Optimization of neutron tracking algorithms for GPU-based continuous energy Monte Carlo calculation

•Details of the implementations and optimizations of the GPU-based continuous-energy Monte Carlo code PRAGMA is presented.•Depleted fuel calculation is especially efficient on GPU by the vectorized cross section calculation.•Whole-core continuous-energy Monte Carlo calculation has become feasible wi...

Full description

Saved in:
Bibliographic Details
Published inAnnals of nuclear energy Vol. 162; p. 108508
Main Authors Choi, Namjae, Kim, Kyung Min, Joo, Han Gyu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text
ISSN0306-4549
1873-2100
DOI10.1016/j.anucene.2021.108508

Cover

Abstract •Details of the implementations and optimizations of the GPU-based continuous-energy Monte Carlo code PRAGMA is presented.•Depleted fuel calculation is especially efficient on GPU by the vectorized cross section calculation.•Whole-core continuous-energy Monte Carlo calculation has become feasible with the GPU acceleration. The implementation and optimization strategies of the neutron tracking algorithms in the GPU-based continuous-energy Monte Carlo (MC) code PRAGMA are presented. The strategies consist of 1) a mixed precision technique, 2) an event-based tracking algorithm, 3) the history-based tracking algorithm improved for GPUs by imposing transition limits, 4) the region partitioning and energy sort schemes to vectorize macroscopic cross section calculations, 5) the unionized grid method improved by a linear hashing scheme, and 6) the GPU-specific implementation techniques such as the use of built-in vector types and an array-based race-free bank algorithm utilizing GPU atomic addition. The developed algorithms and strategies are examined for pin cell and full-core problems consisting of fresh and depleted fuels. PRAGMA turned out to be especially efficient in depleted fuel calculation; PRAGMA effectively overcame the performance drop in the depleted fuel calculation by vectorized cross section calculation. In the full-core calculations PRAGMA also rendered outstanding performance; calculations employing 11.5 billion histories and 20 consumer-grade GPUs could be finished within 15 min for a 3D APR1400 fresh core problem, and within half an hour for a mock-up depleted core problem.
AbstractList •Details of the implementations and optimizations of the GPU-based continuous-energy Monte Carlo code PRAGMA is presented.•Depleted fuel calculation is especially efficient on GPU by the vectorized cross section calculation.•Whole-core continuous-energy Monte Carlo calculation has become feasible with the GPU acceleration. The implementation and optimization strategies of the neutron tracking algorithms in the GPU-based continuous-energy Monte Carlo (MC) code PRAGMA are presented. The strategies consist of 1) a mixed precision technique, 2) an event-based tracking algorithm, 3) the history-based tracking algorithm improved for GPUs by imposing transition limits, 4) the region partitioning and energy sort schemes to vectorize macroscopic cross section calculations, 5) the unionized grid method improved by a linear hashing scheme, and 6) the GPU-specific implementation techniques such as the use of built-in vector types and an array-based race-free bank algorithm utilizing GPU atomic addition. The developed algorithms and strategies are examined for pin cell and full-core problems consisting of fresh and depleted fuels. PRAGMA turned out to be especially efficient in depleted fuel calculation; PRAGMA effectively overcame the performance drop in the depleted fuel calculation by vectorized cross section calculation. In the full-core calculations PRAGMA also rendered outstanding performance; calculations employing 11.5 billion histories and 20 consumer-grade GPUs could be finished within 15 min for a 3D APR1400 fresh core problem, and within half an hour for a mock-up depleted core problem.
ArticleNumber 108508
Author Choi, Namjae
Joo, Han Gyu
Kim, Kyung Min
Author_xml – sequence: 1
  givenname: Namjae
  surname: Choi
  fullname: Choi, Namjae
  email: njchoi94@gmail.com
– sequence: 2
  givenname: Kyung Min
  surname: Kim
  fullname: Kim, Kyung Min
  email: skstr3182@snu.ac.kr
– sequence: 3
  givenname: Han Gyu
  surname: Joo
  fullname: Joo, Han Gyu
  email: joohan@snu.ac.kr
BookMark eNqFkM1KAzEUhYMo2FYfQcgLTL1JZqYZXIgUrUKlLuw6ZDJJTZ0mJckI9emd_qzcdHUvB75z7zlDdOm80wjdERgTIOX9eixdp7TTYwqU9BovgF-gAeETllECcIkGwKDM8iKvrtEwxjUAoTzPB0gttslu7K9M1jvsDXa6S6FfU5Dq27oVlu3KB5u-NhEbH_DsY5nVMuoGK--SdZ3vIu5vh9UOv_eKxlMZWo-VbFXXHmxv0JWRbdS3pzlCy5fnz-lrNl_M3qZP80wxqFJmaiBKs5qYvAI-0YwSxVjFa8KrwtS8YUY3FdBKGkMKUuSK5kBY1ZS8pHVD2Qg9HH1V8DEGbYSy6fBBH8a2goDY9yXW4tSX2Pcljn31dPGP3ga7kWF3lns8crqP9mN1EFFZ7ZRubNAqicbbMw5_LTWLyA
CitedBy_id crossref_primary_10_1016_j_cpc_2023_109072
crossref_primary_10_1080_00295639_2023_2270618
crossref_primary_10_1080_00295639_2024_2421095
crossref_primary_10_1093_rpd_ncae032
crossref_primary_10_1016_j_net_2025_103596
crossref_primary_10_1051_epjconf_202430204010
crossref_primary_10_1051_epjn_2024030
crossref_primary_10_1016_j_anucene_2022_108974
crossref_primary_10_3390_en15082712
crossref_primary_10_3390_en17143498
crossref_primary_10_1080_00295639_2022_2148812
crossref_primary_10_3389_fenrg_2023_1213000
crossref_primary_10_1080_00295639_2023_2204810
crossref_primary_10_1016_j_net_2022_11_006
crossref_primary_10_1155_2024_7728721
crossref_primary_10_1080_00295639_2022_2143209
Cites_doi 10.1016/j.anucene.2017.11.032
10.1016/j.jcp.2015.12.037
10.1016/0149-1970(84)90024-6
10.1016/j.anucene.2009.03.019
10.1016/j.anucene.2019.01.012
10.1016/j.anucene.2019.03.024
10.1016/j.anucene.2014.10.039
10.1145/1778765.1778803
10.1016/j.anucene.2012.06.040
10.1016/j.cpc.2015.05.025
10.1016/j.anucene.2017.12.044
10.1177/1094342012444794
10.2172/1338791
10.1080/00295639.2021.1887701
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.anucene.2021.108508
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2100
ExternalDocumentID 10_1016_j_anucene_2021_108508
S0306454921003844
GroupedDBID --K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JM
9JN
A6W
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSJ
SSR
SSZ
T5K
UHS
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c309t-fb01ce3b1f49087e321c3398b1895fb8d3fed9029aff15154c240139d6862bd23
IEDL.DBID .~1
ISSN 0306-4549
IngestDate Thu Oct 09 00:40:19 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
Fri Feb 23 02:43:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Event-based tracking algorithm
Hashed unionized grid method
Modified history-based tracking algorithm
Energy sort
Region partitioning
Mixed precision
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-fb01ce3b1f49087e321c3398b1895fb8d3fed9029aff15154c240139d6862bd23
ParticipantIDs crossref_citationtrail_10_1016_j_anucene_2021_108508
crossref_primary_10_1016_j_anucene_2021_108508
elsevier_sciencedirect_doi_10_1016_j_anucene_2021_108508
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Annals of nuclear energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Horelik, N., Herman, B., Forget, B., Smith, K., 2013. Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS). Proceedings of the International Conference of Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9.
Romano, Walsh (b0095) 2018; 114
Johnson, S. et al., SHIFT: A New Monte Carlo Package, CASL-U-2015-0170-000-a.
Brown, Martin (b0015) 1984; 14
Scudiero, T., 2014. Monte Carlo Neutron Transport: Simulating Nuclear Reactions One Neutron at a Time, Proceedings of the GPU Technology Conference (GTC), San Jose, California, USA, Mar. 24–27.
Brown (b0010) 2014; 111
Choi, N., Joo, H.G., 2021. Relative speed tabulation method for efficient treatment of resonance scattering in GPU-based Monte Carlo neutron transport calculation, Nucl. Sci. Eng., DOI: 10.1080/00295639.2021.1887701 (In press).
Clark, Plante, Greenhill (b0030) 2013; 27
Macfarlane, R. et al., “The NJOY Nuclear Data Processing System, Version 2016,” LA-UR-17-20093, Los Alamos National Laboratory (2017).
Choi, N., Kim, K.M., Joo, H.G., Initial development of PRAGMA – a GPU-based continuous energy Monte Carlo code for practical applications, Transactions of the Korean Nuclear Society Autumn Meeting, Goyang, Korea, Oct. 24-25 (2019).
Hamilton, Slattery, Evans (b0040) 2018; 113
Hong, H., Joo, H.G., 2017. Analysis of the APR1400 PWR Initial Core with the nTRACER Direct Whole Core Calculation Code and the McCARD Monte Carlo Code, Trans the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 18–19.
Parker (b0085) 2010; 29
Molnar, Tolnai, Legrady (b0070) 2019; 132
Walsh, Romano, Forget, Smith (b0105) 2015; 196
Leppänen (b0060) 2009; 36
NVlabs, CUB Documentation, https://nvlabs.github.io/cub/.
Hamilton, Evans (b0035) 2019; 128
Pandya, Johnson, Evans, Davidson, Hamilton, Godfrey (b0080) 2016; 308
Bergmann, Vujić (b0005) 2015; 77
Romano, Forget (b0090) 2013; 51
Brown (10.1016/j.anucene.2021.108508_b0010) 2014; 111
Brown (10.1016/j.anucene.2021.108508_b0015) 1984; 14
Walsh (10.1016/j.anucene.2021.108508_b0105) 2015; 196
Bergmann (10.1016/j.anucene.2021.108508_b0005) 2015; 77
Pandya (10.1016/j.anucene.2021.108508_b0080) 2016; 308
Hamilton (10.1016/j.anucene.2021.108508_b0035) 2019; 128
Molnar (10.1016/j.anucene.2021.108508_b0070) 2019; 132
Romano (10.1016/j.anucene.2021.108508_b0090) 2013; 51
Leppänen (10.1016/j.anucene.2021.108508_b0060) 2009; 36
Romano (10.1016/j.anucene.2021.108508_b0095) 2018; 114
Hamilton (10.1016/j.anucene.2021.108508_b0040) 2018; 113
10.1016/j.anucene.2021.108508_b0050
Parker (10.1016/j.anucene.2021.108508_b0085) 2010; 29
10.1016/j.anucene.2021.108508_b0045
10.1016/j.anucene.2021.108508_b0100
10.1016/j.anucene.2021.108508_b0025
Clark (10.1016/j.anucene.2021.108508_b0030) 2013; 27
10.1016/j.anucene.2021.108508_b0020
10.1016/j.anucene.2021.108508_b0075
10.1016/j.anucene.2021.108508_b0065
10.1016/j.anucene.2021.108508_b0055
References_xml – volume: 27
  start-page: 178
  year: 2013
  end-page: 192
  ident: b0030
  article-title: Accelerating radio astronomy cross-correlation with graphics processing units
  publication-title: Int. J. High Perform. Comput. Appl.
– volume: 128
  start-page: 236
  year: 2019
  end-page: 247
  ident: b0035
  article-title: Continuous-energy Monte Carlo neutron transport on GPUs in the shift code
  publication-title: Ann. Nucl. Energy
– volume: 113
  start-page: 506
  year: 2018
  end-page: 518
  ident: b0040
  article-title: Multigroup Monte Carlo on GPUs: comparison of history- and event-based algorithms
  publication-title: Ann. Nucl. Energy
– volume: 114
  start-page: 318
  year: 2018
  end-page: 324
  ident: b0095
  article-title: An improved target velocity sampling algorithm for free gas elastic scattering
  publication-title: Ann. Nucl. Energy
– reference: Johnson, S. et al., SHIFT: A New Monte Carlo Package, CASL-U-2015-0170-000-a.
– volume: 77
  start-page: 176
  year: 2015
  end-page: 193
  ident: b0005
  article-title: Algorithmic choices in WARP – a framework for continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs
  publication-title: Ann. Nucl. Energy
– reference: Macfarlane, R. et al., “The NJOY Nuclear Data Processing System, Version 2016,” LA-UR-17-20093, Los Alamos National Laboratory (2017).
– reference: Scudiero, T., 2014. Monte Carlo Neutron Transport: Simulating Nuclear Reactions One Neutron at a Time, Proceedings of the GPU Technology Conference (GTC), San Jose, California, USA, Mar. 24–27.
– volume: 111
  start-page: 659
  year: 2014
  end-page: 662
  ident: b0010
  article-title: New hash-based energy lookup algorithm for Monte Carlo codes
  publication-title: Trans. Am. Nucl. Soc.
– volume: 14
  start-page: 269
  year: 1984
  end-page: 299
  ident: b0015
  article-title: Monte Carlo methods for radiation transport analysis on vector computers
  publication-title: Prog. Nucl. Energy
– volume: 29
  start-page: 1
  year: 2010
  end-page: 13
  ident: b0085
  article-title: OptiX: a general purpose ray tracing engine
  publication-title: ACM Trans. Graphics
– volume: 308
  start-page: 239
  year: 2016
  end-page: 272
  ident: b0080
  article-title: Implementation, capabilities, and benchmarking of shift, a massively parallel Monte Carlo radiation transport code
  publication-title: J. Comput. Phys.
– volume: 196
  start-page: 134
  year: 2015
  end-page: 142
  ident: b0105
  article-title: Optimizations of the energy grid search algorithm in continuous-energy Monte Carlo Particle transport codes
  publication-title: Comput. Phys. Commun.
– volume: 132
  start-page: 46
  year: 2019
  end-page: 63
  ident: b0070
  article-title: A GPU-based direct Monte Carlo simulation of time dependence in nuclear reactors
  publication-title: Ann. Nucl. Energy
– reference: NVlabs, CUB Documentation, https://nvlabs.github.io/cub/.
– volume: 51
  start-page: 274
  year: 2013
  end-page: 281
  ident: b0090
  article-title: The OpenMC Monte Carlo particle transport code
  publication-title: Ann. Nucl. Energy
– reference: Horelik, N., Herman, B., Forget, B., Smith, K., 2013. Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS). Proceedings of the International Conference of Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9.
– reference: Choi, N., Kim, K.M., Joo, H.G., Initial development of PRAGMA – a GPU-based continuous energy Monte Carlo code for practical applications, Transactions of the Korean Nuclear Society Autumn Meeting, Goyang, Korea, Oct. 24-25 (2019).
– reference: Hong, H., Joo, H.G., 2017. Analysis of the APR1400 PWR Initial Core with the nTRACER Direct Whole Core Calculation Code and the McCARD Monte Carlo Code, Trans the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 18–19.
– volume: 36
  start-page: 878
  year: 2009
  end-page: 885
  ident: b0060
  article-title: Two practical methods for unionized energy grid construction in continuous-energy Monte Carlo Neutron transport calculation
  publication-title: Ann. Nucl. Energy
– reference: Choi, N., Joo, H.G., 2021. Relative speed tabulation method for efficient treatment of resonance scattering in GPU-based Monte Carlo neutron transport calculation, Nucl. Sci. Eng., DOI: 10.1080/00295639.2021.1887701 (In press).
– volume: 113
  start-page: 506
  year: 2018
  ident: 10.1016/j.anucene.2021.108508_b0040
  article-title: Multigroup Monte Carlo on GPUs: comparison of history- and event-based algorithms
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2017.11.032
– ident: 10.1016/j.anucene.2021.108508_b0075
– volume: 308
  start-page: 239
  year: 2016
  ident: 10.1016/j.anucene.2021.108508_b0080
  article-title: Implementation, capabilities, and benchmarking of shift, a massively parallel Monte Carlo radiation transport code
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.12.037
– ident: 10.1016/j.anucene.2021.108508_b0025
– ident: 10.1016/j.anucene.2021.108508_b0050
– volume: 14
  start-page: 269
  issue: 3
  year: 1984
  ident: 10.1016/j.anucene.2021.108508_b0015
  article-title: Monte Carlo methods for radiation transport analysis on vector computers
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/0149-1970(84)90024-6
– volume: 36
  start-page: 878
  issue: 7
  year: 2009
  ident: 10.1016/j.anucene.2021.108508_b0060
  article-title: Two practical methods for unionized energy grid construction in continuous-energy Monte Carlo Neutron transport calculation
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2009.03.019
– volume: 128
  start-page: 236
  year: 2019
  ident: 10.1016/j.anucene.2021.108508_b0035
  article-title: Continuous-energy Monte Carlo neutron transport on GPUs in the shift code
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2019.01.012
– ident: 10.1016/j.anucene.2021.108508_b0045
– volume: 132
  start-page: 46
  year: 2019
  ident: 10.1016/j.anucene.2021.108508_b0070
  article-title: A GPU-based direct Monte Carlo simulation of time dependence in nuclear reactors
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2019.03.024
– volume: 77
  start-page: 176
  year: 2015
  ident: 10.1016/j.anucene.2021.108508_b0005
  article-title: Algorithmic choices in WARP – a framework for continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2014.10.039
– volume: 111
  start-page: 659
  year: 2014
  ident: 10.1016/j.anucene.2021.108508_b0010
  article-title: New hash-based energy lookup algorithm for Monte Carlo codes
  publication-title: Trans. Am. Nucl. Soc.
– volume: 29
  start-page: 1
  issue: 4
  year: 2010
  ident: 10.1016/j.anucene.2021.108508_b0085
  article-title: OptiX: a general purpose ray tracing engine
  publication-title: ACM Trans. Graphics
  doi: 10.1145/1778765.1778803
– volume: 51
  start-page: 274
  year: 2013
  ident: 10.1016/j.anucene.2021.108508_b0090
  article-title: The OpenMC Monte Carlo particle transport code
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2012.06.040
– volume: 196
  start-page: 134
  year: 2015
  ident: 10.1016/j.anucene.2021.108508_b0105
  article-title: Optimizations of the energy grid search algorithm in continuous-energy Monte Carlo Particle transport codes
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.05.025
– ident: 10.1016/j.anucene.2021.108508_b0100
– volume: 114
  start-page: 318
  year: 2018
  ident: 10.1016/j.anucene.2021.108508_b0095
  article-title: An improved target velocity sampling algorithm for free gas elastic scattering
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2017.12.044
– volume: 27
  start-page: 178
  issue: 2
  year: 2013
  ident: 10.1016/j.anucene.2021.108508_b0030
  article-title: Accelerating radio astronomy cross-correlation with graphics processing units
  publication-title: Int. J. High Perform. Comput. Appl.
  doi: 10.1177/1094342012444794
– ident: 10.1016/j.anucene.2021.108508_b0055
– ident: 10.1016/j.anucene.2021.108508_b0065
  doi: 10.2172/1338791
– ident: 10.1016/j.anucene.2021.108508_b0020
  doi: 10.1080/00295639.2021.1887701
SSID ssj0012844
Score 2.3841643
Snippet •Details of the implementations and optimizations of the GPU-based continuous-energy Monte Carlo code PRAGMA is presented.•Depleted fuel calculation is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108508
SubjectTerms Energy sort
Event-based tracking algorithm
Hashed unionized grid method
Mixed precision
Modified history-based tracking algorithm
Region partitioning
Title Optimization of neutron tracking algorithms for GPU-based continuous energy Monte Carlo calculation
URI https://dx.doi.org/10.1016/j.anucene.2021.108508
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4MxkQPRlEjPkgPXhf2Udj2SIiIGtBESbht-lQI7BJYrv52O2xBTIwmHnezk2ym7cy0_b5vELqhtuoIfUE9xbjwiOTKE0Ej9khTCiKE8lkM5ORev9kdkIdhY7iD2msuDMAqXewvYvoqWrs3defN-mw0qr9AtUtAYCyA6y0CmqCExNDFoPaxgXlA-C0kpOzOGb7-YvHUx8DulTak2G1iGADargFdJn_KT1s5p3OEDl2xiFvF_xyjHZ2W0cGWhGAZ7a0gnHJxguSTXf1TR6vEmcGpXsI5N87nXMKBOOaTt2w-yt-nC2xLVXz3PPAgiSkMePVRusyWC6xXXEDcA9Eq3ObzSYbtKErX5OsUDTq3r-2u51ooeDLyWe4Z4QdSRyIwcMEX6ygMZBQxKgLKGkZQFRmtmB8ybgyUNkSGsOFiCogjQoXRGSqlWarPEWbMSEON4NxXRMeCSxZRZQIVN4nSVFcQWTsukU5fHNpcTJI1kGycOH8n4O-k8HcF1TZms0Jg4y8Duh6V5NtMSWwS-N304v-ml2gfngoW4hUq5fOlvrblSC6qq_lWRbut-8du_xP3BOGX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH64IOpBXHF3Dl5js0yamaMUtS5VQQvewqxaqYm06dXf7rxm6gKi4DXkQXgzecvM930P4JC5qiMOJQs0FzKgSuhARmkW0KaSVEod8gzJyZ3rZrtLLx7ShyloTbgwCKv0sb-O6eNo7Z80vDcbr71e4w6rXYoCYxFeb1E6DbM0jTPswI7ePnAeGH9rDSnXOuPrnzSexjPSe5WLKa5PjCOE26U4ZvKnBPUl6Zwuw5KvFslx_UErMGWKVVj8oiG4CnNjDKcaroG6cb__i-dVktKSwozwoJtUA6HwRJyI_mM56FVPL0PialVydtsNMItpgoD1XjEqR0NixmRA0kHVKtISg35J3DIqP-VrHbqnJ_etduBnKAQqCXkVWBlGyiQysnjDl5kkjlSScCYjxlMrmU6s0TyMubAWaxuqYuy4uEbmiNRxsgEzRVmYTSCcW2WZlUKEmppMCsUTpm2ksybVhpktoBPH5coLjOOci34-QZI9597fOfo7r_29BUcfZq-1wsZfBmyyKvm3rZK7LPC76fb_TQ9gvn3fucqvzq8vd2ChxvThScwuzFSDkdlztUkl98d77x1G5OMs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+neutron+tracking+algorithms+for+GPU-based+continuous+energy+Monte+Carlo+calculation&rft.jtitle=Annals+of+nuclear+energy&rft.au=Choi%2C+Namjae&rft.au=Kim%2C+Kyung+Min&rft.au=Joo%2C+Han+Gyu&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4549&rft.eissn=1873-2100&rft.volume=162&rft_id=info:doi/10.1016%2Fj.anucene.2021.108508&rft.externalDocID=S0306454921003844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon