Simultaneous giant strain and electrostrictive coefficient in lead-free BNT-ST-BT ergodic relaxor thin films on Pt/TiO2/SiO2/Si substrates

The acquisition of hysteresis-free and large electrostrain in lead-free piezoelectric thin films is the key issue for the development of high-performance micro actuators. The electrostrictive effect is an appropriate choice for developing hysteresis-free electrostrain. Lead-free ferroelectric compou...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 1008; p. 176514
Main Authors Zhao, Jinyan, Li, Yizhuo, Wang, Zhe, Chen, Chuying, Zhang, Nan, Quan, Yi, Zheng, Kun, Wang, Lingyan, Wang, Genshui, Li, Xin, Zhao, Yulong, Niu, Gang, Ren, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2024
Subjects
Online AccessGet full text
ISSN0925-8388
DOI10.1016/j.jallcom.2024.176514

Cover

Abstract The acquisition of hysteresis-free and large electrostrain in lead-free piezoelectric thin films is the key issue for the development of high-performance micro actuators. The electrostrictive effect is an appropriate choice for developing hysteresis-free electrostrain. Lead-free ferroelectric compound Bi1/2Na1/2TiO3 has great potential in realizing large electrostrain response and electrostrictive coefficient. In this work, (0.8-x)Bi1/2Na1/2TiO3-0.2SrTiO3-xBaTiO3 (BNT-ST-100xBT) thin films were prepared by chemical solution deposition method. The crystal structure, morphology, dielectric properties, electrostrictive effect, dielectric nonlinearity, ferroelectric properties, and electrostrain response were systematically investigated. The most significant electrostrictive effect was obtained in the ergodic relaxor BNT-ST-6BT thin film, i.e., a giant electrostrictive coefficient of 0.21 m4/C2. Meanwhile, by increasing the applied electric field, a linearly increasing strain and the maximum value of 0.82 % were obtained in this film. This work has made an important step in the electrostrictive effect study and provides a pathway to obtain hysteresis-free electrostrain in lead-free perovskite ferroelectric thin films. •A super high electrostrictive coefficient of 0.21 m4/C2 was obtained in the high-quality ergodic relaxor thin films.•The significant electrostrictive effect benefits from the large strain and low polarization intensity.•This work provides a pathway to obtain hysteresis-free electrostrain in lead-free perovskite ferroelectric thin films.
AbstractList The acquisition of hysteresis-free and large electrostrain in lead-free piezoelectric thin films is the key issue for the development of high-performance micro actuators. The electrostrictive effect is an appropriate choice for developing hysteresis-free electrostrain. Lead-free ferroelectric compound Bi1/2Na1/2TiO3 has great potential in realizing large electrostrain response and electrostrictive coefficient. In this work, (0.8-x)Bi1/2Na1/2TiO3-0.2SrTiO3-xBaTiO3 (BNT-ST-100xBT) thin films were prepared by chemical solution deposition method. The crystal structure, morphology, dielectric properties, electrostrictive effect, dielectric nonlinearity, ferroelectric properties, and electrostrain response were systematically investigated. The most significant electrostrictive effect was obtained in the ergodic relaxor BNT-ST-6BT thin film, i.e., a giant electrostrictive coefficient of 0.21 m4/C2. Meanwhile, by increasing the applied electric field, a linearly increasing strain and the maximum value of 0.82 % were obtained in this film. This work has made an important step in the electrostrictive effect study and provides a pathway to obtain hysteresis-free electrostrain in lead-free perovskite ferroelectric thin films. •A super high electrostrictive coefficient of 0.21 m4/C2 was obtained in the high-quality ergodic relaxor thin films.•The significant electrostrictive effect benefits from the large strain and low polarization intensity.•This work provides a pathway to obtain hysteresis-free electrostrain in lead-free perovskite ferroelectric thin films.
ArticleNumber 176514
Author Wang, Zhe
Zheng, Kun
Zhang, Nan
Niu, Gang
Wang, Genshui
Ren, Wei
Li, Xin
Wang, Lingyan
Zhao, Yulong
Li, Yizhuo
Quan, Yi
Chen, Chuying
Zhao, Jinyan
Author_xml – sequence: 1
  givenname: Jinyan
  surname: Zhao
  fullname: Zhao, Jinyan
  email: zhaojy7@xjtu.edu.cn
  organization: State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 2
  givenname: Yizhuo
  surname: Li
  fullname: Li, Yizhuo
  organization: State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 3
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: School of Materials Science and Engineering, Laboratory of Sensitive Materials and Devices, Shandong Department of Education, Liaocheng University, Liaocheng 252059, China
– sequence: 4
  givenname: Chuying
  surname: Chen
  fullname: Chen, Chuying
  organization: State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 5
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  organization: State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 6
  givenname: Yi
  surname: Quan
  fullname: Quan, Yi
  organization: School of Microelectronics, Xidian University, Xi’an 710071, China
– sequence: 7
  givenname: Kun
  surname: Zheng
  fullname: Zheng, Kun
  organization: State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 8
  givenname: Lingyan
  surname: Wang
  fullname: Wang, Lingyan
  organization: State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 9
  givenname: Genshui
  surname: Wang
  fullname: Wang, Genshui
  organization: Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
– sequence: 10
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
– sequence: 11
  givenname: Yulong
  surname: Zhao
  fullname: Zhao, Yulong
  organization: State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 12
  givenname: Gang
  surname: Niu
  fullname: Niu, Gang
  email: gangniu@mail.xjtu.edu.cn
  organization: State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 13
  givenname: Wei
  surname: Ren
  fullname: Ren, Wei
  email: wren@mail.xjtu.edu.cn
  organization: State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
BookMark eNqFkM1KAzEUhbOoYKs-gpAXmDbJ_ONCbPEPihU6rkMmc1MzpBNJ0qKv4FM7w3Tlppt74XLOuZxvhiad7QChW0rmlNBs0c5bYYy0-zkjLJnTPEtpMkFTUrI0KuKiuEQz71tCCC1jOkW_W70_mCA6sAePd1p0AfvghO6w6BoMBmRwtr9oGfQRsLSglJYael2vMSCaSDkAvHyrom0VLSsMbmcbLbEDI76tw-GzFypt9h7bDr-HRaU3bLEdB_aHevgXwF-jCyWMh5vTvkIfT4_V6iVab55fVw_rSMakDJGqi7wgMci8lpnKFUkgYyXkDatZzKCmpGzSpCgaECxPSU0oFFRBLjJGUkaz-AqlY67si3kHin85vRfuh1PCB4i85SeIfIDIR4i97-6fT-oggrbdwMucdd-PbuirHTU47geKEhrtesa8sfpMwh8QzJb9
CitedBy_id crossref_primary_10_1039_D4TA08169B
Cites_doi 10.1016/j.actamat.2019.10.034
10.1002/adma.200500951
10.1016/j.mseb.2022.115828
10.1016/j.jallcom.2022.165340
10.1016/j.ceramint.2016.05.014
10.1016/j.cej.2023.142862
10.1111/jace.16825
10.1007/BF02402772
10.1016/j.tsf.2013.09.017
10.1063/5.0079510
10.1063/1.5006732
10.1063/1.1371002
10.1080/00150199508208266
10.1063/1.1331339
10.1063/1.1431432
10.1080/00150198008226061
10.1103/PhysRevB.51.2651
10.1039/C9TA03140E
10.1007/s10854-019-02194-z
10.1038/nature03028
10.1080/00150198008018801
10.1016/j.pmatsci.2021.100836
10.1016/j.pmatsci.2018.06.002
10.1063/1.4876746
10.1002/crat.201700157
10.1111/jace.12712
10.1039/C9TC04864B
10.1007/s10853-018-2186-7
10.1063/5.0035466
10.1039/C9TA12244C
10.1063/1.1409573
10.1063/1.4861260
10.1063/1.3497193
10.1002/adma.200901516
10.1021/acsami.3c11432
10.1016/j.nanoen.2022.107276
10.1016/j.jeurceramsoc.2023.05.014
10.1016/j.jeurceramsoc.2021.04.002
10.1016/j.jeurceramsoc.2020.05.020
10.1142/S2010135X13500070
10.1021/acsami.7b04033
10.1088/2053-1591/ab51b4
10.1016/j.mser.2018.08.001
10.1007/s10904-022-02418-6
10.1016/j.ceramint.2018.12.009
10.1016/j.jeurceramsoc.2021.11.037
10.1007/s40145-022-0628-9
10.1111/jace.18227
10.1007/s10832-012-9771-y
10.1016/j.matlet.2016.08.076
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jallcom.2024.176514
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
ExternalDocumentID 10_1016_j_jallcom_2024_176514
S0925838824031013
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SMS
T9H
WUQ
~HD
ID FETCH-LOGICAL-c309t-fb87803ec7bc6f7f04e629e7d2b232eb109d5488dea2750b01e81fe7a62052163
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Wed Oct 01 04:45:36 EDT 2025
Thu Apr 24 23:02:25 EDT 2025
Sat Nov 02 16:00:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrostrictive strain
Electrostrictive coefficient
Lead-free
Thin film
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-fb87803ec7bc6f7f04e629e7d2b232eb109d5488dea2750b01e81fe7a62052163
ParticipantIDs crossref_primary_10_1016_j_jallcom_2024_176514
crossref_citationtrail_10_1016_j_jallcom_2024_176514
elsevier_sciencedirect_doi_10_1016_j_jallcom_2024_176514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-15
PublicationDateYYYYMMDD 2024-12-15
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of alloys and compounds
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yanli, Chunlin, Jiagang (bib3) 2022; 50
Zhang, Jing, Du, Huang, Hu, Sun, Chang, Alikin, Wei, Cao, Shur, Zhang, Damjanovic, Jin (bib23) 2023; 15
Hao, Li, Zhai, Chen (bib2) 2019; 135
Zhang, Zhao, Yang, Li, Tang, Wang, Wei, Liu, Yan, Jin (bib37) 2023; 465
Yao, Zhou, Li, Xiao, Yuan, Xu, Chen, Rao (bib24) 2022; 283
Deng, Wu (bib18) 2021; 41
Zhao, Ren, Niu, Zhang, Dong, Wang, Liu, Shi, Ye (bib30) 2017; 9
Sorge, Hauke, Klee (bib46) 1995; 163
Viola, Saunders, Wei, Chong, Luo, Reece, Yan (bib16) 2013; 03
Jin, Luo, Jing, Qiao, Pang, Du, Zhang, Hu, Tian, Wei, Liu, Yan (bib11) 2019; 45
Qi, Zuo (bib13) 2020; 8
Supriya (bib15) 2022; 32
Praharaj, Rout, Subramanian, Kang (bib26) 2016; 42
Leung, Liu, Kyonka (bib12) 1980; 27
Zhao, Niu, Ren, Wang, Zhang, Sun, Wang, Shi, Liu, Zhao (bib29) 2020; 40
Kighelman, Damjanovic, Setter (bib44) 2001; 90
Kholkin, Akdogan, Safari, Chauvy, Setter (bib47) 2001; 89
Shi, Fan, Liu, Bell, Roedel (bib40) 2013; 97
Fan, Liu, Ma, Tan, Zhang, Zhang, Zhou, Salamon, Zhang, Zhang, Nan, Zhang (bib20) 2021; 7
Li, Liu, Ke, Liu, He, Shi, Ren, Wang, Lou (bib33) 2020; 182
Sharifzadeh Mirshekarloo, Yao, Sritharan (bib42) 2010; 97
Saito, Takao, Tani, Nonoyama, Takatori, Homma, Nagaya, Nakamura (bib14) 2004; 432
Uchino, Nomura, Cross, Newnham, Jang (bib10) 1981; 16
Zhou, Yang, Xue, Luo, Zhang (bib38) 2022; 11
He, Lu, Li, Wang, Li, Lu, Lu (bib49) 2020; 8
Yu, Janolin (bib32) 2022; 131
Zheng, Wu, Xiao, Zhu (bib1) 2018; 98
Kighelman, Damjanovic, Cantoni, Setter (bib45) 2002; 91
Ang, Yu (bib4) 2005; 18
Yin, Liu, Zhao, Huang, Li, Zhang, Wang, Wu (bib17) 2019; 7
Nadaud, Borderon, Renoud, Bah, Ginestar, Gundel (bib8) 2022; 914
Prado, Ramajo, Camargo, del Campo, Öchsner, Rubio-Marcos, Castro (bib28) 2019; 30
Sapper, Novak, Jo, Granzow, Rödel (bib36) 2014; 115
Wu, Song, Li, Chen, Shen, Zhai (bib35) 2019; 103
Zhao, Zhang, Quan, Niu, Ren, Wang, Zheng, Zhao, Ye (bib52) 2021; 129
Liu, Zheng, Liu, Zhou, Huang (bib48) 2012; 29
Wang, Liu, Xue, Yin, Wu (bib34) 2021; 105
Wang, Zhao, Niu, Zhang, Zheng, Quan, Wang, Zhuang, Wang, Li, Cai, Liu, Jiang, Zhao, Ren (bib54) 2023; 43
Zhang, Kounga, Jo, Jamin, Seifert, Granzow, Rödel, Damjanovic (bib7) 2009; 21
Wang, Zhao, Zhang, Ren, Zheng, Quan, Zhuang, Zhang, Jiang, Wang, Niu, Liu, Jiang, Zhao, Ye (bib53) 2023; 9
Zheng, Liu, Peng, Liu, Gong, Zhou, Huang (bib21) 2013; 548
Li, Jin, Xu, Zhang (bib51) 2014; 1
Newnham (bib6) 2005
Ullah, Gul, Ullah, Sheeraz, Bae, Jo, Ahn, Kim, Kim (bib39) 2018; 6
Kighelman, Damjanovic, Setter (bib43) 2001; 89
shen, Liu, Wang, Yu, Sun, Lyu (bib50) 2019; 6
Praharaj, Rout, Kang, Kim (bib27) 2016; 184
Zhu, Gao, Shi, Kang, Kang, Qiao, Zhao, Wang, Yuan, Lou (bib41) 2022; 98
Zhang, Jing, Huang, Hu, Alikin, Shur, Wang, Wei, Zhang, Liu, Jin (bib22) 2022; 42
He, Chen, Wang, Wei, Chen (bib31) 2018; 53
Dai, Li, Viehland (bib5) 1995; 51
Cross, Jang, Newnham, Nomura, Uchino (bib9) 1980; 23
Wang, Zhou, Li, Zeng, Xu, Chen, Yuan, Rao (bib25) 2018; 53
Zhou, Xue, Luo, Bowen, Zhang (bib19) 2021; 122
Uchino (10.1016/j.jallcom.2024.176514_bib10) 1981; 16
Zhou (10.1016/j.jallcom.2024.176514_bib19) 2021; 122
Praharaj (10.1016/j.jallcom.2024.176514_bib26) 2016; 42
Li (10.1016/j.jallcom.2024.176514_bib51) 2014; 1
Wang (10.1016/j.jallcom.2024.176514_bib54) 2023; 43
Zhao (10.1016/j.jallcom.2024.176514_bib52) 2021; 129
Zhang (10.1016/j.jallcom.2024.176514_bib7) 2009; 21
Zhang (10.1016/j.jallcom.2024.176514_bib23) 2023; 15
Wang (10.1016/j.jallcom.2024.176514_bib53) 2023; 9
Li (10.1016/j.jallcom.2024.176514_bib33) 2020; 182
Viola (10.1016/j.jallcom.2024.176514_bib16) 2013; 03
Kighelman (10.1016/j.jallcom.2024.176514_bib45) 2002; 91
Liu (10.1016/j.jallcom.2024.176514_bib48) 2012; 29
Sorge (10.1016/j.jallcom.2024.176514_bib46) 1995; 163
He (10.1016/j.jallcom.2024.176514_bib31) 2018; 53
Ullah (10.1016/j.jallcom.2024.176514_bib39) 2018; 6
Wang (10.1016/j.jallcom.2024.176514_bib34) 2021; 105
Hao (10.1016/j.jallcom.2024.176514_bib2) 2019; 135
Kighelman (10.1016/j.jallcom.2024.176514_bib44) 2001; 90
Jin (10.1016/j.jallcom.2024.176514_bib11) 2019; 45
Wu (10.1016/j.jallcom.2024.176514_bib35) 2019; 103
Sharifzadeh Mirshekarloo (10.1016/j.jallcom.2024.176514_bib42) 2010; 97
He (10.1016/j.jallcom.2024.176514_bib49) 2020; 8
Ang (10.1016/j.jallcom.2024.176514_bib4) 2005; 18
Yu (10.1016/j.jallcom.2024.176514_bib32) 2022; 131
Praharaj (10.1016/j.jallcom.2024.176514_bib27) 2016; 184
Qi (10.1016/j.jallcom.2024.176514_bib13) 2020; 8
Yao (10.1016/j.jallcom.2024.176514_bib24) 2022; 283
shen (10.1016/j.jallcom.2024.176514_bib50) 2019; 6
Dai (10.1016/j.jallcom.2024.176514_bib5) 1995; 51
Yanli (10.1016/j.jallcom.2024.176514_bib3) 2022; 50
Shi (10.1016/j.jallcom.2024.176514_bib40) 2013; 97
Prado (10.1016/j.jallcom.2024.176514_bib28) 2019; 30
Leung (10.1016/j.jallcom.2024.176514_bib12) 1980; 27
Sapper (10.1016/j.jallcom.2024.176514_bib36) 2014; 115
Zhou (10.1016/j.jallcom.2024.176514_bib38) 2022; 11
Saito (10.1016/j.jallcom.2024.176514_bib14) 2004; 432
Zhu (10.1016/j.jallcom.2024.176514_bib41) 2022; 98
Kholkin (10.1016/j.jallcom.2024.176514_bib47) 2001; 89
Zhao (10.1016/j.jallcom.2024.176514_bib30) 2017; 9
Deng (10.1016/j.jallcom.2024.176514_bib18) 2021; 41
Fan (10.1016/j.jallcom.2024.176514_bib20) 2021; 7
Cross (10.1016/j.jallcom.2024.176514_bib9) 1980; 23
Zhang (10.1016/j.jallcom.2024.176514_bib37) 2023; 465
Yin (10.1016/j.jallcom.2024.176514_bib17) 2019; 7
Nadaud (10.1016/j.jallcom.2024.176514_bib8) 2022; 914
Newnham (10.1016/j.jallcom.2024.176514_bib6) 2005
Zhao (10.1016/j.jallcom.2024.176514_bib29) 2020; 40
Kighelman (10.1016/j.jallcom.2024.176514_bib43) 2001; 89
Zheng (10.1016/j.jallcom.2024.176514_bib1) 2018; 98
Zheng (10.1016/j.jallcom.2024.176514_bib21) 2013; 548
Zhang (10.1016/j.jallcom.2024.176514_bib22) 2022; 42
Supriya (10.1016/j.jallcom.2024.176514_bib15) 2022; 32
Wang (10.1016/j.jallcom.2024.176514_bib25) 2018; 53
References_xml – volume: 21
  start-page: 4716
  year: 2009
  end-page: 4720
  ident: bib7
  article-title: High-strain lead-free antiferroelectric electrostrictors
  publication-title: Adv. Mater.
– volume: 97
  start-page: 848
  year: 2013
  end-page: 853
  ident: bib40
  article-title: Large electrostrictive strain in (Bi
  publication-title: J. Am. Ceram. Soc.
– volume: 23
  start-page: 187
  year: 1980
  end-page: 191
  ident: bib9
  article-title: Large electrostrictive effects in relaxor ferroelectrics
  publication-title: Ferroelectrics
– volume: 32
  start-page: 3659
  year: 2022
  end-page: 3676
  ident: bib15
  article-title: A review on lead-free-Bi
  publication-title: J. Inorg. Organomet. Polym.
– volume: 135
  start-page: 1
  year: 2019
  end-page: 57
  ident: bib2
  article-title: Progress in high-strain perovskite piezoelectric ceramics
  publication-title: Mater. Sci. Eng. R. Rep.
– volume: 182
  start-page: 39
  year: 2020
  end-page: 46
  ident: bib33
  article-title: High electrostrictive strain in lead-free relaxors near the morphotropic phase boundary
  publication-title: Acta Mater.
– volume: 465
  year: 2023
  ident: bib37
  article-title: Achieving ultrahigh energy density and ultrahigh efficiency simultaneously via characteristic regulation of polar nanoregions
  publication-title: Chem. Eng. J.
– volume: 914
  year: 2022
  ident: bib8
  article-title: Dielectric, piezoelectric and electrostrictive properties of antiferroelectric lead-zirconate thin films
  publication-title: J. Alloy. Compd.
– volume: 432
  start-page: 84
  year: 2004
  end-page: 87
  ident: bib14
  article-title: Lead-free piezoceramics
  publication-title: Nature
– volume: 89
  start-page: 8066
  year: 2001
  end-page: 8073
  ident: bib47
  article-title: Characterization of the effective electrostriction coefficients in ferroelectric thin films
  publication-title: J. Appl. Phys.
– volume: 43
  start-page: 5511
  year: 2023
  end-page: 5520
  ident: bib54
  article-title: Ultra-high strain responses in lead-free (Bi
  publication-title: J. Eur. Ceram. Soc.
– volume: 45
  start-page: 5518
  year: 2019
  end-page: 5524
  ident: bib11
  article-title: High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1-x)[Pb(Mg
  publication-title: Ceram. Int.
– volume: 105
  start-page: 2116
  year: 2021
  end-page: 2127
  ident: bib34
  article-title: Temperature-independent large strain with small hysteresis in Sb-modified BNT-based lead-free ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 548
  start-page: 118
  year: 2013
  end-page: 124
  ident: bib21
  article-title: Effect of potassium content on electrostrictive properties of Na
  publication-title: Thin Solid Films
– volume: 30
  start-page: 18405
  year: 2019
  end-page: 18412
  ident: bib28
  article-title: Stabilization of the morphotropic phase boundary in (1 − x)Bi
  publication-title: J. Mater. Sci. -Mater. Electron.
– volume: 51
  start-page: 2651
  year: 1995
  end-page: 2655
  ident: bib5
  article-title: Weak FErroelectricity in Antiferroelectric Lead Zirconate
  publication-title: Phys. Rev. B-Condens Matter
– volume: 131
  year: 2022
  ident: bib32
  article-title: Defining "giant" electrostriction
  publication-title: J. Appl. Phys.
– volume: 41
  start-page: 5147
  year: 2021
  end-page: 5154
  ident: bib18
  article-title: Optimized strain properties with small hysteresis in BNT-based ceramics with ergodic relaxor state
  publication-title: J. Eur. Ceram. Soc.
– volume: 1
  year: 2014
  ident: bib51
  article-title: Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity
  publication-title: Appl. Phys. Rev.
– volume: 53
  start-page: 8844
  year: 2018
  end-page: 8854
  ident: bib25
  article-title: Dual relaxation behaviors and large electrostrictive properties of Bi
  publication-title: J. Mater. Sci.
– year: 2005
  ident: bib6
  article-title: ProQuest, Properties of materials: anisotropy, symmetry, structure
– volume: 03
  start-page: 1350007
  year: 2013
  ident: bib16
  article-title: Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics
  publication-title: J. Adv. Dielectr.
– volume: 29
  start-page: 270
  year: 2012
  end-page: 276
  ident: bib48
  article-title: Effect of annealing temperature on the electrostrictive properties of 0.94(Na
  publication-title: J. Electroceram.
– volume: 50
  start-page: 575
  year: 2022
  end-page: 586
  ident: bib3
  article-title: Electrostrictive effect of lead-free perovskite ceramics
  publication-title: J. Chin. Ceram. Soc.
– volume: 11
  start-page: 1542
  year: 2022
  end-page: 1558
  ident: bib38
  article-title: Optimized strain performance in <001>-textured Bi
  publication-title: J. Adv. Ceram.
– volume: 283
  year: 2022
  ident: bib24
  article-title: Large electrostrictive coefficient with optimized Electro-Strain in BNT-based ceramics with ergodic state
  publication-title: Mater. Sci. Eng., B
– volume: 129
  year: 2021
  ident: bib52
  article-title: Evolution of mesoscopic domain structure and macroscopic properties in lead-free Bi
  publication-title: J. Appl. Phys.
– volume: 184
  start-page: 197
  year: 2016
  end-page: 199
  ident: bib27
  article-title: Large electric field induced strain in a new lead-free ternary Na
  publication-title: Mater. Lett.
– volume: 98
  year: 2022
  ident: bib41
  article-title: Ultrahigh energy storage density in (Bi
  publication-title: Nano Energy
– volume: 18
  start-page: 103
  year: 2005
  end-page: 106
  ident: bib4
  article-title: High, purely electrostrictive strain in lead-free dielectrics
  publication-title: Adv. Mater.
– volume: 163
  start-page: 77
  year: 1995
  end-page: 88
  ident: bib46
  article-title: Electromechanical properties of thin ferroelectric Pb(Zr
  publication-title: Ferroelectrics
– volume: 27
  start-page: 41
  year: 1980
  end-page: 43
  ident: bib12
  article-title: Large electrostrictive effect in Ba-Pzt and its application
  publication-title: Ferroelectrics
– volume: 8
  start-page: 2369
  year: 2020
  end-page: 2375
  ident: bib13
  article-title: Giant electrostrictive strain in (Bi
  publication-title: J. Mater. Chem. A
– volume: 40
  start-page: 3928
  year: 2020
  end-page: 3935
  ident: bib29
  article-title: Polarization behavior of` lead-free 0.94(Bi
  publication-title: J. Eur. Ceram. Soc.
– volume: 7
  start-page: 13658
  year: 2019
  end-page: 13670
  ident: bib17
  article-title: Perovskite Na
  publication-title: J. Mater. Chem. A
– volume: 97
  year: 2010
  ident: bib42
  article-title: Large strain and high energy storage density in orthorhombic perovskite (Pb
  publication-title: Appl. Phys. Lett.
– volume: 90
  start-page: 4682
  year: 2001
  end-page: 4689
  ident: bib44
  article-title: Dielectric and electromechanical properties of ferroelectric-relaxor 0.9Pb(Mg
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 244
  year: 2023
  end-page: 255
  ident: bib53
  article-title: Optimizing strain response in lead-free (Bi
  publication-title: J. Mater.
– volume: 91
  start-page: 1495
  year: 2002
  end-page: 1501
  ident: bib45
  article-title: Properties of ferroelectric PbTiO thin films
  publication-title: J. Appl. Phys.
– volume: 98
  start-page: 552
  year: 2018
  end-page: 624
  ident: bib1
  article-title: Recent development in lead-free perovskite piezoelectric bulk materials
  publication-title: Prog. Mater. Sci.
– volume: 7
  start-page: 508
  year: 2021
  end-page: 544
  ident: bib20
  article-title: Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators
  publication-title: J. Mater.
– volume: 9
  start-page: 28716
  year: 2017
  end-page: 28725
  ident: bib30
  article-title: Recoverable self-polarization in lead-free bismuth sodium titanate piezoelectric thin films
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2018
  ident: bib39
  article-title: Giant room-temperature electrostrictive coefficients in lead-free relaxor ferroelectric ceramics by compositional tuning
  publication-title: APL Mater.
– volume: 103
  start-page: 1219
  year: 2019
  end-page: 1229
  ident: bib35
  article-title: Reduced leakage current and enhanced piezoelectricity of BNT–BT–BMO thin films
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  year: 2019
  ident: bib50
  article-title: Large strain response and fatigue-resistant behavior of lead-free (1-x)(Bi
  publication-title: Mater. Res. Express
– volume: 15
  start-page: 50265
  year: 2023
  end-page: 50274
  ident: bib23
  article-title: Ultrahigh electrostrictive effect in lead-free ferroelectric ceramics via texture engineering
  publication-title: ACS Appl. Mater. Interfaces
– volume: 115
  year: 2014
  ident: bib36
  article-title: Electric-field-temperature phase diagram of the ferroelectric relaxor system (1-x)Bi
  publication-title: J. Appl. Phys.
– volume: 42
  start-page: 944
  year: 2022
  end-page: 953
  ident: bib22
  article-title: Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics
  publication-title: J. Eur. Ceram. Soc.
– volume: 42
  start-page: 12663
  year: 2016
  end-page: 12671
  ident: bib26
  article-title: Study of relaxor behavior in a lead-free (Na
  publication-title: Ceram. Int.
– volume: 8
  start-page: 2411
  year: 2020
  end-page: 2418
  ident: bib49
  article-title: Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi
  publication-title: J. Mater. Chem. C.
– volume: 16
  start-page: 569
  year: 1981
  end-page: 578
  ident: bib10
  article-title: Electrostrictive effect in perovskites and its transducer applications
  publication-title: J. Mater. Sci.
– volume: 122
  year: 2021
  ident: bib19
  article-title: Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics
  publication-title: Prog. Mater. Sci.
– volume: 89
  start-page: 1393
  year: 2001
  end-page: 1401
  ident: bib43
  article-title: Electromechanical properties and self-polarization in relaxor Pb(Mg
  publication-title: J. Appl. Phys.
– volume: 53
  year: 2018
  ident: bib31
  article-title: Method for determining crystal grain size by x-ray diffraction
  publication-title: Cryst. Res. Technol.
– volume: 182
  start-page: 39
  year: 2020
  ident: 10.1016/j.jallcom.2024.176514_bib33
  article-title: High electrostrictive strain in lead-free relaxors near the morphotropic phase boundary
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.10.034
– volume: 18
  start-page: 103
  year: 2005
  ident: 10.1016/j.jallcom.2024.176514_bib4
  article-title: High, purely electrostrictive strain in lead-free dielectrics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500951
– volume: 283
  year: 2022
  ident: 10.1016/j.jallcom.2024.176514_bib24
  article-title: Large electrostrictive coefficient with optimized Electro-Strain in BNT-based ceramics with ergodic state
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/j.mseb.2022.115828
– volume: 50
  start-page: 575
  year: 2022
  ident: 10.1016/j.jallcom.2024.176514_bib3
  article-title: Electrostrictive effect of lead-free perovskite ceramics
  publication-title: J. Chin. Ceram. Soc.
– volume: 914
  year: 2022
  ident: 10.1016/j.jallcom.2024.176514_bib8
  article-title: Dielectric, piezoelectric and electrostrictive properties of antiferroelectric lead-zirconate thin films
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.165340
– volume: 42
  start-page: 12663
  year: 2016
  ident: 10.1016/j.jallcom.2024.176514_bib26
  article-title: Study of relaxor behavior in a lead-free (Na0.5Bi0.5)TiO3-SrTiO3-BaTiO3 ternary solid solution system
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.05.014
– volume: 465
  year: 2023
  ident: 10.1016/j.jallcom.2024.176514_bib37
  article-title: Achieving ultrahigh energy density and ultrahigh efficiency simultaneously via characteristic regulation of polar nanoregions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142862
– volume: 7
  start-page: 508
  year: 2021
  ident: 10.1016/j.jallcom.2024.176514_bib20
  article-title: Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators
  publication-title: J. Mater.
– volume: 103
  start-page: 1219
  year: 2019
  ident: 10.1016/j.jallcom.2024.176514_bib35
  article-title: Reduced leakage current and enhanced piezoelectricity of BNT–BT–BMO thin films
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16825
– volume: 16
  start-page: 569
  year: 1981
  ident: 10.1016/j.jallcom.2024.176514_bib10
  article-title: Electrostrictive effect in perovskites and its transducer applications
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF02402772
– volume: 548
  start-page: 118
  year: 2013
  ident: 10.1016/j.jallcom.2024.176514_bib21
  article-title: Effect of potassium content on electrostrictive properties of Na0.5Bi0.5TiO3-based relaxor ferroelectric thin films with morphotropic phase boundary
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.09.017
– volume: 131
  year: 2022
  ident: 10.1016/j.jallcom.2024.176514_bib32
  article-title: Defining "giant" electrostriction
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0079510
– volume: 6
  year: 2018
  ident: 10.1016/j.jallcom.2024.176514_bib39
  article-title: Giant room-temperature electrostrictive coefficients in lead-free relaxor ferroelectric ceramics by compositional tuning
  publication-title: APL Mater.
  doi: 10.1063/1.5006732
– volume: 89
  start-page: 8066
  year: 2001
  ident: 10.1016/j.jallcom.2024.176514_bib47
  article-title: Characterization of the effective electrostriction coefficients in ferroelectric thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1371002
– volume: 163
  start-page: 77
  year: 1995
  ident: 10.1016/j.jallcom.2024.176514_bib46
  article-title: Electromechanical properties of thin ferroelectric Pb(Zr0.53Ti0.47)O3-layers
  publication-title: Ferroelectrics
  doi: 10.1080/00150199508208266
– volume: 89
  start-page: 1393
  year: 2001
  ident: 10.1016/j.jallcom.2024.176514_bib43
  article-title: Electromechanical properties and self-polarization in relaxor Pb(Mg1/3Nb2/3)O3 thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1331339
– volume: 91
  start-page: 1495
  year: 2002
  ident: 10.1016/j.jallcom.2024.176514_bib45
  article-title: Properties of ferroelectric PbTiO thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1431432
– volume: 27
  start-page: 41
  year: 1980
  ident: 10.1016/j.jallcom.2024.176514_bib12
  article-title: Large electrostrictive effect in Ba-Pzt and its application
  publication-title: Ferroelectrics
  doi: 10.1080/00150198008226061
– volume: 51
  start-page: 2651
  year: 1995
  ident: 10.1016/j.jallcom.2024.176514_bib5
  article-title: Weak FErroelectricity in Antiferroelectric Lead Zirconate
  publication-title: Phys. Rev. B-Condens Matter
  doi: 10.1103/PhysRevB.51.2651
– volume: 7
  start-page: 13658
  year: 2019
  ident: 10.1016/j.jallcom.2024.176514_bib17
  article-title: Perovskite Na0.5Bi0.5TiO3: a potential family of peculiar lead-free electrostrictors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03140E
– volume: 30
  start-page: 18405
  year: 2019
  ident: 10.1016/j.jallcom.2024.176514_bib28
  article-title: Stabilization of the morphotropic phase boundary in (1 − x)Bi0.5Na0.5TiO3-xBaTiO3 ceramics through two alternative synthesis pathways
  publication-title: J. Mater. Sci. -Mater. Electron.
  doi: 10.1007/s10854-019-02194-z
– volume: 432
  start-page: 84
  year: 2004
  ident: 10.1016/j.jallcom.2024.176514_bib14
  article-title: Lead-free piezoceramics
  publication-title: Nature
  doi: 10.1038/nature03028
– volume: 23
  start-page: 187
  year: 1980
  ident: 10.1016/j.jallcom.2024.176514_bib9
  article-title: Large electrostrictive effects in relaxor ferroelectrics
  publication-title: Ferroelectrics
  doi: 10.1080/00150198008018801
– volume: 122
  year: 2021
  ident: 10.1016/j.jallcom.2024.176514_bib19
  article-title: Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2021.100836
– volume: 98
  start-page: 552
  year: 2018
  ident: 10.1016/j.jallcom.2024.176514_bib1
  article-title: Recent development in lead-free perovskite piezoelectric bulk materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.06.002
– volume: 115
  year: 2014
  ident: 10.1016/j.jallcom.2024.176514_bib36
  article-title: Electric-field-temperature phase diagram of the ferroelectric relaxor system (1-x)Bi1/2Na1/2TiO3-xBaTiO3 doped with manganese
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4876746
– volume: 53
  year: 2018
  ident: 10.1016/j.jallcom.2024.176514_bib31
  article-title: Method for determining crystal grain size by x-ray diffraction
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.201700157
– volume: 97
  start-page: 848
  year: 2013
  ident: 10.1016/j.jallcom.2024.176514_bib40
  article-title: Large electrostrictive strain in (Bi0.5Na0.5)TiO3-BaTiO3-(Sr0.7Bi0.2)TiO3 Solid Solutions
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12712
– volume: 8
  start-page: 2411
  year: 2020
  ident: 10.1016/j.jallcom.2024.176514_bib49
  article-title: Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3-SrTiO3 ceramics
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC04864B
– volume: 53
  start-page: 8844
  year: 2018
  ident: 10.1016/j.jallcom.2024.176514_bib25
  article-title: Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3–Sr0.85Bi0.1TiO3 ceramics
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2186-7
– volume: 129
  year: 2021
  ident: 10.1016/j.jallcom.2024.176514_bib52
  article-title: Evolution of mesoscopic domain structure and macroscopic properties in lead-free Bi0.5Na0.5TiO3-BaTiO3 ferroelectric ceramics
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0035466
– volume: 8
  start-page: 2369
  year: 2020
  ident: 10.1016/j.jallcom.2024.176514_bib13
  article-title: Giant electrostrictive strain in (Bi0.5Na0.5)TiO3–NaNbO3 lead-free relaxor antiferroelectrics featuring temperature and frequency stability
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12244C
– year: 2005
  ident: 10.1016/j.jallcom.2024.176514_bib6
– volume: 90
  start-page: 4682
  year: 2001
  ident: 10.1016/j.jallcom.2024.176514_bib44
  article-title: Dielectric and electromechanical properties of ferroelectric-relaxor 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1409573
– volume: 1
  year: 2014
  ident: 10.1016/j.jallcom.2024.176514_bib51
  article-title: Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4861260
– volume: 97
  year: 2010
  ident: 10.1016/j.jallcom.2024.176514_bib42
  article-title: Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3497193
– volume: 21
  start-page: 4716
  year: 2009
  ident: 10.1016/j.jallcom.2024.176514_bib7
  article-title: High-strain lead-free antiferroelectric electrostrictors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901516
– volume: 15
  start-page: 50265
  year: 2023
  ident: 10.1016/j.jallcom.2024.176514_bib23
  article-title: Ultrahigh electrostrictive effect in lead-free ferroelectric ceramics via texture engineering
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c11432
– volume: 98
  year: 2022
  ident: 10.1016/j.jallcom.2024.176514_bib41
  article-title: Ultrahigh energy storage density in (Bi0.5Na0.5)0.65Sr0.35TiO3-based lead-free relaxor ceramics with excellent temperature stability
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107276
– volume: 43
  start-page: 5511
  year: 2023
  ident: 10.1016/j.jallcom.2024.176514_bib54
  article-title: Ultra-high strain responses in lead-free (Bi0.5Na0.5)TiO3-BaTiO3-NaNbO3 ferroelectric thin films
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2023.05.014
– volume: 41
  start-page: 5147
  year: 2021
  ident: 10.1016/j.jallcom.2024.176514_bib18
  article-title: Optimized strain properties with small hysteresis in BNT-based ceramics with ergodic relaxor state
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2021.04.002
– volume: 40
  start-page: 3928
  year: 2020
  ident: 10.1016/j.jallcom.2024.176514_bib29
  article-title: Polarization behavior of` lead-free 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 thin films with enhanced ferroelectric properties
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.05.020
– volume: 03
  start-page: 1350007
  year: 2013
  ident: 10.1016/j.jallcom.2024.176514_bib16
  article-title: Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X13500070
– volume: 9
  start-page: 28716
  year: 2017
  ident: 10.1016/j.jallcom.2024.176514_bib30
  article-title: Recoverable self-polarization in lead-free bismuth sodium titanate piezoelectric thin films
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04033
– volume: 6
  year: 2019
  ident: 10.1016/j.jallcom.2024.176514_bib50
  article-title: Large strain response and fatigue-resistant behavior of lead-free (1-x)(Bi0.5Na0.5)TiO3-xSrTiO3 ceramics at a relatively low driving field
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab51b4
– volume: 135
  start-page: 1
  year: 2019
  ident: 10.1016/j.jallcom.2024.176514_bib2
  article-title: Progress in high-strain perovskite piezoelectric ceramics
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/j.mser.2018.08.001
– volume: 32
  start-page: 3659
  year: 2022
  ident: 10.1016/j.jallcom.2024.176514_bib15
  article-title: A review on lead-free-Bi0.5Na0.5TiO3 based ceramics and films: dielectric, piezoelectric, ferroelectric and energy storage performance
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-022-02418-6
– volume: 45
  start-page: 5518
  year: 2019
  ident: 10.1016/j.jallcom.2024.176514_bib11
  article-title: High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 solid solutions
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.12.009
– volume: 9
  start-page: 244
  year: 2023
  ident: 10.1016/j.jallcom.2024.176514_bib53
  article-title: Optimizing strain response in lead-free (Bi0.5Na0.5)TiO3-BaTiO3-NaNbO3 solid solutions via ferroelectric / (non-)ergodic relaxor phase boundary engineering
  publication-title: J. Mater.
– volume: 42
  start-page: 944
  year: 2022
  ident: 10.1016/j.jallcom.2024.176514_bib22
  article-title: Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2021.11.037
– volume: 11
  start-page: 1542
  year: 2022
  ident: 10.1016/j.jallcom.2024.176514_bib38
  article-title: Optimized strain performance in <001>-textured Bi0.5Na0.5TiO3-based ceramics with ergodic relaxor state and core-shell microstructure
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-022-0628-9
– volume: 105
  start-page: 2116
  year: 2021
  ident: 10.1016/j.jallcom.2024.176514_bib34
  article-title: Temperature-independent large strain with small hysteresis in Sb-modified BNT-based lead-free ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.18227
– volume: 29
  start-page: 270
  year: 2012
  ident: 10.1016/j.jallcom.2024.176514_bib48
  article-title: Effect of annealing temperature on the electrostrictive properties of 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 thin films
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-012-9771-y
– volume: 184
  start-page: 197
  year: 2016
  ident: 10.1016/j.jallcom.2024.176514_bib27
  article-title: Large electric field induced strain in a new lead-free ternary Na0.5Bi0.5TiO3-SrTiO3-BaTiO3 solid solution
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.08.076
SSID ssj0001931
Score 2.475849
Snippet The acquisition of hysteresis-free and large electrostrain in lead-free piezoelectric thin films is the key issue for the development of high-performance micro...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 176514
SubjectTerms Electrostrictive coefficient
Electrostrictive strain
Lead-free
Thin film
Title Simultaneous giant strain and electrostrictive coefficient in lead-free BNT-ST-BT ergodic relaxor thin films on Pt/TiO2/SiO2/Si substrates
URI https://dx.doi.org/10.1016/j.jallcom.2024.176514
Volume 1008
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0925-8388
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001931
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0925-8388
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001931
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0925-8388
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001931
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0925-8388
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001931
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0925-8388
  databaseCode: AKRWK
  dateStart: 19930111
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5KRdQH0VOxtZZ98HUvyWaT7D62h-VUOIVLoW8hu9nVHGmuXCL41D-gf3VnNklbQRR8CWyYgbAzzA_yzTeEfJAl5zapDIu0iZlIpWLSZJoZw7VIysRq51G-q3R5Lj5fJBd7ZDHNwiCscoz9Q0z30Xp8E4y3GVzVdbAOFcd_fhIZ5cCxkPFTiAy3GMyv72EeUKD4rXkgzFD6foon2Mw3ZdMgaIRDpppHWZpE4s_56UHOOXtBno_FIj0Zvucl2bPtjDxZTDvaZuTZAzrBGXns4Zyme0Vu1jUiBcvWQmNPv4ML9LTz2yBo2VZ03H2DKzt8uKNmaz2VBGQgCjINGJ65nbX0dJWzdc5Oc2p30MHWhuLwy6_tjvY_QNDVzWVHty391gd5_ZUH6-FBO4hHnve2e03Ozz7miyUbty4wE4eqZ07LTIaxBYuZ1GUuFDblymYV11B9QWgPVQVtjqxsidzwOoysjJzNypTjIHAavyH77ba1bwlNVYJztSVXWgonuRLGhRpaMmWSWBh1QMR014UZKcnxLppiwp5titFEBZqoGEx0QOZ3alcDJ8e_FORkyOI35yogb_xd9fD_Vd-Rp3hC7EuUHJH9fvfTvocKptfH3kWPyaOTT1-Wq1uBIvDd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItRyQLCAKE8fuHqTOE5iH-mKaoGyIG0q9RbFjl2yCtlqk0qc-AH8asZOQouEQOKSgzMjRZ7RPJRvvgF4LUrGTFJpGikdU54KSYXOFNWaKZ6UiVHWo3xX6fKMvz9PzvdgMc3COFjlGPuHmO6j9XgSjLcZXNZ1sA4lc__8hGOUQ8eKb8FtnrDMdWDz79c4D6xQ_No8lKZO_HqMJ9jMN2XTONQIw1Q1j7I0ififE9SNpHNyH-6N1SJ5M3zQA9gz7QwOFtOSthncvcEnOIM7Hs-pu4fwY107qGDZGuzsyQX6QE86vw6ClG1FxuU3bmeHj3dEb43nksAURFCmQctTuzOGHK9yus7pcU7MDlvYWhM3_fJtuyP9FxS0dfO1I9uWfO6DvP7EgvXwIB0GJE982z2Cs5O3-WJJx7ULVMeh7KlVIhNhbNBkOrWZDblJmTRZxRSWXxjbQ1lhnyMqUzpyeBVGRkTWZGXK3CRwGj-G_XbbmidAUpm4wdqSSSW4FUxybUOFPZnUScy1PAI-3XWhR05ydxdNMYHPNsVoosKZqBhMdATzX2qXAynHvxTEZMjiN-8qMHH8XfXp_6u-goNl_vG0OH23-vAMDt0bB4SJkuew3--uzAssZ3r10rvrTxlB8nI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+giant+strain+and+electrostrictive+coefficient+in+lead-free+BNT-ST-BT+ergodic+relaxor+thin+films+on+Pt%2FTiO2%2FSiO2%2FSi+substrates&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Zhao%2C+Jinyan&rft.au=Li%2C+Yizhuo&rft.au=Wang%2C+Zhe&rft.au=Chen%2C+Chuying&rft.date=2024-12-15&rft.issn=0925-8388&rft.volume=1008&rft.spage=176514&rft_id=info:doi/10.1016%2Fj.jallcom.2024.176514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2024_176514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon