Automated White Matter Fiber Tract Segmentation for the Brainstem
ABSTRACT This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). Al...
Saved in:
Published in | NMR in biomedicine Vol. 38; no. 2; pp. e5312 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-3480 1099-1492 1099-1492 |
DOI | 10.1002/nbm.5312 |
Cover
Abstract | ABSTRACT
This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation–based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto‐occipital‐pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations.
This study developed a method for automatic segmentation of brainstem fiber bundles across subjects and reduces labor costs and interoperator bias resulting from manual reconstruction and selection. The proposed method is robust enough to visualize and identify brainstem fiber tracts surrounding the BCM. |
---|---|
AbstractList | This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation–based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto‐occipital‐pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations. This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation-based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto-occipital-pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations.This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation-based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto-occipital-pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations. ABSTRACT This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation–based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto‐occipital‐pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 ± 0.0950 for the affected CST, 0.9388 ± 0.0439 for the contralateral CST, 0.9130 ± 0.0588 for the affected medial lemniscus, and 0.9600 ± 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations. This study developed a method for automatic segmentation of brainstem fiber bundles across subjects and reduces labor costs and interoperator bias resulting from manual reconstruction and selection. The proposed method is robust enough to visualize and identify brainstem fiber tracts surrounding the BCM. |
Author | Wu, Xiaolong Li, Mingchu Chen, Ge Wang, Xu Li, Mengjun Zeng, Qingrun Liang, Jiantao Zhang, Jiawei Ribas, Eduardo Carvalhal Feng, Yuanjing Liu, Xiaohai Huang, Ying |
Author_xml | – sequence: 1 givenname: Mingchu surname: Li fullname: Li, Mingchu organization: Capital Medical University Xuanwu Hospital – sequence: 2 givenname: Qingrun orcidid: 0000-0001-6485-8178 surname: Zeng fullname: Zeng, Qingrun organization: Zhejiang University of Technology – sequence: 3 givenname: Jiawei surname: Zhang fullname: Zhang, Jiawei organization: Zhejiang University of Technology – sequence: 4 givenname: Ying surname: Huang fullname: Huang, Ying organization: Shenzhen Samii Medical Center – sequence: 5 givenname: Xu surname: Wang fullname: Wang, Xu organization: Capital Medical University Xuanwu Hospital – sequence: 6 givenname: Eduardo Carvalhal surname: Ribas fullname: Ribas, Eduardo Carvalhal organization: University of São Paulo Medical School – sequence: 7 givenname: Xiaolong surname: Wu fullname: Wu, Xiaolong organization: Capital Medical University Xuanwu Hospital – sequence: 8 givenname: Xiaohai surname: Liu fullname: Liu, Xiaohai organization: Capital Medical University Xuanwu Hospital – sequence: 9 givenname: Jiantao surname: Liang fullname: Liang, Jiantao organization: Capital Medical University Xuanwu Hospital – sequence: 10 givenname: Ge surname: Chen fullname: Chen, Ge organization: Capital Medical University Xuanwu Hospital – sequence: 11 givenname: Yuanjing surname: Feng fullname: Feng, Yuanjing email: fyjing@zjut.edu.cn organization: Zhejiang University of Technology – sequence: 12 givenname: Mengjun orcidid: 0000-0003-1674-9369 surname: Li fullname: Li, Mengjun email: mengjun@csu.edu.cn organization: Central South University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39716347$$D View this record in MEDLINE/PubMed |
BookMark | eNp10E1Lw0AQBuBFFG2r4C-QgBcv0dnZTbJ7bItfYPWg4jFskolNyUfd3SD998ZvELzMXB7mHd4x2267lhg75HDKAfCszZrTSHDcYiMOWodcatxmI9ARhkIq2GNj51YAoKTAXbYndMJjIZMRm0573zXGUxE8LStPwcJ4Tza4qLJhPliT--CenhtqvfFV1wZlZwO_pGBmTdU6T80-2ylN7ejga0_Y48X5w_wqvLm7vJ5Pb8JccMAQFeRQJAUMsYmKRV5EUnOSVKJWRkjQpdGYA1CGFAteqghVIfMSM54gGjFhJ59317Z76cn5tKlcTnVtWup6lwoulZKIPBno8R-66nrbDt8NKlIodSzFoI6-VJ81VKRrWzXGbtLvcn4Tc9s5Z6n8IRzS997Toff0vfeBhp_0tapp869Lb2eLD_8GU9N_1w |
Cites_doi | 10.3171/2015.4.jns141945 10.1007/s00701‐007‐1282‐2 10.1109/ISBI.2017.7950638 10.1016/j.neuroimage.2015.09.014 10.1016/j.nicl.2016.11.023 10.7554/eLife.62929 10.1038/ncomms5932 10.1016/j.neuroimage.2020.117063 10.1152/jn.00056.2019 10.1016/j.neuroimage.2017.07.015 10.1016/j.neuroimage.2015.10.019 10.1016/j.clineuro.2014.11.021 10.1016/j.neuroimage.2019.116137 10.3389/fnhum.2013.00400 10.1016/j.neuroimage.2007.02.016 10.1038/s41598‐020‐74054‐4 10.1016/j.neuroimage.2004.07.037 10.1002/mrm.20147 10.1007/978‐3‐642‐33454‐2_16 10.1016/j.neuroimage.2017.10.029 10.1016/j.neuroimage.2018.06.019 10.1016/j.neuropsychologia.2021.107847 10.3171/2014.11.jns13680 10.1093/cercor/bhn102 10.1016/j.neuroimage.2018.01.006 10.1016/j.neuroimage.2018.06.027 10.1227/neu.0000000000000466 10.1109/tmi.2007.906785 10.1227/neu.0000000000001224 10.1097/wnr.0000000000000362 10.1093/neuros/nyz259 10.1007/978-3-662-10343-2 10.1016/j.neuroimage.2012.01.021 10.1016/j.neuroimage.2014.07.061 10.3171/2017.8.jns17854 10.1016/j.neuroimage.2017.12.042 10.1016/j.nicl.2017.07.020 10.1227/01.neu.0000317368.69523.40 10.3389/fnana.2012.00034 10.1007/978-3-7091-3078-0 10.1055/s‐0028‐1087212 10.1109/embc.2016.7590899 10.1002/hbm.22836 10.1016/j.wneu.2016.06.019 10.1016/j.neuroimage.2004.07.051 10.1016/j.media.2007.06.004 10.3171/2014.12.jns142169 10.1016/j.media.2007.10.003 10.1371/journal.pone.0049790 10.1002/jmri.25866 10.1097/NEN.0b013e3182588293 10.1227/NEU.0b013e3181ff9cde 10.1007/s10143‐014‐0550‐x 10.1007/s00429‐014‐0754‐4 10.1016/j.neuroimage.2013.04.066 10.1016/j.neuroimage.2013.01.061 10.1002/hbm.24579 10.1007/s00429‐015‐1179‐4 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/nbm.5312 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Physics |
EISSN | 1099-1492 |
EndPage | n/a |
ExternalDocumentID | 39716347 10_1002_nbm_5312 NBM5312 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Zhejiang Provincial Special Support Program for High‐Level Talents funderid: 2021R52004 – fundername: Natural Science Foundation of Hunan Province funderid: 2022JJ30814 – fundername: Science and Technology Innovation Program of Hunan Province funderid: 2021SK53503 – fundername: National Natural Science Foundation of China funderid: U22A2040; U23A20334; 62403428 – fundername: Natural Science Foundation of Zhejiang Province funderid: LQ23F030017 – fundername: Science and Technology Innovation Program of Hunan Province grantid: 2021SK53503 – fundername: National Natural Science Foundation of China grantid: U22A2040 – fundername: Natural Science Foundation of Zhejiang Province grantid: LQ23F030017 – fundername: Natural Science Foundation of Hunan Province grantid: 2022JJ30814 – fundername: National Natural Science Foundation of China grantid: 62403428 – fundername: National Natural Science Foundation of China grantid: U23A20334 – fundername: Zhejiang Provincial Special Support Program for High-Level Talents grantid: 2021R52004 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3102-280c0d7d03477863cd5491e4ef298a3409fa92c00eb2e631f8528d4cf2b1722a3 |
IEDL.DBID | DR2 |
ISSN | 0952-3480 1099-1492 |
IngestDate | Fri Jul 11 03:25:39 EDT 2025 Fri Jul 25 09:53:12 EDT 2025 Wed Feb 19 01:58:45 EST 2025 Wed Oct 01 03:28:23 EDT 2025 Thu Jan 23 09:59:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | tractography brainstem automatic segmentation fiber tracts |
Language | English |
License | 2024 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3102-280c0d7d03477863cd5491e4ef298a3409fa92c00eb2e631f8528d4cf2b1722a3 |
Notes | This research was supported by the National Natural Science Foundation of China (Grant Nos. U22A2040, U23A20334, 62403428), the Science and Technology Innovation Program of Hunan Province (Grant No. 2021SK53503), the Natural Science Foundation of Hunan Province (Grant No. 2022JJ30814), the Zhejiang Provincial Special Support Program for High‐Level Talents (Grant No. 2021R52004), and the Natural Science Foundation of Zhejiang Province (Grant No. LQ23F030017). Mingchu Li and Qingrun Zeng contributed equally to this work. Funding ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6485-8178 0000-0003-1674-9369 |
PMID | 39716347 |
PQID | 3158249643 |
PQPubID | 2029982 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_3148842217 proquest_journals_3158249643 pubmed_primary_39716347 crossref_primary_10_1002_nbm_5312 wiley_primary_10_1002_nbm_5312_NBM5312 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 2025-Feb 20250201 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | NMR in biomedicine |
PublicationTitleAlternate | NMR Biomed |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 36 2007; 149 2004; 23 2015; 220 2018; 169 2016; 221 2019; 202 2016; 2016 2020; 10 2012; 15 2013; 7 2007; 35 2016; 79 2018; 47 2019; 121 2018; 130 2012; 71 2014; 5 2018; 171 2018; 170 2018; 172 2021; 156 2018; 179 2006; 27 2011; 68 2008; 62 2009; 19 2007; 26 1988 2012; 62 2018; 181 2020; 86 2020; 220 2015; 122 2015; 123 2014; 10 Suppl 4 2016; 124 2008; 12 1995 2005 2016; 93 2015; 129 2016; 125 2015; 26 2004; 52 2021; 10 2019; 40 2009; 70 2017; 16 2017; 13 2013; 74 2013; 80 2014; 37 2017 2012; 6 2012; 7 2014; 103 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_6_1 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_51_1 e_1_2_13_30_1 e_1_2_13_2_1 Lazar M. (e_1_2_13_48_1) 2006; 27 e_1_2_13_29_1 e_1_2_13_25_1 Noback C. R. (e_1_2_13_4_1) 2005 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_58_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_54_1 e_1_2_13_52_1 e_1_2_13_50_1 e_1_2_13_5_1 e_1_2_13_3_1 e_1_2_13_28_1 |
References_xml | – volume: 80 start-page: 283 year: 2013 end-page: 289 article-title: Fiber Clustering Versus the Parcellation‐Based Connectome publication-title: NeuroImage – volume: 93 start-page: 377 year: 2016 end-page: 388 article-title: The Usefulness of Diffusion Tensor Imaging and Tractography in Surgery of Brainstem Cavernous Malformations publication-title: World Neurosurgery – volume: 47 start-page: 1601 issue: 6 year: 2018 end-page: 1609 article-title: Differential Brainstem Atrophy Patterns in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders publication-title: Journal of Magnetic Resonance Imaging – volume: 7 issue: 11 year: 2012 article-title: Tract Profiles of White Matter Properties: Automating fiber‐Tract Quantification publication-title: PLoS ONE – volume: 26 start-page: 1562 issue: 11 year: 2007 end-page: 1575 article-title: Automatic Tractography Segmentation Using a High‐Dimensional White Matter Atlas publication-title: IEEE Transactions on Medical Imaging – volume: 171 start-page: 341 year: 2018 end-page: 354 article-title: Suprathreshold Fiber Cluster Statistics: Leveraging White Matter Geometry to Enhance Tractography Statistical Analysis publication-title: NeuroImage – year: 2005 – volume: 13 start-page: 138 year: 2017 end-page: 153 article-title: Automated White Matter fiber Tract Identification in Patients With Brain Tumors publication-title: NeuroImage: Clinical – volume: 156 year: 2021 article-title: Diffusion Property and Functional Connectivity of Superior Longitudinal Fasciculus Underpin Human Metacognition publication-title: Neuropsychologia – volume: 74 start-page: 117 year: 2013 end-page: 127 article-title: Feasibility of Creating a High‐Resolution 3D Diffusion Tensor Imaging Based Atlas of the Human Brainstem: A Case Study at 11.7 T publication-title: NeuroImage – volume: 62 start-page: 9 issue: 3 Suppl 1 year: 2008 end-page: 15 article-title: Microsurgical Anatomy of the Safe Entry Zones on the Anterolateral Brainstem Related to Surgical Approaches to Cavernous Malformations publication-title: Neurosurgery – volume: 6 year: 2012 article-title: Connectivity‐Based Structural and Functional Parcellation of the Human Cortex Using Diffusion Imaging and Tractography publication-title: Frontiers in Neuroanatomy – volume: 36 start-page: 3167 issue: 8 year: 2015 end-page: 3178 article-title: Postmortem Diffusion MRI of the Human Brainstem and Thalamus for Deep Brain Stimulator Electrode Localization publication-title: Human Brain Mapping – volume: 23 start-page: S208 issue: Suppl 1 year: 2004 end-page: S219 article-title: Advances in Functional and Structural MR Image Analysis and Implementation as FSL publication-title: NeuroImage – volume: 23 start-page: 1176 issue: 3 year: 2004 end-page: 1185 article-title: Direct Estimation of the Fiber Orientation Density Function From Diffusion‐Weighted MRI Data Using Spherical Deconvolution publication-title: NeuroImage – volume: 179 start-page: 429 year: 2018 end-page: 447 article-title: An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation Across the Lifespan publication-title: NeuroImage – volume: 7 issue: 400 year: 2013 article-title: Imaging White Matter in Human Brainstem publication-title: Frontiers in Human Neuroscience – volume: 123 start-page: 1133 issue: 5 year: 2015 end-page: 1144 article-title: Longitudinal Evaluation of Corticospinal Tract in Patients With Resected Brainstem Cavernous Malformations Using High‐Definition Fiber Tractography and Diffusion Connectometry Analysis: Preliminary Experience publication-title: Journal of Neurosurgery – volume: 71 start-page: 531 issue: 6 year: 2012 end-page: 546 article-title: Neuroanatomic Connectivity of the Human Ascending Arousal System Critical to Consciousness and Its Disorders publication-title: Journal of Neuropathology and Experimental Neurology – volume: 40 start-page: 3041 issue: 10 year: 2019 end-page: 3057 article-title: Test–Retest Reproducibility of White Matter Parcellation Using Diffusion MRI Tractography Fiber Clustering publication-title: Human Brain Mapping – volume: 12 start-page: 26 issue: 1 year: 2008 end-page: 41 article-title: Symmetric Diffeomorphic Image Registration With Cross‐Correlation: Evaluating Automated Labeling of Elderly and Neurodegenerative Brain publication-title: Medical Image Analysis – volume: 169 start-page: 227 year: 2018 end-page: 239 article-title: A Probabilistic Atlas of Human Brainstem Pathways Based on Connectome Imaging Data publication-title: NeuroImage – volume: 103 start-page: 411 year: 2014 end-page: 426 article-title: Multi‐Tissue Constrained Spherical Deconvolution for Improved Analysis of Multi‐Shell Diffusion MRI Data publication-title: NeuroImage – volume: 16 start-page: 222 year: 2017 end-page: 233 article-title: A Test‐Retest Study on Parkinson's PPMI Dataset Yields Statistically Significant White Matter Fascicles publication-title: NeuroImage. Clinical – volume: 124 start-page: 724 issue: Pt A year: 2016 end-page: 732 article-title: A Probabilistic Atlas of the Cerebellar White Matter publication-title: NeuroImage – volume: 221 start-page: 4705 issue: 9 year: 2016 end-page: 4721 article-title: The White Matter Query Language: A Novel Approach for Describing Human White Matter Anatomy publication-title: Brain Structure & Function – volume: 10 year: 2021 article-title: Bundle‐Specific Associations Between White Matter Microstructure and Aβ and tau Pathology in Preclinical Alzheimer's Disease publication-title: eLife – volume: 220 start-page: 1695 issue: 3 year: 2015 end-page: 1703 article-title: Spatial Normalization of Ultrahigh Resolution 7 T Magnetic Resonance Imaging Data of the Postmortem Human Subthalamic Nucleus: A Multistage Approach publication-title: Brain Structure & Function – volume: 26 start-page: 411 issue: 7 year: 2015 end-page: 415 article-title: Brainstem Morphological Changes in Alzheimer's Disease publication-title: Neuroreport – volume: 19 start-page: 524 issue: 3 year: 2009 end-page: 536 article-title: Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using in Vivo Diffusion Tensor Imaging Tractography publication-title: Cerebral Cortex – volume: 12 start-page: 191 issue: 2 year: 2008 end-page: 202 article-title: A Unified Framework for Clustering and Quantitative Analysis of White Matter fiber Tracts publication-title: Medical Image Analysis – volume: 149 start-page: 1117 issue: 11 year: 2007 end-page: 1131 article-title: Diffusion Tensor Imaging and White Matter Tractography in Patients With Brainstem Lesions publication-title: Acta Neurochirurgica – volume: 181 start-page: 16 year: 2018 end-page: 29 article-title: Investigation Into Local White Matter Abnormality in Emotional Processing and Sensorimotor Areas Using an Automatically Annotated fiber Clustering in Major Depressive Disorder publication-title: NeuroImage – volume: 35 start-page: 1459 issue: 4 year: 2007 end-page: 1472 article-title: Robust Determination of the Fibre Orientation Distribution in Diffusion MRI: Non‐Negativity Constrained Super‐Resolved Spherical Deconvolution publication-title: NeuroImage – volume: 5 start-page: 4932 year: 2014 article-title: Lifespan Maturation and Degeneration of Human Brain White Matter publication-title: Nature Communications – volume: 10 start-page: 17149 issue: 1 year: 2020 article-title: Bundle Analytics, a Computational Framework for Investigating the Shapes and Profiles of Brain Pathways Across Populations publication-title: Scientific Reports – volume: 125 start-page: 1063 year: 2016 end-page: 1078 article-title: An Integrated Approach to Correction for Off‐Resonance Effects and Subject Movement in Diffusion MR Imaging publication-title: NeuroImage – volume: 172 start-page: 826 year: 2018 end-page: 837 article-title: Whole Brain White Matter Connectivity Analysis Using Machine Learning: An Application to Autism publication-title: NeuroImage – volume: 15 start-page: 123 issue: Pt 3 year: 2012 end-page: 130 article-title: Unbiased Groupwise Registration of White Matter Tractography publication-title: Medical Image Computing and Computer‐Assisted Intervention – volume: 121 start-page: 1856 issue: 5 year: 2019 end-page: 1864 article-title: Neurophysiology of the Brain Stem in Parkinson's Disease publication-title: Journal of Neurophysiology – volume: 70 start-page: 27 issue: 1 year: 2009 end-page: 35 article-title: Fiber Tracking With Distinct Software Tools Results in a Clear Diversity in Anatomical Fiber Tract Portrayal publication-title: Central European Neurosurgery – volume: 27 start-page: 1258 issue: 6 year: 2006 end-page: 1271 article-title: White Matter Reorganization After Surgical Resection of Brain Tumors and Vascular Malformations publication-title: AJNR. American Journal of Neuroradiology – volume: 68 start-page: 403 issue: 2 year: 2011 end-page: 414 article-title: Advances in the Treatment and Outcome of Brainstem Cavernous Malformation Surgery: A Single‐Center Case Series of 300 Surgically Treated Patients publication-title: Neurosurgery – volume: 10 Suppl 4 start-page: 602 year: 2014 end-page: 619 article-title: Three‐Dimensional Microsurgical Anatomy and the Safe Entry Zones of the Brainstem publication-title: Neurosurgery – volume: 52 start-page: 559 issue: 3 year: 2004 end-page: 565 article-title: Analysis of Noise Effects on DTI‐Based Tractography Using the Brute‐Force and Multi‐ROI Approach publication-title: Magnetic Resonance in Medicine – volume: 130 start-page: 286 issue: 1 year: 2018 end-page: 301 article-title: Surgical Outcome of Motor Deficits and Neurological Status in Brainstem Cavernous Malformations Based on Preoperative Diffusion Tensor Imaging: A Prospective Randomized Clinical Trial publication-title: Journal of Neurosurgery – start-page: 796 year: 2017 end-page: 799 – volume: 202 year: 2019 article-title: MRtrix3: A Fast, Flexible and Open Software Framework for Medical Image Processing and Visualisation publication-title: NeuroImage – volume: 170 start-page: 283 year: 2018 end-page: 295 article-title: Recognition of White Matter Bundles Using Local and Global Streamline‐Based Registration and Clustering publication-title: NeuroImage – volume: 86 start-page: 665 issue: 5 year: 2020 end-page: 675 article-title: Utility of a Quantitative Approach Using Diffusion Tensor Imaging for Prognostication Regarding Motor and Functional Outcomes in Patients With Surgically Resected Deep Intracranial Cavernous Malformations publication-title: Neurosurgery – year: 1988 – volume: 79 start-page: 437 issue: 3 year: 2016 end-page: 455 article-title: Human Connectome‐Based Tractographic Atlas of the Brainstem Connections and Surgical Approaches publication-title: Neurosurgery – volume: 129 start-page: 44 year: 2015 end-page: 49 article-title: Comparison of Seeding Methods for Visualization of the Corticospinal Tracts Using Single Tensor Tractography publication-title: Clinical Neurology and Neurosurgery – year: 1995 – volume: 62 start-page: 774 issue: 2 year: 2012 end-page: 781 article-title: FreeSurfer publication-title: NeuroImage – volume: 2016 start-page: 1115 year: 2016 end-page: 1119 article-title: Creation of a Whole Brain Short Association Bundle Atlas Using a Hybrid Approach publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 124 start-page: 1359 issue: 5 year: 2016 end-page: 1376 article-title: Microsurgical Anatomy of Safe Entry Zones to the Brainstem publication-title: Journal of Neurosurgery – volume: 37 start-page: 481 issue: 3 year: 2014 end-page: 491 article-title: Brainstem Cavernoma Surgery With the Support of Pre‐ and Postoperative Diffusion Tensor Imaging: Initial Experiences and Clinical Course of 23 Patients publication-title: Neurosurgical Review – volume: 220 year: 2020 article-title: Creation of a Novel Trigeminal Tractography Atlas for Automated Trigeminal Nerve Identification publication-title: NeuroImage – volume: 122 start-page: 653 issue: 3 year: 2015 end-page: 662 article-title: The Utility of Preoperative Diffusion Tensor Imaging in the Surgical Management of Brainstem Cavernous Malformations publication-title: Journal of Neurosurgery – ident: e_1_2_13_8_1 doi: 10.3171/2015.4.jns141945 – ident: e_1_2_13_14_1 doi: 10.1007/s00701‐007‐1282‐2 – ident: e_1_2_13_28_1 doi: 10.1109/ISBI.2017.7950638 – ident: e_1_2_13_20_1 doi: 10.1016/j.neuroimage.2015.09.014 – ident: e_1_2_13_33_1 doi: 10.1016/j.nicl.2016.11.023 – ident: e_1_2_13_49_1 doi: 10.7554/eLife.62929 – ident: e_1_2_13_30_1 doi: 10.1038/ncomms5932 – ident: e_1_2_13_52_1 doi: 10.1016/j.neuroimage.2020.117063 – ident: e_1_2_13_5_1 doi: 10.1152/jn.00056.2019 – ident: e_1_2_13_32_1 doi: 10.1016/j.neuroimage.2017.07.015 – ident: e_1_2_13_40_1 doi: 10.1016/j.neuroimage.2015.10.019 – ident: e_1_2_13_23_1 doi: 10.1016/j.clineuro.2014.11.021 – ident: e_1_2_13_39_1 doi: 10.1016/j.neuroimage.2019.116137 – ident: e_1_2_13_60_1 doi: 10.3389/fnhum.2013.00400 – ident: e_1_2_13_11_1 doi: 10.1016/j.neuroimage.2007.02.016 – ident: e_1_2_13_31_1 doi: 10.1038/s41598‐020‐74054‐4 – ident: e_1_2_13_12_1 doi: 10.1016/j.neuroimage.2004.07.037 – ident: e_1_2_13_22_1 doi: 10.1002/mrm.20147 – ident: e_1_2_13_46_1 doi: 10.1007/978‐3‐642‐33454‐2_16 – ident: e_1_2_13_37_1 doi: 10.1016/j.neuroimage.2017.10.029 – ident: e_1_2_13_36_1 doi: 10.1016/j.neuroimage.2018.06.019 – ident: e_1_2_13_50_1 doi: 10.1016/j.neuropsychologia.2021.107847 – ident: e_1_2_13_53_1 doi: 10.3171/2014.11.jns13680 – ident: e_1_2_13_27_1 doi: 10.1093/cercor/bhn102 – ident: e_1_2_13_38_1 doi: 10.1016/j.neuroimage.2018.01.006 – ident: e_1_2_13_43_1 doi: 10.1016/j.neuroimage.2018.06.027 – volume: 27 start-page: 1258 issue: 6 year: 2006 ident: e_1_2_13_48_1 article-title: White Matter Reorganization After Surgical Resection of Brain Tumors and Vascular Malformations publication-title: AJNR. American Journal of Neuroradiology – ident: e_1_2_13_10_1 doi: 10.1227/neu.0000000000000466 – ident: e_1_2_13_35_1 doi: 10.1109/tmi.2007.906785 – ident: e_1_2_13_18_1 doi: 10.1227/neu.0000000000001224 – ident: e_1_2_13_7_1 doi: 10.1097/wnr.0000000000000362 – ident: e_1_2_13_56_1 doi: 10.1093/neuros/nyz259 – ident: e_1_2_13_3_1 doi: 10.1007/978-3-662-10343-2 – ident: e_1_2_13_45_1 doi: 10.1016/j.neuroimage.2012.01.021 – ident: e_1_2_13_17_1 doi: 10.1016/j.neuroimage.2014.07.061 – ident: e_1_2_13_55_1 doi: 10.3171/2017.8.jns17854 – ident: e_1_2_13_19_1 doi: 10.1016/j.neuroimage.2017.12.042 – ident: e_1_2_13_47_1 doi: 10.1016/j.nicl.2017.07.020 – ident: e_1_2_13_9_1 doi: 10.1227/01.neu.0000317368.69523.40 – ident: e_1_2_13_24_1 doi: 10.3389/fnana.2012.00034 – ident: e_1_2_13_2_1 doi: 10.1007/978-3-7091-3078-0 – ident: e_1_2_13_21_1 doi: 10.1055/s‐0028‐1087212 – volume-title: The Human Nervous System. Structure and Function year: 2005 ident: e_1_2_13_4_1 – ident: e_1_2_13_51_1 doi: 10.1109/embc.2016.7590899 – ident: e_1_2_13_58_1 doi: 10.1002/hbm.22836 – ident: e_1_2_13_54_1 doi: 10.1016/j.wneu.2016.06.019 – ident: e_1_2_13_41_1 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_2_13_42_1 doi: 10.1016/j.media.2007.06.004 – ident: e_1_2_13_15_1 doi: 10.3171/2014.12.jns142169 – ident: e_1_2_13_34_1 doi: 10.1016/j.media.2007.10.003 – ident: e_1_2_13_29_1 doi: 10.1371/journal.pone.0049790 – ident: e_1_2_13_6_1 doi: 10.1002/jmri.25866 – ident: e_1_2_13_59_1 doi: 10.1097/NEN.0b013e3182588293 – ident: e_1_2_13_13_1 doi: 10.1227/NEU.0b013e3181ff9cde – ident: e_1_2_13_16_1 doi: 10.1007/s10143‐014‐0550‐x – ident: e_1_2_13_61_1 doi: 10.1007/s00429‐014‐0754‐4 – ident: e_1_2_13_25_1 doi: 10.1016/j.neuroimage.2013.04.066 – ident: e_1_2_13_57_1 doi: 10.1016/j.neuroimage.2013.01.061 – ident: e_1_2_13_44_1 doi: 10.1002/hbm.24579 – ident: e_1_2_13_26_1 doi: 10.1007/s00429‐015‐1179‐4 |
SSID | ssj0008432 |
Score | 2.4379814 |
Snippet | ABSTRACT
This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic... This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e5312 |
SubjectTerms | Adult automatic segmentation Automation Brain stem Brain Stem - diagnostic imaging brainstem Cerebellum Clusters Connectome Diffusion Tensor Imaging - methods Female fiber tracts Humans Lemniscus (medial) Male Middle Aged Pyramidal tracts Reconstruction Segmentation Substantia alba tractography White Matter - diagnostic imaging Young Adult |
Title | Automated White Matter Fiber Tract Segmentation for the Brainstem |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.5312 https://www.ncbi.nlm.nih.gov/pubmed/39716347 https://www.proquest.com/docview/3158249643 https://www.proquest.com/docview/3148842217 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0952-3480 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008432 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hJFouQFNoUyhaJNSbw74c1seAGiGkcOAhIfVg7cscEE7VJBd-fWfWdoBWSIiTZXnt8e7s45vdmW8ADvPCFEFGmzleoYGio85MgbdCOOFjLvnQ0n7H5GJ4dqPPb_Pb1quSYmEafojlhhuNjDRf0wC3bnb0jDTUPQywA9H0K1SeTmgvn5ijjE65yRBAyExpwzveWS6PuhdfrkT_wcuXaDUtN-NN-NX9aONlcj9YzN3AP_7D4fi-mmzBRotC2ajpNp9gJdY9-HjaJX_rwYdJe-beg7XkJOpnn2E0WsyniHBjYCmvHpskck42Jq8Tdk3xVuwq3j204Uw1Q0DMEGCyE8pDQYzR23Az_nl9epa1KRgyj7iPAre55-E4cKWJaE75gPakiDpWsjBWoXFY2UJ6ztFAj0MlKpNLE7SvpENkJK3agdV6WsevwIg5Dq0_L8motEI6HlRlh6IKoTDeHffhoFNH-bth2igbTmVZYguV1EJ92Ov0VLZjbVYqkRs0IhFa4SeWj7G96OjD1nG6oDI4UWkUjWK-NPpdClHEooX168OPpKVXpZcXJxO6fntrwV1Yl5QuODl578Hq_M8ifkcMM3f7qbf-BfdQ6ag |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hqgIXHsujS6EYCXHL4tjO4qinhXa1BbIHWCQOSFFiOxwQ2Qp2L_31zDjJUqiQKk5RFCeOPR77G3vmG4CDKNaxFS4Lcl6ggaKcCnSMt2GYh8ZFgncz2u9Iht3BtTq7iW7m4HsTC1PxQ8w23Egz_HxNCk4b0kd_sYbmDx0cQTj_fqLjOdLKH5cv3FFa-exkCCFEIJXmDfMsF0fNm6_Xon8A5mu86hec_grcNr9a-Zncd6aTvGP-vGFx_GBbVmG5BqKsV42cNZhzZQsWT5v8by1YSOpj9xZ89n6i5mkder3pZIwg11nmU-uxxPNzsj45nrARhVyxK3f3UEc0lQwxMUOMyU4oFQWRRm_Adf_n6HQQ1FkYAoPQj2K3ueH22HKpiGtOGosmZeiUK0SsM4n2YZHFwnCONrrryrDQkdBWmULkCI5EJjdhvhyX7gswIo9DA9AIsiuzUOTcyiLrhoW1sTb5cRv2G3mkvyuyjbSiVRYp9lBKPdSGnUZQaa1uT6kMI412JKIr_MTsMfYXnX5kpRtPqQzOVQqrxmq2KgHPKpFEpIXta8OhF9O7tafDk4Su2_9bcA8WB6PkIr34NTz_CkuCsgd7n-8dmJ88Tt0uQppJ_s0P3WefUO3E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKigXCkuBbXm4UsUtu47tZJ3j8ljx2lXVgoTEIUpshwMii9jdS399Z5xkW4qQEKcoipOJPX58Y898A_A9SnRihcuCnBdooCinAp3gbRjmoXGR4HFG-x3DUXx6rc5vopvaq5JiYSp-iPmGG40MP1_TAH-0Rfcf0tD8oYMdCKffDypG44oA0c-_1FFa-eRkiCBEIJXmDfEsF93mzedL0Qt8-Ryu-vVm8Alumz-t3EzuO7Np3jG__yNxfF9V1mC1hqGsX_WbdVhwZQs-HjXZ31qwPKwP3Vuw5L1EzWQD-v3ZdIwQ11nmE-uxoWfnZANyO2FXFHDFfrm7hzqeqWSIiBkiTHZIiSiIMvozXA9Oro5OgzoHQ2AQ-FHkNjfc9iyXipjmpLFoUIZOuUIkOpNoHRZZIgznaKG7WIaFjoS2yhQiR2gkMrkJi-W4dNvAiDoOzT8jyKrMQpFzK4ssDgtrE23yXhu-NepIHyuqjbQiVRYptlBKLdSGnUZPaT3YJqkMI41WJGIr_MT8MbYXnX1kpRvPqAzOVApFo5itSr9zIZJotLB-bTjwWnpVejo6HNL1y1sL7sPyj-NBenk2uvgKK4JSB3uH7x1YnD7N3C7imWm-5zvuH-IN7HM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+White+Matter+Fiber+Tract+Segmentation+for+the+Brainstem&rft.jtitle=NMR+in+biomedicine&rft.au=Li%2C+Mingchu&rft.au=Zeng%2C+Qingrun&rft.au=Zhang%2C+Jiawei&rft.au=Huang%2C+Ying&rft.date=2025-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=38&rft.issue=2&rft_id=info:doi/10.1002%2Fnbm.5312&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |