Message-Passing Algorithms for Counting Short Cycles in a Graph

A message-passing algorithm for counting short cycles in a graph is presented. For bipartite graphs, which are of particular interest in coding, the algorithm is capable of counting cycles of length g, g+2, ..., 2g-2, where g is the girth of the graph. For a general (non-bipartite) graph, cycles of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 61; no. 2; pp. 485 - 495
Main Authors Karimi, M., Banihashemi, A. H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2013
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0090-6778
DOI10.1109/TCOMM.2012.100912.120503

Cover

Abstract A message-passing algorithm for counting short cycles in a graph is presented. For bipartite graphs, which are of particular interest in coding, the algorithm is capable of counting cycles of length g, g+2, ..., 2g-2, where g is the girth of the graph. For a general (non-bipartite) graph, cycles of length g, g+1, ..., 2g-1 can be counted. The algorithm is based on performing integer additions and subtractions in the nodes of the graph and passing extrinsic messages to adjacent nodes. The complexity of the proposed algorithm grows as O(g |E| 2 ), where |E| is the number of edges in the graph. For sparse graphs, the proposed algorithm significantly outperforms the existing algorithms, tailored for counting em short cycles, in terms of computational complexity and memory requirements. We also discuss a more generic and basic approach of counting short cycles which is based on matrix multiplication, and provide a message-passing interpretation for such an approach. We then demonstrate that an efficient implementation of the matrix multiplication approach has essentially the same complexity as the proposed message-passing algorithm.
AbstractList A message-passing algorithm for counting short cycles in a graph is presented. For bipartite graphs, which are of particular interest in coding, the algorithm is capable of counting cycles of length g, g+2, ..., 2g-2, where g is the girth of the graph. For a general (non-bipartite) graph, cycles of length g, g+1, ..., 2g-1 can be counted. The algorithm is based on performing integer additions and subtractions in the nodes of the graph and passing extrinsic messages to adjacent nodes. The complexity of the proposed algorithm grows as O(g |E| 2 ), where |E| is the number of edges in the graph. For sparse graphs, the proposed algorithm significantly outperforms the existing algorithms, tailored for counting em short cycles, in terms of computational complexity and memory requirements. We also discuss a more generic and basic approach of counting short cycles which is based on matrix multiplication, and provide a message-passing interpretation for such an approach. We then demonstrate that an efficient implementation of the matrix multiplication approach has essentially the same complexity as the proposed message-passing algorithm.
Author Karimi, M.
Banihashemi, A. H.
Author_xml – sequence: 1
  givenname: M.
  surname: Karimi
  fullname: Karimi, M.
  email: mkarimi@sce.carleton.ca
  organization: Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada
– sequence: 2
  givenname: A. H.
  surname: Banihashemi
  fullname: Banihashemi, A. H.
  email: ahashemi@sce.carleton.ca
  organization: Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27129646$$DView record in Pascal Francis
BookMark eNqNkDFPwzAQhT0UibbwC1i8MKacfbHTLKAqgoLUqkiUOTolTmuUxpUdhv57kgZ1YGJ6urv33knfhI0a1xjGuICZEJA-bLPNej2TIORMAKS9SFCAIzbuRoh0ksyv2SSELwCIAXHMntYmBNqZ6J1CsM2OL-qd87bdHwKvnOeZ-27afv-xd77l2amoTeC24cSXno77G3ZVUR3M7a9O2efL8zZ7jVab5Vu2WEUFQtpGpSopRTRVrJBIadTFPDUmlqUgQlACUaIySpKIRakARGeARKZlgoTddcruh94jhYLqylNT2JAfvT2QP-UyETLVse5888FXeBeCN9XFIiDvIeVnSHkPKR8g5QOkLvr4J1rYllrrmtaTrf9TcDcUWGPM5a9G1IlW-APVEnjD
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TIT_2019_2895356
crossref_primary_10_1049_ell2_13085
crossref_primary_10_1109_LCOMM_2014_2331070
crossref_primary_10_1109_TCOMM_2020_2973147
crossref_primary_10_1109_TIT_2020_3017127
crossref_primary_10_1109_JSAIT_2023_3315585
crossref_primary_10_1007_s00373_019_02110_6
crossref_primary_10_1134_S0032946024020017
crossref_primary_10_1155_2021_4099918
crossref_primary_10_1109_TIT_2013_2251395
crossref_primary_10_1142_S1793830921500221
crossref_primary_10_1109_TCOMM_2023_3260247
crossref_primary_10_1016_j_disc_2020_111812
crossref_primary_10_3390_a10040115
crossref_primary_10_1587_transfun_E97_A_1001
crossref_primary_10_1007_s11227_022_04835_3
crossref_primary_10_1109_TCOMM_2018_2849076
crossref_primary_10_1109_TIT_2017_2784839
crossref_primary_10_1080_09728600_2023_2234421
crossref_primary_10_1109_JSAC_2025_3536505
crossref_primary_10_1109_TCOMM_2019_2962397
crossref_primary_10_1109_TIT_2018_2805906
crossref_primary_10_1109_TCOMM_2017_2783624
crossref_primary_10_1109_TIT_2020_3011556
crossref_primary_10_1109_TIT_2018_2799627
crossref_primary_10_1109_TIT_2016_2613113
Cites_doi 10.1007/BF02523189
10.1109/ICOSP.2006.345906
10.1016/0020-0190(94)00151-0
10.1109/TCOMM.2009.06.070048
10.1109/TCOMM.2004.838730
10.1109/LCOMM.2007.07613
10.1016/j.laa.2010.11.011
10.1016/S0747-7171(08)80013-2
10.1109/TIT.1981.1056404
10.1109/ISIT.2011.6033699
10.1109/TIT.1962.1057683
10.1016/j.aim.2006.12.010
10.1137/0204007
10.1109/18.910572
10.1007/s00006-008-0116-5
10.1137/0202017
10.1006/aima.1996.0050
10.1109/SFCS.2002.1181978
10.1088/1751-8113/41/15/155205
10.1109/TIT.2004.839541
10.1109/TIT.2005.860472
10.1109/18.910577
10.1109/TIT.2011.2110150
10.37236/1819
10.1016/j.amc.2006.06.085
10.1145/1077464.1077466
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/TCOMM.2012.100912.120503
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 495
ExternalDocumentID 27129646
10_1109_TCOMM_2012_100912_120503
6336765
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
IQODW
RIG
ID FETCH-LOGICAL-c309t-d5da933ef453aa5636c89ee42d1aa305133235e52a141d50016c80729d73a3133
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Mon Jul 21 09:10:53 EDT 2025
Wed Oct 01 00:48:16 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Wed Aug 27 02:49:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Performance evaluation
Multiplication
closed walks
tailless backtrackless closed walks
Algorithm
Computational complexity
Implementation
short cycles
Counting cycles in a graph
Message passing
low-density parity-check (LDPC) codes
Coding
girth
Matrix method
Error correcting code
Parity check codes
Bipartite graph
Cycle(graph)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-d5da933ef453aa5636c89ee42d1aa305133235e52a141d50016c80729d73a3133
PageCount 11
ParticipantIDs ieee_primary_6336765
pascalfrancis_primary_27129646
crossref_citationtrail_10_1109_TCOMM_2012_100912_120503
crossref_primary_10_1109_TCOMM_2012_100912_120503
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
ref34
ref12
ref15
ref36
ref14
ref30
ref33
ref11
horton (ref13) 2006
ref32
ref10
berrou (ref4) 0
(ref37) 0
ref2
ref1
ref17
ref16
schott (ref27) 0
ref19
ref18
schott (ref28) 0
ref24
ref23
ref25
ref20
chang (ref6) 2003; 39
(ref38) 0
schott (ref26) 0
ref29
ref8
ref7
ref9
ref3
ref5
mckay (ref22) 2004; 11
huss-lederman (ref31) 0
mao (ref21) 0; 1
References_xml – ident: ref1
  doi: 10.1007/BF02523189
– ident: ref9
  doi: 10.1109/ICOSP.2006.345906
– year: 0
  ident: ref28
  article-title: Cycle enumeration using nilpotent adjacency matrices with algorithm runtime comparisons
– ident: ref3
  doi: 10.1016/0020-0190(94)00151-0
– ident: ref35
  doi: 10.1109/TCOMM.2009.06.070048
– ident: ref34
  doi: 10.1109/TCOMM.2004.838730
– ident: ref7
  doi: 10.1109/LCOMM.2007.07613
– ident: ref30
  doi: 10.1016/j.laa.2010.11.011
– start-page: 32
  year: 0
  ident: ref31
  article-title: Implementation of Strassen's algorithm for matrix multiplication
  publication-title: Proc 1996 ACM/IEEE Conf Supercomput
– ident: ref8
  doi: 10.1016/S0747-7171(08)80013-2
– ident: ref32
  doi: 10.1109/TIT.1981.1056404
– year: 0
  ident: ref26
  article-title: On the complexity of counting cycles in sparse graphs using nilpotent adjacency matrices
  publication-title: Proc 2010 Midwest Conf Combinatorics Cryptography Comput
– ident: ref16
  doi: 10.1109/ISIT.2011.6033699
– ident: ref11
  doi: 10.1109/TIT.1962.1057683
– ident: ref18
  doi: 10.1109/ISIT.2011.6033699
– ident: ref19
  doi: 10.1016/j.aim.2006.12.010
– ident: ref15
  doi: 10.1137/0204007
– ident: ref20
  doi: 10.1109/18.910572
– ident: ref24
  doi: 10.1007/s00006-008-0116-5
– ident: ref33
  doi: 10.1137/0202017
– year: 2006
  ident: ref13
  article-title: Ihara zeta functions of irregular graphs
  publication-title: U C S D
– ident: ref29
  doi: 10.1006/aima.1996.0050
– volume: 39
  start-page: 27
  year: 2003
  ident: ref6
  article-title: The number of 6-cycles in a graph
  publication-title: Bull Inst Combin Appl
– ident: ref10
  doi: 10.1109/SFCS.2002.1181978
– ident: ref25
  doi: 10.1088/1751-8113/41/15/155205
– ident: ref14
  doi: 10.1109/TIT.2004.839541
– start-page: 1064
  year: 0
  ident: ref4
  article-title: Near Shannon limit errorcorrecting coding and decoding: turbo-codes
  publication-title: Proc 1993 IEEE Int Conf Commun
– ident: ref12
  doi: 10.1109/TIT.2005.860472
– year: 0
  ident: ref37
– ident: ref23
  doi: 10.1109/18.910577
– ident: ref17
  doi: 10.1109/ISIT.2011.6033699
– ident: ref2
  doi: 10.1109/TIT.2011.2110150
– volume: 11
  year: 2004
  ident: ref22
  article-title: Short cycles in random regular graphs
  publication-title: Electron J Combinatorics
  doi: 10.37236/1819
– year: 0
  ident: ref27
  article-title: On the complexity of cycle enumeration using zeons
  publication-title: Proc 2010 Appl Geometric Algebras Comput Science Eng
– volume: 1
  start-page: 41
  year: 0
  ident: ref21
  article-title: A heuristic search for good low-density parity-check codes at short block lengths
  publication-title: Proc 2001 IEEE Int Conf Commun
– ident: ref5
  doi: 10.1016/j.amc.2006.06.085
– year: 0
  ident: ref38
– ident: ref36
  doi: 10.1145/1077464.1077466
SSID ssj0004033
Score 2.281514
Snippet A message-passing algorithm for counting short cycles in a graph is presented. For bipartite graphs, which are of particular interest in coding, the algorithm...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 485
SubjectTerms Applied sciences
Bipartite graph
closed walks
Coding, codes
Complexity theory
Counting cycles in a graph
Encoding
Exact sciences and technology
girth
Information, signal and communications theory
Iterative decoding
low-density parity-check (LDPC) codes
Partitioning algorithms
short cycles
Signal and communications theory
Symmetric matrices
tailless backtrackless closed walks
Telecommunications and information theory
Title Message-Passing Algorithms for Counting Short Cycles in a Graph
URI https://ieeexplore.ieee.org/document/6336765
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0004033
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5RJhh4FUR5yQMjKYkd28mEqoiCkAJIFIktcmynrYAWQTrAr8eXpOUhBqY8nJOSO8s-x999H8AxtXkkpFJeiPyXoSwKz10bT2gaW82otBZrh9NrcXkfXj3whyU4WdTCWGsr8Jnt4mm1l2-meoa_yk4FQ34x3oKWjERdq_VVA-mzhnES4ewymqN2_Ph0kNykKaK4KGICYjxQpEH5MRVV2iqIjFRvzjlFrWrxbarpr0M6f8kaYfLYnZV5V3_84m_871dswFqTc5Je3Uk2YclOtmD1GxNhG85SlEIZWu_WJdPuDuk9Daev43L0_EZcWkuSRlKC3I1cvk6SdwTTkfGEKHKBlNfbcN8_HySXXqOt4Gnmx6VnuFExY7YIOVOKCyZ0FFsbUhMo5cYAt3SljFtOVRAGhmNmqCNkGTeSKeZad2B5Mp3YXSBF7huqZJwbE4SFERGn2g2_fq6xKNbIDsi5mzPdEI-j_sVTVi1A_DirApRhgLI6QFkdoA4EC8uXmnzjHzZtdPni-cbbHTj6EdlFO5UB7jyLvb_t9mGFVgIYCGA5gOXydWYPXRpS5kdV__sEWD3UxQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnAkJfESJyeEKqAsASSKxC1ybAcQ0KI2PcDX40nSsogDpyzOSMmMZY_jN-8B7FGbRaFUyuPIf8llnnvu2nihprHVjEprsXY4uQrbd_z8XtxPwP64FsZaW4LPbBNPy71809ND_FV2EDLkFxOTMC0456Kq1vqqgvRZzTmJgHYZjXA7fnzQaV0nCeK4KKICYjxQJEL5MRmV6iqIjVQD55680rX4NtmcLEAyes0KY_LcHBZZU3_8YnD873cswnyddZKjqpsswYTtLsPcNy7CFThMUAzlwXo3Lp12d8jRy0Ov_1Q8vg6IS2xJqxaVILePLmMnrXeE05GnLlHkFEmvV-Hu5LjTanu1uoKnmR8XnhFGxYzZnAumlAhZqKPYWk5NoJQbBdzilTJhBVUBD4zA3FBHyDNuJFPMta7BVLfXtetA8sw3VMk4MybguQkjQbUbgP1MY1mskQ2QIzenuqYeRwWMl7RcgvhxWgYoxQClVYDSKkANCMaWbxX9xj9sVtDl4-drbzdg50dkx-1UBrj3HG78bbcLM-1Ocplenl1dbMIsLeUwEM6yBVNFf2i3XVJSZDtlX_wErA3YEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Message-Passing+Algorithms+for+Counting+Short+Cycles+in+a+Graph&rft.jtitle=IEEE+transactions+on+communications&rft.au=KARIMI%2C+Mehdi&rft.au=BANIHASHEMI%2C+Amir+H&rft.date=2013-02-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0090-6778&rft.volume=61&rft.issue=2&rft.spage=485&rft.epage=495&rft_id=info:doi/10.1109%2FTCOMM.2012.100912.120503&rft.externalDBID=n%2Fa&rft.externalDocID=27129646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon