Domain-specific information preservation for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimages
Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-mo...
Saved in:
Published in | Medical image analysis Vol. 101; p. 103448 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2024.103448 |
Cover
Abstract | Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks.
•Proposing a DSIP framework for AD diagnosis with incomplete multi-modal neuroimages.•Devising SIGAN to preserve details and mitigate style gaps for imputing missing data.•Developing SPDN for disease identification via modality-specific information interaction.•Experiments validate DSIP’s efficacy in both imputation and identification tasks. |
---|---|
AbstractList | Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer's Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks.Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer's Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks. Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks. •Proposing a DSIP framework for AD diagnosis with incomplete multi-modal neuroimages.•Devising SIGAN to preserve details and mitigate style gaps for imputing missing data.•Developing SPDN for disease identification via modality-specific information interaction.•Experiments validate DSIP’s efficacy in both imputation and identification tasks. Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer's Disease (AD), missing modality issue still poses a unique challenge in the clinical practice. Recent studies have tried to impute the missing data so as to utilize all available subjects for training robust multi-modality models. However, these studies may overlook the modality-specific information inherent in multi-modality data, that is, different modalities possess distinct imaging characteristics and focus on different aspects of the disease. In this paper, we propose a domain-specific information preservation (DSIP) framework, consisting of modality imputation stage and status identification stage, for AD diagnosis with incomplete multi-modality neuroimages. In the first stage, a specificity-induced generative adversarial network (SIGAN) is developed to bridge the modality gap and capture modality-specific details for imputing high-quality neuroimages. In the second stage, a specificity-promoted diagnosis network (SPDN) is designed to promote the inter-modality feature interaction and the classifier robustness for identifying disease status accurately. Extensive experiments demonstrate the proposed method significantly outperforms state-of-the-art methods in both modality imputation and status identification tasks. |
ArticleNumber | 103448 |
Author | Wang, Jian Ning, Zhenyuan Xu, Haozhe Feng, Qianjin Zhang, Yu |
Author_xml | – sequence: 1 givenname: Haozhe surname: Xu fullname: Xu, Haozhe organization: School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China – sequence: 2 givenname: Jian surname: Wang fullname: Wang, Jian organization: Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China – sequence: 3 givenname: Qianjin surname: Feng fullname: Feng, Qianjin organization: School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China – sequence: 4 givenname: Yu surname: Zhang fullname: Zhang, Yu email: yuzhang@smu.edu.cn organization: School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China – sequence: 5 givenname: Zhenyuan surname: Ning fullname: Ning, Zhenyuan email: jonnyning@foxmail.com organization: School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39798527$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1TAQhi1URG88ARLKkk0OdmzHyYJFVcpFqsSGri3HnrRzFNvBTlqVVV-D1-NJcEnpktVc9P2jmfmPyUGIAQh5w-iOUda-3-88ODS7hjaidLgQ3QtyxHjL6k40_OA5Z_KQHOe8p5QqIegrcsh71XeyUUfk7mP0BkOdZ7A4oq0wjDF5s2AM1ZwgQ7rditKuzqafN4Ae0u-HX7lymMFkKNFch5gxV3e43JQJNvp5ggUqv04L1j46M-FyXwVYU0RvriGfkpejmTK8foon5OrTxffzL_Xlt89fz88ua8tpv9QgFbjWcKbGQbTc9rLkPXS9YLyhnRqk7R3roHXUUKdUIRo6GDdwoVrJBT8h77a5c4o_VsiL9pgtTJMJENesOZOi62QvWUHfPqHrUD6r51RWTff637MKwDfApphzgvEZYVQ_WqL3-q8l-tESvVlSVB82FZQzbxGSzhYh2AImsIt2Ef-r_wPYb5f8 |
Cites_doi | 10.3389/frdem.2024.1332928 10.1016/j.media.2023.102983 10.1016/j.jneumeth.2020.108795 10.1016/j.compbiomed.2024.108035 10.1016/j.neuroimage.2023.119898 10.1016/j.eswa.2022.117006 10.1097/00004728-199803000-00032 10.1016/j.future.2020.10.005 10.1109/JTEHM.2020.2984601 10.1109/ICCV.2017.167 10.1109/TMI.2020.2975344 10.1016/j.media.2022.102591 10.1109/TMI.2020.2983085 10.1109/TPAMI.2021.3091214 10.1016/j.neucom.2020.06.081 10.1007/s40846-023-00801-3 10.1109/TMI.2020.3022591 10.1609/aaai.v38i15.29578 10.1109/TMI.2021.3107013 10.1016/j.media.2022.102354 10.1109/CVPR.2017.632 10.3390/make5020031 10.1016/j.eswa.2024.124780 10.1109/CVPRW63382.2024.00529 10.1093/bib/bbab569 10.1109/TAI.2024.3416420 10.1609/aaai.v38i4.28105 10.1109/CVPRW59228.2023.00015 10.1109/TIP.2003.819861 10.1016/j.eswa.2023.120761 10.1016/j.compbiomed.2024.108979 10.3354/cr030079 10.1016/j.inffus.2024.102345 10.1109/TNSRE.2024.3379891 10.1016/j.artmed.2023.102543 10.1016/j.jneumeth.2019.108544 10.1109/TPAMI.2022.3159589 10.1109/WACV56688.2023.00396 10.1109/CVPRW59228.2023.00478 10.1016/j.media.2021.102266 10.1016/j.ejrad.2023.110934 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.media.2024.103448 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | 39798527 10_1016_j_media_2024_103448 S136184152400375X |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAYWO AAYXX ACIEU ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 EFKBS EFLBG |
ID | FETCH-LOGICAL-c309t-e57ed6a317fb463c95a319e894132087b5c9d18e6d0a0d773c920badb34765343 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Thu Sep 04 20:21:12 EDT 2025 Fri May 02 01:41:42 EDT 2025 Sun Jul 06 05:08:34 EDT 2025 Sat Mar 15 15:41:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Incomplete modality Alzheimer’s disease Domain-specific Generative adversarial network |
Language | English |
License | Copyright © 2025 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-e57ed6a317fb463c95a319e894132087b5c9d18e6d0a0d773c920badb34765343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39798527 |
PQID | 3154885951 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3154885951 pubmed_primary_39798527 crossref_primary_10_1016_j_media_2024_103448 elsevier_sciencedirect_doi_10_1016_j_media_2024_103448 |
PublicationCentury | 2000 |
PublicationDate | April 2025 2025-04-00 2025-Apr 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Trinh, Shahbaba, Stark, Ren (b42) 2024; 3 Zhang, Shi (b57) 2020; 341 Liu, Yue, Xiao, Yang, Shen, Liu (b27) 2022; 75 Behrad, Abadeh (b2) 2022 Jaritz, Vu, De Charette, Wirbel, Pérez (b21) 2022; 45 Li, X., Yin, J., Li, W., Xu, C., Yang, R., Shen, J., 2024. DI-V2X: Learning Domain-Invariant Representation for Vehicle-Infrastructure Collaborative 3D Object Detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 4. pp. 3208–3215. Ning, Mao, Feng, Zhong, Zhang (b29) 2023 Yao, W., Yin, K., Cheung, W.K., Liu, J., Qin, J., 2024. DrFuse: Learning Disentangled Representation for Clinical Multi-Modal Fusion with Missing Modality and Modal Inconsistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 15. pp. 16416–16424. Wang, Bovik, Sheikh, Simoncelli (b44) 2004; 13 Sauty, Durrleman (b36) 2022 Atri (b1) 2019 Sheng, Zhang, Zhang, Wang, Yang, Xin, Wang (b38) 2024; 170 Holmes, Hoge, Collins, Woods, Toga, Evans (b16) 1998; 22 Chen, F., Datta, G., Kundu, S., Beerel, P.A., 2023. Self-attentive pooling for efficient deep learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 3974–3983. Elazab, Wang, Abdelaziz, Zhang, Gu, Gorriz, Zhang, Chang (b8) 2024 Shukla, Tiwari, Tiwari (b40) 2023; 5 Eslami, Tabarestani, Adjouadi (b9) 2023; 140 Hu, Lei, Wang, Wang, Feng, Shen (b17) 2021; 41 Willmott, Matsuura (b49) 2005; 30 Huang, X., Belongie, S., 2017. Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1501–1510. El-Sappagh, Saleh, Sahal, Abuhmed, Islam, Ali, Amer (b7) 2021; 115 Xia, Ravikumar, Frangi (b50) 2022; 77 Pu, Men, Mao, Jiang, Ma, Lian (b35) 2022 Hl, D.S., Thomas, S.M., et al., 2024. A Multimodal Approach Integrating Convolutional and Recurrent Neural Networks for Alzheimer’s Disease Temporal Progression Prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5207–5215. Wang, Zhang, Huang, Liu, Liu (b48) 2022; 82 Stahlschmidt, Ulfenborg, Synnergren (b41) 2022; 23 Pan, Liu, Lian, Xia, Shen (b31) 2020; 39 Lian, Liu, Pan, Shen (b25) 2020 Wang, Chen, Zhang, Zhou, Feng, Huang (b45) 2023; 231 Ehteshami Bejnordi, Habibian, Porikli, Ghodrati (b6) 2022 Wang, Cheng, Liu, Song, Wang, Feng (b46) 2023 Gao, Shi, Shen, Liu (b11) 2021 Segovia, Ramírez, Castillo-Barnes, Salas-Gonzalez, Gómez-Río, Sopena-Novales, Phillips, Zhang, Górriz (b37) 2020; 417 Odusami, Maskeliūnas, Damaševičius, Misra (b30) 2023; 43 Forouzannezhad, Abbaspour, Li, Fang, Williams, Cabrerizo, Barreto, Andrian, Rishe, Curiel (b10) 2020; 333 Pan, Phan, Adel, Fossati, Gaidon, Wojak, Guedj (b33) 2020; 40 Zhou, Fu, Chen, Shen, Shao (b58) 2020; 39 Hesse, R., Schaub-Meyer, S., Roth, S., 2023. Content-adaptive downsampling in convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4544–4553. Gauthier, Webster, Servaes, Morais, Rosa-Neto (b12) 2022 Goel, Sharma, Tanveer, Suganthan, Maji, Pilli (b13) 2023 Yu, Ma, Da, Li, Wang, Xu, Li, Li, Alzheimer’s Disease Neuroimaging Initiative (b55) 2024; 180 Yao, Wang, Yan, Wang, Zhang, Wang, Zhang (b52) 2023 Narazani, Sarasua, Pölsterl, Lizarraga, Yakushev, Wachinger (b28) 2022 Pan, Liu, Xia, Shen (b32) 2021; 44 Zhang, Fan, Wang, Chen, Li (b56) 2024; 107 Pan, Zuo, Wang, Chen, Lei, Wang (b34) 2024 Jin, Tanno, Mertzanidou, Panagiotaki, Alexander (b22) 2021 Chen, Zhang, Yang, Peng, Xie, Lv, Hou (b5) 2024; 32 Shoeibi, Khodatars, Jafari, Ghassemi, Moridian, Alizadesani, Ling, Khosravi, Alinejad-Rokny, Lam (b39) 2022 Cardace, A., Ramirez, P.Z., Salti, S., Di Stefano, L., 2023. Exploiting the Complementarity of 2D and 3D Networks to Address Domain-Shift in 3D Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 98–109. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1125–1134. Wang, Luo, Zu, Zhan, Jiao, Wu, Zhou, Shen, Zhou (b47) 2024; 91 Korhonen, You (b23) 2012 Yang, Li, Wang, Xia, Ye (b51) 2020; 8 Yu, Liu, Wu, Bozoki, Qiu, Yue, Liu (b54) 2023 Wang, Bashyam, Yang, Yu, Tassopoulou, Chintapalli, Skampardoni, Sreepada, Sahoo, Nikita (b43) 2023 Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, L. Whitwell, Ward (b20) 2008; 27 Liu, Pasumarthi, Duffy, Gong, Datta, Zaharchuk (b26) 2023 Shukla (10.1016/j.media.2024.103448_b40) 2023; 5 Wang (10.1016/j.media.2024.103448_b48) 2022; 82 Willmott (10.1016/j.media.2024.103448_b49) 2005; 30 Zhang (10.1016/j.media.2024.103448_b56) 2024; 107 Jack (10.1016/j.media.2024.103448_b20) 2008; 27 Sheng (10.1016/j.media.2024.103448_b38) 2024; 170 Gao (10.1016/j.media.2024.103448_b11) 2021 Ehteshami Bejnordi (10.1016/j.media.2024.103448_b6) 2022 10.1016/j.media.2024.103448_b3 10.1016/j.media.2024.103448_b4 Trinh (10.1016/j.media.2024.103448_b42) 2024; 3 Liu (10.1016/j.media.2024.103448_b26) 2023 Stahlschmidt (10.1016/j.media.2024.103448_b41) 2022; 23 Holmes (10.1016/j.media.2024.103448_b16) 1998; 22 Lian (10.1016/j.media.2024.103448_b25) 2020 Odusami (10.1016/j.media.2024.103448_b30) 2023; 43 Gauthier (10.1016/j.media.2024.103448_b12) 2022 Sauty (10.1016/j.media.2024.103448_b36) 2022 Pu (10.1016/j.media.2024.103448_b35) 2022 Pan (10.1016/j.media.2024.103448_b33) 2020; 40 Yu (10.1016/j.media.2024.103448_b54) 2023 Goel (10.1016/j.media.2024.103448_b13) 2023 Elazab (10.1016/j.media.2024.103448_b8) 2024 Shoeibi (10.1016/j.media.2024.103448_b39) 2022 Yang (10.1016/j.media.2024.103448_b51) 2020; 8 Liu (10.1016/j.media.2024.103448_b27) 2022; 75 10.1016/j.media.2024.103448_b53 10.1016/j.media.2024.103448_b14 10.1016/j.media.2024.103448_b15 Wang (10.1016/j.media.2024.103448_b43) 2023 El-Sappagh (10.1016/j.media.2024.103448_b7) 2021; 115 Pan (10.1016/j.media.2024.103448_b32) 2021; 44 Pan (10.1016/j.media.2024.103448_b34) 2024 Chen (10.1016/j.media.2024.103448_b5) 2024; 32 Forouzannezhad (10.1016/j.media.2024.103448_b10) 2020; 333 Jin (10.1016/j.media.2024.103448_b22) 2021 Yu (10.1016/j.media.2024.103448_b55) 2024; 180 Narazani (10.1016/j.media.2024.103448_b28) 2022 Xia (10.1016/j.media.2024.103448_b50) 2022; 77 10.1016/j.media.2024.103448_b18 10.1016/j.media.2024.103448_b19 Wang (10.1016/j.media.2024.103448_b46) 2023 Ning (10.1016/j.media.2024.103448_b29) 2023 Zhou (10.1016/j.media.2024.103448_b58) 2020; 39 Atri (10.1016/j.media.2024.103448_b1) 2019 Pan (10.1016/j.media.2024.103448_b31) 2020; 39 Hu (10.1016/j.media.2024.103448_b17) 2021; 41 10.1016/j.media.2024.103448_b24 Eslami (10.1016/j.media.2024.103448_b9) 2023; 140 Segovia (10.1016/j.media.2024.103448_b37) 2020; 417 Wang (10.1016/j.media.2024.103448_b44) 2004; 13 Wang (10.1016/j.media.2024.103448_b47) 2024; 91 Jaritz (10.1016/j.media.2024.103448_b21) 2022; 45 Yao (10.1016/j.media.2024.103448_b52) 2023 Zhang (10.1016/j.media.2024.103448_b57) 2020; 341 Behrad (10.1016/j.media.2024.103448_b2) 2022 Wang (10.1016/j.media.2024.103448_b45) 2023; 231 Korhonen (10.1016/j.media.2024.103448_b23) 2012 |
References_xml | – reference: Hesse, R., Schaub-Meyer, S., Roth, S., 2023. Content-adaptive downsampling in convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4544–4553. – year: 2023 ident: b29 article-title: Decomposing and coupling saliency map for lesion segmentation in ultrasound images – start-page: 3 year: 2022 end-page: 13 ident: b36 article-title: Progression models for imaging data with longitudinal variational auto encoders publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I – volume: 40 start-page: 81 year: 2020 end-page: 92 ident: b33 article-title: Multi-view separable pyramid network for AD prediction at MCI stage by 18 F-FDG brain PET imaging publication-title: IEEE Trans. Med. Imaging – volume: 75 year: 2022 ident: b27 article-title: Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages publication-title: Med. Image Anal. – year: 2022 ident: b35 article-title: Controllable image synthesis with attribute-decomposed GAN publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 107 year: 2024 ident: b56 article-title: Self-paced semi-supervised feature selection with application to multi-modal Alzheimer’s disease classification publication-title: Inf. Fusion – year: 2024 ident: b8 article-title: Alzheimer’s disease diagnosis from single and multimodal data using machine and deep learning models: Achievements and future directions publication-title: Expert Syst. Appl. – year: 2023 ident: b13 article-title: Multimodal neuroimaging based Alzheimer’s disease diagnosis using evolutionary RVFL classifier publication-title: IEEE J. Biomed. Health Inf. – volume: 333 year: 2020 ident: b10 article-title: A Gaussian-based model for early detection of mild cognitive impairment using multimodal neuroimaging publication-title: J. Neurosci. Methods – reference: Huang, X., Belongie, S., 2017. Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1501–1510. – volume: 8 start-page: 1 year: 2020 end-page: 10 ident: b51 article-title: Multi-source transfer learning via ensemble approach for initial diagnosis of Alzheimer’s disease publication-title: IEEE J. Transl. Eng. Heal. Med. – year: 2020 ident: b25 article-title: Attention-guided hybrid network for dementia diagnosis with structural MR images publication-title: IEEE Trans. Cybern. – reference: Hl, D.S., Thomas, S.M., et al., 2024. A Multimodal Approach Integrating Convolutional and Recurrent Neural Networks for Alzheimer’s Disease Temporal Progression Prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5207–5215. – volume: 30 start-page: 79 year: 2005 end-page: 82 ident: b49 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. – year: 2022 ident: b2 article-title: An overview of deep learning methods for multimodal medical data mining publication-title: Expert Syst. Appl. – year: 2021 ident: b22 article-title: Learning to downsample for segmentation of ultra-high resolution images – volume: 231 year: 2023 ident: b45 article-title: Multi-view imputation and cross-attention network based on incomplete longitudinal and multimodal data for conversion prediction of mild cognitive impairment publication-title: Expert Syst. Appl. – volume: 115 start-page: 680 year: 2021 end-page: 699 ident: b7 article-title: Alzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal data publication-title: Future Gener. Comput. Syst. – year: 2024 ident: b34 article-title: Decgan: Decoupling generative adversarial network for detecting abnormal neural circuits in alzheimer’s disease publication-title: IEEE Trans. Artif. Intell. – year: 2023 ident: b52 article-title: Artificial intelligence-based diagnosis of Alzheimer’s disease with brain MRI images publication-title: Eur. J. Radiol. – volume: 44 start-page: 6839 year: 2021 end-page: 6853 ident: b32 article-title: Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2023 ident: b26 article-title: One model to synthesize them all: Multi-contrast multi-scale transformer for missing data imputation publication-title: IEEE Trans. Med. Imaging – start-page: 227 year: 2019 end-page: 240 ident: b1 article-title: Current and future treatments in Alzheimer’s disease publication-title: Seminars in Neurology, Vol. 39, No. 02 – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b44 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – year: 2022 ident: b12 article-title: World alzheimer report 2022: life after diagnosis: Navigating treatment, care and support – reference: Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1125–1134. – volume: 32 start-page: 1456 year: 2024 end-page: 1465 ident: b5 article-title: A multi-modal classification method for early diagnosis of mild cognitive impairment and Alzheimer’s disease using three paradigms with various task difficulties publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2022 ident: b39 article-title: Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review publication-title: Inf. Fusion – reference: Yao, W., Yin, K., Cheung, W.K., Liu, J., Qin, J., 2024. DrFuse: Learning Disentangled Representation for Clinical Multi-Modal Fusion with Missing Modality and Modal Inconsistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 15. pp. 16416–16424. – volume: 41 start-page: 145 year: 2021 end-page: 157 ident: b17 article-title: Bidirectional mapping generative adversarial networks for brain MR to PET synthesis publication-title: IEEE Trans. Med. Imaging – volume: 341 year: 2020 ident: b57 article-title: Multi-modal neuroimaging feature fusion for diagnosis of Alzheimer’s disease publication-title: J. Neurosci. Methods – volume: 5 start-page: 512 year: 2023 end-page: 538 ident: b40 article-title: Alzheimer’s disease detection from fused PET and MRI modalities using an ensemble classifier publication-title: Mach. Learn. Knowl. Extr. – start-page: 37 year: 2012 end-page: 38 ident: b23 article-title: Peak signal-to-noise ratio revisited: Is simple beautiful? publication-title: 2012 Fourth International Workshop on Quality of Multimedia Experience – volume: 23 start-page: bbab569 year: 2022 ident: b41 article-title: Multimodal deep learning for biomedical data fusion: a review publication-title: Brief. Bioinform. – volume: 3 year: 2024 ident: b42 article-title: Alzheimer’s disease detection using data fusion with a deep supervised encoder publication-title: Front. Dementia – volume: 170 year: 2024 ident: b38 article-title: A hybrid multimodal machine learning model for detecting Alzheimer’s disease publication-title: Comput. Biol. Med. – volume: 180 year: 2024 ident: b55 article-title: A transformer-based unified multimodal framework for Alzheimer’s disease assessment publication-title: Comput. Biol. Med. – volume: 77 year: 2022 ident: b50 article-title: Learning to complete incomplete hearts for population analysis of cardiac MR images publication-title: Med. Image Anal. – volume: 140 year: 2023 ident: b9 article-title: A unique color-coded visualization system with multimodal information fusion and deep learning in a longitudinal study of Alzheimer’s disease publication-title: Artif. Intell. Med. – start-page: 265 year: 2023 end-page: 275 ident: b54 article-title: Hybrid multimodality fusion with cross-domain knowledge transfer to forecast progression trajectories in cognitive decline publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2023 ident: b43 article-title: Applications of generative adversarial networks in neuroimaging and clinical neuroscience publication-title: NeuroImage – reference: Li, X., Yin, J., Li, W., Xu, C., Yang, R., Shen, J., 2024. DI-V2X: Learning Domain-Invariant Representation for Vehicle-Infrastructure Collaborative 3D Object Detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 4. pp. 3208–3215. – volume: 82 year: 2022 ident: b48 article-title: Consistent connectome landscape mining for cross-site brain disease identification using functional MRI publication-title: Med. Image Anal. – reference: Chen, F., Datta, G., Kundu, S., Beerel, P.A., 2023. Self-attentive pooling for efficient deep learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 3974–3983. – reference: Cardace, A., Ramirez, P.Z., Salti, S., Di Stefano, L., 2023. Exploiting the Complementarity of 2D and 3D Networks to Address Domain-Shift in 3D Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 98–109. – volume: 91 year: 2024 ident: b47 article-title: 3D multi-modality transformer-GAN for high-quality PET reconstruction publication-title: Med. Image Anal. – volume: 417 start-page: 1 year: 2020 end-page: 9 ident: b37 article-title: Multivariate analysis of dual-point amyloid PET intended to assist the diagnosis of Alzheimer’s disease publication-title: Neurocomputing – volume: 45 start-page: 1533 year: 2022 end-page: 1544 ident: b21 article-title: Cross-modal learning for domain adaptation in 3d semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2023 ident: b46 article-title: SS-INR: Spatial-spectral implicit neural representation network for hyperspectral and multispectral image fusion publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 39 start-page: 2965 year: 2020 end-page: 2975 ident: b31 article-title: Spatially-constrained fisher representation for brain disease identification with incomplete multi-modal neuroimages publication-title: IEEE Trans. Med. Imaging – start-page: 300 year: 2022 end-page: 316 ident: b6 article-title: SALISA: Saliency-based input sampling for efficient video object detection publication-title: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part X – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: b20 article-title: The alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. – volume: 39 start-page: 2772 year: 2020 end-page: 2781 ident: b58 article-title: Hi-net: hybrid-fusion network for multi-modal MR image synthesis publication-title: IEEE Trans. Med. Imaging – volume: 22 start-page: 324 year: 1998 end-page: 333 ident: b16 article-title: Enhancement of MR images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. – year: 2021 ident: b11 article-title: Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in Alzheimers disease publication-title: IEEE J. Biomed. Health Inf. – start-page: 66 year: 2022 end-page: 76 ident: b28 article-title: Is a PET all you need? A multi-modal study for alzheimer’s disease using 3D CNNs publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I – volume: 43 start-page: 291 year: 2023 end-page: 302 ident: b30 article-title: Explainable deep-learning-based diagnosis of alzheimer’s disease using multimodal input fusion of PET and MRI images publication-title: J. Med. Biol. Eng. – volume: 3 year: 2024 ident: 10.1016/j.media.2024.103448_b42 article-title: Alzheimer’s disease detection using data fusion with a deep supervised encoder publication-title: Front. Dementia doi: 10.3389/frdem.2024.1332928 – year: 2023 ident: 10.1016/j.media.2024.103448_b46 article-title: SS-INR: Spatial-spectral implicit neural representation network for hyperspectral and multispectral image fusion publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 37 year: 2012 ident: 10.1016/j.media.2024.103448_b23 article-title: Peak signal-to-noise ratio revisited: Is simple beautiful? – volume: 91 year: 2024 ident: 10.1016/j.media.2024.103448_b47 article-title: 3D multi-modality transformer-GAN for high-quality PET reconstruction publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.102983 – start-page: 66 year: 2022 ident: 10.1016/j.media.2024.103448_b28 article-title: Is a PET all you need? A multi-modal study for alzheimer’s disease using 3D CNNs – volume: 341 year: 2020 ident: 10.1016/j.media.2024.103448_b57 article-title: Multi-modal neuroimaging feature fusion for diagnosis of Alzheimer’s disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108795 – year: 2022 ident: 10.1016/j.media.2024.103448_b39 article-title: Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review publication-title: Inf. Fusion – volume: 170 year: 2024 ident: 10.1016/j.media.2024.103448_b38 article-title: A hybrid multimodal machine learning model for detecting Alzheimer’s disease publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108035 – year: 2023 ident: 10.1016/j.media.2024.103448_b43 article-title: Applications of generative adversarial networks in neuroimaging and clinical neuroscience publication-title: NeuroImage doi: 10.1016/j.neuroimage.2023.119898 – start-page: 265 year: 2023 ident: 10.1016/j.media.2024.103448_b54 article-title: Hybrid multimodality fusion with cross-domain knowledge transfer to forecast progression trajectories in cognitive decline – year: 2022 ident: 10.1016/j.media.2024.103448_b2 article-title: An overview of deep learning methods for multimodal medical data mining publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117006 – volume: 22 start-page: 324 issue: 2 year: 1998 ident: 10.1016/j.media.2024.103448_b16 article-title: Enhancement of MR images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199803000-00032 – volume: 115 start-page: 680 year: 2021 ident: 10.1016/j.media.2024.103448_b7 article-title: Alzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal data publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.10.005 – year: 2020 ident: 10.1016/j.media.2024.103448_b25 article-title: Attention-guided hybrid network for dementia diagnosis with structural MR images publication-title: IEEE Trans. Cybern. – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.media.2024.103448_b51 article-title: Multi-source transfer learning via ensemble approach for initial diagnosis of Alzheimer’s disease publication-title: IEEE J. Transl. Eng. Heal. Med. doi: 10.1109/JTEHM.2020.2984601 – ident: 10.1016/j.media.2024.103448_b18 doi: 10.1109/ICCV.2017.167 – volume: 39 start-page: 2772 issue: 9 year: 2020 ident: 10.1016/j.media.2024.103448_b58 article-title: Hi-net: hybrid-fusion network for multi-modal MR image synthesis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2975344 – volume: 82 year: 2022 ident: 10.1016/j.media.2024.103448_b48 article-title: Consistent connectome landscape mining for cross-site brain disease identification using functional MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102591 – volume: 39 start-page: 2965 issue: 9 year: 2020 ident: 10.1016/j.media.2024.103448_b31 article-title: Spatially-constrained fisher representation for brain disease identification with incomplete multi-modal neuroimages publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2983085 – start-page: 3 year: 2022 ident: 10.1016/j.media.2024.103448_b36 article-title: Progression models for imaging data with longitudinal variational auto encoders – volume: 44 start-page: 6839 issue: 10 year: 2021 ident: 10.1016/j.media.2024.103448_b32 article-title: Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3091214 – year: 2021 ident: 10.1016/j.media.2024.103448_b22 – volume: 417 start-page: 1 year: 2020 ident: 10.1016/j.media.2024.103448_b37 article-title: Multivariate analysis of dual-point amyloid PET intended to assist the diagnosis of Alzheimer’s disease publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.081 – volume: 43 start-page: 291 issue: 3 year: 2023 ident: 10.1016/j.media.2024.103448_b30 article-title: Explainable deep-learning-based diagnosis of alzheimer’s disease using multimodal input fusion of PET and MRI images publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-023-00801-3 – start-page: 227 year: 2019 ident: 10.1016/j.media.2024.103448_b1 article-title: Current and future treatments in Alzheimer’s disease – volume: 40 start-page: 81 issue: 1 year: 2020 ident: 10.1016/j.media.2024.103448_b33 article-title: Multi-view separable pyramid network for AD prediction at MCI stage by 18 F-FDG brain PET imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3022591 – year: 2023 ident: 10.1016/j.media.2024.103448_b29 – ident: 10.1016/j.media.2024.103448_b53 doi: 10.1609/aaai.v38i15.29578 – volume: 41 start-page: 145 issue: 1 year: 2021 ident: 10.1016/j.media.2024.103448_b17 article-title: Bidirectional mapping generative adversarial networks for brain MR to PET synthesis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3107013 – volume: 77 year: 2022 ident: 10.1016/j.media.2024.103448_b50 article-title: Learning to complete incomplete hearts for population analysis of cardiac MR images publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102354 – ident: 10.1016/j.media.2024.103448_b19 doi: 10.1109/CVPR.2017.632 – volume: 5 start-page: 512 issue: 2 year: 2023 ident: 10.1016/j.media.2024.103448_b40 article-title: Alzheimer’s disease detection from fused PET and MRI modalities using an ensemble classifier publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make5020031 – year: 2024 ident: 10.1016/j.media.2024.103448_b8 article-title: Alzheimer’s disease diagnosis from single and multimodal data using machine and deep learning models: Achievements and future directions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124780 – year: 2023 ident: 10.1016/j.media.2024.103448_b13 article-title: Multimodal neuroimaging based Alzheimer’s disease diagnosis using evolutionary RVFL classifier publication-title: IEEE J. Biomed. Health Inf. – ident: 10.1016/j.media.2024.103448_b15 doi: 10.1109/CVPRW63382.2024.00529 – volume: 23 start-page: bbab569 issue: 2 year: 2022 ident: 10.1016/j.media.2024.103448_b41 article-title: Multimodal deep learning for biomedical data fusion: a review publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab569 – year: 2024 ident: 10.1016/j.media.2024.103448_b34 article-title: Decgan: Decoupling generative adversarial network for detecting abnormal neural circuits in alzheimer’s disease publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2024.3416420 – ident: 10.1016/j.media.2024.103448_b24 doi: 10.1609/aaai.v38i4.28105 – year: 2022 ident: 10.1016/j.media.2024.103448_b35 article-title: Controllable image synthesis with attribute-decomposed GAN publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 10.1016/j.media.2024.103448_b3 doi: 10.1109/CVPRW59228.2023.00015 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.media.2024.103448_b44 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 231 year: 2023 ident: 10.1016/j.media.2024.103448_b45 article-title: Multi-view imputation and cross-attention network based on incomplete longitudinal and multimodal data for conversion prediction of mild cognitive impairment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120761 – volume: 180 year: 2024 ident: 10.1016/j.media.2024.103448_b55 article-title: A transformer-based unified multimodal framework for Alzheimer’s disease assessment publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108979 – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.media.2024.103448_b49 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – volume: 107 year: 2024 ident: 10.1016/j.media.2024.103448_b56 article-title: Self-paced semi-supervised feature selection with application to multi-modal Alzheimer’s disease classification publication-title: Inf. Fusion doi: 10.1016/j.inffus.2024.102345 – start-page: 300 year: 2022 ident: 10.1016/j.media.2024.103448_b6 article-title: SALISA: Saliency-based input sampling for efficient video object detection – volume: 32 start-page: 1456 year: 2024 ident: 10.1016/j.media.2024.103448_b5 article-title: A multi-modal classification method for early diagnosis of mild cognitive impairment and Alzheimer’s disease using three paradigms with various task difficulties publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3379891 – volume: 140 year: 2023 ident: 10.1016/j.media.2024.103448_b9 article-title: A unique color-coded visualization system with multimodal information fusion and deep learning in a longitudinal study of Alzheimer’s disease publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102543 – volume: 333 year: 2020 ident: 10.1016/j.media.2024.103448_b10 article-title: A Gaussian-based model for early detection of mild cognitive impairment using multimodal neuroimaging publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108544 – volume: 45 start-page: 1533 issue: 2 year: 2022 ident: 10.1016/j.media.2024.103448_b21 article-title: Cross-modal learning for domain adaptation in 3d semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3159589 – year: 2023 ident: 10.1016/j.media.2024.103448_b26 article-title: One model to synthesize them all: Multi-contrast multi-scale transformer for missing data imputation publication-title: IEEE Trans. Med. Imaging – ident: 10.1016/j.media.2024.103448_b4 doi: 10.1109/WACV56688.2023.00396 – ident: 10.1016/j.media.2024.103448_b14 doi: 10.1109/CVPRW59228.2023.00478 – volume: 75 year: 2022 ident: 10.1016/j.media.2024.103448_b27 article-title: Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102266 – year: 2023 ident: 10.1016/j.media.2024.103448_b52 article-title: Artificial intelligence-based diagnosis of Alzheimer’s disease with brain MRI images publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2023.110934 – year: 2022 ident: 10.1016/j.media.2024.103448_b12 – year: 2021 ident: 10.1016/j.media.2024.103448_b11 article-title: Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in Alzheimers disease publication-title: IEEE J. Biomed. Health Inf. – volume: 27 start-page: 685 issue: 4 year: 2008 ident: 10.1016/j.media.2024.103448_b20 article-title: The alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. |
SSID | ssj0007440 |
Score | 2.4505477 |
Snippet | Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer’s Disease (AD), missing modality issue still poses a unique challenge in the... Although multi-modality neuroimages have advanced the early diagnosis of Alzheimer's Disease (AD), missing modality issue still poses a unique challenge in the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 103448 |
SubjectTerms | Algorithms Alzheimer Disease - diagnostic imaging Alzheimer’s disease Domain-specific Generative adversarial network Humans Image Interpretation, Computer-Assisted - methods Incomplete modality Magnetic Resonance Imaging Multimodal Imaging - methods Neural Networks, Computer Neuroimaging - methods |
Title | Domain-specific information preservation for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimages |
URI | https://dx.doi.org/10.1016/j.media.2024.103448 https://www.ncbi.nlm.nih.gov/pubmed/39798527 https://www.proquest.com/docview/3154885951 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hKqH2gFr6t0CRK_VYd5P4Lz4uFFjawqWl2psVJ16Rit1F7CIkDlVfg9fjSTrjJBQk2kNPjhxHsTz2eMb-5huAd2M0ASS-4iYpBZcB15xXRcVTE1BjauuloHjnwyM9PJafRmq0BDtdLAzBKlvd3-j0qK3bmn47mv2zuu5_TQUlK8H9R8ZEriOKYJeaYH0ffv6BeRABXhN7lXJq3TEPRYxXjM5AJzGTFHwuKQnQw7vT36zPuAvtPYXV1nxkg6aHz2ApTNfgyR1SwTVYOWyvy5_D5cfZBD1_TuGUBAliLU0qCYMRArY7kWVYzQanVyehnoTzm1_Xc9be3GAZsXj1nNGRLSMyByIUXgQWsYh8MquiKc8iM2Y9Qf00fwHHe7vfdoa8zbTAS5HYBQ_KhEoXaEuMvdSitAqfbcitpAjr3HhV2irNg66SIqmMwRZZ4ovKC2m0ElK8hOXpbBpeA0sVOoiFV9rKIMtc2qISY-vLVGbGmJD34H03wu6sIdRwHdLsh4sCcSQQ1wikB7qTgrs3Lxyq_H9_-LaTmcMVQ9cgxTTMLuZOkJdGtG5pD141wrztCd1y5ioz6__72w14nFGG4Ijt2YTlxflFeINmy8JvxXm5BY8GB5-HR1jub3_5PvgNbgvvlA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VrQTlgEr56RZajMQRa5PYjuPjqlBtf3YvtNLerDjxqkHsbtXdCokTr8Hr8SSdcZwKJOihp0RJrFge-_OMZ-YbgA8zVAEkvuI6qQSXHtecU2XNU-0RMXPjpKB85_EkH13Ik6mabsBhlwtDYZUR-1tMD2gdnwziaA6ummbwJRVUrAT3HxkKuU4fwaZUiMk92Bwen44md4BMHHht-lXKqUFHPhTCvEKCBtqJmaT8c0l1gP69Qf1PAQ0b0dE2PIsaJBu2nXwOG36xA0__4BXcgcfj6DF_Ad8_Ledo_HPKqKSoIBaZUkkejIJgu0NZho_Z8NuPS9_M_fXvn79WLDpv8BrC8ZoVo1NbRnwOxCm89iyEI_L5sg7aPAvkmM0cIWr1Ei6OPp8fjngstsArkZg190r7Oi9RnZg5mYvKKLw3vjCSkqwL7VRl6rTweZ2USa01fpElrqydkDpXQopX0FssF34XWKrQRiydyo30siqkKWsxM65KZaa19kUfPnYjbK9aTg3bBZt9tUEglgRiW4H0Ie-kYP-aGhZR__6G7zuZWVw05AkpF355s7KCDDVidkv78LoV5l1PyNFZqEzvPfS37-DJ6Hx8Zs-OJ6dvYCujgsEh1Oct9NbXN34ftZi1O4iz9BYP-fCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-specific+information+preservation+for+Alzheimer%E2%80%99s+disease+diagnosis+with+incomplete+multi-modality+neuroimages&rft.jtitle=Medical+image+analysis&rft.au=Xu%2C+Haozhe&rft.au=Wang%2C+Jian&rft.au=Feng%2C+Qianjin&rft.au=Zhang%2C+Yu&rft.date=2025-04-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.volume=101&rft_id=info:doi/10.1016%2Fj.media.2024.103448&rft.externalDocID=S136184152400375X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |