Domain-specific information preservation for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimages

Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-mo...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 101; p. 103448
Main Authors Xu, Haozhe, Wang, Jian, Feng, Qianjin, Zhang, Yu, Ning, Zhenyuan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2025
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2024.103448

Cover

Abstract Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks. •Proposing a DSIP framework for AD diagnosis with incomplete multi-modal neuroimages.•Devising SIGAN to preserve details and mitigate style gaps for imputing missing data.•Developing SPDN for disease identification via modality-specific information interaction.•Experiments validate DSIP’s efficacy in both imputation and identification tasks.
AbstractList Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer's Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks.Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer's Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks.
Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks. •Proposing a DSIP framework for AD diagnosis with incomplete multi-modal neuroimages.•Devising SIGAN to preserve details and mitigate style gaps for imputing missing data.•Developing SPDN for disease identification via modality-specific information interaction.•Experiments validate DSIP’s efficacy in both imputation and identification tasks.
Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer's Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks.
ArticleNumber 103448
Author Wang, Jian
Ning, Zhenyuan
Xu, Haozhe
Feng, Qianjin
Zhang, Yu
Author_xml – sequence: 1
  givenname: Haozhe
  surname: Xu
  fullname: Xu, Haozhe
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
– sequence: 2
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
– sequence: 3
  givenname: Qianjin
  surname: Feng
  fullname: Feng, Qianjin
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
– sequence: 4
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  email: yuzhang@smu.edu.cn
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
– sequence: 5
  givenname: Zhenyuan
  surname: Ning
  fullname: Ning, Zhenyuan
  email: jonnyning@foxmail.com
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39798527$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1TAQhi1URG88ARLKkk0OdmzHyYJFVcpFqsSGri3HnrRzFNvBTlqVVV-D1-NJcEnpktVc9P2jmfmPyUGIAQh5w-iOUda-3-88ODS7hjaidLgQ3QtyxHjL6k40_OA5Z_KQHOe8p5QqIegrcsh71XeyUUfk7mP0BkOdZ7A4oq0wjDF5s2AM1ZwgQ7rditKuzqafN4Ae0u-HX7lymMFkKNFch5gxV3e43JQJNvp5ggUqv04L1j46M-FyXwVYU0RvriGfkpejmTK8foon5OrTxffzL_Xlt89fz88ua8tpv9QgFbjWcKbGQbTc9rLkPXS9YLyhnRqk7R3roHXUUKdUIRo6GDdwoVrJBT8h77a5c4o_VsiL9pgtTJMJENesOZOi62QvWUHfPqHrUD6r51RWTff637MKwDfApphzgvEZYVQ_WqL3-q8l-tESvVlSVB82FZQzbxGSzhYh2AImsIt2Ef-r_wPYb5f8
Cites_doi 10.3389/frdem.2024.1332928
10.1016/j.media.2023.102983
10.1016/j.jneumeth.2020.108795
10.1016/j.compbiomed.2024.108035
10.1016/j.neuroimage.2023.119898
10.1016/j.eswa.2022.117006
10.1097/00004728-199803000-00032
10.1016/j.future.2020.10.005
10.1109/JTEHM.2020.2984601
10.1109/ICCV.2017.167
10.1109/TMI.2020.2975344
10.1016/j.media.2022.102591
10.1109/TMI.2020.2983085
10.1109/TPAMI.2021.3091214
10.1016/j.neucom.2020.06.081
10.1007/s40846-023-00801-3
10.1109/TMI.2020.3022591
10.1609/aaai.v38i15.29578
10.1109/TMI.2021.3107013
10.1016/j.media.2022.102354
10.1109/CVPR.2017.632
10.3390/make5020031
10.1016/j.eswa.2024.124780
10.1109/CVPRW63382.2024.00529
10.1093/bib/bbab569
10.1109/TAI.2024.3416420
10.1609/aaai.v38i4.28105
10.1109/CVPRW59228.2023.00015
10.1109/TIP.2003.819861
10.1016/j.eswa.2023.120761
10.1016/j.compbiomed.2024.108979
10.3354/cr030079
10.1016/j.inffus.2024.102345
10.1109/TNSRE.2024.3379891
10.1016/j.artmed.2023.102543
10.1016/j.jneumeth.2019.108544
10.1109/TPAMI.2022.3159589
10.1109/WACV56688.2023.00396
10.1109/CVPRW59228.2023.00478
10.1016/j.media.2021.102266
10.1016/j.ejrad.2023.110934
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright © 2025 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 Elsevier B.V.
– notice: Copyright © 2025 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.media.2024.103448
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 39798527
10_1016_j_media_2024_103448
S136184152400375X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAYWO
AAYXX
ACIEU
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
EFLBG
ID FETCH-LOGICAL-c309t-e57ed6a317fb463c95a319e894132087b5c9d18e6d0a0d773c920badb34765343
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Thu Sep 04 20:21:12 EDT 2025
Fri May 02 01:41:42 EDT 2025
Sun Jul 06 05:08:34 EDT 2025
Sat Mar 15 15:41:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Incomplete modality
Alzheimer’s disease
Domain-specific
Generative adversarial network
Language English
License Copyright © 2025 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-e57ed6a317fb463c95a319e894132087b5c9d18e6d0a0d773c920badb34765343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39798527
PQID 3154885951
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3154885951
pubmed_primary_39798527
crossref_primary_10_1016_j_media_2024_103448
elsevier_sciencedirect_doi_10_1016_j_media_2024_103448
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
2025-Apr
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Trinh, Shahbaba, Stark, Ren (b42) 2024; 3
Zhang, Shi (b57) 2020; 341
Liu, Yue, Xiao, Yang, Shen, Liu (b27) 2022; 75
Behrad, Abadeh (b2) 2022
Jaritz, Vu, De Charette, Wirbel, Pérez (b21) 2022; 45
Li, X., Yin, J., Li, W., Xu, C., Yang, R., Shen, J., 2024. DI-V2X: Learning Domain-Invariant Representation for Vehicle-Infrastructure Collaborative 3D Object Detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 4. pp. 3208–3215.
Ning, Mao, Feng, Zhong, Zhang (b29) 2023
Yao, W., Yin, K., Cheung, W.K., Liu, J., Qin, J., 2024. DrFuse: Learning Disentangled Representation for Clinical Multi-Modal Fusion with Missing Modality and Modal Inconsistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 15. pp. 16416–16424.
Wang, Bovik, Sheikh, Simoncelli (b44) 2004; 13
Sauty, Durrleman (b36) 2022
Atri (b1) 2019
Sheng, Zhang, Zhang, Wang, Yang, Xin, Wang (b38) 2024; 170
Holmes, Hoge, Collins, Woods, Toga, Evans (b16) 1998; 22
Chen, F., Datta, G., Kundu, S., Beerel, P.A., 2023. Self-attentive pooling for efficient deep learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 3974–3983.
Elazab, Wang, Abdelaziz, Zhang, Gu, Gorriz, Zhang, Chang (b8) 2024
Shukla, Tiwari, Tiwari (b40) 2023; 5
Eslami, Tabarestani, Adjouadi (b9) 2023; 140
Hu, Lei, Wang, Wang, Feng, Shen (b17) 2021; 41
Willmott, Matsuura (b49) 2005; 30
Huang, X., Belongie, S., 2017. Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1501–1510.
El-Sappagh, Saleh, Sahal, Abuhmed, Islam, Ali, Amer (b7) 2021; 115
Xia, Ravikumar, Frangi (b50) 2022; 77
Pu, Men, Mao, Jiang, Ma, Lian (b35) 2022
Hl, D.S., Thomas, S.M., et al., 2024. A Multimodal Approach Integrating Convolutional and Recurrent Neural Networks for Alzheimer’s Disease Temporal Progression Prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5207–5215.
Wang, Zhang, Huang, Liu, Liu (b48) 2022; 82
Stahlschmidt, Ulfenborg, Synnergren (b41) 2022; 23
Pan, Liu, Lian, Xia, Shen (b31) 2020; 39
Lian, Liu, Pan, Shen (b25) 2020
Wang, Chen, Zhang, Zhou, Feng, Huang (b45) 2023; 231
Ehteshami Bejnordi, Habibian, Porikli, Ghodrati (b6) 2022
Wang, Cheng, Liu, Song, Wang, Feng (b46) 2023
Gao, Shi, Shen, Liu (b11) 2021
Segovia, Ramírez, Castillo-Barnes, Salas-Gonzalez, Gómez-Río, Sopena-Novales, Phillips, Zhang, Górriz (b37) 2020; 417
Odusami, Maskeliūnas, Damaševičius, Misra (b30) 2023; 43
Forouzannezhad, Abbaspour, Li, Fang, Williams, Cabrerizo, Barreto, Andrian, Rishe, Curiel (b10) 2020; 333
Pan, Phan, Adel, Fossati, Gaidon, Wojak, Guedj (b33) 2020; 40
Zhou, Fu, Chen, Shen, Shao (b58) 2020; 39
Hesse, R., Schaub-Meyer, S., Roth, S., 2023. Content-adaptive downsampling in convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4544–4553.
Gauthier, Webster, Servaes, Morais, Rosa-Neto (b12) 2022
Goel, Sharma, Tanveer, Suganthan, Maji, Pilli (b13) 2023
Yu, Ma, Da, Li, Wang, Xu, Li, Li, Alzheimer’s Disease Neuroimaging Initiative (b55) 2024; 180
Yao, Wang, Yan, Wang, Zhang, Wang, Zhang (b52) 2023
Narazani, Sarasua, Pölsterl, Lizarraga, Yakushev, Wachinger (b28) 2022
Pan, Liu, Xia, Shen (b32) 2021; 44
Zhang, Fan, Wang, Chen, Li (b56) 2024; 107
Pan, Zuo, Wang, Chen, Lei, Wang (b34) 2024
Jin, Tanno, Mertzanidou, Panagiotaki, Alexander (b22) 2021
Chen, Zhang, Yang, Peng, Xie, Lv, Hou (b5) 2024; 32
Shoeibi, Khodatars, Jafari, Ghassemi, Moridian, Alizadesani, Ling, Khosravi, Alinejad-Rokny, Lam (b39) 2022
Cardace, A., Ramirez, P.Z., Salti, S., Di Stefano, L., 2023. Exploiting the Complementarity of 2D and 3D Networks to Address Domain-Shift in 3D Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 98–109.
Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1125–1134.
Wang, Luo, Zu, Zhan, Jiao, Wu, Zhou, Shen, Zhou (b47) 2024; 91
Korhonen, You (b23) 2012
Yang, Li, Wang, Xia, Ye (b51) 2020; 8
Yu, Liu, Wu, Bozoki, Qiu, Yue, Liu (b54) 2023
Wang, Bashyam, Yang, Yu, Tassopoulou, Chintapalli, Skampardoni, Sreepada, Sahoo, Nikita (b43) 2023
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, L. Whitwell, Ward (b20) 2008; 27
Liu, Pasumarthi, Duffy, Gong, Datta, Zaharchuk (b26) 2023
Shukla (10.1016/j.media.2024.103448_b40) 2023; 5
Wang (10.1016/j.media.2024.103448_b48) 2022; 82
Willmott (10.1016/j.media.2024.103448_b49) 2005; 30
Zhang (10.1016/j.media.2024.103448_b56) 2024; 107
Jack (10.1016/j.media.2024.103448_b20) 2008; 27
Sheng (10.1016/j.media.2024.103448_b38) 2024; 170
Gao (10.1016/j.media.2024.103448_b11) 2021
Ehteshami Bejnordi (10.1016/j.media.2024.103448_b6) 2022
10.1016/j.media.2024.103448_b3
10.1016/j.media.2024.103448_b4
Trinh (10.1016/j.media.2024.103448_b42) 2024; 3
Liu (10.1016/j.media.2024.103448_b26) 2023
Stahlschmidt (10.1016/j.media.2024.103448_b41) 2022; 23
Holmes (10.1016/j.media.2024.103448_b16) 1998; 22
Lian (10.1016/j.media.2024.103448_b25) 2020
Odusami (10.1016/j.media.2024.103448_b30) 2023; 43
Gauthier (10.1016/j.media.2024.103448_b12) 2022
Sauty (10.1016/j.media.2024.103448_b36) 2022
Pu (10.1016/j.media.2024.103448_b35) 2022
Pan (10.1016/j.media.2024.103448_b33) 2020; 40
Yu (10.1016/j.media.2024.103448_b54) 2023
Goel (10.1016/j.media.2024.103448_b13) 2023
Elazab (10.1016/j.media.2024.103448_b8) 2024
Shoeibi (10.1016/j.media.2024.103448_b39) 2022
Yang (10.1016/j.media.2024.103448_b51) 2020; 8
Liu (10.1016/j.media.2024.103448_b27) 2022; 75
10.1016/j.media.2024.103448_b53
10.1016/j.media.2024.103448_b14
10.1016/j.media.2024.103448_b15
Wang (10.1016/j.media.2024.103448_b43) 2023
El-Sappagh (10.1016/j.media.2024.103448_b7) 2021; 115
Pan (10.1016/j.media.2024.103448_b32) 2021; 44
Pan (10.1016/j.media.2024.103448_b34) 2024
Chen (10.1016/j.media.2024.103448_b5) 2024; 32
Forouzannezhad (10.1016/j.media.2024.103448_b10) 2020; 333
Jin (10.1016/j.media.2024.103448_b22) 2021
Yu (10.1016/j.media.2024.103448_b55) 2024; 180
Narazani (10.1016/j.media.2024.103448_b28) 2022
Xia (10.1016/j.media.2024.103448_b50) 2022; 77
10.1016/j.media.2024.103448_b18
10.1016/j.media.2024.103448_b19
Wang (10.1016/j.media.2024.103448_b46) 2023
Ning (10.1016/j.media.2024.103448_b29) 2023
Zhou (10.1016/j.media.2024.103448_b58) 2020; 39
Atri (10.1016/j.media.2024.103448_b1) 2019
Pan (10.1016/j.media.2024.103448_b31) 2020; 39
Hu (10.1016/j.media.2024.103448_b17) 2021; 41
10.1016/j.media.2024.103448_b24
Eslami (10.1016/j.media.2024.103448_b9) 2023; 140
Segovia (10.1016/j.media.2024.103448_b37) 2020; 417
Wang (10.1016/j.media.2024.103448_b44) 2004; 13
Wang (10.1016/j.media.2024.103448_b47) 2024; 91
Jaritz (10.1016/j.media.2024.103448_b21) 2022; 45
Yao (10.1016/j.media.2024.103448_b52) 2023
Zhang (10.1016/j.media.2024.103448_b57) 2020; 341
Behrad (10.1016/j.media.2024.103448_b2) 2022
Wang (10.1016/j.media.2024.103448_b45) 2023; 231
Korhonen (10.1016/j.media.2024.103448_b23) 2012
References_xml – reference: Hesse, R., Schaub-Meyer, S., Roth, S., 2023. Content-adaptive downsampling in convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4544–4553.
– year: 2023
  ident: b29
  article-title: Decomposing and coupling saliency map for lesion segmentation in ultrasound images
– start-page: 3
  year: 2022
  end-page: 13
  ident: b36
  article-title: Progression models for imaging data with longitudinal variational auto encoders
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I
– volume: 40
  start-page: 81
  year: 2020
  end-page: 92
  ident: b33
  article-title: Multi-view separable pyramid network for AD prediction at MCI stage by 18 F-FDG brain PET imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 75
  year: 2022
  ident: b27
  article-title: Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages
  publication-title: Med. Image Anal.
– year: 2022
  ident: b35
  article-title: Controllable image synthesis with attribute-decomposed GAN
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 107
  year: 2024
  ident: b56
  article-title: Self-paced semi-supervised feature selection with application to multi-modal Alzheimer’s disease classification
  publication-title: Inf. Fusion
– year: 2024
  ident: b8
  article-title: Alzheimer’s disease diagnosis from single and multimodal data using machine and deep learning models: Achievements and future directions
  publication-title: Expert Syst. Appl.
– year: 2023
  ident: b13
  article-title: Multimodal neuroimaging based Alzheimer’s disease diagnosis using evolutionary RVFL classifier
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 333
  year: 2020
  ident: b10
  article-title: A Gaussian-based model for early detection of mild cognitive impairment using multimodal neuroimaging
  publication-title: J. Neurosci. Methods
– reference: Huang, X., Belongie, S., 2017. Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1501–1510.
– volume: 8
  start-page: 1
  year: 2020
  end-page: 10
  ident: b51
  article-title: Multi-source transfer learning via ensemble approach for initial diagnosis of Alzheimer’s disease
  publication-title: IEEE J. Transl. Eng. Heal. Med.
– year: 2020
  ident: b25
  article-title: Attention-guided hybrid network for dementia diagnosis with structural MR images
  publication-title: IEEE Trans. Cybern.
– reference: Hl, D.S., Thomas, S.M., et al., 2024. A Multimodal Approach Integrating Convolutional and Recurrent Neural Networks for Alzheimer’s Disease Temporal Progression Prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5207–5215.
– volume: 30
  start-page: 79
  year: 2005
  end-page: 82
  ident: b49
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
– year: 2022
  ident: b2
  article-title: An overview of deep learning methods for multimodal medical data mining
  publication-title: Expert Syst. Appl.
– year: 2021
  ident: b22
  article-title: Learning to downsample for segmentation of ultra-high resolution images
– volume: 231
  year: 2023
  ident: b45
  article-title: Multi-view imputation and cross-attention network based on incomplete longitudinal and multimodal data for conversion prediction of mild cognitive impairment
  publication-title: Expert Syst. Appl.
– volume: 115
  start-page: 680
  year: 2021
  end-page: 699
  ident: b7
  article-title: Alzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal data
  publication-title: Future Gener. Comput. Syst.
– year: 2024
  ident: b34
  article-title: Decgan: Decoupling generative adversarial network for detecting abnormal neural circuits in alzheimer’s disease
  publication-title: IEEE Trans. Artif. Intell.
– year: 2023
  ident: b52
  article-title: Artificial intelligence-based diagnosis of Alzheimer’s disease with brain MRI images
  publication-title: Eur. J. Radiol.
– volume: 44
  start-page: 6839
  year: 2021
  end-page: 6853
  ident: b32
  article-title: Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2023
  ident: b26
  article-title: One model to synthesize them all: Multi-contrast multi-scale transformer for missing data imputation
  publication-title: IEEE Trans. Med. Imaging
– start-page: 227
  year: 2019
  end-page: 240
  ident: b1
  article-title: Current and future treatments in Alzheimer’s disease
  publication-title: Seminars in Neurology, Vol. 39, No. 02
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b44
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– year: 2022
  ident: b12
  article-title: World alzheimer report 2022: life after diagnosis: Navigating treatment, care and support
– reference: Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1125–1134.
– volume: 32
  start-page: 1456
  year: 2024
  end-page: 1465
  ident: b5
  article-title: A multi-modal classification method for early diagnosis of mild cognitive impairment and Alzheimer’s disease using three paradigms with various task difficulties
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2022
  ident: b39
  article-title: Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review
  publication-title: Inf. Fusion
– reference: Yao, W., Yin, K., Cheung, W.K., Liu, J., Qin, J., 2024. DrFuse: Learning Disentangled Representation for Clinical Multi-Modal Fusion with Missing Modality and Modal Inconsistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 15. pp. 16416–16424.
– volume: 41
  start-page: 145
  year: 2021
  end-page: 157
  ident: b17
  article-title: Bidirectional mapping generative adversarial networks for brain MR to PET synthesis
  publication-title: IEEE Trans. Med. Imaging
– volume: 341
  year: 2020
  ident: b57
  article-title: Multi-modal neuroimaging feature fusion for diagnosis of Alzheimer’s disease
  publication-title: J. Neurosci. Methods
– volume: 5
  start-page: 512
  year: 2023
  end-page: 538
  ident: b40
  article-title: Alzheimer’s disease detection from fused PET and MRI modalities using an ensemble classifier
  publication-title: Mach. Learn. Knowl. Extr.
– start-page: 37
  year: 2012
  end-page: 38
  ident: b23
  article-title: Peak signal-to-noise ratio revisited: Is simple beautiful?
  publication-title: 2012 Fourth International Workshop on Quality of Multimedia Experience
– volume: 23
  start-page: bbab569
  year: 2022
  ident: b41
  article-title: Multimodal deep learning for biomedical data fusion: a review
  publication-title: Brief. Bioinform.
– volume: 3
  year: 2024
  ident: b42
  article-title: Alzheimer’s disease detection using data fusion with a deep supervised encoder
  publication-title: Front. Dementia
– volume: 170
  year: 2024
  ident: b38
  article-title: A hybrid multimodal machine learning model for detecting Alzheimer’s disease
  publication-title: Comput. Biol. Med.
– volume: 180
  year: 2024
  ident: b55
  article-title: A transformer-based unified multimodal framework for Alzheimer’s disease assessment
  publication-title: Comput. Biol. Med.
– volume: 77
  year: 2022
  ident: b50
  article-title: Learning to complete incomplete hearts for population analysis of cardiac MR images
  publication-title: Med. Image Anal.
– volume: 140
  year: 2023
  ident: b9
  article-title: A unique color-coded visualization system with multimodal information fusion and deep learning in a longitudinal study of Alzheimer’s disease
  publication-title: Artif. Intell. Med.
– start-page: 265
  year: 2023
  end-page: 275
  ident: b54
  article-title: Hybrid multimodality fusion with cross-domain knowledge transfer to forecast progression trajectories in cognitive decline
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2023
  ident: b43
  article-title: Applications of generative adversarial networks in neuroimaging and clinical neuroscience
  publication-title: NeuroImage
– reference: Li, X., Yin, J., Li, W., Xu, C., Yang, R., Shen, J., 2024. DI-V2X: Learning Domain-Invariant Representation for Vehicle-Infrastructure Collaborative 3D Object Detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 4. pp. 3208–3215.
– volume: 82
  year: 2022
  ident: b48
  article-title: Consistent connectome landscape mining for cross-site brain disease identification using functional MRI
  publication-title: Med. Image Anal.
– reference: Chen, F., Datta, G., Kundu, S., Beerel, P.A., 2023. Self-attentive pooling for efficient deep learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 3974–3983.
– reference: Cardace, A., Ramirez, P.Z., Salti, S., Di Stefano, L., 2023. Exploiting the Complementarity of 2D and 3D Networks to Address Domain-Shift in 3D Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 98–109.
– volume: 91
  year: 2024
  ident: b47
  article-title: 3D multi-modality transformer-GAN for high-quality PET reconstruction
  publication-title: Med. Image Anal.
– volume: 417
  start-page: 1
  year: 2020
  end-page: 9
  ident: b37
  article-title: Multivariate analysis of dual-point amyloid PET intended to assist the diagnosis of Alzheimer’s disease
  publication-title: Neurocomputing
– volume: 45
  start-page: 1533
  year: 2022
  end-page: 1544
  ident: b21
  article-title: Cross-modal learning for domain adaptation in 3d semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2023
  ident: b46
  article-title: SS-INR: Spatial-spectral implicit neural representation network for hyperspectral and multispectral image fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 39
  start-page: 2965
  year: 2020
  end-page: 2975
  ident: b31
  article-title: Spatially-constrained fisher representation for brain disease identification with incomplete multi-modal neuroimages
  publication-title: IEEE Trans. Med. Imaging
– start-page: 300
  year: 2022
  end-page: 316
  ident: b6
  article-title: SALISA: Saliency-based input sampling for efficient video object detection
  publication-title: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part X
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: b20
  article-title: The alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med.
– volume: 39
  start-page: 2772
  year: 2020
  end-page: 2781
  ident: b58
  article-title: Hi-net: hybrid-fusion network for multi-modal MR image synthesis
  publication-title: IEEE Trans. Med. Imaging
– volume: 22
  start-page: 324
  year: 1998
  end-page: 333
  ident: b16
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
– year: 2021
  ident: b11
  article-title: Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in Alzheimers disease
  publication-title: IEEE J. Biomed. Health Inf.
– start-page: 66
  year: 2022
  end-page: 76
  ident: b28
  article-title: Is a PET all you need? A multi-modal study for alzheimer’s disease using 3D CNNs
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I
– volume: 43
  start-page: 291
  year: 2023
  end-page: 302
  ident: b30
  article-title: Explainable deep-learning-based diagnosis of alzheimer’s disease using multimodal input fusion of PET and MRI images
  publication-title: J. Med. Biol. Eng.
– volume: 3
  year: 2024
  ident: 10.1016/j.media.2024.103448_b42
  article-title: Alzheimer’s disease detection using data fusion with a deep supervised encoder
  publication-title: Front. Dementia
  doi: 10.3389/frdem.2024.1332928
– year: 2023
  ident: 10.1016/j.media.2024.103448_b46
  article-title: SS-INR: Spatial-spectral implicit neural representation network for hyperspectral and multispectral image fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 37
  year: 2012
  ident: 10.1016/j.media.2024.103448_b23
  article-title: Peak signal-to-noise ratio revisited: Is simple beautiful?
– volume: 91
  year: 2024
  ident: 10.1016/j.media.2024.103448_b47
  article-title: 3D multi-modality transformer-GAN for high-quality PET reconstruction
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102983
– start-page: 66
  year: 2022
  ident: 10.1016/j.media.2024.103448_b28
  article-title: Is a PET all you need? A multi-modal study for alzheimer’s disease using 3D CNNs
– volume: 341
  year: 2020
  ident: 10.1016/j.media.2024.103448_b57
  article-title: Multi-modal neuroimaging feature fusion for diagnosis of Alzheimer’s disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108795
– year: 2022
  ident: 10.1016/j.media.2024.103448_b39
  article-title: Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review
  publication-title: Inf. Fusion
– volume: 170
  year: 2024
  ident: 10.1016/j.media.2024.103448_b38
  article-title: A hybrid multimodal machine learning model for detecting Alzheimer’s disease
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108035
– year: 2023
  ident: 10.1016/j.media.2024.103448_b43
  article-title: Applications of generative adversarial networks in neuroimaging and clinical neuroscience
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.119898
– start-page: 265
  year: 2023
  ident: 10.1016/j.media.2024.103448_b54
  article-title: Hybrid multimodality fusion with cross-domain knowledge transfer to forecast progression trajectories in cognitive decline
– year: 2022
  ident: 10.1016/j.media.2024.103448_b2
  article-title: An overview of deep learning methods for multimodal medical data mining
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117006
– volume: 22
  start-page: 324
  issue: 2
  year: 1998
  ident: 10.1016/j.media.2024.103448_b16
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199803000-00032
– volume: 115
  start-page: 680
  year: 2021
  ident: 10.1016/j.media.2024.103448_b7
  article-title: Alzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal data
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.10.005
– year: 2020
  ident: 10.1016/j.media.2024.103448_b25
  article-title: Attention-guided hybrid network for dementia diagnosis with structural MR images
  publication-title: IEEE Trans. Cybern.
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.media.2024.103448_b51
  article-title: Multi-source transfer learning via ensemble approach for initial diagnosis of Alzheimer’s disease
  publication-title: IEEE J. Transl. Eng. Heal. Med.
  doi: 10.1109/JTEHM.2020.2984601
– ident: 10.1016/j.media.2024.103448_b18
  doi: 10.1109/ICCV.2017.167
– volume: 39
  start-page: 2772
  issue: 9
  year: 2020
  ident: 10.1016/j.media.2024.103448_b58
  article-title: Hi-net: hybrid-fusion network for multi-modal MR image synthesis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2975344
– volume: 82
  year: 2022
  ident: 10.1016/j.media.2024.103448_b48
  article-title: Consistent connectome landscape mining for cross-site brain disease identification using functional MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102591
– volume: 39
  start-page: 2965
  issue: 9
  year: 2020
  ident: 10.1016/j.media.2024.103448_b31
  article-title: Spatially-constrained fisher representation for brain disease identification with incomplete multi-modal neuroimages
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2983085
– start-page: 3
  year: 2022
  ident: 10.1016/j.media.2024.103448_b36
  article-title: Progression models for imaging data with longitudinal variational auto encoders
– volume: 44
  start-page: 6839
  issue: 10
  year: 2021
  ident: 10.1016/j.media.2024.103448_b32
  article-title: Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3091214
– year: 2021
  ident: 10.1016/j.media.2024.103448_b22
– volume: 417
  start-page: 1
  year: 2020
  ident: 10.1016/j.media.2024.103448_b37
  article-title: Multivariate analysis of dual-point amyloid PET intended to assist the diagnosis of Alzheimer’s disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.081
– volume: 43
  start-page: 291
  issue: 3
  year: 2023
  ident: 10.1016/j.media.2024.103448_b30
  article-title: Explainable deep-learning-based diagnosis of alzheimer’s disease using multimodal input fusion of PET and MRI images
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-023-00801-3
– start-page: 227
  year: 2019
  ident: 10.1016/j.media.2024.103448_b1
  article-title: Current and future treatments in Alzheimer’s disease
– volume: 40
  start-page: 81
  issue: 1
  year: 2020
  ident: 10.1016/j.media.2024.103448_b33
  article-title: Multi-view separable pyramid network for AD prediction at MCI stage by 18 F-FDG brain PET imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3022591
– year: 2023
  ident: 10.1016/j.media.2024.103448_b29
– ident: 10.1016/j.media.2024.103448_b53
  doi: 10.1609/aaai.v38i15.29578
– volume: 41
  start-page: 145
  issue: 1
  year: 2021
  ident: 10.1016/j.media.2024.103448_b17
  article-title: Bidirectional mapping generative adversarial networks for brain MR to PET synthesis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3107013
– volume: 77
  year: 2022
  ident: 10.1016/j.media.2024.103448_b50
  article-title: Learning to complete incomplete hearts for population analysis of cardiac MR images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102354
– ident: 10.1016/j.media.2024.103448_b19
  doi: 10.1109/CVPR.2017.632
– volume: 5
  start-page: 512
  issue: 2
  year: 2023
  ident: 10.1016/j.media.2024.103448_b40
  article-title: Alzheimer’s disease detection from fused PET and MRI modalities using an ensemble classifier
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make5020031
– year: 2024
  ident: 10.1016/j.media.2024.103448_b8
  article-title: Alzheimer’s disease diagnosis from single and multimodal data using machine and deep learning models: Achievements and future directions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124780
– year: 2023
  ident: 10.1016/j.media.2024.103448_b13
  article-title: Multimodal neuroimaging based Alzheimer’s disease diagnosis using evolutionary RVFL classifier
  publication-title: IEEE J. Biomed. Health Inf.
– ident: 10.1016/j.media.2024.103448_b15
  doi: 10.1109/CVPRW63382.2024.00529
– volume: 23
  start-page: bbab569
  issue: 2
  year: 2022
  ident: 10.1016/j.media.2024.103448_b41
  article-title: Multimodal deep learning for biomedical data fusion: a review
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab569
– year: 2024
  ident: 10.1016/j.media.2024.103448_b34
  article-title: Decgan: Decoupling generative adversarial network for detecting abnormal neural circuits in alzheimer’s disease
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2024.3416420
– ident: 10.1016/j.media.2024.103448_b24
  doi: 10.1609/aaai.v38i4.28105
– year: 2022
  ident: 10.1016/j.media.2024.103448_b35
  article-title: Controllable image synthesis with attribute-decomposed GAN
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.media.2024.103448_b3
  doi: 10.1109/CVPRW59228.2023.00015
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.media.2024.103448_b44
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 231
  year: 2023
  ident: 10.1016/j.media.2024.103448_b45
  article-title: Multi-view imputation and cross-attention network based on incomplete longitudinal and multimodal data for conversion prediction of mild cognitive impairment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120761
– volume: 180
  year: 2024
  ident: 10.1016/j.media.2024.103448_b55
  article-title: A transformer-based unified multimodal framework for Alzheimer’s disease assessment
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108979
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  ident: 10.1016/j.media.2024.103448_b49
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– volume: 107
  year: 2024
  ident: 10.1016/j.media.2024.103448_b56
  article-title: Self-paced semi-supervised feature selection with application to multi-modal Alzheimer’s disease classification
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102345
– start-page: 300
  year: 2022
  ident: 10.1016/j.media.2024.103448_b6
  article-title: SALISA: Saliency-based input sampling for efficient video object detection
– volume: 32
  start-page: 1456
  year: 2024
  ident: 10.1016/j.media.2024.103448_b5
  article-title: A multi-modal classification method for early diagnosis of mild cognitive impairment and Alzheimer’s disease using three paradigms with various task difficulties
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2024.3379891
– volume: 140
  year: 2023
  ident: 10.1016/j.media.2024.103448_b9
  article-title: A unique color-coded visualization system with multimodal information fusion and deep learning in a longitudinal study of Alzheimer’s disease
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102543
– volume: 333
  year: 2020
  ident: 10.1016/j.media.2024.103448_b10
  article-title: A Gaussian-based model for early detection of mild cognitive impairment using multimodal neuroimaging
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108544
– volume: 45
  start-page: 1533
  issue: 2
  year: 2022
  ident: 10.1016/j.media.2024.103448_b21
  article-title: Cross-modal learning for domain adaptation in 3d semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3159589
– year: 2023
  ident: 10.1016/j.media.2024.103448_b26
  article-title: One model to synthesize them all: Multi-contrast multi-scale transformer for missing data imputation
  publication-title: IEEE Trans. Med. Imaging
– ident: 10.1016/j.media.2024.103448_b4
  doi: 10.1109/WACV56688.2023.00396
– ident: 10.1016/j.media.2024.103448_b14
  doi: 10.1109/CVPRW59228.2023.00478
– volume: 75
  year: 2022
  ident: 10.1016/j.media.2024.103448_b27
  article-title: Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102266
– year: 2023
  ident: 10.1016/j.media.2024.103448_b52
  article-title: Artificial intelligence-based diagnosis of Alzheimer’s disease with brain MRI images
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2023.110934
– year: 2022
  ident: 10.1016/j.media.2024.103448_b12
– year: 2021
  ident: 10.1016/j.media.2024.103448_b11
  article-title: Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in Alzheimers disease
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.media.2024.103448_b20
  article-title: The alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med.
SSID ssj0007440
Score 2.4505477
Snippet Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the...
Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer's Disease (AD), missing modality issue still poses a unique challenge in the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 103448
SubjectTerms Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer’s disease
Domain-specific
Generative adversarial network
Humans
Image Interpretation, Computer-Assisted - methods
Incomplete modality
Magnetic Resonance Imaging
Multimodal Imaging - methods
Neural Networks, Computer
Neuroimaging - methods
Title Domain-specific information preservation for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimages
URI https://dx.doi.org/10.1016/j.media.2024.103448
https://www.ncbi.nlm.nih.gov/pubmed/39798527
https://www.proquest.com/docview/3154885951
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hKqH2gFr6t0CRK_VYd5P4Lz4uFFjawqWl2psVJ16Rit1F7CIkDlVfg9fjSTrjJBQk2kNPjhxHsTz2eMb-5huAd2M0ASS-4iYpBZcB15xXRcVTE1BjauuloHjnwyM9PJafRmq0BDtdLAzBKlvd3-j0qK3bmn47mv2zuu5_TQUlK8H9R8ZEriOKYJeaYH0ffv6BeRABXhN7lXJq3TEPRYxXjM5AJzGTFHwuKQnQw7vT36zPuAvtPYXV1nxkg6aHz2ApTNfgyR1SwTVYOWyvy5_D5cfZBD1_TuGUBAliLU0qCYMRArY7kWVYzQanVyehnoTzm1_Xc9be3GAZsXj1nNGRLSMyByIUXgQWsYh8MquiKc8iM2Y9Qf00fwHHe7vfdoa8zbTAS5HYBQ_KhEoXaEuMvdSitAqfbcitpAjr3HhV2irNg66SIqmMwRZZ4ovKC2m0ElK8hOXpbBpeA0sVOoiFV9rKIMtc2qISY-vLVGbGmJD34H03wu6sIdRwHdLsh4sCcSQQ1wikB7qTgrs3Lxyq_H9_-LaTmcMVQ9cgxTTMLuZOkJdGtG5pD141wrztCd1y5ioz6__72w14nFGG4Ijt2YTlxflFeINmy8JvxXm5BY8GB5-HR1jub3_5PvgNbgvvlA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VrQTlgEr56RZajMQRa5PYjuPjqlBtf3YvtNLerDjxqkHsbtXdCokTr8Hr8SSdcZwKJOihp0RJrFge-_OMZ-YbgA8zVAEkvuI6qQSXHtecU2XNU-0RMXPjpKB85_EkH13Ik6mabsBhlwtDYZUR-1tMD2gdnwziaA6ummbwJRVUrAT3HxkKuU4fwaZUiMk92Bwen44md4BMHHht-lXKqUFHPhTCvEKCBtqJmaT8c0l1gP69Qf1PAQ0b0dE2PIsaJBu2nXwOG36xA0__4BXcgcfj6DF_Ad8_Ledo_HPKqKSoIBaZUkkejIJgu0NZho_Z8NuPS9_M_fXvn79WLDpv8BrC8ZoVo1NbRnwOxCm89iyEI_L5sg7aPAvkmM0cIWr1Ei6OPp8fjngstsArkZg190r7Oi9RnZg5mYvKKLw3vjCSkqwL7VRl6rTweZ2USa01fpElrqydkDpXQopX0FssF34XWKrQRiydyo30siqkKWsxM65KZaa19kUfPnYjbK9aTg3bBZt9tUEglgRiW4H0Ie-kYP-aGhZR__6G7zuZWVw05AkpF355s7KCDDVidkv78LoV5l1PyNFZqEzvPfS37-DJ6Hx8Zs-OJ6dvYCujgsEh1Oct9NbXN34ftZi1O4iz9BYP-fCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-specific+information+preservation+for+Alzheimer%E2%80%99s+disease+diagnosis+with+incomplete+multi-modality+neuroimages&rft.jtitle=Medical+image+analysis&rft.au=Xu%2C+Haozhe&rft.au=Wang%2C+Jian&rft.au=Feng%2C+Qianjin&rft.au=Zhang%2C+Yu&rft.date=2025-04-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.volume=101&rft_id=info:doi/10.1016%2Fj.media.2024.103448&rft.externalDocID=S136184152400375X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon