Capturing and utilizing the random feature in Monte Carlo fission source distributions
•Three mesh-free SW-based methods are proposed to capture the FSD random error term’s 1m feature.•A mesh-free source convergence auto-diagnosis algorithm is introduced utilizing the 1m feature.•The algorithm can automatically save 58% to 81% of the computational time to reach a converged fission sou...
        Saved in:
      
    
          | Published in | Annals of nuclear energy Vol. 180; p. 109468 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.01.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0306-4549 1873-2100  | 
| DOI | 10.1016/j.anucene.2022.109468 | 
Cover
| Abstract | •Three mesh-free SW-based methods are proposed to capture the FSD random error term’s 1m feature.•A mesh-free source convergence auto-diagnosis algorithm is introduced utilizing the 1m feature.•The algorithm can automatically save 58% to 81% of the computational time to reach a converged fission source in models with a dominance ratio of around 0.99.
The Monte Carlo algorithm commonly adopts the power iteration (PI) process in criticality calculations. Previous studies have shown that random error term in the PI process significantly influences the source convergence diagnosis and variance underestimation phenomenon. This paper uses the Sliced Wasserstein (SW) distance of the fission source distributions (FSDs) to estimate the error terms in the PI process. Three mesh-free SW-based methods are proposed to capture the random error term's 1m feature for the OECD source convergence fissile slab model, sphere array model, and the BEAVRS model. Then, a mesh-free source convergence auto-diagnosis algorithm is introduced based on the methods. The algorithm sets the batch size at five stages. The 1m feature of the random error term is utilized to achieve auto-diagnosis at the target batch size. Numerical calculation results show that the auto-diagnosis algorithm is practical and efficient for source convergence diagnosis and acceleration, which can automatically save 58 % to 81 % of the computational time to reach a converged fission source in models with the dominance ratio of around 0.99. | 
    
|---|---|
| AbstractList | •Three mesh-free SW-based methods are proposed to capture the FSD random error term’s 1m feature.•A mesh-free source convergence auto-diagnosis algorithm is introduced utilizing the 1m feature.•The algorithm can automatically save 58% to 81% of the computational time to reach a converged fission source in models with a dominance ratio of around 0.99.
The Monte Carlo algorithm commonly adopts the power iteration (PI) process in criticality calculations. Previous studies have shown that random error term in the PI process significantly influences the source convergence diagnosis and variance underestimation phenomenon. This paper uses the Sliced Wasserstein (SW) distance of the fission source distributions (FSDs) to estimate the error terms in the PI process. Three mesh-free SW-based methods are proposed to capture the random error term's 1m feature for the OECD source convergence fissile slab model, sphere array model, and the BEAVRS model. Then, a mesh-free source convergence auto-diagnosis algorithm is introduced based on the methods. The algorithm sets the batch size at five stages. The 1m feature of the random error term is utilized to achieve auto-diagnosis at the target batch size. Numerical calculation results show that the auto-diagnosis algorithm is practical and efficient for source convergence diagnosis and acceleration, which can automatically save 58 % to 81 % of the computational time to reach a converged fission source in models with the dominance ratio of around 0.99. | 
    
| ArticleNumber | 109468 | 
    
| Author | Huo, Xiaodong Wang, Kan Yang, Haifeng Shen, Pengfei Huang, Shanfang Guo, Yuchuan Shao, Zeng  | 
    
| Author_xml | – sequence: 1 givenname: Pengfei surname: Shen fullname: Shen, Pengfei organization: Department of Engineering Physics, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Xiaodong surname: Huo fullname: Huo, Xiaodong organization: China Nuclear Power Engineering Corporation, Beijing 100840, China – sequence: 3 givenname: Shanfang surname: Huang fullname: Huang, Shanfang organization: Department of Engineering Physics, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Yuchuan surname: Guo fullname: Guo, Yuchuan organization: Department of Engineering Physics, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Zeng surname: Shao fullname: Shao, Zeng organization: China Nuclear Power Engineering Corporation, Beijing 100840, China – sequence: 6 givenname: Haifeng surname: Yang fullname: Yang, Haifeng organization: China Nuclear Power Engineering Corporation, Beijing 100840, China – sequence: 7 givenname: Kan surname: Wang fullname: Wang, Kan organization: Department of Engineering Physics, Tsinghua University, Beijing 100084, China  | 
    
| BookMark | eNqFkM1KxDAUhYOM4MzoIwh5gY43aZu2uBAp_sGIG3UbMumNZugkQ5IK-vS2jCs3s7rcn3M491uQmfMOCblksGLAxNV2pdyg0eGKA-fjrClEfULmrK7yjDOAGZlDDiIryqI5I4sYtwCM10UxJ--t2qchWPdBlevokGxvf6YufSIN48jvqEE1niC1jj57l5C2KvSeGhuj9Y5GPwSNtLMxBbsZHbyL5-TUqD7ixV9dkrf7u9f2MVu_PDy1t-tM59CkzHA0tak6LkpeKsGwA9agKAWrtWGsKvOaQ1UoHJPDpmRQaWaEFsDycSOqfEmuD746-BgDGqltUlOEFJTtJQM5IZJb-YdITojkAdGoLv-p98HuVPg-qrs56HB87ctikFFbdBo7G1An2Xl7xOEXN_-GAw | 
    
| CitedBy_id | crossref_primary_10_1051_epjn_2024021 crossref_primary_10_1007_s41365_022_01156_1  | 
    
| Cites_doi | 10.13182/NSE94-A13564 10.13182/NSE04-15 10.1016/j.nucengdes.2022.111675 10.1007/978-3-642-24785-9_37 10.1016/j.anucene.2020.107376 10.1080/18811248.2010.9711650 10.13182/NSE73-A22590 10.1016/j.anucene.2017.10.014 10.1080/00223131.2015.1039620 10.1016/j.anucene.2014.05.003 10.1146/annurev-statistics-030718-104938 10.1016/j.anucene.2014.08.048 10.15669/pnst.2.738 10.13182/NSE03-04 10.1016/j.anucene.2014.09.011  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2022 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.anucene.2022.109468 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1873-2100 | 
    
| ExternalDocumentID | 10_1016_j_anucene_2022_109468 S0306454922004984  | 
    
| GroupedDBID | --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JM 9JN A6W AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KCYFY KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SEW SPC SPCBC SPD SSJ SSR SSZ T5K UHS WUQ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c309t-f2ef8f7d26525a61ed019e65618cf1175382074ae4540b5107c1f6c6013382673 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0306-4549 | 
    
| IngestDate | Thu Oct 09 00:31:49 EDT 2025 Thu Apr 24 23:04:28 EDT 2025 Fri Feb 23 02:42:36 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Source convergence diagnosis Sliced Wasserstein distance Monte Carlo Power Iteration method  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c309t-f2ef8f7d26525a61ed019e65618cf1175382074ae4540b5107c1f6c6013382673 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_anucene_2022_109468 crossref_primary_10_1016_j_anucene_2022_109468 elsevier_sciencedirect_doi_10_1016_j_anucene_2022_109468  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2023 2023-01-00  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Annals of nuclear energy | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Blomquist, Nouri (b0010) 2002; 87 Ueki (b0090) 2010; 47 Rabin, J., Peyre, G., Delon, J., Bernot, M., 2011. Wasserstein barycenter and its application to texture mixing. International Conference on Scale Space and Variational Methods in Computer Vision, Springer, 435-446. Gast, R.C., 1969. Monte Carlo Eigenfunction Iteration Strategies That are and are Not Fair Games. Tech. Rep. WAPD-TM-878. Miao, Forget, Smith (b0065) 2018; 112 Ueki, Brown (b0105) 2003 Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein gan. arXiv:1701.07875. MacMillan (b0055) 1973; 50 Brown (b0015) 2011; 2 Miao, Forget, Smith (b0070) 2020; 142 Gast, R.C., Candelore. NR, 1974. Monte Carlo eigenfunction strategies and uncertainties. Proceedings of NEACRP Meeting of a Monte Carlo Study Group, Argonne National Laboratory. Ueki (b0095) 2016; 53 Miao, Forget, Smith (b0060) 2016; 115 Tuttelberg, Dufek (b0080) 2014; 72 Ueki, Brown (b0110) 2005; 149 Victor, M.P., Yoav, Z., 2019. Statistical Aspects of Wasserstein Distances. Annu. Rev. Stat. Appl. 6, 12.1–12.27. Tuttelberg, Dufek (b0085) 2015; 75 Gelbard, E.M., 1992. Biases in Monte Carlo eigenvalue calculations. In: IMACS International Symposium on Scientific Computing and Mathematical Modeling, Bangalore, India. Guo, Li, Huang, Wang (b0045) 2022; 389 Ueki, Brown, Parsons, Kornreich (b0115) 2003; 145 Cuturi (b0020) 2013; 26 Horelik, N., Herman, B., Forget, B., Smith, K., 2013. Benchmark for evaluation and validation of reactor simulations (beavrs), v1. 0.1, in: Proc. Int. Conf. Mathematics and Computational Methods Applied to Nuc. Sci. & Eng, pp. 63–68. Wang, Li, She, Liang, Xu, Qiu, Yu, Sun, Fan, Yu (b0125) 2015; 82 Gelbard, Gu (b0040) 1994; 117 Tuttelberg (10.1016/j.anucene.2022.109468_b0085) 2015; 75 10.1016/j.anucene.2022.109468_b0030 Cuturi (10.1016/j.anucene.2022.109468_b0020) 2013; 26 10.1016/j.anucene.2022.109468_b0050 Tuttelberg (10.1016/j.anucene.2022.109468_b0080) 2014; 72 Miao (10.1016/j.anucene.2022.109468_b0060) 2016; 115 Miao (10.1016/j.anucene.2022.109468_b0065) 2018; 112 Guo (10.1016/j.anucene.2022.109468_b0045) 2022; 389 Ueki (10.1016/j.anucene.2022.109468_b0115) 2003; 145 Ueki (10.1016/j.anucene.2022.109468_b0090) 2010; 47 Gelbard (10.1016/j.anucene.2022.109468_b0040) 1994; 117 Ueki (10.1016/j.anucene.2022.109468_b0105) 2003 Ueki (10.1016/j.anucene.2022.109468_b0110) 2005; 149 Blomquist (10.1016/j.anucene.2022.109468_b0010) 2002; 87 10.1016/j.anucene.2022.109468_b0005 Brown (10.1016/j.anucene.2022.109468_b0015) 2011; 2 10.1016/j.anucene.2022.109468_b0035 Wang (10.1016/j.anucene.2022.109468_b0125) 2015; 82 10.1016/j.anucene.2022.109468_b0025 Miao (10.1016/j.anucene.2022.109468_b0070) 2020; 142 Ueki (10.1016/j.anucene.2022.109468_b0095) 2016; 53 MacMillan (10.1016/j.anucene.2022.109468_b0055) 1973; 50 10.1016/j.anucene.2022.109468_b0075 10.1016/j.anucene.2022.109468_b0120  | 
    
| References_xml | – volume: 72 start-page: 151 year: 2014 end-page: 155 ident: b0080 article-title: Estimation of errors in the cumulative Monte Carlo fission source publication-title: Ann. Nucl. Energy – reference: Horelik, N., Herman, B., Forget, B., Smith, K., 2013. Benchmark for evaluation and validation of reactor simulations (beavrs), v1. 0.1, in: Proc. Int. Conf. Mathematics and Computational Methods Applied to Nuc. Sci. & Eng, pp. 63–68. – reference: Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein gan. arXiv:1701.07875. – start-page: 458 year: 2003 end-page: 461 ident: b0105 article-title: Informatics approach to stationarity diagnostics of the Monte Carlo fission source distribution publication-title: Trans. Am. Nucl. Soc. – volume: 82 start-page: 121 year: 2015 end-page: 129 ident: b0125 article-title: RMC – a Monte Carlo code for reactor core analysis publication-title: Ann. Nucl. Energy – reference: Gelbard, E.M., 1992. Biases in Monte Carlo eigenvalue calculations. In: IMACS International Symposium on Scientific Computing and Mathematical Modeling, Bangalore, India. – volume: 117 start-page: 1 year: 1994 end-page: 9 ident: b0040 article-title: Biases in Monte Carlo eigenvalue calculations publication-title: Nucl. Sci. Eng. – volume: 145 start-page: 279 year: 2003 end-page: 290 ident: b0115 article-title: Autocorrelation and dominance ratio in Monte Carlo criticality calculations publication-title: Nucl. Sci. Eng. – volume: 87 start-page: 143 year: 2002 end-page: 145 ident: b0010 article-title: The OECD/NEA source convergence benchmark program publication-title: Trans. Am. Nucl. Soc. – volume: 2 start-page: 738 year: 2011 end-page: 742 ident: b0015 article-title: “K-effective of the World” and Other Concerns for Monte Carlo Eigenvalue Calculations publication-title: Progr. Nucl. Sci. Technol. – volume: 26 start-page: 2292 year: 2013 end-page: 2300 ident: b0020 article-title: Sinkhorn distances: Lightspeed computation of optimal transport publication-title: Adv. Neur. Informat. Process. Syst. – volume: 75 start-page: 620 year: 2015 end-page: 626 ident: b0085 article-title: Neutron batch size optimisation methodology for Monte Carlo criticality calculations publication-title: Ann. Nucl. Energy – volume: 389 year: 2022 ident: b0045 article-title: Convergence diagnostics for Monte Carlo fission source distributions using the Wasserstein distance measure publication-title: Nucl. Eng. Des. – volume: 115 start-page: 1209 year: 2016 end-page: 1212 ident: b0060 article-title: Predicting correlation coefficients for Monte Carlo eigenvalue simulations publication-title: Trans. Am. Nucl. Soc. – volume: 112 start-page: 307 year: 2018 end-page: 321 ident: b0065 article-title: Predicting correlation coefficients for Monte Carlo eigenvalue simulations with multitype branching process publication-title: Ann. Nucl. Energy – volume: 47 start-page: 739 year: 2010 end-page: 753 ident: b0090 article-title: Standard deviation of local tallies in global Monte Carlo calculation of nuclear reactor core publication-title: J. Nucl. Sci. Technol. – reference: Rabin, J., Peyre, G., Delon, J., Bernot, M., 2011. Wasserstein barycenter and its application to texture mixing. International Conference on Scale Space and Variational Methods in Computer Vision, Springer, 435-446. – volume: 53 start-page: 312 year: 2016 end-page: 322 ident: b0095 article-title: Fractal dimension analysis for run length diagnosis of Monte Carlo criticality calculation publication-title: J. Nucl. Sci. Technol. – volume: 50 start-page: 73 year: 1973 end-page: 75 ident: b0055 article-title: Monte Carlo confidence limits for iterated-source calculations publication-title: Nucl. Sci. Eng. – volume: 142 start-page: 307 year: 2020 end-page: 321 ident: b0070 article-title: Improving variance convergence rate in Monte Carlo eigenvalue simulations via delayed neutrons publication-title: Ann. Nucl. Energy – reference: Victor, M.P., Yoav, Z., 2019. Statistical Aspects of Wasserstein Distances. Annu. Rev. Stat. Appl. 6, 12.1–12.27. – volume: 149 start-page: 38 year: 2005 end-page: 50 ident: b0110 article-title: Stationarity modeling and informatics-based diagnostics in Monte Carlo criticality calculations publication-title: Nucl. Sci. Eng. – reference: Gast, R.C., Candelore. NR, 1974. Monte Carlo eigenfunction strategies and uncertainties. Proceedings of NEACRP Meeting of a Monte Carlo Study Group, Argonne National Laboratory. – reference: Gast, R.C., 1969. Monte Carlo Eigenfunction Iteration Strategies That are and are Not Fair Games. Tech. Rep. WAPD-TM-878. – volume: 117 start-page: 1 year: 1994 ident: 10.1016/j.anucene.2022.109468_b0040 article-title: Biases in Monte Carlo eigenvalue calculations publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE94-A13564 – volume: 87 start-page: 143 year: 2002 ident: 10.1016/j.anucene.2022.109468_b0010 article-title: The OECD/NEA source convergence benchmark program publication-title: Trans. Am. Nucl. Soc. – volume: 149 start-page: 38 year: 2005 ident: 10.1016/j.anucene.2022.109468_b0110 article-title: Stationarity modeling and informatics-based diagnostics in Monte Carlo criticality calculations publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE04-15 – volume: 26 start-page: 2292 year: 2013 ident: 10.1016/j.anucene.2022.109468_b0020 article-title: Sinkhorn distances: Lightspeed computation of optimal transport publication-title: Adv. Neur. Informat. Process. Syst. – volume: 389 year: 2022 ident: 10.1016/j.anucene.2022.109468_b0045 article-title: Convergence diagnostics for Monte Carlo fission source distributions using the Wasserstein distance measure publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2022.111675 – ident: 10.1016/j.anucene.2022.109468_b0075 doi: 10.1007/978-3-642-24785-9_37 – start-page: 458 year: 2003 ident: 10.1016/j.anucene.2022.109468_b0105 article-title: Informatics approach to stationarity diagnostics of the Monte Carlo fission source distribution publication-title: Trans. Am. Nucl. Soc. – ident: 10.1016/j.anucene.2022.109468_b0025 – volume: 142 start-page: 307 year: 2020 ident: 10.1016/j.anucene.2022.109468_b0070 article-title: Improving variance convergence rate in Monte Carlo eigenvalue simulations via delayed neutrons publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2020.107376 – volume: 47 start-page: 739 issue: 8 year: 2010 ident: 10.1016/j.anucene.2022.109468_b0090 article-title: Standard deviation of local tallies in global Monte Carlo calculation of nuclear reactor core publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2010.9711650 – ident: 10.1016/j.anucene.2022.109468_b0005 – volume: 50 start-page: 73 year: 1973 ident: 10.1016/j.anucene.2022.109468_b0055 article-title: Monte Carlo confidence limits for iterated-source calculations publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE73-A22590 – volume: 115 start-page: 1209 year: 2016 ident: 10.1016/j.anucene.2022.109468_b0060 article-title: Predicting correlation coefficients for Monte Carlo eigenvalue simulations publication-title: Trans. Am. Nucl. Soc. – volume: 112 start-page: 307 year: 2018 ident: 10.1016/j.anucene.2022.109468_b0065 article-title: Predicting correlation coefficients for Monte Carlo eigenvalue simulations with multitype branching process publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2017.10.014 – volume: 53 start-page: 312 issue: 3 year: 2016 ident: 10.1016/j.anucene.2022.109468_b0095 article-title: Fractal dimension analysis for run length diagnosis of Monte Carlo criticality calculation publication-title: J. Nucl. Sci. Technol. doi: 10.1080/00223131.2015.1039620 – volume: 72 start-page: 151 year: 2014 ident: 10.1016/j.anucene.2022.109468_b0080 article-title: Estimation of errors in the cumulative Monte Carlo fission source publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2014.05.003 – ident: 10.1016/j.anucene.2022.109468_b0120 doi: 10.1146/annurev-statistics-030718-104938 – volume: 82 start-page: 121 year: 2015 ident: 10.1016/j.anucene.2022.109468_b0125 article-title: RMC – a Monte Carlo code for reactor core analysis publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2014.08.048 – volume: 2 start-page: 738 year: 2011 ident: 10.1016/j.anucene.2022.109468_b0015 article-title: “K-effective of the World” and Other Concerns for Monte Carlo Eigenvalue Calculations publication-title: Progr. Nucl. Sci. Technol. doi: 10.15669/pnst.2.738 – ident: 10.1016/j.anucene.2022.109468_b0035 – volume: 145 start-page: 279 issue: 3 year: 2003 ident: 10.1016/j.anucene.2022.109468_b0115 article-title: Autocorrelation and dominance ratio in Monte Carlo criticality calculations publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE03-04 – ident: 10.1016/j.anucene.2022.109468_b0050 – volume: 75 start-page: 620 year: 2015 ident: 10.1016/j.anucene.2022.109468_b0085 article-title: Neutron batch size optimisation methodology for Monte Carlo criticality calculations publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2014.09.011 – ident: 10.1016/j.anucene.2022.109468_b0030  | 
    
| SSID | ssj0012844 | 
    
| Score | 2.3140063 | 
    
| Snippet | •Three mesh-free SW-based methods are proposed to capture the FSD random error term’s 1m feature.•A mesh-free source convergence auto-diagnosis algorithm is... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 109468 | 
    
| SubjectTerms | Monte Carlo Power Iteration method Sliced Wasserstein distance Source convergence diagnosis  | 
    
| Title | Capturing and utilizing the random feature in Monte Carlo fission source distributions | 
    
| URI | https://dx.doi.org/10.1016/j.anucene.2022.109468 | 
    
| Volume | 180 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KRdCDaFWsH2UPXtOkm81HjyVYqtJetNJb2OxmIaWmpY0XD_52Z5JNrSAKHhMyEN5uZt5sZt4QcgucQweKS0uJUFlcOtpKPIdbzNVcS854KPGP7njij6b8YebNGiSqe2GwrNL4_sqnl97a3LENmvYqy-wnZLscBcZwofshaoJyHuAUg-7HtswD3W8lIQWZMz791cVjz7G7V4JLgTSRMRRW4qi4-lN82ok5w2NyZMgiHVTvc0Iaad4ihzsSgi2yX5Zwys0peYnEqiibDqnIFYUNtcje8QooHoWIpJavVKeljifNcjpGWSoaifViSXWGtbA5rU7yqUIxXTMHa3NGpsO752hkmakJlnSdfmFpluoQ8Ge-xzzh91IFLC4F2tYLpS6FOSHoB1ykqL2XwCcZyJ72JSRmkK0yP3DPSTNf5ukFoa7nCsm0rxKgXUjDe0GgEgFJkFSaOapNeI1VLI2kOE62WMR17dg8NhDHCHFcQdwm3a3ZqtLU-MsgrBci_rY5YvD7v5te_t_0ihzgbPnqvOWaNIv1W3oDDKRIOuUW65C9wf3jaPIJMVfaig | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qRdSDaFWszz14TR-bzaNHCZaqbS-20ltIdrOQUtPSxosHf7szedQKouAxIQNhZjLzzWbmG4BbxBzaUUIaKnCVIWRLG6HVEgY3tdBScOFK-qM7GNq9sXicWJMKeOUsDLVVFrE_j-lZtC7uNAttNhdx3HwmtCuIYIwM3XHFFmwLiztUgTU-1n0eFH9zDiksnenxrzGe5pTGeyXGFKwTOSdmJUGUqz8lqI2k0z2EgwItsrv8hY6gEiU12N_gEKzBTtbDKVfH8OIFizSbOmRBohh61Cx-pyvEeAxTkpq_Mh1lRJ4sTtiAeKmYFyxnc6ZjaoZNWH6UzxSx6RaLsFYnMO7ej7yeUaxNMKTZ6qSG5pF20QDctrgV2O1IIYyLELe1XakzZk7M-o4IIiLfC_GbdGRb2xIrMyxXue2Yp1BN5kl0Bsy0zEBybasQcRfh8LbjqDDAKkgqzVuqDqLUlS8LTnFabTHzy-axqV-o2CcV-7mK69BYiy1yUo2_BNzSEP437_Ax8P8uev5_0RvY7Y0Gfb__MHy6gD1aNJ8fvlxCNV2-RVcIR9LwOnO3T2Hu3B8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capturing+and+utilizing+the+random+feature+in+Monte+Carlo+fission+source+distributions&rft.jtitle=Annals+of+nuclear+energy&rft.au=Shen%2C+Pengfei&rft.au=Huo%2C+Xiaodong&rft.au=Huang%2C+Shanfang&rft.au=Guo%2C+Yuchuan&rft.date=2023-01-01&rft.issn=0306-4549&rft.volume=180&rft.spage=109468&rft_id=info:doi/10.1016%2Fj.anucene.2022.109468&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_anucene_2022_109468 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon |