP_7D4fi-mmzBRotC2ajpNp9gJdY9-HjaJX_rwYdJe-beg7XkJOpnn2E0WsyniHBjYCmvHpskck42Jq8Tdk3xVuwq3j204Uw1Q0DMEGCyE8pDQYzR23Az_nl9epa1KRgyj7iPAre55-E4cKWJaE75gPakiDpWsjBWoXFY2UJ6ztFAj0MlKpNLE7SvpENkJK3agdV6WsevwIg5Dq0_L8motEI6HlRlh6IKoTDeHffhoFNH-bth2igbTmVZYguV1EJ92Ov0VLZjbVYqkRs0IhFa4SeWj7G96OjD1nG6oDI4UWkUjWK-NPpdClHEooX168OPpKVXpZcXJxO6fntrwV1Yl5QuODl578Hq_M8ifkcMM3f7qbf-BfdQ6ag
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hqgIXHsujS6EYCXHL4tjO4qinhXa1BbIHWCQOSFFiOxwQ2Qp2L_31zDjJUqiQKk5RFCeOPR77G3vmG4CDKNaxFS4Lcl6ggaKcCnSMt2GYh8ZFgncz2u9Iht3BtTq7iW7m4HsTC1PxQ8w23Egz_HxNCk4b0kd_sYbmDx0cQTj_fqLjOdLKH5cv3FFa-exkCCFEIJXmDfMsF0fNm6_Xon8A5mu86hec_grcNr9a-Zncd6aTvGP-vGFx_GBbVmG5BqKsV42cNZhzZQsWT5v8by1YSOpj9xZ89n6i5mkder3pZIwg11nmU-uxxPNzsj45nrARhVyxK3f3UEc0lQwxMUOMyU4oFQWRRm_Adf_n6HQQ1FkYAoPQj2K3ueH22HKpiGtOGosmZeiUK0SsM4n2YZHFwnCONrrryrDQkdBWmULkCI5EJjdhvhyX7gswIo9DA9AIsiuzUOTcyiLrhoW1sTb5cRv2G3mkvyuyjbSiVRYp9lBKPdSGnUZQaa1uT6kMI412JKIr_MTsMfYXnX5kpRtPqQzOVQqrxmq2KgHPKpFEpIXta8OhF9O7tafDk4Su2_9bcA8WB6PkIr34NTz_CkuCsgd7n-8dmJ88Tt0uQppJ_s0P3WefUO3E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKigXCkuBbXm4UsUtu47tZJ3j8ljx2lXVgoTEIUpshwMii9jdS399Z5xkW4qQEKcoipOJPX58Y898A_A9SnRihcuCnBdooCinAp3gbRjmoXGR4HFG-x3DUXx6rc5vopvaq5JiYSp-iPmGG40MP1_TAH-0Rfcf0tD8oYMdCKffDypG44oA0c-_1FFa-eRkiCBEIJXmDfEsF93mzedL0Qt8-Ryu-vVm8Alumz-t3EzuO7Np3jG__yNxfF9V1mC1hqGsX_WbdVhwZQs-HjXZ31qwPKwP3Vuw5L1EzWQD-v3ZdIwQ11nmE-uxoWfnZANyO2FXFHDFfrm7hzqeqWSIiBkiTHZIiSiIMvozXA9Oro5OgzoHQ2AQ-FHkNjfc9iyXipjmpLFoUIZOuUIkOpNoHRZZIgznaKG7WIaFjoS2yhQiR2gkMrkJi-W4dNvAiDoOzT8jyKrMQpFzK4ssDgtrE23yXhu-NepIHyuqjbQiVRYptlBKLdSGnUZPaT3YJqkMI41WJGIr_MT8MbYXnX1kpRvPqAzOVApFo5itSr9zIZJotLB-bTjwWnpVejo6HNL1y1sL7sPyj-NBenk2uvgKK4JSB3uH7x1YnD7N3C7imWm-5zvuH-IN7HM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+White+Matter+Fiber+Tract+Segmentation+for+the+Brainstem&rft.jtitle=NMR+in+biomedicine&rft.au=Li%2C+Mingchu&rft.au=Zeng%2C+Qingrun&rft.au=Zhang%2C+Jiawei&rft.au=Huang%2C+Ying&rft.date=2025-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=38&rft.issue=2&rft_id=info:doi/10.1002%2Fnbm.5312&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon