Cutting tool life prediction and extension through generative model-augmented deep learning and laser remanufacturing techniques
Predicting and extending the remaining life of cutting tools during machining processes is essential for sustainable manufacturing. Traditional prognosis methods often struggle to adapt to different working conditions over the machining process lifecycle. This paper proposes a novel framework that e...
Saved in:
| Published in | Engineering applications of artificial intelligence Vol. 158; p. 111276 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-1976 1873-6769 |
| DOI | 10.1016/j.engappai.2025.111276 |
Cover
| Abstract | Predicting and extending the remaining life of cutting tools during machining processes is essential for sustainable manufacturing. Traditional prognosis methods often struggle to adapt to different working conditions over the machining process lifecycle. This paper proposes a novel framework that effectively addresses the challenges by integrating multi-source data and using deep learning techniques. The system integrates augmented-power and vibration data collected from computer numerical control machines with the following innovations: (1) A hybrid temporal convolutional network (TCN)-attention model is developed for cutting tool remaining life prognosis, which achieves the best accuracy of 98.51 % and average of 97.62 %. In addition, optimal laser shock peening parameters are selected using a deep neural network and enhanced ternary bees algorithm. (2) A time-series generative adversarial network is used for data augmentation, which increases data quantity for TCN model training. (3) Data quality is evaluated using the t-distributed stochastic neighbor embedding, Fréchet inception distance, and root mean squared error to ensure similarity between real and generated data. (4) The effectiveness of the remanufacturing approach is validated with a 28.95 % and 30.77 % increase in tool life based on finite element analysis and experimental testing, respectively. This comprehensive approach contributes to enhancing tool life prediction accuracy and optimizing sustainable remanufacturing processes, thereby enhancing production efficiency and reducing waste in machining operations. |
|---|---|
| AbstractList | Predicting and extending the remaining life of cutting tools during machining processes is essential for sustainable manufacturing. Traditional prognosis methods often struggle to adapt to different working conditions over the machining process lifecycle. This paper proposes a novel framework that effectively addresses the challenges by integrating multi-source data and using deep learning techniques. The system integrates augmented-power and vibration data collected from computer numerical control machines with the following innovations: (1) A hybrid temporal convolutional network (TCN)-attention model is developed for cutting tool remaining life prognosis, which achieves the best accuracy of 98.51 % and average of 97.62 %. In addition, optimal laser shock peening parameters are selected using a deep neural network and enhanced ternary bees algorithm. (2) A time-series generative adversarial network is used for data augmentation, which increases data quantity for TCN model training. (3) Data quality is evaluated using the t-distributed stochastic neighbor embedding, Fréchet inception distance, and root mean squared error to ensure similarity between real and generated data. (4) The effectiveness of the remanufacturing approach is validated with a 28.95 % and 30.77 % increase in tool life based on finite element analysis and experimental testing, respectively. This comprehensive approach contributes to enhancing tool life prediction accuracy and optimizing sustainable remanufacturing processes, thereby enhancing production efficiency and reducing waste in machining operations. |
| ArticleNumber | 111276 |
| Author | Liang, Yuchen Wang, Yuqi Lu, Jinzhong Chiong, Raymond Li, Anping |
| Author_xml | – sequence: 1 givenname: Yuchen orcidid: 0000-0002-3600-1238 surname: Liang fullname: Liang, Yuchen organization: School of Mechanical Engineering, Jiangsu University, China – sequence: 2 givenname: Yuqi orcidid: 0009-0009-5190-2657 surname: Wang fullname: Wang, Yuqi organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, China – sequence: 3 givenname: Raymond surname: Chiong fullname: Chiong, Raymond email: rchiong@une.edu.au organization: School of Science & Technology, University of New England, Australia – sequence: 4 givenname: Anping surname: Li fullname: Li, Anping organization: School of Mechanical Engineering, Jiangsu University, China – sequence: 5 givenname: Jinzhong surname: Lu fullname: Lu, Jinzhong email: jzlu@ujs.edu.cn organization: School of Mechanical Engineering, Jiangsu University, China |
| BookMark | eNqNkL1OwzAUhT0UiRZ4BeQXSLDz4yQbqOJPqsQCs2Xs69RVYgfbKXTj0WkIzDBd3eE7R-dboYV1FhC6pCSlhLKrXQq2FcMgTJqRrEwppVnFFmhJmjJLaFOxU7QKYUcIyeuCLdHneozR2BZH5zrcGQ148KCMjMZZLKzC8BHBhumLW-_GdotbsOBFNHvAvVPQJWJse7ARFFYAA-5AeDtlTngnAnjsoRd21ELG0X-3gdxa8zZCOEcnWnQBLn7uGXq5u31ePySbp_vH9c0mkTlpYqJZVhSMaV2xvMnlq6zrjJWUNjLTlBZlo4gU8riyrGqlQDJV1lSyihLJWCVUfoaqOXe0gzi8i67jgze98AdOCZ_k8R3_lccneXyWdyTZTErvQvCg_w9ezyAcd-0NeB6kASuPej3IyJUzf0V8Ab7ElSQ |
| Cites_doi | 10.1016/j.engappai.2024.107851 10.3390/foods12122402 10.1016/j.ijmachtools.2023.104061 10.1016/j.triboint.2024.109919 10.1016/j.engappai.2024.108570 10.1016/j.foodchem.2022.135251 10.1016/j.measurement.2023.113825 10.1016/j.sna.2024.115547 10.1007/s00170-024-13867-3 10.1016/j.jmrt.2023.11.168 10.1016/j.compind.2024.104172 10.1016/j.procs.2014.09.077 10.1016/j.patcog.2023.110204 10.1109/TNNLS.2013.2293637 10.1016/j.engappai.2023.106156 10.3390/agronomy12040873 10.1016/j.jmapro.2021.09.055 10.1016/j.ijfatigue.2024.108455 10.1016/j.measurement.2024.115247 10.1016/j.rcim.2024.102796 10.1109/TIE.2019.2931255 10.1016/j.jmsy.2020.06.009 10.1016/j.jmapro.2024.05.081 10.3390/sym13081347 10.1016/j.egyr.2022.08.180 10.1016/j.tafmec.2024.104281 10.1016/j.jclepro.2019.118794 10.1016/j.ymssp.2024.111163 10.1016/j.isatra.2024.06.024 10.1016/j.ijfatigue.2023.107974 10.1016/j.jmsy.2019.05.003 10.1016/j.jmsy.2024.04.001 10.1016/j.jmapro.2023.12.059 10.1016/j.foodchem.2020.126503 10.1016/j.biosystemseng.2020.05.010 10.1016/j.ress.2024.110055 10.1016/j.jmapro.2024.06.027 10.1016/j.ymssp.2024.111288 10.1109/TMM.2020.3032023 10.1016/j.neucom.2023.126391 10.1016/j.compind.2024.104235 10.1016/j.lwt.2023.115047 10.1016/j.surfcoat.2024.130951 10.1016/j.measurement.2021.110332 10.1108/RPJ-10-2023-0380 10.1016/j.eswa.2024.123851 10.1016/j.matlet.2024.136170 10.1109/TIM.2023.3260283 10.1016/j.neunet.2024.106423 10.1016/j.aei.2023.102106 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.engappai.2025.111276 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10.1016/j.engappai.2025.111276 10_1016_j_engappai_2025_111276 S0952197625012771 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- ~HD 29G AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ZMT ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c309t-f624466ff76393cbc88265119c2f11459d0cac095578ddec6d581c6710c667ad3 |
| IEDL.DBID | .~1 |
| ISSN | 0952-1976 1873-6769 |
| IngestDate | Tue Aug 19 23:33:02 EDT 2025 Wed Oct 01 05:41:00 EDT 2025 Sat Oct 04 17:00:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data augmentation Laser shock peening Cutting tool prognosis Temporal convolutional networks Enhanced ternary bees algorithm Remanufacturing |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c309t-f624466ff76393cbc88265119c2f11459d0cac095578ddec6d581c6710c667ad3 |
| ORCID | 0009-0009-5190-2657 0000-0002-3600-1238 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0952197625012771 |
| ParticipantIDs | unpaywall_primary_10_1016_j_engappai_2025_111276 crossref_primary_10_1016_j_engappai_2025_111276 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_111276 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-15 |
| PublicationDateYYYYMMDD | 2025-10-15 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mucllari, Cao, Ye, Zhang (bib31) 2024; 124 Wang, Song, Jia, Shi, Li (bib38) 2023; 284 Zhou, Zhao, Sun, Cao, Yao, Xu (bib54) 2023; 409 Sun, Liu, Pan, Zhang, Ji (bib36) 2020; 244 Wang, Wang, Zhang, Fu, Zhuo, Xu, Wang (bib37) 2021; 23 Bianchini, Scarselli (bib4) 2014; 25 Jiang, Zhao, Sun, Xie (bib19) 2024; 486 Yang, Mishra, Awasthi, Bollas, Pattipati (bib40) 2024; 74 Zhou, Sun, Tian, Lu, Hang, Chen (bib53) 2020; 321 He, Xu, Pan, Wang (bib16) 2024; 212 Jia, Deng, Lv, Du, Xie (bib18) 2022; 187 Kuliiev, Keller, Kashaev (bib21) 2024; 28 Zhang, Jiang, Sun, Liu, Hou, Wu (bib52) 2024; 124 Qian, Luo, Liu, Lv, Pu, Meng, Ruiz Páez (bib33) 2023; 122 Song, Yan, Zhao, Guo, Gu, Gao, Zou, Wang (bib35) 2024; 198 Korkmaz, Gupta, Kuntoğlu, Patange, Ross, Yılmaz, Chauhan, Vashishtha (bib20) 2023; 223 Zeng, Xu, Wang, Gu, Zou, Zhang, Yang, Lu (bib48) 2023; 177 Deng, Du, Jia, Zhao, Xie (bib7) 2020; 56 Zeybek, Pham, Koç, Seçer (bib49) 2021; 13 Deng, Wang, Lu, Meng, Wang, Lv, Luo, Lu (bib11) 2023; 191 Feng, Zhao, Zeng (bib13) 2024; 178 Yoo, Yang, Park, Hyun, Jeong (bib43) 2024; 135 Ling, Wang, Gao, Gao, Wang, Zhan (bib28) 2024; 187 Bernini, Malguzzi, Albertelli, Monno (bib3) 2024; 210 Kuntoğlu, Salur, Gupta, Waqar, Szczotkarz, Vashishtha, Korkmaz, Krolczyk (bib22) 2024; 30 Hao, Mao, Ma, He, Li, Liu, Peng, Zhang (bib15) 2023; 57 Ahmed, Qiu, Kong, Xin, Ahmad, Lin (bib1) 2022; 12 Lu, Yao, Jiang, Shen, Xu, Zhu (bib30) 2025; 164 Jagadesh Kumar, Ganesh Karthik, Arulvel, Prayer Riju, Burduk, Jeyapandiarajan (bib17) 2024; 362 Qian, Pu, Liu, Luo, Wu, Jia, Liu, Ruiz Páez (bib34) 2024; 152 Zhu, Chen, Ni, Lu, Guo (bib55) 2024; 90 Dilshad Alam Digonta, Fatemi (bib12) 2024; 130 Liu, Wang, Zhao, Zhao, Zou, Wang (bib29) 2025; 166 Liang, Wu, Liu, Wang, Yu (bib26) 2024; 110 Yurtkuran, Korkmaz, Gupta, Yılmaz, Günay, Vashishtha (bib47) 2024; 133 Bagri, Manwar, Varghese, Mujumdar, Joshi (bib2) 2021; 71 Yuan, Xu, Wang, Ma, Wang, Zhang (bib46) 2024; 376 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib14) 2014 Li, Zhao, Fu, Cao (bib24) 2024; 237 Pan, Hao, He, Ding, Yu, Wang (bib32) 2024; 132 Liang, Li, Lu, Wang (bib25) 2019; 52 Liang, Wang, Wang, Li, Mo, Lu (bib27) 2024; 246 Xue, Jiang (bib39) 2023; 12 Yoon, Jarrett, Van der Schaar (bib44) 2019; 32 Deng, Du, Wang, Shao, Huang (bib9) 2023; 72 Yu, Zhao (bib45) 2020; 67 Deng, Ni, Bai, Jiang, Xu (bib10) 2023; 184 Curry, Dagli (bib6) 2014; 36 Yilmaz, Korn (bib42) 2024; 250 Deng, Lv, Huang, Du (bib8) 2023; 548 Chen, Zhu, Steibel, Siegford, Han, Norton (bib5) 2020; 196 Zhang, Zhou, Liu, Yuan (bib50) 2022; 260 Zhang, Tian, Li, Leon, Franquelo, Luo, Yin (bib51) 2023; 72 Yang, Guo, Zhao, Shen (bib41) 2024; 148 Li, Zhang, Ma, Liu, Wang, Hu (bib23) 2022; 8 Liang (10.1016/j.engappai.2025.111276_bib26) 2024; 110 Zeybek (10.1016/j.engappai.2025.111276_bib49) 2021; 13 Bianchini (10.1016/j.engappai.2025.111276_bib4) 2014; 25 Bagri (10.1016/j.engappai.2025.111276_bib2) 2021; 71 Hao (10.1016/j.engappai.2025.111276_bib15) 2023; 57 Yurtkuran (10.1016/j.engappai.2025.111276_bib47) 2024; 133 Curry (10.1016/j.engappai.2025.111276_bib6) 2014; 36 Zhou (10.1016/j.engappai.2025.111276_bib53) 2020; 321 Wang (10.1016/j.engappai.2025.111276_bib38) 2023; 284 Bernini (10.1016/j.engappai.2025.111276_bib3) 2024; 210 Wang (10.1016/j.engappai.2025.111276_bib37) 2021; 23 Deng (10.1016/j.engappai.2025.111276_bib7) 2020; 56 Ling (10.1016/j.engappai.2025.111276_bib28) 2024; 187 Yoo (10.1016/j.engappai.2025.111276_bib43) 2024; 135 Ahmed (10.1016/j.engappai.2025.111276_bib1) 2022; 12 Li (10.1016/j.engappai.2025.111276_bib24) 2024; 237 Liang (10.1016/j.engappai.2025.111276_bib25) 2019; 52 Mucllari (10.1016/j.engappai.2025.111276_bib31) 2024; 124 Deng (10.1016/j.engappai.2025.111276_bib8) 2023; 548 Zhu (10.1016/j.engappai.2025.111276_bib55) 2024; 90 Sun (10.1016/j.engappai.2025.111276_bib36) 2020; 244 Kuliiev (10.1016/j.engappai.2025.111276_bib21) 2024; 28 Yang (10.1016/j.engappai.2025.111276_bib40) 2024; 74 Zhang (10.1016/j.engappai.2025.111276_bib52) 2024; 124 Kuntoğlu (10.1016/j.engappai.2025.111276_bib22) 2024; 30 Jagadesh Kumar (10.1016/j.engappai.2025.111276_bib17) 2024; 362 Lu (10.1016/j.engappai.2025.111276_bib30) 2025; 164 Yang (10.1016/j.engappai.2025.111276_bib41) 2024; 148 Song (10.1016/j.engappai.2025.111276_bib35) 2024; 198 Korkmaz (10.1016/j.engappai.2025.111276_bib20) 2023; 223 He (10.1016/j.engappai.2025.111276_bib16) 2024; 212 Yu (10.1016/j.engappai.2025.111276_bib45) 2020; 67 Qian (10.1016/j.engappai.2025.111276_bib33) 2023; 122 Yuan (10.1016/j.engappai.2025.111276_bib46) 2024; 376 Zhang (10.1016/j.engappai.2025.111276_bib51) 2023; 72 Yilmaz (10.1016/j.engappai.2025.111276_bib42) 2024; 250 Deng (10.1016/j.engappai.2025.111276_bib10) 2023; 184 Li (10.1016/j.engappai.2025.111276_bib23) 2022; 8 Feng (10.1016/j.engappai.2025.111276_bib13) 2024; 178 Deng (10.1016/j.engappai.2025.111276_bib9) 2023; 72 Dilshad Alam Digonta (10.1016/j.engappai.2025.111276_bib12) 2024; 130 Jiang (10.1016/j.engappai.2025.111276_bib19) 2024; 486 Zhang (10.1016/j.engappai.2025.111276_bib50) 2022; 260 Pan (10.1016/j.engappai.2025.111276_bib32) 2024; 132 Zeng (10.1016/j.engappai.2025.111276_bib48) 2023; 177 Jia (10.1016/j.engappai.2025.111276_bib18) 2022; 187 Xue (10.1016/j.engappai.2025.111276_bib39) 2023; 12 Qian (10.1016/j.engappai.2025.111276_bib34) 2024; 152 Yoon (10.1016/j.engappai.2025.111276_bib44) 2019; 32 Chen (10.1016/j.engappai.2025.111276_bib5) 2020; 196 Deng (10.1016/j.engappai.2025.111276_bib11) 2023; 191 Goodfellow (10.1016/j.engappai.2025.111276_bib14) 2014 Liu (10.1016/j.engappai.2025.111276_bib29) 2025; 166 Zhou (10.1016/j.engappai.2025.111276_bib54) 2023; 409 Liang (10.1016/j.engappai.2025.111276_bib27) 2024; 246 |
| References_xml | – year: 2014 ident: bib14 article-title: Generative adversarial networks publication-title: arXiv – volume: 164 year: 2025 ident: bib30 article-title: Remaining useful life prediction model of cross-domain rolling bearing via dynamic hybrid domain adaptation and attention contrastive learning publication-title: Comput. Ind. – volume: 210 year: 2024 ident: bib3 article-title: Hybrid prognostics to estimate cutting inserts remaining useful life based on direct wear observation publication-title: Mech. Syst. Signal Process. – volume: 184 year: 2023 ident: bib10 article-title: Simultaneous analysis of mildew degree and aflatoxin B1 of wheat by a multi-task deep learning strategy based on microwave detection technology publication-title: LWT – volume: 191 year: 2023 ident: bib11 article-title: Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: a comprehensive review publication-title: Int. J. Mach. Tool Manufact. – volume: 237 year: 2024 ident: bib24 article-title: Dynamic data-driven degradation method for monitoring remaining useful life of cutting tools publication-title: Measurement – volume: 130 year: 2024 ident: bib12 article-title: Laser shock peening and its effects and modeling on fatigue performance of additive manufactured metallic materials publication-title: Theor. Appl. Fract. Mech. – volume: 548 year: 2023 ident: bib8 article-title: Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer publication-title: Neurocomputing – volume: 148 year: 2024 ident: bib41 article-title: Investigating the effectiveness of data augmentation from similarity and diversity: an empirical study publication-title: Pattern Recogn. – volume: 409 year: 2023 ident: bib54 article-title: A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging publication-title: Food Chem. – volume: 32 year: 2019 ident: bib44 article-title: Time-series generative adversarial networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 198 year: 2024 ident: bib35 article-title: Effect of laser shock peening on cylinder-on-flat torsional fretting wear resistance performance of titanium alloy publication-title: Tribol. Int. – volume: 23 start-page: 3828 year: 2021 end-page: 3840 ident: bib37 article-title: Kernelized multiview subspace analysis by self-weighted learning publication-title: IEEE Trans. Multimed. – volume: 260 year: 2022 ident: bib50 article-title: Data augmentation for improving heating load prediction of heating substation based on TimeGAN publication-title: Energy (Calg.) – volume: 30 start-page: 1890 year: 2024 end-page: 1910 ident: bib22 article-title: A review on microstructure, mechanical behavior, and post-processing of additively manufactured Ni-based superalloys publication-title: Rapid Prototyp. J. – volume: 72 start-page: 1 year: 2023 end-page: 12 ident: bib51 article-title: A parallel hybrid neural network with integration of spatial and temporal features for remaining useful life prediction in prognostics publication-title: IEEE Trans. Instrum. Meas. – volume: 133 start-page: 2171 year: 2024 end-page: 2188 ident: bib47 article-title: Prediction of power consumption and its signals in sustainable turning of PH13-8Mo steel with different machine learning models publication-title: Int. J. Adv. Manuf. Technol. – volume: 135 year: 2024 ident: bib43 article-title: Extendable machine tool wear monitoring process using image segmentation based deep learning model and automatic detection of depth of cut line publication-title: Eng. Appl. Artif. Intell. – volume: 122 year: 2023 ident: bib33 article-title: A hybrid Gaussian mutation PSO with search space reduction and its application to intelligent selection of piston seal grooves for homemade pneumatic cylinders publication-title: Eng. Appl. Artif. Intell. – volume: 376 year: 2024 ident: bib46 article-title: Key technologies and research progress in robotic arc additive remanufacturing publication-title: Sensor Actuator Phys. – volume: 321 year: 2020 ident: bib53 article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce publication-title: Food Chem. – volume: 152 start-page: 453 year: 2024 end-page: 466 ident: bib34 article-title: Ultra-high-precision pneumatic force servo system based on a novel improved particle swarm optimization algorithm integrating Gaussian mutation and fuzzy theory publication-title: ISA (Instrum. Soc. Am.) Trans. – volume: 284 year: 2023 ident: bib38 article-title: TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties publication-title: Energy (Calg.) – volume: 74 start-page: 367 year: 2024 end-page: 386 ident: bib40 article-title: Tool wear and remaining useful life estimation in precision machining using interacting multiple model publication-title: J. Manuf. Syst. – volume: 212 year: 2024 ident: bib16 article-title: Adaptive weighted generative adversarial network with attention mechanism: a transfer data augmentation method for tool wear prediction publication-title: Mech. Syst. Signal Process. – volume: 177 year: 2023 ident: bib48 article-title: Fatigue strength evaluation of scale railway axle with surface defect considering mean stress effect publication-title: Int. J. Fatig. – volume: 223 year: 2023 ident: bib20 article-title: Prediction and classification of tool wear and its state in sustainable machining of Bohler steel with different machine learning models publication-title: Measurement – volume: 36 start-page: 185 year: 2014 end-page: 191 ident: bib6 article-title: Computational complexity measures for multi-objective optimization problems publication-title: Procedia Comput. Sci. – volume: 362 year: 2024 ident: bib17 article-title: The effect of abrasive water jet peening and laser shock peening on the wear properties of direct metal laser sintered AlSi10Mg alloy publication-title: Mater. Lett. – volume: 25 start-page: 1553 year: 2014 end-page: 1565 ident: bib4 article-title: On the complexity of neural network classifiers: a comparison between shallow and deep architectures publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 187 year: 2022 ident: bib18 article-title: Joint distribution adaptation with diverse feature aggregation: a new transfer learning framework for bearing diagnosis across different machines publication-title: Measurement – volume: 12 start-page: 873 year: 2022 ident: bib1 article-title: A data-driven dynamic obstacle avoidance method for liquid-carrying plant protection UAVs publication-title: Agronomy – volume: 196 start-page: 1 year: 2020 end-page: 14 ident: bib5 article-title: Classification of drinking and drinker-playing in pigs by a video-based deep learning method publication-title: Biosyst. Eng. – volume: 124 start-page: 187 year: 2024 end-page: 195 ident: bib31 article-title: Modeling imaged welding process dynamic behaviors using generative adversarial network (GAN) for a new foundation to monitor weld penetration using deep learning publication-title: J. Manuf. Process. – volume: 110 start-page: 331 year: 2024 end-page: 349 ident: bib26 article-title: Research on hybrid remanufacturing process chain of laser cladding, CNC machining and ultrasonic rolling for aero-engine blades publication-title: J. Manuf. Process. – volume: 90 year: 2024 ident: bib55 article-title: Hybrid CNN-LSTM model driven image segmentation and roughness prediction for tool condition assessment with heterogeneous data publication-title: Robot. Comput. Integrated Manuf. – volume: 132 year: 2024 ident: bib32 article-title: Deep convolutional neural network based on self-distillation for tool wear recognition publication-title: Eng. Appl. Artif. Intell. – volume: 71 start-page: 679 year: 2021 end-page: 698 ident: bib2 article-title: Tool wear and remaining useful life prediction in micro-milling along complex tool paths using neural networks publication-title: J. Manuf. Process. – volume: 52 start-page: 32 year: 2019 end-page: 42 ident: bib25 article-title: Fog computing and convolutional neural network enabled prognosis for machining process optimization publication-title: J. Manuf. Syst. – volume: 166 year: 2025 ident: bib29 article-title: Acoustic signal-based wear monitoring for belt grinding tools with pyramid-structured abrasives using BO-KELM publication-title: Comput. Ind. – volume: 28 start-page: 1975 year: 2024 end-page: 1989 ident: bib21 article-title: Identification of Johnson-Cook material model parameters for laser shock peening process simulation for AA2024, Ti–6Al–4V and Inconel 718 publication-title: J. Mater. Res. Technol. – volume: 8 start-page: 10346 year: 2022 end-page: 10362 ident: bib23 article-title: A multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network publication-title: Energy Rep. – volume: 67 start-page: 5081 year: 2020 end-page: 5091 ident: bib45 article-title: Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability publication-title: IEEE Trans. Ind. Electron. – volume: 246 year: 2024 ident: bib27 article-title: Machinery health prognostic with uncertainty for mineral processing using TSC-TimeGAN publication-title: Reliab. Eng. Syst. Saf. – volume: 486 year: 2024 ident: bib19 article-title: Enhancing the wear resistance of PCD tools in cutting Cf/SiC materials through low-energy laser shock peening publication-title: Surf. Coating. Technol. – volume: 12 start-page: 2402 year: 2023 ident: bib39 article-title: Monitoring of chlorpyrifos residues in corn oil based on Raman spectral deep-learning model publication-title: Foods – volume: 13 start-page: 1347 year: 2021 ident: bib49 article-title: An improved bees algorithm for training deep recurrent networks for sentiment classification publication-title: Symmetry – volume: 56 start-page: 359 year: 2020 end-page: 372 ident: bib7 article-title: Prognostic study of ball screws by ensemble data-driven particle filters publication-title: J. Manuf. Syst. – volume: 250 year: 2024 ident: bib42 article-title: A comprehensive guide to generative adversarial networks (GANs) and application to individual electricity demand publication-title: Expert Syst. Appl. – volume: 72 year: 2023 ident: bib9 article-title: A calibration-based hybrid transfer learning framework for RUL prediction of rolling bearing across different machines publication-title: IEEE Trans. Instrum. Meas. – volume: 57 year: 2023 ident: bib15 article-title: A novel deep learning method with partly explainable: intelligent milling tool wear prediction model based on transformer informed physics publication-title: Adv. Eng. Inform. – volume: 124 start-page: 604 year: 2024 end-page: 620 ident: bib52 article-title: Model-data hybrid driven approach for remaining useful life prediction of cutting tool based on improved inverse Gaussian process publication-title: J. Manuf. Process. – volume: 178 year: 2024 ident: bib13 article-title: Spiking generative adversarial network with attention scoring decoding publication-title: Neural Netw. – volume: 187 year: 2024 ident: bib28 article-title: Toward developing remanufactured Ti6Al4V alloys with high fatigue crack growth resistance by in-situ cooling during laser remanufacturing publication-title: Int. J. Fatig. – volume: 244 year: 2020 ident: bib36 article-title: Enhancing cutting tool sustainability based on remaining useful life prediction publication-title: J. Clean. Prod. – volume: 132 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib32 article-title: Deep convolutional neural network based on self-distillation for tool wear recognition publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.107851 – volume: 12 start-page: 2402 issue: 12 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib39 article-title: Monitoring of chlorpyrifos residues in corn oil based on Raman spectral deep-learning model publication-title: Foods doi: 10.3390/foods12122402 – volume: 191 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib11 article-title: Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: a comprehensive review publication-title: Int. J. Mach. Tool Manufact. doi: 10.1016/j.ijmachtools.2023.104061 – volume: 198 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib35 article-title: Effect of laser shock peening on cylinder-on-flat torsional fretting wear resistance performance of titanium alloy publication-title: Tribol. Int. doi: 10.1016/j.triboint.2024.109919 – volume: 135 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib43 article-title: Extendable machine tool wear monitoring process using image segmentation based deep learning model and automatic detection of depth of cut line publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108570 – volume: 409 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib54 article-title: A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.135251 – volume: 223 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib20 article-title: Prediction and classification of tool wear and its state in sustainable machining of Bohler steel with different machine learning models publication-title: Measurement doi: 10.1016/j.measurement.2023.113825 – volume: 376 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib46 article-title: Key technologies and research progress in robotic arc additive remanufacturing publication-title: Sensor Actuator Phys. doi: 10.1016/j.sna.2024.115547 – volume: 133 start-page: 2171 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib47 article-title: Prediction of power consumption and its signals in sustainable turning of PH13-8Mo steel with different machine learning models publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-024-13867-3 – volume: 28 start-page: 1975 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib21 article-title: Identification of Johnson-Cook material model parameters for laser shock peening process simulation for AA2024, Ti–6Al–4V and Inconel 718 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.11.168 – volume: 164 year: 2025 ident: 10.1016/j.engappai.2025.111276_bib30 article-title: Remaining useful life prediction model of cross-domain rolling bearing via dynamic hybrid domain adaptation and attention contrastive learning publication-title: Comput. Ind. doi: 10.1016/j.compind.2024.104172 – volume: 36 start-page: 185 year: 2014 ident: 10.1016/j.engappai.2025.111276_bib6 article-title: Computational complexity measures for multi-objective optimization problems publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2014.09.077 – volume: 148 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib41 article-title: Investigating the effectiveness of data augmentation from similarity and diversity: an empirical study publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2023.110204 – volume: 25 start-page: 1553 year: 2014 ident: 10.1016/j.engappai.2025.111276_bib4 article-title: On the complexity of neural network classifiers: a comparison between shallow and deep architectures publication-title: IEEE Transact. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2013.2293637 – volume: 122 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib33 article-title: A hybrid Gaussian mutation PSO with search space reduction and its application to intelligent selection of piston seal grooves for homemade pneumatic cylinders publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106156 – volume: 12 start-page: 873 issue: 4 year: 2022 ident: 10.1016/j.engappai.2025.111276_bib1 article-title: A data-driven dynamic obstacle avoidance method for liquid-carrying plant protection UAVs publication-title: Agronomy doi: 10.3390/agronomy12040873 – volume: 71 start-page: 679 year: 2021 ident: 10.1016/j.engappai.2025.111276_bib2 article-title: Tool wear and remaining useful life prediction in micro-milling along complex tool paths using neural networks publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2021.09.055 – volume: 187 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib28 article-title: Toward developing remanufactured Ti6Al4V alloys with high fatigue crack growth resistance by in-situ cooling during laser remanufacturing publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2024.108455 – volume: 237 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib24 article-title: Dynamic data-driven degradation method for monitoring remaining useful life of cutting tools publication-title: Measurement doi: 10.1016/j.measurement.2024.115247 – volume: 90 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib55 article-title: Hybrid CNN-LSTM model driven image segmentation and roughness prediction for tool condition assessment with heterogeneous data publication-title: Robot. Comput. Integrated Manuf. doi: 10.1016/j.rcim.2024.102796 – volume: 67 start-page: 5081 issue: 6 year: 2020 ident: 10.1016/j.engappai.2025.111276_bib45 article-title: Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2931255 – volume: 56 start-page: 359 year: 2020 ident: 10.1016/j.engappai.2025.111276_bib7 article-title: Prognostic study of ball screws by ensemble data-driven particle filters publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.06.009 – volume: 124 start-page: 187 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib31 article-title: Modeling imaged welding process dynamic behaviors using generative adversarial network (GAN) for a new foundation to monitor weld penetration using deep learning publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2024.05.081 – volume: 13 start-page: 1347 issue: 8 year: 2021 ident: 10.1016/j.engappai.2025.111276_bib49 article-title: An improved bees algorithm for training deep recurrent networks for sentiment classification publication-title: Symmetry doi: 10.3390/sym13081347 – volume: 32 year: 2019 ident: 10.1016/j.engappai.2025.111276_bib44 article-title: Time-series generative adversarial networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: 10346 year: 2022 ident: 10.1016/j.engappai.2025.111276_bib23 article-title: A multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.08.180 – volume: 130 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib12 article-title: Laser shock peening and its effects and modeling on fatigue performance of additive manufactured metallic materials publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2024.104281 – volume: 244 year: 2020 ident: 10.1016/j.engappai.2025.111276_bib36 article-title: Enhancing cutting tool sustainability based on remaining useful life prediction publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118794 – volume: 210 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib3 article-title: Hybrid prognostics to estimate cutting inserts remaining useful life based on direct wear observation publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2024.111163 – volume: 152 start-page: 453 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib34 article-title: Ultra-high-precision pneumatic force servo system based on a novel improved particle swarm optimization algorithm integrating Gaussian mutation and fuzzy theory publication-title: ISA (Instrum. Soc. Am.) Trans. doi: 10.1016/j.isatra.2024.06.024 – volume: 177 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib48 article-title: Fatigue strength evaluation of scale railway axle with surface defect considering mean stress effect publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2023.107974 – volume: 52 start-page: 32 year: 2019 ident: 10.1016/j.engappai.2025.111276_bib25 article-title: Fog computing and convolutional neural network enabled prognosis for machining process optimization publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2019.05.003 – volume: 74 start-page: 367 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib40 article-title: Tool wear and remaining useful life estimation in precision machining using interacting multiple model publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2024.04.001 – volume: 110 start-page: 331 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib26 article-title: Research on hybrid remanufacturing process chain of laser cladding, CNC machining and ultrasonic rolling for aero-engine blades publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2023.12.059 – volume: 321 year: 2020 ident: 10.1016/j.engappai.2025.111276_bib53 article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126503 – volume: 196 start-page: 1 year: 2020 ident: 10.1016/j.engappai.2025.111276_bib5 article-title: Classification of drinking and drinker-playing in pigs by a video-based deep learning method publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.05.010 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib51 article-title: A parallel hybrid neural network with integration of spatial and temporal features for remaining useful life prediction in prognostics publication-title: IEEE Trans. Instrum. Meas. – volume: 246 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib27 article-title: Machinery health prognostic with uncertainty for mineral processing using TSC-TimeGAN publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2024.110055 – year: 2014 ident: 10.1016/j.engappai.2025.111276_bib14 article-title: Generative adversarial networks publication-title: arXiv – volume: 124 start-page: 604 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib52 article-title: Model-data hybrid driven approach for remaining useful life prediction of cutting tool based on improved inverse Gaussian process publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2024.06.027 – volume: 212 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib16 article-title: Adaptive weighted generative adversarial network with attention mechanism: a transfer data augmentation method for tool wear prediction publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2024.111288 – volume: 23 start-page: 3828 year: 2021 ident: 10.1016/j.engappai.2025.111276_bib37 article-title: Kernelized multiview subspace analysis by self-weighted learning publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.3032023 – volume: 548 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib8 article-title: Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126391 – volume: 166 year: 2025 ident: 10.1016/j.engappai.2025.111276_bib29 article-title: Acoustic signal-based wear monitoring for belt grinding tools with pyramid-structured abrasives using BO-KELM publication-title: Comput. Ind. doi: 10.1016/j.compind.2024.104235 – volume: 184 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib10 article-title: Simultaneous analysis of mildew degree and aflatoxin B1 of wheat by a multi-task deep learning strategy based on microwave detection technology publication-title: LWT doi: 10.1016/j.lwt.2023.115047 – volume: 486 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib19 article-title: Enhancing the wear resistance of PCD tools in cutting Cf/SiC materials through low-energy laser shock peening publication-title: Surf. Coating. Technol. doi: 10.1016/j.surfcoat.2024.130951 – volume: 187 year: 2022 ident: 10.1016/j.engappai.2025.111276_bib18 article-title: Joint distribution adaptation with diverse feature aggregation: a new transfer learning framework for bearing diagnosis across different machines publication-title: Measurement doi: 10.1016/j.measurement.2021.110332 – volume: 30 start-page: 1890 issue: 9 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib22 article-title: A review on microstructure, mechanical behavior, and post-processing of additively manufactured Ni-based superalloys publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-10-2023-0380 – volume: 250 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib42 article-title: A comprehensive guide to generative adversarial networks (GANs) and application to individual electricity demand publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.123851 – volume: 284 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib38 article-title: TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties publication-title: Energy (Calg.) – volume: 362 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib17 article-title: The effect of abrasive water jet peening and laser shock peening on the wear properties of direct metal laser sintered AlSi10Mg alloy publication-title: Mater. Lett. doi: 10.1016/j.matlet.2024.136170 – volume: 72 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib9 article-title: A calibration-based hybrid transfer learning framework for RUL prediction of rolling bearing across different machines publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3260283 – volume: 178 year: 2024 ident: 10.1016/j.engappai.2025.111276_bib13 article-title: Spiking generative adversarial network with attention scoring decoding publication-title: Neural Netw. doi: 10.1016/j.neunet.2024.106423 – volume: 57 year: 2023 ident: 10.1016/j.engappai.2025.111276_bib15 article-title: A novel deep learning method with partly explainable: intelligent milling tool wear prediction model based on transformer informed physics publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.102106 – volume: 260 year: 2022 ident: 10.1016/j.engappai.2025.111276_bib50 article-title: Data augmentation for improving heating load prediction of heating substation based on TimeGAN publication-title: Energy (Calg.) |
| SSID | ssj0003846 |
| Score | 2.446338 |
| Snippet | Predicting and extending the remaining life of cutting tools during machining processes is essential for sustainable manufacturing. Traditional prognosis... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 111276 |
| SubjectTerms | Cutting tool prognosis Data augmentation Enhanced ternary bees algorithm Laser shock peening Remanufacturing Temporal convolutional networks |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgECa6HvTi27i-wsEra1sKLceN0WxMfBzcZD01FGijrt1mt43Rkz9doHSjRqMeSzJAGR4fzMw3ABynGHMSRwpxSTAKiWSI8dRHaeARQQIZK24ChS-v6GAYXozIyF0UTSzMJ_u99cNSRc7Lkt_ru1xAzAoPIroIlijR2LsDloZXN_27hlAvQD6z2eT8OMLI-G5-CAn-vqKfTqPluij5yzMfjz-cNudr4LrtZ-Nk8tirq7QnXr9QOP79R9bBqgOesN_MlA2woIpNsOZAKHRLfKaL2jwPbdkWeDutrXc0rCaTMRzfZwqWU2PgMUqFvJDQPqWbdzfo8v7A3NJZm70U2mQ7iNe55f-UUCpVQpetIrfiGsHr9qbqiRe1ibSwoZNwTi872wbD87Pb0wFymRuQwB6rUEYDYyfOMr17MSxSoXE8NRZLEWT6AkaY9AQXhv0uivX-KqgksS-oRjuC0ohLvAM6xaRQuwBqKRIzoXxKVah0FSFLfewrxbDS0JV0wUmrwaRsCDqS1nPtIWnHPDFjnjRj3gWsVXTiYEYDHxKts19lvfnM-GNze_8X2Qcr5ssckT45AJ1qWqtDjX2q9MhN-Hd4jgDv priority: 102 providerName: Unpaywall |
| Title | Cutting tool life prediction and extension through generative model-augmented deep learning and laser remanufacturing techniques |
| URI | https://dx.doi.org/10.1016/j.engappai.2025.111276 https://doi.org/10.1016/j.engappai.2025.111276 |
| UnpaywallVersion | publishedVersion |
| Volume | 158 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLcQHMaF8TEEYyAfuJo2cezGx6oaKquopkE1dooc26mKShqVRtMuiD-d9xyHgYQ0pJ2sWHZs-dnv_ez3RchpzrkWac8xbQVnibCKKZ1HLI-7wojYpk6jo_DlWA4nybcbcbNGBq0vDJpVBt7f8HTPrUNNJ6xmp5rNOlcADuC4wWEWqD71fuRJ0sMsBmcPf808eNo460Bjhq1feAnfnrlyqqtKz-CeGAvkHjHGHnlbQH2oy0r_-a3n8xcC6HybbAXkSPvN5HbImit3yceAImk4o_dQ1SZqaOv2yOOg9ubNdLVYzOl8VjhaLVFDg1ShurTUv4XjwxkNiXvo1MejRmZIfbYcpuupD-BpqXWuoiHdxNR3BwgO4y3dnS5rdJXwvo_0OT7s_ScyOf96PRiykHqBGd5VK1bIGBW9RQHsR3GTGwDiElWOJi7gBiWU7RptMHxdLwUGaaQVaWQkwBUjZU9bvk_Wy0XpDgiFXiJVxkVSusTBLxKVRzxyTnEH2FMckk673lnVRNjIWtOz26ylUIYUyhoKHRLVkiV7tVcyEAP_7Nt9puM7h_v8H8MdkU38QmEXiS9kfbWs3TGgmFV-4rfpCdnoX4yGYyxHP36OoJyMv_d_PQFSsPeL |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBclO2SXre021rVrdehVSWxZinUsYSX9vLSF3IwsySEhc0xqM3YZ_dP7nix3GQw26M08S5bRk977Se-LkNOccy3SsWPaCs4SYRVTOo9YHo-EEbFNncZA4ZtbOX1ILmditkMmXSwMulUG2d_KdC-tA2UYZnNYLRbDOwAHsN1gMws0n2Ic-ZtEwAMs6sGv334ePG2jdaA1w-ZbYcLLgSvnuqr0Ag6KsUDxEWPykb9rqH5TVvrnD71abWmg813yLkBHetb-3R7ZceU-eR9gJA2b9BFIXaWGjvaBPE0a799M6_V6RVeLwtFqgyYaZAvVpaX-Mhxvzmio3EPnPiE1SkPqy-Uw3cx9Bk9LrXMVDfUm5r47YHAYb-O-67LBWAkf_EhfEsQ-fiQP59_uJ1MWai8ww0eqZoWM0dJbFCB_FDe5ASQu0eZo4gKOUELZkdEG89eNU5CQRlqRRkYCXjFSjrXln0ivXJfuM6HQS6TKuEhKlzj4RKLyiEfOKe4AfIoDMuzmO6vaFBtZ53u2zDoOZcihrOXQAVEdW7I_FksGeuCffUcvfPzP4b68YrgT0p_e31xn1xe3V4fkLb5BzReJI9KrN437CpCmzo_9kn0GnE31zQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgECa6HvTi27i-wsEra1sKLceN0WxMfBzcZD01FGijrt1mt43Rkz9doHSjRqMeSzJAGR4fzMw3ABynGHMSRwpxSTAKiWSI8dRHaeARQQIZK24ChS-v6GAYXozIyF0UTSzMJ_u99cNSRc7Lkt_ru1xAzAoPIroIlijR2LsDloZXN_27hlAvQD6z2eT8OMLI-G5-CAn-vqKfTqPluij5yzMfjz-cNudr4LrtZ-Nk8tirq7QnXr9QOP79R9bBqgOesN_MlA2woIpNsOZAKHRLfKaL2jwPbdkWeDutrXc0rCaTMRzfZwqWU2PgMUqFvJDQPqWbdzfo8v7A3NJZm70U2mQ7iNe55f-UUCpVQpetIrfiGsHr9qbqiRe1ibSwoZNwTi872wbD87Pb0wFymRuQwB6rUEYDYyfOMr17MSxSoXE8NRZLEWT6AkaY9AQXhv0uivX-KqgksS-oRjuC0ohLvAM6xaRQuwBqKRIzoXxKVah0FSFLfewrxbDS0JV0wUmrwaRsCDqS1nPtIWnHPDFjnjRj3gWsVXTiYEYDHxKts19lvfnM-GNze_8X2Qcr5ssckT45AJ1qWqtDjX2q9MhN-Hd4jgDv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cutting+tool+life+prediction+and+extension+through+generative+model-augmented+deep+learning+and+laser+remanufacturing+techniques&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Liang%2C+Yuchen&rft.au=Wang%2C+Yuqi&rft.au=Chiong%2C+Raymond&rft.au=Li%2C+Anping&rft.date=2025-10-15&rft.issn=0952-1976&rft.volume=158&rft.spage=111276&rft_id=info:doi/10.1016%2Fj.engappai.2025.111276&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_111276 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |