Cutting tool life prediction and extension through generative model-augmented deep learning and laser remanufacturing techniques

Predicting and extending the remaining life of cutting tools during machining processes is essential for sustainable manufacturing. Traditional prognosis methods often struggle to adapt to different working conditions over the machining process lifecycle. This paper proposes a novel framework that e...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 158; p. 111276
Main Authors Liang, Yuchen, Wang, Yuqi, Chiong, Raymond, Li, Anping, Lu, Jinzhong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.10.2025
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2025.111276

Cover

Abstract Predicting and extending the remaining life of cutting tools during machining processes is essential for sustainable manufacturing. Traditional prognosis methods often struggle to adapt to different working conditions over the machining process lifecycle. This paper proposes a novel framework that effectively addresses the challenges by integrating multi-source data and using deep learning techniques. The system integrates augmented-power and vibration data collected from computer numerical control machines with the following innovations: (1) A hybrid temporal convolutional network (TCN)-attention model is developed for cutting tool remaining life prognosis, which achieves the best accuracy of 98.51 % and average of 97.62 %. In addition, optimal laser shock peening parameters are selected using a deep neural network and enhanced ternary bees algorithm. (2) A time-series generative adversarial network is used for data augmentation, which increases data quantity for TCN model training. (3) Data quality is evaluated using the t-distributed stochastic neighbor embedding, Fréchet inception distance, and root mean squared error to ensure similarity between real and generated data. (4) The effectiveness of the remanufacturing approach is validated with a 28.95 % and 30.77 % increase in tool life based on finite element analysis and experimental testing, respectively. This comprehensive approach contributes to enhancing tool life prediction accuracy and optimizing sustainable remanufacturing processes, thereby enhancing production efficiency and reducing waste in machining operations.
AbstractList Predicting and extending the remaining life of cutting tools during machining processes is essential for sustainable manufacturing. Traditional prognosis methods often struggle to adapt to different working conditions over the machining process lifecycle. This paper proposes a novel framework that effectively addresses the challenges by integrating multi-source data and using deep learning techniques. The system integrates augmented-power and vibration data collected from computer numerical control machines with the following innovations: (1) A hybrid temporal convolutional network (TCN)-attention model is developed for cutting tool remaining life prognosis, which achieves the best accuracy of 98.51 % and average of 97.62 %. In addition, optimal laser shock peening parameters are selected using a deep neural network and enhanced ternary bees algorithm. (2) A time-series generative adversarial network is used for data augmentation, which increases data quantity for TCN model training. (3) Data quality is evaluated using the t-distributed stochastic neighbor embedding, Fréchet inception distance, and root mean squared error to ensure similarity between real and generated data. (4) The effectiveness of the remanufacturing approach is validated with a 28.95 % and 30.77 % increase in tool life based on finite element analysis and experimental testing, respectively. This comprehensive approach contributes to enhancing tool life prediction accuracy and optimizing sustainable remanufacturing processes, thereby enhancing production efficiency and reducing waste in machining operations.
ArticleNumber 111276
Author Liang, Yuchen
Wang, Yuqi
Lu, Jinzhong
Chiong, Raymond
Li, Anping
Author_xml – sequence: 1
  givenname: Yuchen
  orcidid: 0000-0002-3600-1238
  surname: Liang
  fullname: Liang, Yuchen
  organization: School of Mechanical Engineering, Jiangsu University, China
– sequence: 2
  givenname: Yuqi
  orcidid: 0009-0009-5190-2657
  surname: Wang
  fullname: Wang, Yuqi
  organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, China
– sequence: 3
  givenname: Raymond
  surname: Chiong
  fullname: Chiong, Raymond
  email: rchiong@une.edu.au
  organization: School of Science & Technology, University of New England, Australia
– sequence: 4
  givenname: Anping
  surname: Li
  fullname: Li, Anping
  organization: School of Mechanical Engineering, Jiangsu University, China
– sequence: 5
  givenname: Jinzhong
  surname: Lu
  fullname: Lu, Jinzhong
  email: jzlu@ujs.edu.cn
  organization: School of Mechanical Engineering, Jiangsu University, China
BookMark eNqNkL1OwzAUhT0UiRZ4BeQXSLDz4yQbqOJPqsQCs2Xs69RVYgfbKXTj0WkIzDBd3eE7R-dboYV1FhC6pCSlhLKrXQq2FcMgTJqRrEwppVnFFmhJmjJLaFOxU7QKYUcIyeuCLdHneozR2BZH5zrcGQ148KCMjMZZLKzC8BHBhumLW-_GdotbsOBFNHvAvVPQJWJse7ARFFYAA-5AeDtlTngnAnjsoRd21ELG0X-3gdxa8zZCOEcnWnQBLn7uGXq5u31ePySbp_vH9c0mkTlpYqJZVhSMaV2xvMnlq6zrjJWUNjLTlBZlo4gU8riyrGqlQDJV1lSyihLJWCVUfoaqOXe0gzi8i67jgze98AdOCZ_k8R3_lccneXyWdyTZTErvQvCg_w9ezyAcd-0NeB6kASuPej3IyJUzf0V8Ab7ElSQ
Cites_doi 10.1016/j.engappai.2024.107851
10.3390/foods12122402
10.1016/j.ijmachtools.2023.104061
10.1016/j.triboint.2024.109919
10.1016/j.engappai.2024.108570
10.1016/j.foodchem.2022.135251
10.1016/j.measurement.2023.113825
10.1016/j.sna.2024.115547
10.1007/s00170-024-13867-3
10.1016/j.jmrt.2023.11.168
10.1016/j.compind.2024.104172
10.1016/j.procs.2014.09.077
10.1016/j.patcog.2023.110204
10.1109/TNNLS.2013.2293637
10.1016/j.engappai.2023.106156
10.3390/agronomy12040873
10.1016/j.jmapro.2021.09.055
10.1016/j.ijfatigue.2024.108455
10.1016/j.measurement.2024.115247
10.1016/j.rcim.2024.102796
10.1109/TIE.2019.2931255
10.1016/j.jmsy.2020.06.009
10.1016/j.jmapro.2024.05.081
10.3390/sym13081347
10.1016/j.egyr.2022.08.180
10.1016/j.tafmec.2024.104281
10.1016/j.jclepro.2019.118794
10.1016/j.ymssp.2024.111163
10.1016/j.isatra.2024.06.024
10.1016/j.ijfatigue.2023.107974
10.1016/j.jmsy.2019.05.003
10.1016/j.jmsy.2024.04.001
10.1016/j.jmapro.2023.12.059
10.1016/j.foodchem.2020.126503
10.1016/j.biosystemseng.2020.05.010
10.1016/j.ress.2024.110055
10.1016/j.jmapro.2024.06.027
10.1016/j.ymssp.2024.111288
10.1109/TMM.2020.3032023
10.1016/j.neucom.2023.126391
10.1016/j.compind.2024.104235
10.1016/j.lwt.2023.115047
10.1016/j.surfcoat.2024.130951
10.1016/j.measurement.2021.110332
10.1108/RPJ-10-2023-0380
10.1016/j.eswa.2024.123851
10.1016/j.matlet.2024.136170
10.1109/TIM.2023.3260283
10.1016/j.neunet.2024.106423
10.1016/j.aei.2023.102106
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.engappai.2025.111276
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10.1016/j.engappai.2025.111276
10_1016_j_engappai_2025_111276
S0952197625012771
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
ZMT
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c309t-f624466ff76393cbc88265119c2f11459d0cac095578ddec6d581c6710c667ad3
IEDL.DBID .~1
ISSN 0952-1976
1873-6769
IngestDate Tue Aug 19 23:33:02 EDT 2025
Wed Oct 01 05:41:00 EDT 2025
Sat Oct 04 17:00:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Data augmentation
Laser shock peening
Cutting tool prognosis
Temporal convolutional networks
Enhanced ternary bees algorithm
Remanufacturing
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-f624466ff76393cbc88265119c2f11459d0cac095578ddec6d581c6710c667ad3
ORCID 0009-0009-5190-2657
0000-0002-3600-1238
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0952197625012771
ParticipantIDs unpaywall_primary_10_1016_j_engappai_2025_111276
crossref_primary_10_1016_j_engappai_2025_111276
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_111276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mucllari, Cao, Ye, Zhang (bib31) 2024; 124
Wang, Song, Jia, Shi, Li (bib38) 2023; 284
Zhou, Zhao, Sun, Cao, Yao, Xu (bib54) 2023; 409
Sun, Liu, Pan, Zhang, Ji (bib36) 2020; 244
Wang, Wang, Zhang, Fu, Zhuo, Xu, Wang (bib37) 2021; 23
Bianchini, Scarselli (bib4) 2014; 25
Jiang, Zhao, Sun, Xie (bib19) 2024; 486
Yang, Mishra, Awasthi, Bollas, Pattipati (bib40) 2024; 74
Zhou, Sun, Tian, Lu, Hang, Chen (bib53) 2020; 321
He, Xu, Pan, Wang (bib16) 2024; 212
Jia, Deng, Lv, Du, Xie (bib18) 2022; 187
Kuliiev, Keller, Kashaev (bib21) 2024; 28
Zhang, Jiang, Sun, Liu, Hou, Wu (bib52) 2024; 124
Qian, Luo, Liu, Lv, Pu, Meng, Ruiz Páez (bib33) 2023; 122
Song, Yan, Zhao, Guo, Gu, Gao, Zou, Wang (bib35) 2024; 198
Korkmaz, Gupta, Kuntoğlu, Patange, Ross, Yılmaz, Chauhan, Vashishtha (bib20) 2023; 223
Zeng, Xu, Wang, Gu, Zou, Zhang, Yang, Lu (bib48) 2023; 177
Deng, Du, Jia, Zhao, Xie (bib7) 2020; 56
Zeybek, Pham, Koç, Seçer (bib49) 2021; 13
Deng, Wang, Lu, Meng, Wang, Lv, Luo, Lu (bib11) 2023; 191
Feng, Zhao, Zeng (bib13) 2024; 178
Yoo, Yang, Park, Hyun, Jeong (bib43) 2024; 135
Ling, Wang, Gao, Gao, Wang, Zhan (bib28) 2024; 187
Bernini, Malguzzi, Albertelli, Monno (bib3) 2024; 210
Kuntoğlu, Salur, Gupta, Waqar, Szczotkarz, Vashishtha, Korkmaz, Krolczyk (bib22) 2024; 30
Hao, Mao, Ma, He, Li, Liu, Peng, Zhang (bib15) 2023; 57
Ahmed, Qiu, Kong, Xin, Ahmad, Lin (bib1) 2022; 12
Lu, Yao, Jiang, Shen, Xu, Zhu (bib30) 2025; 164
Jagadesh Kumar, Ganesh Karthik, Arulvel, Prayer Riju, Burduk, Jeyapandiarajan (bib17) 2024; 362
Qian, Pu, Liu, Luo, Wu, Jia, Liu, Ruiz Páez (bib34) 2024; 152
Zhu, Chen, Ni, Lu, Guo (bib55) 2024; 90
Dilshad Alam Digonta, Fatemi (bib12) 2024; 130
Liu, Wang, Zhao, Zhao, Zou, Wang (bib29) 2025; 166
Liang, Wu, Liu, Wang, Yu (bib26) 2024; 110
Yurtkuran, Korkmaz, Gupta, Yılmaz, Günay, Vashishtha (bib47) 2024; 133
Bagri, Manwar, Varghese, Mujumdar, Joshi (bib2) 2021; 71
Yuan, Xu, Wang, Ma, Wang, Zhang (bib46) 2024; 376
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib14) 2014
Li, Zhao, Fu, Cao (bib24) 2024; 237
Pan, Hao, He, Ding, Yu, Wang (bib32) 2024; 132
Liang, Li, Lu, Wang (bib25) 2019; 52
Liang, Wang, Wang, Li, Mo, Lu (bib27) 2024; 246
Xue, Jiang (bib39) 2023; 12
Yoon, Jarrett, Van der Schaar (bib44) 2019; 32
Deng, Du, Wang, Shao, Huang (bib9) 2023; 72
Yu, Zhao (bib45) 2020; 67
Deng, Ni, Bai, Jiang, Xu (bib10) 2023; 184
Curry, Dagli (bib6) 2014; 36
Yilmaz, Korn (bib42) 2024; 250
Deng, Lv, Huang, Du (bib8) 2023; 548
Chen, Zhu, Steibel, Siegford, Han, Norton (bib5) 2020; 196
Zhang, Zhou, Liu, Yuan (bib50) 2022; 260
Zhang, Tian, Li, Leon, Franquelo, Luo, Yin (bib51) 2023; 72
Yang, Guo, Zhao, Shen (bib41) 2024; 148
Li, Zhang, Ma, Liu, Wang, Hu (bib23) 2022; 8
Liang (10.1016/j.engappai.2025.111276_bib26) 2024; 110
Zeybek (10.1016/j.engappai.2025.111276_bib49) 2021; 13
Bianchini (10.1016/j.engappai.2025.111276_bib4) 2014; 25
Bagri (10.1016/j.engappai.2025.111276_bib2) 2021; 71
Hao (10.1016/j.engappai.2025.111276_bib15) 2023; 57
Yurtkuran (10.1016/j.engappai.2025.111276_bib47) 2024; 133
Curry (10.1016/j.engappai.2025.111276_bib6) 2014; 36
Zhou (10.1016/j.engappai.2025.111276_bib53) 2020; 321
Wang (10.1016/j.engappai.2025.111276_bib38) 2023; 284
Bernini (10.1016/j.engappai.2025.111276_bib3) 2024; 210
Wang (10.1016/j.engappai.2025.111276_bib37) 2021; 23
Deng (10.1016/j.engappai.2025.111276_bib7) 2020; 56
Ling (10.1016/j.engappai.2025.111276_bib28) 2024; 187
Yoo (10.1016/j.engappai.2025.111276_bib43) 2024; 135
Ahmed (10.1016/j.engappai.2025.111276_bib1) 2022; 12
Li (10.1016/j.engappai.2025.111276_bib24) 2024; 237
Liang (10.1016/j.engappai.2025.111276_bib25) 2019; 52
Mucllari (10.1016/j.engappai.2025.111276_bib31) 2024; 124
Deng (10.1016/j.engappai.2025.111276_bib8) 2023; 548
Zhu (10.1016/j.engappai.2025.111276_bib55) 2024; 90
Sun (10.1016/j.engappai.2025.111276_bib36) 2020; 244
Kuliiev (10.1016/j.engappai.2025.111276_bib21) 2024; 28
Yang (10.1016/j.engappai.2025.111276_bib40) 2024; 74
Zhang (10.1016/j.engappai.2025.111276_bib52) 2024; 124
Kuntoğlu (10.1016/j.engappai.2025.111276_bib22) 2024; 30
Jagadesh Kumar (10.1016/j.engappai.2025.111276_bib17) 2024; 362
Lu (10.1016/j.engappai.2025.111276_bib30) 2025; 164
Yang (10.1016/j.engappai.2025.111276_bib41) 2024; 148
Song (10.1016/j.engappai.2025.111276_bib35) 2024; 198
Korkmaz (10.1016/j.engappai.2025.111276_bib20) 2023; 223
He (10.1016/j.engappai.2025.111276_bib16) 2024; 212
Yu (10.1016/j.engappai.2025.111276_bib45) 2020; 67
Qian (10.1016/j.engappai.2025.111276_bib33) 2023; 122
Yuan (10.1016/j.engappai.2025.111276_bib46) 2024; 376
Zhang (10.1016/j.engappai.2025.111276_bib51) 2023; 72
Yilmaz (10.1016/j.engappai.2025.111276_bib42) 2024; 250
Deng (10.1016/j.engappai.2025.111276_bib10) 2023; 184
Li (10.1016/j.engappai.2025.111276_bib23) 2022; 8
Feng (10.1016/j.engappai.2025.111276_bib13) 2024; 178
Deng (10.1016/j.engappai.2025.111276_bib9) 2023; 72
Dilshad Alam Digonta (10.1016/j.engappai.2025.111276_bib12) 2024; 130
Jiang (10.1016/j.engappai.2025.111276_bib19) 2024; 486
Zhang (10.1016/j.engappai.2025.111276_bib50) 2022; 260
Pan (10.1016/j.engappai.2025.111276_bib32) 2024; 132
Zeng (10.1016/j.engappai.2025.111276_bib48) 2023; 177
Jia (10.1016/j.engappai.2025.111276_bib18) 2022; 187
Xue (10.1016/j.engappai.2025.111276_bib39) 2023; 12
Qian (10.1016/j.engappai.2025.111276_bib34) 2024; 152
Yoon (10.1016/j.engappai.2025.111276_bib44) 2019; 32
Chen (10.1016/j.engappai.2025.111276_bib5) 2020; 196
Deng (10.1016/j.engappai.2025.111276_bib11) 2023; 191
Goodfellow (10.1016/j.engappai.2025.111276_bib14) 2014
Liu (10.1016/j.engappai.2025.111276_bib29) 2025; 166
Zhou (10.1016/j.engappai.2025.111276_bib54) 2023; 409
Liang (10.1016/j.engappai.2025.111276_bib27) 2024; 246
References_xml – year: 2014
  ident: bib14
  article-title: Generative adversarial networks
  publication-title: arXiv
– volume: 164
  year: 2025
  ident: bib30
  article-title: Remaining useful life prediction model of cross-domain rolling bearing via dynamic hybrid domain adaptation and attention contrastive learning
  publication-title: Comput. Ind.
– volume: 210
  year: 2024
  ident: bib3
  article-title: Hybrid prognostics to estimate cutting inserts remaining useful life based on direct wear observation
  publication-title: Mech. Syst. Signal Process.
– volume: 184
  year: 2023
  ident: bib10
  article-title: Simultaneous analysis of mildew degree and aflatoxin B1 of wheat by a multi-task deep learning strategy based on microwave detection technology
  publication-title: LWT
– volume: 191
  year: 2023
  ident: bib11
  article-title: Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: a comprehensive review
  publication-title: Int. J. Mach. Tool Manufact.
– volume: 237
  year: 2024
  ident: bib24
  article-title: Dynamic data-driven degradation method for monitoring remaining useful life of cutting tools
  publication-title: Measurement
– volume: 130
  year: 2024
  ident: bib12
  article-title: Laser shock peening and its effects and modeling on fatigue performance of additive manufactured metallic materials
  publication-title: Theor. Appl. Fract. Mech.
– volume: 548
  year: 2023
  ident: bib8
  article-title: Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer
  publication-title: Neurocomputing
– volume: 148
  year: 2024
  ident: bib41
  article-title: Investigating the effectiveness of data augmentation from similarity and diversity: an empirical study
  publication-title: Pattern Recogn.
– volume: 409
  year: 2023
  ident: bib54
  article-title: A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging
  publication-title: Food Chem.
– volume: 32
  year: 2019
  ident: bib44
  article-title: Time-series generative adversarial networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 198
  year: 2024
  ident: bib35
  article-title: Effect of laser shock peening on cylinder-on-flat torsional fretting wear resistance performance of titanium alloy
  publication-title: Tribol. Int.
– volume: 23
  start-page: 3828
  year: 2021
  end-page: 3840
  ident: bib37
  article-title: Kernelized multiview subspace analysis by self-weighted learning
  publication-title: IEEE Trans. Multimed.
– volume: 260
  year: 2022
  ident: bib50
  article-title: Data augmentation for improving heating load prediction of heating substation based on TimeGAN
  publication-title: Energy (Calg.)
– volume: 30
  start-page: 1890
  year: 2024
  end-page: 1910
  ident: bib22
  article-title: A review on microstructure, mechanical behavior, and post-processing of additively manufactured Ni-based superalloys
  publication-title: Rapid Prototyp. J.
– volume: 72
  start-page: 1
  year: 2023
  end-page: 12
  ident: bib51
  article-title: A parallel hybrid neural network with integration of spatial and temporal features for remaining useful life prediction in prognostics
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 133
  start-page: 2171
  year: 2024
  end-page: 2188
  ident: bib47
  article-title: Prediction of power consumption and its signals in sustainable turning of PH13-8Mo steel with different machine learning models
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 135
  year: 2024
  ident: bib43
  article-title: Extendable machine tool wear monitoring process using image segmentation based deep learning model and automatic detection of depth of cut line
  publication-title: Eng. Appl. Artif. Intell.
– volume: 122
  year: 2023
  ident: bib33
  article-title: A hybrid Gaussian mutation PSO with search space reduction and its application to intelligent selection of piston seal grooves for homemade pneumatic cylinders
  publication-title: Eng. Appl. Artif. Intell.
– volume: 376
  year: 2024
  ident: bib46
  article-title: Key technologies and research progress in robotic arc additive remanufacturing
  publication-title: Sensor Actuator Phys.
– volume: 321
  year: 2020
  ident: bib53
  article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
  publication-title: Food Chem.
– volume: 152
  start-page: 453
  year: 2024
  end-page: 466
  ident: bib34
  article-title: Ultra-high-precision pneumatic force servo system based on a novel improved particle swarm optimization algorithm integrating Gaussian mutation and fuzzy theory
  publication-title: ISA (Instrum. Soc. Am.) Trans.
– volume: 284
  year: 2023
  ident: bib38
  article-title: TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties
  publication-title: Energy (Calg.)
– volume: 74
  start-page: 367
  year: 2024
  end-page: 386
  ident: bib40
  article-title: Tool wear and remaining useful life estimation in precision machining using interacting multiple model
  publication-title: J. Manuf. Syst.
– volume: 212
  year: 2024
  ident: bib16
  article-title: Adaptive weighted generative adversarial network with attention mechanism: a transfer data augmentation method for tool wear prediction
  publication-title: Mech. Syst. Signal Process.
– volume: 177
  year: 2023
  ident: bib48
  article-title: Fatigue strength evaluation of scale railway axle with surface defect considering mean stress effect
  publication-title: Int. J. Fatig.
– volume: 223
  year: 2023
  ident: bib20
  article-title: Prediction and classification of tool wear and its state in sustainable machining of Bohler steel with different machine learning models
  publication-title: Measurement
– volume: 36
  start-page: 185
  year: 2014
  end-page: 191
  ident: bib6
  article-title: Computational complexity measures for multi-objective optimization problems
  publication-title: Procedia Comput. Sci.
– volume: 362
  year: 2024
  ident: bib17
  article-title: The effect of abrasive water jet peening and laser shock peening on the wear properties of direct metal laser sintered AlSi10Mg alloy
  publication-title: Mater. Lett.
– volume: 25
  start-page: 1553
  year: 2014
  end-page: 1565
  ident: bib4
  article-title: On the complexity of neural network classifiers: a comparison between shallow and deep architectures
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 187
  year: 2022
  ident: bib18
  article-title: Joint distribution adaptation with diverse feature aggregation: a new transfer learning framework for bearing diagnosis across different machines
  publication-title: Measurement
– volume: 12
  start-page: 873
  year: 2022
  ident: bib1
  article-title: A data-driven dynamic obstacle avoidance method for liquid-carrying plant protection UAVs
  publication-title: Agronomy
– volume: 196
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib5
  article-title: Classification of drinking and drinker-playing in pigs by a video-based deep learning method
  publication-title: Biosyst. Eng.
– volume: 124
  start-page: 187
  year: 2024
  end-page: 195
  ident: bib31
  article-title: Modeling imaged welding process dynamic behaviors using generative adversarial network (GAN) for a new foundation to monitor weld penetration using deep learning
  publication-title: J. Manuf. Process.
– volume: 110
  start-page: 331
  year: 2024
  end-page: 349
  ident: bib26
  article-title: Research on hybrid remanufacturing process chain of laser cladding, CNC machining and ultrasonic rolling for aero-engine blades
  publication-title: J. Manuf. Process.
– volume: 90
  year: 2024
  ident: bib55
  article-title: Hybrid CNN-LSTM model driven image segmentation and roughness prediction for tool condition assessment with heterogeneous data
  publication-title: Robot. Comput. Integrated Manuf.
– volume: 132
  year: 2024
  ident: bib32
  article-title: Deep convolutional neural network based on self-distillation for tool wear recognition
  publication-title: Eng. Appl. Artif. Intell.
– volume: 71
  start-page: 679
  year: 2021
  end-page: 698
  ident: bib2
  article-title: Tool wear and remaining useful life prediction in micro-milling along complex tool paths using neural networks
  publication-title: J. Manuf. Process.
– volume: 52
  start-page: 32
  year: 2019
  end-page: 42
  ident: bib25
  article-title: Fog computing and convolutional neural network enabled prognosis for machining process optimization
  publication-title: J. Manuf. Syst.
– volume: 166
  year: 2025
  ident: bib29
  article-title: Acoustic signal-based wear monitoring for belt grinding tools with pyramid-structured abrasives using BO-KELM
  publication-title: Comput. Ind.
– volume: 28
  start-page: 1975
  year: 2024
  end-page: 1989
  ident: bib21
  article-title: Identification of Johnson-Cook material model parameters for laser shock peening process simulation for AA2024, Ti–6Al–4V and Inconel 718
  publication-title: J. Mater. Res. Technol.
– volume: 8
  start-page: 10346
  year: 2022
  end-page: 10362
  ident: bib23
  article-title: A multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network
  publication-title: Energy Rep.
– volume: 67
  start-page: 5081
  year: 2020
  end-page: 5091
  ident: bib45
  article-title: Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability
  publication-title: IEEE Trans. Ind. Electron.
– volume: 246
  year: 2024
  ident: bib27
  article-title: Machinery health prognostic with uncertainty for mineral processing using TSC-TimeGAN
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 486
  year: 2024
  ident: bib19
  article-title: Enhancing the wear resistance of PCD tools in cutting Cf/SiC materials through low-energy laser shock peening
  publication-title: Surf. Coating. Technol.
– volume: 12
  start-page: 2402
  year: 2023
  ident: bib39
  article-title: Monitoring of chlorpyrifos residues in corn oil based on Raman spectral deep-learning model
  publication-title: Foods
– volume: 13
  start-page: 1347
  year: 2021
  ident: bib49
  article-title: An improved bees algorithm for training deep recurrent networks for sentiment classification
  publication-title: Symmetry
– volume: 56
  start-page: 359
  year: 2020
  end-page: 372
  ident: bib7
  article-title: Prognostic study of ball screws by ensemble data-driven particle filters
  publication-title: J. Manuf. Syst.
– volume: 250
  year: 2024
  ident: bib42
  article-title: A comprehensive guide to generative adversarial networks (GANs) and application to individual electricity demand
  publication-title: Expert Syst. Appl.
– volume: 72
  year: 2023
  ident: bib9
  article-title: A calibration-based hybrid transfer learning framework for RUL prediction of rolling bearing across different machines
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 57
  year: 2023
  ident: bib15
  article-title: A novel deep learning method with partly explainable: intelligent milling tool wear prediction model based on transformer informed physics
  publication-title: Adv. Eng. Inform.
– volume: 124
  start-page: 604
  year: 2024
  end-page: 620
  ident: bib52
  article-title: Model-data hybrid driven approach for remaining useful life prediction of cutting tool based on improved inverse Gaussian process
  publication-title: J. Manuf. Process.
– volume: 178
  year: 2024
  ident: bib13
  article-title: Spiking generative adversarial network with attention scoring decoding
  publication-title: Neural Netw.
– volume: 187
  year: 2024
  ident: bib28
  article-title: Toward developing remanufactured Ti6Al4V alloys with high fatigue crack growth resistance by in-situ cooling during laser remanufacturing
  publication-title: Int. J. Fatig.
– volume: 244
  year: 2020
  ident: bib36
  article-title: Enhancing cutting tool sustainability based on remaining useful life prediction
  publication-title: J. Clean. Prod.
– volume: 132
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib32
  article-title: Deep convolutional neural network based on self-distillation for tool wear recognition
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.107851
– volume: 12
  start-page: 2402
  issue: 12
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib39
  article-title: Monitoring of chlorpyrifos residues in corn oil based on Raman spectral deep-learning model
  publication-title: Foods
  doi: 10.3390/foods12122402
– volume: 191
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib11
  article-title: Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: a comprehensive review
  publication-title: Int. J. Mach. Tool Manufact.
  doi: 10.1016/j.ijmachtools.2023.104061
– volume: 198
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib35
  article-title: Effect of laser shock peening on cylinder-on-flat torsional fretting wear resistance performance of titanium alloy
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2024.109919
– volume: 135
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib43
  article-title: Extendable machine tool wear monitoring process using image segmentation based deep learning model and automatic detection of depth of cut line
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108570
– volume: 409
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib54
  article-title: A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.135251
– volume: 223
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib20
  article-title: Prediction and classification of tool wear and its state in sustainable machining of Bohler steel with different machine learning models
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113825
– volume: 376
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib46
  article-title: Key technologies and research progress in robotic arc additive remanufacturing
  publication-title: Sensor Actuator Phys.
  doi: 10.1016/j.sna.2024.115547
– volume: 133
  start-page: 2171
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib47
  article-title: Prediction of power consumption and its signals in sustainable turning of PH13-8Mo steel with different machine learning models
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-024-13867-3
– volume: 28
  start-page: 1975
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib21
  article-title: Identification of Johnson-Cook material model parameters for laser shock peening process simulation for AA2024, Ti–6Al–4V and Inconel 718
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.11.168
– volume: 164
  year: 2025
  ident: 10.1016/j.engappai.2025.111276_bib30
  article-title: Remaining useful life prediction model of cross-domain rolling bearing via dynamic hybrid domain adaptation and attention contrastive learning
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2024.104172
– volume: 36
  start-page: 185
  year: 2014
  ident: 10.1016/j.engappai.2025.111276_bib6
  article-title: Computational complexity measures for multi-objective optimization problems
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2014.09.077
– volume: 148
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib41
  article-title: Investigating the effectiveness of data augmentation from similarity and diversity: an empirical study
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2023.110204
– volume: 25
  start-page: 1553
  year: 2014
  ident: 10.1016/j.engappai.2025.111276_bib4
  article-title: On the complexity of neural network classifiers: a comparison between shallow and deep architectures
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2013.2293637
– volume: 122
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib33
  article-title: A hybrid Gaussian mutation PSO with search space reduction and its application to intelligent selection of piston seal grooves for homemade pneumatic cylinders
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106156
– volume: 12
  start-page: 873
  issue: 4
  year: 2022
  ident: 10.1016/j.engappai.2025.111276_bib1
  article-title: A data-driven dynamic obstacle avoidance method for liquid-carrying plant protection UAVs
  publication-title: Agronomy
  doi: 10.3390/agronomy12040873
– volume: 71
  start-page: 679
  year: 2021
  ident: 10.1016/j.engappai.2025.111276_bib2
  article-title: Tool wear and remaining useful life prediction in micro-milling along complex tool paths using neural networks
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2021.09.055
– volume: 187
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib28
  article-title: Toward developing remanufactured Ti6Al4V alloys with high fatigue crack growth resistance by in-situ cooling during laser remanufacturing
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2024.108455
– volume: 237
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib24
  article-title: Dynamic data-driven degradation method for monitoring remaining useful life of cutting tools
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.115247
– volume: 90
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib55
  article-title: Hybrid CNN-LSTM model driven image segmentation and roughness prediction for tool condition assessment with heterogeneous data
  publication-title: Robot. Comput. Integrated Manuf.
  doi: 10.1016/j.rcim.2024.102796
– volume: 67
  start-page: 5081
  issue: 6
  year: 2020
  ident: 10.1016/j.engappai.2025.111276_bib45
  article-title: Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2931255
– volume: 56
  start-page: 359
  year: 2020
  ident: 10.1016/j.engappai.2025.111276_bib7
  article-title: Prognostic study of ball screws by ensemble data-driven particle filters
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.06.009
– volume: 124
  start-page: 187
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib31
  article-title: Modeling imaged welding process dynamic behaviors using generative adversarial network (GAN) for a new foundation to monitor weld penetration using deep learning
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2024.05.081
– volume: 13
  start-page: 1347
  issue: 8
  year: 2021
  ident: 10.1016/j.engappai.2025.111276_bib49
  article-title: An improved bees algorithm for training deep recurrent networks for sentiment classification
  publication-title: Symmetry
  doi: 10.3390/sym13081347
– volume: 32
  year: 2019
  ident: 10.1016/j.engappai.2025.111276_bib44
  article-title: Time-series generative adversarial networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 10346
  year: 2022
  ident: 10.1016/j.engappai.2025.111276_bib23
  article-title: A multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.08.180
– volume: 130
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib12
  article-title: Laser shock peening and its effects and modeling on fatigue performance of additive manufactured metallic materials
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2024.104281
– volume: 244
  year: 2020
  ident: 10.1016/j.engappai.2025.111276_bib36
  article-title: Enhancing cutting tool sustainability based on remaining useful life prediction
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118794
– volume: 210
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib3
  article-title: Hybrid prognostics to estimate cutting inserts remaining useful life based on direct wear observation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.111163
– volume: 152
  start-page: 453
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib34
  article-title: Ultra-high-precision pneumatic force servo system based on a novel improved particle swarm optimization algorithm integrating Gaussian mutation and fuzzy theory
  publication-title: ISA (Instrum. Soc. Am.) Trans.
  doi: 10.1016/j.isatra.2024.06.024
– volume: 177
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib48
  article-title: Fatigue strength evaluation of scale railway axle with surface defect considering mean stress effect
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2023.107974
– volume: 52
  start-page: 32
  year: 2019
  ident: 10.1016/j.engappai.2025.111276_bib25
  article-title: Fog computing and convolutional neural network enabled prognosis for machining process optimization
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2019.05.003
– volume: 74
  start-page: 367
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib40
  article-title: Tool wear and remaining useful life estimation in precision machining using interacting multiple model
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2024.04.001
– volume: 110
  start-page: 331
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib26
  article-title: Research on hybrid remanufacturing process chain of laser cladding, CNC machining and ultrasonic rolling for aero-engine blades
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2023.12.059
– volume: 321
  year: 2020
  ident: 10.1016/j.engappai.2025.111276_bib53
  article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126503
– volume: 196
  start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2025.111276_bib5
  article-title: Classification of drinking and drinker-playing in pigs by a video-based deep learning method
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.05.010
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib51
  article-title: A parallel hybrid neural network with integration of spatial and temporal features for remaining useful life prediction in prognostics
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 246
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib27
  article-title: Machinery health prognostic with uncertainty for mineral processing using TSC-TimeGAN
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2024.110055
– year: 2014
  ident: 10.1016/j.engappai.2025.111276_bib14
  article-title: Generative adversarial networks
  publication-title: arXiv
– volume: 124
  start-page: 604
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib52
  article-title: Model-data hybrid driven approach for remaining useful life prediction of cutting tool based on improved inverse Gaussian process
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2024.06.027
– volume: 212
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib16
  article-title: Adaptive weighted generative adversarial network with attention mechanism: a transfer data augmentation method for tool wear prediction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.111288
– volume: 23
  start-page: 3828
  year: 2021
  ident: 10.1016/j.engappai.2025.111276_bib37
  article-title: Kernelized multiview subspace analysis by self-weighted learning
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3032023
– volume: 548
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib8
  article-title: Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126391
– volume: 166
  year: 2025
  ident: 10.1016/j.engappai.2025.111276_bib29
  article-title: Acoustic signal-based wear monitoring for belt grinding tools with pyramid-structured abrasives using BO-KELM
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2024.104235
– volume: 184
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib10
  article-title: Simultaneous analysis of mildew degree and aflatoxin B1 of wheat by a multi-task deep learning strategy based on microwave detection technology
  publication-title: LWT
  doi: 10.1016/j.lwt.2023.115047
– volume: 486
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib19
  article-title: Enhancing the wear resistance of PCD tools in cutting Cf/SiC materials through low-energy laser shock peening
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2024.130951
– volume: 187
  year: 2022
  ident: 10.1016/j.engappai.2025.111276_bib18
  article-title: Joint distribution adaptation with diverse feature aggregation: a new transfer learning framework for bearing diagnosis across different machines
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110332
– volume: 30
  start-page: 1890
  issue: 9
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib22
  article-title: A review on microstructure, mechanical behavior, and post-processing of additively manufactured Ni-based superalloys
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-10-2023-0380
– volume: 250
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib42
  article-title: A comprehensive guide to generative adversarial networks (GANs) and application to individual electricity demand
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123851
– volume: 284
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib38
  article-title: TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties
  publication-title: Energy (Calg.)
– volume: 362
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib17
  article-title: The effect of abrasive water jet peening and laser shock peening on the wear properties of direct metal laser sintered AlSi10Mg alloy
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2024.136170
– volume: 72
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib9
  article-title: A calibration-based hybrid transfer learning framework for RUL prediction of rolling bearing across different machines
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3260283
– volume: 178
  year: 2024
  ident: 10.1016/j.engappai.2025.111276_bib13
  article-title: Spiking generative adversarial network with attention scoring decoding
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2024.106423
– volume: 57
  year: 2023
  ident: 10.1016/j.engappai.2025.111276_bib15
  article-title: A novel deep learning method with partly explainable: intelligent milling tool wear prediction model based on transformer informed physics
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2023.102106
– volume: 260
  year: 2022
  ident: 10.1016/j.engappai.2025.111276_bib50
  article-title: Data augmentation for improving heating load prediction of heating substation based on TimeGAN
  publication-title: Energy (Calg.)
SSID ssj0003846
Score 2.446338
Snippet Predicting and extending the remaining life of cutting tools during machining processes is essential for sustainable manufacturing. Traditional prognosis...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 111276
SubjectTerms Cutting tool prognosis
Data augmentation
Enhanced ternary bees algorithm
Laser shock peening
Remanufacturing
Temporal convolutional networks
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgECa6HvTi27i-wsEra1sKLceN0WxMfBzcZD01FGijrt1mt43Rkz9doHSjRqMeSzJAGR4fzMw3ABynGHMSRwpxSTAKiWSI8dRHaeARQQIZK24ChS-v6GAYXozIyF0UTSzMJ_u99cNSRc7Lkt_ru1xAzAoPIroIlijR2LsDloZXN_27hlAvQD6z2eT8OMLI-G5-CAn-vqKfTqPluij5yzMfjz-cNudr4LrtZ-Nk8tirq7QnXr9QOP79R9bBqgOesN_MlA2woIpNsOZAKHRLfKaL2jwPbdkWeDutrXc0rCaTMRzfZwqWU2PgMUqFvJDQPqWbdzfo8v7A3NJZm70U2mQ7iNe55f-UUCpVQpetIrfiGsHr9qbqiRe1ibSwoZNwTi872wbD87Pb0wFymRuQwB6rUEYDYyfOMr17MSxSoXE8NRZLEWT6AkaY9AQXhv0uivX-KqgksS-oRjuC0ohLvAM6xaRQuwBqKRIzoXxKVah0FSFLfewrxbDS0JV0wUmrwaRsCDqS1nPtIWnHPDFjnjRj3gWsVXTiYEYDHxKts19lvfnM-GNze_8X2Qcr5ssckT45AJ1qWqtDjX2q9MhN-Hd4jgDv
  priority: 102
  providerName: Unpaywall
Title Cutting tool life prediction and extension through generative model-augmented deep learning and laser remanufacturing techniques
URI https://dx.doi.org/10.1016/j.engappai.2025.111276
https://doi.org/10.1016/j.engappai.2025.111276
UnpaywallVersion publishedVersion
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003846
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003846
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003846
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003846
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLcQHMaF8TEEYyAfuJo2cezGx6oaKquopkE1dooc26mKShqVRtMuiD-d9xyHgYQ0pJ2sWHZs-dnv_ez3RchpzrkWac8xbQVnibCKKZ1HLI-7wojYpk6jo_DlWA4nybcbcbNGBq0vDJpVBt7f8HTPrUNNJ6xmp5rNOlcADuC4wWEWqD71fuRJ0sMsBmcPf808eNo460Bjhq1feAnfnrlyqqtKz-CeGAvkHjHGHnlbQH2oy0r_-a3n8xcC6HybbAXkSPvN5HbImit3yceAImk4o_dQ1SZqaOv2yOOg9ubNdLVYzOl8VjhaLVFDg1ShurTUv4XjwxkNiXvo1MejRmZIfbYcpuupD-BpqXWuoiHdxNR3BwgO4y3dnS5rdJXwvo_0OT7s_ScyOf96PRiykHqBGd5VK1bIGBW9RQHsR3GTGwDiElWOJi7gBiWU7RptMHxdLwUGaaQVaWQkwBUjZU9bvk_Wy0XpDgiFXiJVxkVSusTBLxKVRzxyTnEH2FMckk673lnVRNjIWtOz26ylUIYUyhoKHRLVkiV7tVcyEAP_7Nt9puM7h_v8H8MdkU38QmEXiS9kfbWs3TGgmFV-4rfpCdnoX4yGYyxHP36OoJyMv_d_PQFSsPeL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBclO2SXre021rVrdehVSWxZinUsYSX9vLSF3IwsySEhc0xqM3YZ_dP7nix3GQw26M08S5bRk977Se-LkNOccy3SsWPaCs4SYRVTOo9YHo-EEbFNncZA4ZtbOX1ILmditkMmXSwMulUG2d_KdC-tA2UYZnNYLRbDOwAHsN1gMws0n2Ic-ZtEwAMs6sGv334ePG2jdaA1w-ZbYcLLgSvnuqr0Ag6KsUDxEWPykb9rqH5TVvrnD71abWmg813yLkBHetb-3R7ZceU-eR9gJA2b9BFIXaWGjvaBPE0a799M6_V6RVeLwtFqgyYaZAvVpaX-Mhxvzmio3EPnPiE1SkPqy-Uw3cx9Bk9LrXMVDfUm5r47YHAYb-O-67LBWAkf_EhfEsQ-fiQP59_uJ1MWai8ww0eqZoWM0dJbFCB_FDe5ASQu0eZo4gKOUELZkdEG89eNU5CQRlqRRkYCXjFSjrXln0ivXJfuM6HQS6TKuEhKlzj4RKLyiEfOKe4AfIoDMuzmO6vaFBtZ53u2zDoOZcihrOXQAVEdW7I_FksGeuCffUcvfPzP4b68YrgT0p_e31xn1xe3V4fkLb5BzReJI9KrN437CpCmzo_9kn0GnE31zQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgECa6HvTi27i-wsEra1sKLceN0WxMfBzcZD01FGijrt1mt43Rkz9doHSjRqMeSzJAGR4fzMw3ABynGHMSRwpxSTAKiWSI8dRHaeARQQIZK24ChS-v6GAYXozIyF0UTSzMJ_u99cNSRc7Lkt_ru1xAzAoPIroIlijR2LsDloZXN_27hlAvQD6z2eT8OMLI-G5-CAn-vqKfTqPluij5yzMfjz-cNudr4LrtZ-Nk8tirq7QnXr9QOP79R9bBqgOesN_MlA2woIpNsOZAKHRLfKaL2jwPbdkWeDutrXc0rCaTMRzfZwqWU2PgMUqFvJDQPqWbdzfo8v7A3NJZm70U2mQ7iNe55f-UUCpVQpetIrfiGsHr9qbqiRe1ibSwoZNwTi872wbD87Pb0wFymRuQwB6rUEYDYyfOMr17MSxSoXE8NRZLEWT6AkaY9AQXhv0uivX-KqgksS-oRjuC0ohLvAM6xaRQuwBqKRIzoXxKVah0FSFLfewrxbDS0JV0wUmrwaRsCDqS1nPtIWnHPDFjnjRj3gWsVXTiYEYDHxKts19lvfnM-GNze_8X2Qcr5ssckT45AJ1qWqtDjX2q9MhN-Hd4jgDv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cutting+tool+life+prediction+and+extension+through+generative+model-augmented+deep+learning+and+laser+remanufacturing+techniques&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Liang%2C+Yuchen&rft.au=Wang%2C+Yuqi&rft.au=Chiong%2C+Raymond&rft.au=Li%2C+Anping&rft.date=2025-10-15&rft.issn=0952-1976&rft.volume=158&rft.spage=111276&rft_id=info:doi/10.1016%2Fj.engappai.2025.111276&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_111276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon