Development of a continuum-based, meshless, finite element modeling approach for representation of trabecular bone indentation
Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical proble...
Saved in:
Published in | Journal of the mechanical behavior of biomedical materials Vol. 159; p. 106679 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-6161 1878-0180 1878-0180 |
DOI | 10.1016/j.jmbbm.2024.106679 |
Cover
Abstract | Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration.
Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure.
Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests.
Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence.
[Display omitted]
•Developed a continuum-based approach for modeling trabecular bone indentation.•Examined trabecular bone with marrow using smoothed particle hydrodynamics.•Crushable foam material accurately represented post-yield bone densification.•Model was adaptable to pre-clinical imaging metrics like bone mineral density. |
---|---|
AbstractList | Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration.
Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure.
Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests.
Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence.
[Display omitted]
•Developed a continuum-based approach for modeling trabecular bone indentation.•Examined trabecular bone with marrow using smoothed particle hydrodynamics.•Crushable foam material accurately represented post-yield bone densification.•Model was adaptable to pre-clinical imaging metrics like bone mineral density. Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration. Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure. Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests. Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence.Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration. Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure. Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests. Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence. Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration. Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure. Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests. Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence. |
ArticleNumber | 106679 |
Author | Rycman, Aleksander McLachlin, Stewart D. Benais, Rémy |
Author_xml | – sequence: 1 givenname: Rémy orcidid: 0009-0002-9540-3349 surname: Benais fullname: Benais, Rémy email: rbenaist@uwaterloo.ca – sequence: 2 givenname: Aleksander surname: Rycman fullname: Rycman, Aleksander email: alrycman@uwaterloo.ca – sequence: 3 givenname: Stewart D. orcidid: 0000-0002-8464-3032 surname: McLachlin fullname: McLachlin, Stewart D. email: stewart.mclachlin@uwaterloo.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39180890$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTlvFTEUhS0URBb4BUjIJUXmcT2LPS4oUICAFIkGasvLHeKnsT3YM5HS8Nvxy0soU9ny-c5dfM7JSUwRCXnLYMeA8Q_73T4YE3YttH194VzIF-SMjWJsgI1wUu9iYA1nnJ2S81L2ABxgHF-R005WYJRwRv5-xjuc0xIwrjRNVFOb4urjtoXG6ILukgYstzOWckknH_2KFGd8wENyOPv4m-plyUnbWzqlTDMuGUvV9epTPNRcszZot1lnauoK1Ef3JL8mLyc9F3zzeF6QX1-__Lz61tz8uP5-9emmsR3ItXGtY0YORrZjjxMMvYGeczby3knQbdu5ATQbYEDoBjGxsRe9aCUYoTXHrusuyPtj3Tronw3LqoIvFudZR0xbUbWLYL0AISv67hHdTECnluyDzvfq6c8q0B0Bm1MpGaf_CAN1SEbt1UMy6pCMOiZTXR-PLqxr3nnMqliP0aLzGe2qXPLP-v8BRjqYAw |
Cites_doi | 10.1016/j.jmbbm.2024.106412 10.1007/s11517-022-02732-8 10.1016/S1350-4533(01)00045-5 10.1016/j.jher.2017.11.003 10.1016/j.coastaleng.2018.04.021 10.1115/1.2894882 10.1016/S0022-5096(99)00082-4 10.1016/0021-9290(87)90023-6 10.1016/j.jbiomech.2014.12.009 10.1016/j.enganabound.2016.11.004 10.1121/1.418118 10.1016/j.jmbbm.2015.06.023 10.1007/s10237-012-0434-3 10.1016/j.cpc.2015.12.016 10.1016/j.enganabound.2018.10.012 10.1016/j.medengphy.2021.08.009 10.1016/j.jmbbm.2011.09.003 10.1016/j.jmbbm.2013.04.026 10.1097/BRS.0000000000003557 10.1016/j.enganabound.2017.07.015 10.1016/0021-9290(85)90287-8 10.1371/journal.pone.0067958 10.1080/10255842.2018.1524884 10.1002/jor.23734 10.1142/S1758825117500910 10.1016/j.jmbbm.2008.11.003 10.1016/j.jmbbm.2018.07.033 10.1002/jbm.820100409 10.1016/j.cma.2014.04.001 10.1002/jab.770040309 10.1021/nl061877k 10.1007/BF02347690 10.1016/j.jbiomech.2004.09.027 10.1016/j.jmbbm.2011.11.013 10.1097/BRS.0b013e3182458b2f 10.1016/j.actbio.2005.08.004 10.1016/j.jmbbm.2016.08.028 10.1016/j.cpc.2018.06.006 10.1016/j.jtbi.2008.01.030 10.1016/j.bone.2008.05.023 10.3171/2020.4.FOCUS20286 10.1016/j.jcp.2017.12.006 |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jmbbm.2024.106679 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-0180 |
ExternalDocumentID | 39180890 10_1016_j_jmbbm_2024_106679 S1751616124003114 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AFXIZ AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
ID | FETCH-LOGICAL-c309t-d2d1b95b9284ef054b04661864d90a223d50a1505e0357f184747290b7aa6e333 |
IEDL.DBID | .~1 |
ISSN | 1751-6161 1878-0180 |
IngestDate | Sun Sep 28 07:10:53 EDT 2025 Mon Jul 21 06:03:31 EDT 2025 Wed Oct 01 02:59:53 EDT 2025 Sat Sep 14 18:13:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Smoothed particle hydrodynamics Finite element model Continuum-based modeling Marrow Crushable foam Trabecular bone indentation |
Language | English |
License | Copyright © 2024. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-d2d1b95b9284ef054b04661864d90a223d50a1505e0357f184747290b7aa6e333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8464-3032 0009-0002-9540-3349 |
PMID | 39180890 |
PQID | 3097147079 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3097147079 pubmed_primary_39180890 crossref_primary_10_1016_j_jmbbm_2024_106679 elsevier_sciencedirect_doi_10_1016_j_jmbbm_2024_106679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 2024-Nov 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of the mechanical behavior of biomedical materials |
PublicationTitleAlternate | J Mech Behav Biomed Mater |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mercer, He, Wang, Evans (bib29) 2006; 2 Soltanihafshejani, Bitter, Janssen, Verdonschot (bib35) 2021; 96 Gibson (bib6) 1985; 18 Halgrin, Chaari, Markiewicz (bib9) 2012; 5 Wang, Allen, Burr, Lavernia, Jeremić, Fyhrie (bib39) 2008; 43 Khor, Cronin, Watson, Gierczycka, Malcolm (bib20) 2018; 87 Bravo, Osnaya, Ramírez, Jacobo, Ortiz (bib3) 2019; 5 Keyak (bib18) 2001; 23 Goldstein (bib8) 1987; 20 Hu, Long, Xiao, Han, Gu (bib12) 2014; 276 Hayes, Carter (bib10) 1976; 10 Webster, Schulte, Lambers, Kuhn, Müller (bib40) 2015; 48 Basafa, Murphy, Kutzer, Otake, Armand (bib2) 2013; 8 Lacroix, Prendergast, Li, Marsh (bib24) 2002; 40 Kinzl, Wolfram, Pahr (bib21) 2013; 26 Abaqus (bib1) 2009 Kelly, McGarry (bib16) 2012; 9 Szivek, Thomas, Benjamin (bib36) 1993; 4 Tai, Ulm, Ortiz (bib37) 2006; 6 Ochoa, Sanders, Heck, Hillberry (bib32) 1991; 113 Verbrugghe, Domínguez, Crespo, Altomare, Stratigaki, Troch, Kortenhaus (bib38) 2018; 138 Gibson (bib7) 2005; 38 Deshpande, Fleck (bib5) 2000; 48 Xu, Deng (bib47) Apr 2016; 201 Jansen, Birch, Schiffman, Crosby, Peyton (bib14) 2015; 50 Mullins, Bruzzi, McHugh (bib30) 2009; 2 Cao, Zhao, Chao, Li, Huang (bib4) 2023; 61 Hosokawa, Otani (bib11) 1997; 101 Le, Baaj, Dakwar, Burkett, Murray, Smith, Uribe (bib25) 2012; 37 Ngan, Rampersadh, Rycman, Cronin (bib31) 2024; 151 Zhang, Zheng, Ma, Duan, Khayyer, Lv, Shao (bib45) 2018; 18 Schulze, Vogel, Sander, Bader (bib34) 2019; 22 Zhang, Liu (bib44) 2017; 83 Zhang, Feng, Ma, Liu (bib46) 2019; 98 Kelly, Harrison, McDonnell, McGarry (bib17) 2013; 12 Lee, Lee, Youn, Kim, Shin, Goh, Lee (bib26) 2017; 65 Yao, Chou, Lin, Wang, Liu, Chang (bib43) 2020; 45 Li, Zahedi, Silberschmidt (bib27) 2018 Xiao, Dong (bib41) 2017; 9 Khayyer, Shimizu, Lee, Gil, Gotoh, Bonet (bib19) 2023 Pisano, Fredericks, Steelman, Riccio, Helgeson, Wagner (bib33) 2020; 49 Guo, X.; Rogers, B.D.; Lind, S.; Stansby, P.K., New massively parallel scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for highly nonlinear and distorted flow. Comput Phys Commun 233 (Dec) 16–28. Krimi, Rezoug, Khelladi, Nogueira, Deligant, Ramírez (bib22) 2018; 358 Kulper, Fang, Ren, Guo, Sze, Leung, Lu (bib23) 2018; 36 Ma, Ren, Chen, Griffith (bib28) 2014 Isaksson, van Donkelaar, Huiskes, Ito (bib13) 2008; 252 Xiao, Dong, Zhou, Wang (bib42) 2017; 75 Khayyer (10.1016/j.jmbbm.2024.106679_bib19) 2023 Soltanihafshejani (10.1016/j.jmbbm.2024.106679_bib35) 2021; 96 Schulze (10.1016/j.jmbbm.2024.106679_bib34) 2019; 22 Kinzl (10.1016/j.jmbbm.2024.106679_bib21) 2013; 26 Basafa (10.1016/j.jmbbm.2024.106679_bib2) 2013; 8 Gibson (10.1016/j.jmbbm.2024.106679_bib7) 2005; 38 Goldstein (10.1016/j.jmbbm.2024.106679_bib8) 1987; 20 Tai (10.1016/j.jmbbm.2024.106679_bib37) 2006; 6 Hosokawa (10.1016/j.jmbbm.2024.106679_bib11) 1997; 101 Jansen (10.1016/j.jmbbm.2024.106679_bib14) 2015; 50 Kulper (10.1016/j.jmbbm.2024.106679_bib23) 2018; 36 Xiao (10.1016/j.jmbbm.2024.106679_bib41) 2017; 9 Halgrin (10.1016/j.jmbbm.2024.106679_bib9) 2012; 5 Zhang (10.1016/j.jmbbm.2024.106679_bib46) 2019; 98 Wang (10.1016/j.jmbbm.2024.106679_bib39) 2008; 43 Kelly (10.1016/j.jmbbm.2024.106679_bib16) 2012; 9 Xu (10.1016/j.jmbbm.2024.106679_bib47) 2016; 201 Kelly (10.1016/j.jmbbm.2024.106679_bib17) 2013; 12 Mercer (10.1016/j.jmbbm.2024.106679_bib29) 2006; 2 Cao (10.1016/j.jmbbm.2024.106679_bib4) 2023; 61 Pisano (10.1016/j.jmbbm.2024.106679_bib33) 2020; 49 Zhang (10.1016/j.jmbbm.2024.106679_bib44) 2017; 83 Bravo (10.1016/j.jmbbm.2024.106679_bib3) 2019; 5 Isaksson (10.1016/j.jmbbm.2024.106679_bib13) 2008; 252 Le (10.1016/j.jmbbm.2024.106679_bib25) 2012; 37 Ngan (10.1016/j.jmbbm.2024.106679_bib31) 2024; 151 Hayes (10.1016/j.jmbbm.2024.106679_bib10) 1976; 10 Ma (10.1016/j.jmbbm.2024.106679_bib28) 2014 Lee (10.1016/j.jmbbm.2024.106679_bib26) 2017; 65 Webster (10.1016/j.jmbbm.2024.106679_bib40) 2015; 48 Khor (10.1016/j.jmbbm.2024.106679_bib20) 2018; 87 Li (10.1016/j.jmbbm.2024.106679_bib27) 2018 Lacroix (10.1016/j.jmbbm.2024.106679_bib24) 2002; 40 Mullins (10.1016/j.jmbbm.2024.106679_bib30) 2009; 2 Hu (10.1016/j.jmbbm.2024.106679_bib12) 2014; 276 Xiao (10.1016/j.jmbbm.2024.106679_bib42) 2017; 75 10.1016/j.jmbbm.2024.106679_bib48 Gibson (10.1016/j.jmbbm.2024.106679_bib6) 1985; 18 Ochoa (10.1016/j.jmbbm.2024.106679_bib32) 1991; 113 Abaqus (10.1016/j.jmbbm.2024.106679_bib1) 2009 Deshpande (10.1016/j.jmbbm.2024.106679_bib5) 2000; 48 Szivek (10.1016/j.jmbbm.2024.106679_bib36) 1993; 4 Verbrugghe (10.1016/j.jmbbm.2024.106679_bib38) 2018; 138 Zhang (10.1016/j.jmbbm.2024.106679_bib45) 2018; 18 Krimi (10.1016/j.jmbbm.2024.106679_bib22) 2018; 358 Yao (10.1016/j.jmbbm.2024.106679_bib43) 2020; 45 Keyak (10.1016/j.jmbbm.2024.106679_bib18) 2001; 23 |
References_xml | – volume: 50 start-page: 299 year: 2015 end-page: 307 ident: bib14 article-title: Mechanics of intact bone marrow publication-title: J. Mech. Behav. Biomed. Mater. – volume: 38 start-page: 377 year: 2005 end-page: 399 ident: bib7 article-title: Biomechanics of cellular solids publication-title: J. Biomech. – volume: 6 start-page: 2520 year: 2006 end-page: 2525 ident: bib37 article-title: Nanogranular origins of the strength of bone publication-title: Nano Lett. – volume: 20 start-page: 1055 year: 1987 end-page: 1061 ident: bib8 article-title: The mechanical properties of trabecular bone: dependence on anatomic location and function publication-title: J. Biomech. – volume: 276 start-page: 266 year: 2014 end-page: 286 ident: bib12 article-title: Fluid-structure interaction analysis by coupled FE-SPH model based on a novel searching algorithm publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 187 year: 2018 end-page: 201 ident: bib27 article-title: Numerical simulation of bone cutting: hybrid SPH-FE approach publication-title: Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes – volume: 113 start-page: 259 year: 1991 end-page: 262 ident: bib32 article-title: Stiffening of the femoral head due to intertrabecular fluid and intraosseous pressure publication-title: J. Biomech. Eng. – volume: 23 start-page: 165 year: 2001 end-page: 173 ident: bib18 article-title: Improved prediction of proximal femoral fracture load using nonlinear finite element models publication-title: Med. Eng. Phys. – volume: 2 start-page: 460 year: 2009 end-page: 470 ident: bib30 article-title: Calibration of a constitutive model for the post-yield behaviour of cortical bone publication-title: J. Mech. Behav. Biomed. Mater. – volume: 9 start-page: 1 year: 2017 end-page: 23 ident: bib41 article-title: Studying normal and oblique perforation of steel plates with SPH simulations publication-title: Int. J. Appl. Mech. – volume: 26 start-page: 136 year: 2013 end-page: 147 ident: bib21 article-title: Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body publication-title: J. Mech. Behav. Biomed. Mater. – volume: 45 start-page: 1279 year: 2020 end-page: 1285 ident: bib43 article-title: Risk factors of cage subsidence in patients received minimally invasive transforaminal lumbar interbody fusion publication-title: Spine – reference: Guo, X.; Rogers, B.D.; Lind, S.; Stansby, P.K., New massively parallel scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for highly nonlinear and distorted flow. Comput Phys Commun 233 (Dec) 16–28. – volume: 40 start-page: 14 year: 2002 end-page: 21 ident: bib24 article-title: Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing publication-title: Med. Biol. Eng. Comput. – volume: 18 start-page: 317 year: 1985 end-page: 328 ident: bib6 article-title: The mechanical behaviour of cancellous bone publication-title: J. Biomech. – volume: 18 start-page: 77 year: 2018 end-page: 94 ident: bib45 article-title: A hybrid stabilization technique for simulating water wave – structure interaction by incompressible Smoothed Particle Hydrodynamics (ISPH) method publication-title: J. Hydro-Environ. Res. – volume: 8 start-page: 1 year: 2013 end-page: 10 ident: bib2 article-title: A particle model for prediction of cement infiltration of cancellous bone in osteoporotic bone augmentation publication-title: PLoS One – volume: 4 start-page: 269 year: 1993 end-page: 272 ident: bib36 article-title: Characterization of a synthetic foam as a model for human cancellous bone publication-title: J. Appl. Biomater. – year: 2009 ident: bib1 article-title: ABAQUS Analysis User's Manual: 18.3.5 Crushable Foam Plasticity Models – volume: 151 year: 2024 ident: bib31 article-title: Smoothed particle hydrodynamics implementation to enhance vertebral fracture finite element model in a cervical spine segment under compression publication-title: J. Mech. Behav. Biomed. Mater. – volume: 83 start-page: 141 year: 2017 end-page: 157 ident: bib44 article-title: Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two- and three-dimensional spaces publication-title: Eng. Anal. Bound. Elem. – volume: 252 start-page: 230 year: 2008 end-page: 246 ident: bib13 article-title: A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity publication-title: J. Theor. Biol. – volume: 37 start-page: 1268 year: 2012 end-page: 1273 ident: bib25 article-title: Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion publication-title: Spine – year: 2014 ident: bib28 article-title: A simulation study of marrow fat effect on bone biomechanics publication-title: 36th Annual International Conference of the – volume: 138 start-page: 184 year: 2018 end-page: 198 ident: bib38 article-title: Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions publication-title: Coast. Eng. – volume: 49 start-page: 1 year: 2020 end-page: 6 ident: bib33 article-title: Lumbar disc height and vertebral Hounsfield units: association with interbody cage subsidence publication-title: Neurosurg. Focus – volume: 96 start-page: 53 year: 2021 end-page: 63 ident: bib35 article-title: Development of a crushable foam model for human trabecular bone publication-title: Med. Eng. Phys. – volume: 5 start-page: 231 year: 2012 end-page: 237 ident: bib9 article-title: On the effect of marrow in the mechanical behavior and crush response of trabecular bone publication-title: J. Mech. Behav. Biomed. Mater. – volume: 65 start-page: 213 year: 2017 end-page: 223 ident: bib26 article-title: A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression publication-title: J. Mech. Behav. Biomed. Mater. – volume: 48 start-page: 866 year: 2015 end-page: 874 ident: bib40 article-title: Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study publication-title: J. Biomech. – volume: 10 start-page: 537 year: 1976 end-page: 544 ident: bib10 article-title: Postyield behavior of subchondral trabecular bone publication-title: J. Biomed. Mater. Res. – volume: 36 start-page: 1114 year: 2018 end-page: 1123 ident: bib23 article-title: Development and initial validation of a novel smoothed-particle hydrodynamics-based simulation model of trabecular bone penetration by metallic implants publication-title: J. Orthop. Res. – volume: 9 start-page: 184 year: 2012 end-page: 197 ident: bib16 article-title: Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue publication-title: J. Mech. Behav. Biomed. Mater. – volume: 201 start-page: 43 year: Apr 2016 end-page: 62 ident: bib47 article-title: An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids publication-title: Comput. Phys. Commun. – volume: 98 start-page: 110 year: 2019 end-page: 125 ident: bib46 article-title: Predicting the damage on a target plate produced by hypervelocity impact using a decoupled finite particle method publication-title: Eng. Anal. Bound. Elem. – volume: 2 start-page: 59 year: 2006 end-page: 68 ident: bib29 article-title: Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone publication-title: Acta Biomater. – volume: 43 start-page: 775 year: 2008 end-page: 780 ident: bib39 article-title: Identification of material parameters based on Mohr-Coulomb failure criterion for bisphosphonate treated canine vertebral cancellous bone publication-title: Bone – volume: 101 start-page: 558 year: 1997 end-page: 562 ident: bib11 article-title: Ultrasonic wave propagation in bovine cancellous bone publication-title: J. Acoust. Soc. Am. – volume: 358 start-page: 53 year: 2018 end-page: 87 ident: bib22 article-title: Smoothed Particle Hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations publication-title: J. Comput. Phys. – start-page: 1 year: 2023 end-page: 32 ident: bib19 article-title: An improved updated Lagrangian SPH method for structural modelling publication-title: Comput. Times Part Mech – volume: 12 start-page: 685 year: 2013 end-page: 703 ident: bib17 article-title: An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence publication-title: Biomech. Model. Mechanobiol. – volume: 22 start-page: 25 year: 2019 end-page: 37 ident: bib34 article-title: Calibration of crushable foam plasticity models for synthetic bone material for use in finite element analysis of acetabular cup deformation and primary stability publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 5 year: 2019 ident: bib3 article-title: The effect of bone marrow on the mechanical behavior of porcine trabecular bone publication-title: Biomed. Phys. Eng. Exp. – volume: 61 start-page: 721 year: 2023 end-page: 737 ident: bib4 article-title: Micro-mechanism study on tissue removal behavior under medical waterjet impact using coupled SPH-FEM publication-title: Med. Biol. Eng. Comput. – volume: 87 start-page: 213 year: 2018 end-page: 229 ident: bib20 article-title: Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation publication-title: J. Mech. Behav. Biomed. Mater. – volume: 48 start-page: 1253 year: 2000 end-page: 1283 ident: bib5 article-title: Isotropic constitutive models for metallic foams publication-title: J. Mech. Phys. Solid. – volume: 75 start-page: 12 year: 2017 end-page: 20 ident: bib42 article-title: Studying normal perforation of monolithic and layered steel targets by conical projectiles with SPH simulation and analytical method publication-title: Eng. Anal. Bound. Elem. – volume: 151 year: 2024 ident: 10.1016/j.jmbbm.2024.106679_bib31 article-title: Smoothed particle hydrodynamics implementation to enhance vertebral fracture finite element model in a cervical spine segment under compression publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2024.106412 – year: 2009 ident: 10.1016/j.jmbbm.2024.106679_bib1 – volume: 61 start-page: 721 year: 2023 ident: 10.1016/j.jmbbm.2024.106679_bib4 article-title: Micro-mechanism study on tissue removal behavior under medical waterjet impact using coupled SPH-FEM publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02732-8 – volume: 23 start-page: 165 year: 2001 ident: 10.1016/j.jmbbm.2024.106679_bib18 article-title: Improved prediction of proximal femoral fracture load using nonlinear finite element models publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(01)00045-5 – volume: 18 start-page: 77 year: 2018 ident: 10.1016/j.jmbbm.2024.106679_bib45 article-title: A hybrid stabilization technique for simulating water wave – structure interaction by incompressible Smoothed Particle Hydrodynamics (ISPH) method publication-title: J. Hydro-Environ. Res. doi: 10.1016/j.jher.2017.11.003 – volume: 138 start-page: 184 year: 2018 ident: 10.1016/j.jmbbm.2024.106679_bib38 article-title: Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2018.04.021 – volume: 113 start-page: 259 year: 1991 ident: 10.1016/j.jmbbm.2024.106679_bib32 article-title: Stiffening of the femoral head due to intertrabecular fluid and intraosseous pressure publication-title: J. Biomech. Eng. doi: 10.1115/1.2894882 – volume: 48 start-page: 1253 issue: 6–7 year: 2000 ident: 10.1016/j.jmbbm.2024.106679_bib5 article-title: Isotropic constitutive models for metallic foams publication-title: J. Mech. Phys. Solid. doi: 10.1016/S0022-5096(99)00082-4 – volume: 20 start-page: 1055 issue: 11 year: 1987 ident: 10.1016/j.jmbbm.2024.106679_bib8 article-title: The mechanical properties of trabecular bone: dependence on anatomic location and function publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90023-6 – volume: 48 start-page: 866 issue: 5 year: 2015 ident: 10.1016/j.jmbbm.2024.106679_bib40 article-title: Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.12.009 – volume: 75 start-page: 12 year: 2017 ident: 10.1016/j.jmbbm.2024.106679_bib42 article-title: Studying normal perforation of monolithic and layered steel targets by conical projectiles with SPH simulation and analytical method publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2016.11.004 – volume: 101 start-page: 558 issue: 1 year: 1997 ident: 10.1016/j.jmbbm.2024.106679_bib11 article-title: Ultrasonic wave propagation in bovine cancellous bone publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.418118 – volume: 50 start-page: 299 year: 2015 ident: 10.1016/j.jmbbm.2024.106679_bib14 article-title: Mechanics of intact bone marrow publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.06.023 – volume: 12 start-page: 685 issue: 4 year: 2013 ident: 10.1016/j.jmbbm.2024.106679_bib17 article-title: An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-012-0434-3 – volume: 201 start-page: 43 year: 2016 ident: 10.1016/j.jmbbm.2024.106679_bib47 article-title: An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.12.016 – volume: 98 start-page: 110 year: 2019 ident: 10.1016/j.jmbbm.2024.106679_bib46 article-title: Predicting the damage on a target plate produced by hypervelocity impact using a decoupled finite particle method publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2018.10.012 – volume: 96 start-page: 53 year: 2021 ident: 10.1016/j.jmbbm.2024.106679_bib35 article-title: Development of a crushable foam model for human trabecular bone publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2021.08.009 – volume: 5 start-page: 231 issue: 1 year: 2012 ident: 10.1016/j.jmbbm.2024.106679_bib9 article-title: On the effect of marrow in the mechanical behavior and crush response of trabecular bone publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.09.003 – start-page: 187 year: 2018 ident: 10.1016/j.jmbbm.2024.106679_bib27 article-title: Numerical simulation of bone cutting: hybrid SPH-FE approach – volume: 26 start-page: 136 year: 2013 ident: 10.1016/j.jmbbm.2024.106679_bib21 article-title: Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2013.04.026 – volume: 45 start-page: 1279 issue: 19 year: 2020 ident: 10.1016/j.jmbbm.2024.106679_bib43 article-title: Risk factors of cage subsidence in patients received minimally invasive transforaminal lumbar interbody fusion publication-title: Spine doi: 10.1097/BRS.0000000000003557 – volume: 83 start-page: 141 year: 2017 ident: 10.1016/j.jmbbm.2024.106679_bib44 article-title: Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two- and three-dimensional spaces publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2017.07.015 – volume: 18 start-page: 317 issue: 5 year: 1985 ident: 10.1016/j.jmbbm.2024.106679_bib6 article-title: The mechanical behaviour of cancellous bone publication-title: J. Biomech. doi: 10.1016/0021-9290(85)90287-8 – volume: 8 start-page: 1 issue: 6 year: 2013 ident: 10.1016/j.jmbbm.2024.106679_bib2 article-title: A particle model for prediction of cement infiltration of cancellous bone in osteoporotic bone augmentation publication-title: PLoS One doi: 10.1371/journal.pone.0067958 – volume: 22 start-page: 25 issue: 1 year: 2019 ident: 10.1016/j.jmbbm.2024.106679_bib34 article-title: Calibration of crushable foam plasticity models for synthetic bone material for use in finite element analysis of acetabular cup deformation and primary stability publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2018.1524884 – volume: 36 start-page: 1114 issue: 4 year: 2018 ident: 10.1016/j.jmbbm.2024.106679_bib23 article-title: Development and initial validation of a novel smoothed-particle hydrodynamics-based simulation model of trabecular bone penetration by metallic implants publication-title: J. Orthop. Res. doi: 10.1002/jor.23734 – volume: 9 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.jmbbm.2024.106679_bib41 article-title: Studying normal and oblique perforation of steel plates with SPH simulations publication-title: Int. J. Appl. Mech. doi: 10.1142/S1758825117500910 – volume: 2 start-page: 460 issue: 5 year: 2009 ident: 10.1016/j.jmbbm.2024.106679_bib30 article-title: Calibration of a constitutive model for the post-yield behaviour of cortical bone publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2008.11.003 – volume: 87 start-page: 213 year: 2018 ident: 10.1016/j.jmbbm.2024.106679_bib20 article-title: Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.07.033 – year: 2014 ident: 10.1016/j.jmbbm.2024.106679_bib28 article-title: A simulation study of marrow fat effect on bone biomechanics – volume: 10 start-page: 537 issue: 4 year: 1976 ident: 10.1016/j.jmbbm.2024.106679_bib10 article-title: Postyield behavior of subchondral trabecular bone publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820100409 – volume: 276 start-page: 266 year: 2014 ident: 10.1016/j.jmbbm.2024.106679_bib12 article-title: Fluid-structure interaction analysis by coupled FE-SPH model based on a novel searching algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.04.001 – volume: 4 start-page: 269 issue: 3 year: 1993 ident: 10.1016/j.jmbbm.2024.106679_bib36 article-title: Characterization of a synthetic foam as a model for human cancellous bone publication-title: J. Appl. Biomater. doi: 10.1002/jab.770040309 – volume: 6 start-page: 2520 issue: 11 year: 2006 ident: 10.1016/j.jmbbm.2024.106679_bib37 article-title: Nanogranular origins of the strength of bone publication-title: Nano Lett. doi: 10.1021/nl061877k – volume: 40 start-page: 14 year: 2002 ident: 10.1016/j.jmbbm.2024.106679_bib24 article-title: Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02347690 – volume: 38 start-page: 377 issue: 3 year: 2005 ident: 10.1016/j.jmbbm.2024.106679_bib7 article-title: Biomechanics of cellular solids publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.09.027 – volume: 9 start-page: 184 year: 2012 ident: 10.1016/j.jmbbm.2024.106679_bib16 article-title: Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.11.013 – start-page: 1 year: 2023 ident: 10.1016/j.jmbbm.2024.106679_bib19 article-title: An improved updated Lagrangian SPH method for structural modelling publication-title: Comput. Times Part Mech – volume: 37 start-page: 1268 issue: 14 year: 2012 ident: 10.1016/j.jmbbm.2024.106679_bib25 article-title: Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion publication-title: Spine doi: 10.1097/BRS.0b013e3182458b2f – volume: 2 start-page: 59 issue: 1 year: 2006 ident: 10.1016/j.jmbbm.2024.106679_bib29 article-title: Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone publication-title: Acta Biomater. doi: 10.1016/j.actbio.2005.08.004 – volume: 65 start-page: 213 year: 2017 ident: 10.1016/j.jmbbm.2024.106679_bib26 article-title: A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.08.028 – volume: 5 issue: 6 year: 2019 ident: 10.1016/j.jmbbm.2024.106679_bib3 article-title: The effect of bone marrow on the mechanical behavior of porcine trabecular bone publication-title: Biomed. Phys. Eng. Exp. – ident: 10.1016/j.jmbbm.2024.106679_bib48 doi: 10.1016/j.cpc.2018.06.006 – volume: 252 start-page: 230 issue: 2 year: 2008 ident: 10.1016/j.jmbbm.2024.106679_bib13 article-title: A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2008.01.030 – volume: 43 start-page: 775 issue: 4 year: 2008 ident: 10.1016/j.jmbbm.2024.106679_bib39 article-title: Identification of material parameters based on Mohr-Coulomb failure criterion for bisphosphonate treated canine vertebral cancellous bone publication-title: Bone doi: 10.1016/j.bone.2008.05.023 – volume: 49 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.jmbbm.2024.106679_bib33 article-title: Lumbar disc height and vertebral Hounsfield units: association with interbody cage subsidence publication-title: Neurosurg. Focus doi: 10.3171/2020.4.FOCUS20286 – volume: 358 start-page: 53 year: 2018 ident: 10.1016/j.jmbbm.2024.106679_bib22 article-title: Smoothed Particle Hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.12.006 |
SSID | ssj0060088 |
Score | 2.3871853 |
Snippet | Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 106679 |
SubjectTerms | Aged Biomechanical Phenomena Bone Density Cancellous Bone - diagnostic imaging Cancellous Bone - physiology Continuum-based modeling Crushable foam Female Finite Element Analysis Finite element model Humans Male Marrow Materials Testing Mechanical Phenomena Mechanical Tests Smoothed particle hydrodynamics Trabecular bone indentation |
Title | Development of a continuum-based, meshless, finite element modeling approach for representation of trabecular bone indentation |
URI | https://dx.doi.org/10.1016/j.jmbbm.2024.106679 https://www.ncbi.nlm.nih.gov/pubmed/39180890 https://www.proquest.com/docview/3097147079 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-0180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060088 issn: 1751-6161 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier E-journals (Freedom Collection) customDbUrl: eissn: 1878-0180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060088 issn: 1751-6161 databaseCode: ACRLP dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1878-0180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060088 issn: 1751-6161 databaseCode: .~1 dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1878-0180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060088 issn: 1751-6161 databaseCode: AIKHN dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-0180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060088 issn: 1751-6161 databaseCode: AKRWK dateStart: 20080101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXvRg_BY_SE08Mhlrt65HQiSokYuScGvarYsQGUbgyt_ue91GMFEPHtd2bdPXvvfr9t7vEXLbiYywlglPhFno8U7CPS3gPMo4k2kqE6ET_N7xPIwGI_44Dsc10qtiYdCtstT9hU532rosaZer2f6YTNovYPgAroCF5rgzXTJrZP-CPX233rh5gD13uSexsYetK-Yh5-M1nRmD4egBh5IoQn-un63Tb-jTWaH-Adkv4SPtFjM8JDWbH5G9LVLBY7Le8gOi84xqiu7ok3y1mnlos9IWndnF2zuouBbNJog5qS2cyKnLiwO90IpqnAKmpY74sgpSyrHP5ac2RVZdaua5pci5WFafkFH__rU38MosC17CfLn00iDtGBkaCYbKZoDgDFyZkUWfp9LXgB7S0NcAG0Prs1BkcCOEG0ggfSO0jixj7JTUcxjqnNAgtiJgVmINT1kcSwAHWloeCgAWiWyQVrW66qMg01CVl9lUOWEoFIYqhNEgUSUB9W1PKFD3f794U8lLwWnBXyA6t_PVQjGkzOLICtggZ4UgNzNhshP7sfQv_jvsJdnFpyJS8YrUl58rew2QZWmabk82yU734Wkw_AL1zeqE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6h5AA9VKXQNm2hRuKYVTZre70-RlFRII8LIHGz7F2vGkQ2CJJrf3tndtcVSMCBq71-yGPPfPbOfANwOkyd8p6rSMlSRmKYi8gqPI86K3VR6FzZnN475ot0ci0ubuTNDoxDLAy5Vba6v9HptbZuSwbtag7ul8vBJRo-hCtooQXtTEpm3RUSdXIHuqPz6WQRFDKa9Dr9JH0fUYNAPlS7ed2unKOI9ERgSZqSS9fLBuo1AFoborNP8LFFkGzUTHIfdnz1GT484RU8gL9PXIHYumSWkUf6stpuVxGZraLPVv7xzx1quT4rlwQ7mW_8yFmdGgd7YYFtnCGsZTX3ZYhTqqjPzYN1TWJd5taVZ0S72FYfwvXZ76vxJGoTLUQ5j_UmKpJi6LR0Gm2VLxHEObw1E5G-KHRsEUAUMraIHKWPuVQlXgrxEpLo2ClrU885_wKdCof6BizJvEq411QjCp5lGvGB1V5Ihdgi1z3oh9U19w2fhgmOZremFoYhYZhGGD1IgwTMs21hUOO_3fAkyMvggaG_ILby6-2j4cSaJYgYsAdfG0H-nwnXwyzOdPz9vcP-gt3J1XxmZueL6Q_Yo5omcPEndDYPW3-ECGbjjtsd-g_1rO0v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+continuum-based%2C+meshless%2C+finite+element+modeling+approach+for+representation+of+trabecular+bone+indentation&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Benais%2C+R%C3%A9my&rft.au=Rycman%2C+Aleksander&rft.au=McLachlin%2C+Stewart+D.&rft.date=2024-11-01&rft.issn=1751-6161&rft.volume=159&rft.spage=106679&rft_id=info:doi/10.1016%2Fj.jmbbm.2024.106679&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmbbm_2024_106679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon |