Development of a continuum-based, meshless, finite element modeling approach for representation of trabecular bone indentation

Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical proble...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanical behavior of biomedical materials Vol. 159; p. 106679
Main Authors Benais, Rémy, Rycman, Aleksander, McLachlin, Stewart D.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text
ISSN1751-6161
1878-0180
1878-0180
DOI10.1016/j.jmbbm.2024.106679

Cover

Abstract Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration. Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure. Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests. Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence. [Display omitted] •Developed a continuum-based approach for modeling trabecular bone indentation.•Examined trabecular bone with marrow using smoothed particle hydrodynamics.•Crushable foam material accurately represented post-yield bone densification.•Model was adaptable to pre-clinical imaging metrics like bone mineral density.
AbstractList Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration. Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure. Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests. Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence. [Display omitted] •Developed a continuum-based approach for modeling trabecular bone indentation.•Examined trabecular bone with marrow using smoothed particle hydrodynamics.•Crushable foam material accurately represented post-yield bone densification.•Model was adaptable to pre-clinical imaging metrics like bone mineral density.
Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration. Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure. Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests. Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence.Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration. Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure. Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests. Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence.
Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration. Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure. Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests. Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence.
ArticleNumber 106679
Author Rycman, Aleksander
McLachlin, Stewart D.
Benais, Rémy
Author_xml – sequence: 1
  givenname: Rémy
  orcidid: 0009-0002-9540-3349
  surname: Benais
  fullname: Benais, Rémy
  email: rbenaist@uwaterloo.ca
– sequence: 2
  givenname: Aleksander
  surname: Rycman
  fullname: Rycman, Aleksander
  email: alrycman@uwaterloo.ca
– sequence: 3
  givenname: Stewart D.
  orcidid: 0000-0002-8464-3032
  surname: McLachlin
  fullname: McLachlin, Stewart D.
  email: stewart.mclachlin@uwaterloo.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39180890$$D View this record in MEDLINE/PubMed
BookMark eNp9kTlvFTEUhS0URBb4BUjIJUXmcT2LPS4oUICAFIkGasvLHeKnsT3YM5HS8Nvxy0soU9ny-c5dfM7JSUwRCXnLYMeA8Q_73T4YE3YttH194VzIF-SMjWJsgI1wUu9iYA1nnJ2S81L2ABxgHF-R005WYJRwRv5-xjuc0xIwrjRNVFOb4urjtoXG6ILukgYstzOWckknH_2KFGd8wENyOPv4m-plyUnbWzqlTDMuGUvV9epTPNRcszZot1lnauoK1Ef3JL8mLyc9F3zzeF6QX1-__Lz61tz8uP5-9emmsR3ItXGtY0YORrZjjxMMvYGeczby3knQbdu5ATQbYEDoBjGxsRe9aCUYoTXHrusuyPtj3Tronw3LqoIvFudZR0xbUbWLYL0AISv67hHdTECnluyDzvfq6c8q0B0Bm1MpGaf_CAN1SEbt1UMy6pCMOiZTXR-PLqxr3nnMqliP0aLzGe2qXPLP-v8BRjqYAw
Cites_doi 10.1016/j.jmbbm.2024.106412
10.1007/s11517-022-02732-8
10.1016/S1350-4533(01)00045-5
10.1016/j.jher.2017.11.003
10.1016/j.coastaleng.2018.04.021
10.1115/1.2894882
10.1016/S0022-5096(99)00082-4
10.1016/0021-9290(87)90023-6
10.1016/j.jbiomech.2014.12.009
10.1016/j.enganabound.2016.11.004
10.1121/1.418118
10.1016/j.jmbbm.2015.06.023
10.1007/s10237-012-0434-3
10.1016/j.cpc.2015.12.016
10.1016/j.enganabound.2018.10.012
10.1016/j.medengphy.2021.08.009
10.1016/j.jmbbm.2011.09.003
10.1016/j.jmbbm.2013.04.026
10.1097/BRS.0000000000003557
10.1016/j.enganabound.2017.07.015
10.1016/0021-9290(85)90287-8
10.1371/journal.pone.0067958
10.1080/10255842.2018.1524884
10.1002/jor.23734
10.1142/S1758825117500910
10.1016/j.jmbbm.2008.11.003
10.1016/j.jmbbm.2018.07.033
10.1002/jbm.820100409
10.1016/j.cma.2014.04.001
10.1002/jab.770040309
10.1021/nl061877k
10.1007/BF02347690
10.1016/j.jbiomech.2004.09.027
10.1016/j.jmbbm.2011.11.013
10.1097/BRS.0b013e3182458b2f
10.1016/j.actbio.2005.08.004
10.1016/j.jmbbm.2016.08.028
10.1016/j.cpc.2018.06.006
10.1016/j.jtbi.2008.01.030
10.1016/j.bone.2008.05.023
10.3171/2020.4.FOCUS20286
10.1016/j.jcp.2017.12.006
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier Ltd.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jmbbm.2024.106679
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0180
ExternalDocumentID 39180890
10_1016_j_jmbbm_2024_106679
S1751616124003114
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c309t-d2d1b95b9284ef054b04661864d90a223d50a1505e0357f184747290b7aa6e333
IEDL.DBID .~1
ISSN 1751-6161
1878-0180
IngestDate Sun Sep 28 07:10:53 EDT 2025
Mon Jul 21 06:03:31 EDT 2025
Wed Oct 01 02:59:53 EDT 2025
Sat Sep 14 18:13:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Smoothed particle hydrodynamics
Finite element model
Continuum-based modeling
Marrow
Crushable foam
Trabecular bone indentation
Language English
License Copyright © 2024. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-d2d1b95b9284ef054b04661864d90a223d50a1505e0357f184747290b7aa6e333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8464-3032
0009-0002-9540-3349
PMID 39180890
PQID 3097147079
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3097147079
pubmed_primary_39180890
crossref_primary_10_1016_j_jmbbm_2024_106679
elsevier_sciencedirect_doi_10_1016_j_jmbbm_2024_106679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-Nov
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of the mechanical behavior of biomedical materials
PublicationTitleAlternate J Mech Behav Biomed Mater
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mercer, He, Wang, Evans (bib29) 2006; 2
Soltanihafshejani, Bitter, Janssen, Verdonschot (bib35) 2021; 96
Gibson (bib6) 1985; 18
Halgrin, Chaari, Markiewicz (bib9) 2012; 5
Wang, Allen, Burr, Lavernia, Jeremić, Fyhrie (bib39) 2008; 43
Khor, Cronin, Watson, Gierczycka, Malcolm (bib20) 2018; 87
Bravo, Osnaya, Ramírez, Jacobo, Ortiz (bib3) 2019; 5
Keyak (bib18) 2001; 23
Goldstein (bib8) 1987; 20
Hu, Long, Xiao, Han, Gu (bib12) 2014; 276
Hayes, Carter (bib10) 1976; 10
Webster, Schulte, Lambers, Kuhn, Müller (bib40) 2015; 48
Basafa, Murphy, Kutzer, Otake, Armand (bib2) 2013; 8
Lacroix, Prendergast, Li, Marsh (bib24) 2002; 40
Kinzl, Wolfram, Pahr (bib21) 2013; 26
Abaqus (bib1) 2009
Kelly, McGarry (bib16) 2012; 9
Szivek, Thomas, Benjamin (bib36) 1993; 4
Tai, Ulm, Ortiz (bib37) 2006; 6
Ochoa, Sanders, Heck, Hillberry (bib32) 1991; 113
Verbrugghe, Domínguez, Crespo, Altomare, Stratigaki, Troch, Kortenhaus (bib38) 2018; 138
Gibson (bib7) 2005; 38
Deshpande, Fleck (bib5) 2000; 48
Xu, Deng (bib47) Apr 2016; 201
Jansen, Birch, Schiffman, Crosby, Peyton (bib14) 2015; 50
Mullins, Bruzzi, McHugh (bib30) 2009; 2
Cao, Zhao, Chao, Li, Huang (bib4) 2023; 61
Hosokawa, Otani (bib11) 1997; 101
Le, Baaj, Dakwar, Burkett, Murray, Smith, Uribe (bib25) 2012; 37
Ngan, Rampersadh, Rycman, Cronin (bib31) 2024; 151
Zhang, Zheng, Ma, Duan, Khayyer, Lv, Shao (bib45) 2018; 18
Schulze, Vogel, Sander, Bader (bib34) 2019; 22
Zhang, Liu (bib44) 2017; 83
Zhang, Feng, Ma, Liu (bib46) 2019; 98
Kelly, Harrison, McDonnell, McGarry (bib17) 2013; 12
Lee, Lee, Youn, Kim, Shin, Goh, Lee (bib26) 2017; 65
Yao, Chou, Lin, Wang, Liu, Chang (bib43) 2020; 45
Li, Zahedi, Silberschmidt (bib27) 2018
Xiao, Dong (bib41) 2017; 9
Khayyer, Shimizu, Lee, Gil, Gotoh, Bonet (bib19) 2023
Pisano, Fredericks, Steelman, Riccio, Helgeson, Wagner (bib33) 2020; 49
Guo, X.; Rogers, B.D.; Lind, S.; Stansby, P.K., New massively parallel scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for highly nonlinear and distorted flow. Comput Phys Commun 233 (Dec) 16–28.
Krimi, Rezoug, Khelladi, Nogueira, Deligant, Ramírez (bib22) 2018; 358
Kulper, Fang, Ren, Guo, Sze, Leung, Lu (bib23) 2018; 36
Ma, Ren, Chen, Griffith (bib28) 2014
Isaksson, van Donkelaar, Huiskes, Ito (bib13) 2008; 252
Xiao, Dong, Zhou, Wang (bib42) 2017; 75
Khayyer (10.1016/j.jmbbm.2024.106679_bib19) 2023
Soltanihafshejani (10.1016/j.jmbbm.2024.106679_bib35) 2021; 96
Schulze (10.1016/j.jmbbm.2024.106679_bib34) 2019; 22
Kinzl (10.1016/j.jmbbm.2024.106679_bib21) 2013; 26
Basafa (10.1016/j.jmbbm.2024.106679_bib2) 2013; 8
Gibson (10.1016/j.jmbbm.2024.106679_bib7) 2005; 38
Goldstein (10.1016/j.jmbbm.2024.106679_bib8) 1987; 20
Tai (10.1016/j.jmbbm.2024.106679_bib37) 2006; 6
Hosokawa (10.1016/j.jmbbm.2024.106679_bib11) 1997; 101
Jansen (10.1016/j.jmbbm.2024.106679_bib14) 2015; 50
Kulper (10.1016/j.jmbbm.2024.106679_bib23) 2018; 36
Xiao (10.1016/j.jmbbm.2024.106679_bib41) 2017; 9
Halgrin (10.1016/j.jmbbm.2024.106679_bib9) 2012; 5
Zhang (10.1016/j.jmbbm.2024.106679_bib46) 2019; 98
Wang (10.1016/j.jmbbm.2024.106679_bib39) 2008; 43
Kelly (10.1016/j.jmbbm.2024.106679_bib16) 2012; 9
Xu (10.1016/j.jmbbm.2024.106679_bib47) 2016; 201
Kelly (10.1016/j.jmbbm.2024.106679_bib17) 2013; 12
Mercer (10.1016/j.jmbbm.2024.106679_bib29) 2006; 2
Cao (10.1016/j.jmbbm.2024.106679_bib4) 2023; 61
Pisano (10.1016/j.jmbbm.2024.106679_bib33) 2020; 49
Zhang (10.1016/j.jmbbm.2024.106679_bib44) 2017; 83
Bravo (10.1016/j.jmbbm.2024.106679_bib3) 2019; 5
Isaksson (10.1016/j.jmbbm.2024.106679_bib13) 2008; 252
Le (10.1016/j.jmbbm.2024.106679_bib25) 2012; 37
Ngan (10.1016/j.jmbbm.2024.106679_bib31) 2024; 151
Hayes (10.1016/j.jmbbm.2024.106679_bib10) 1976; 10
Ma (10.1016/j.jmbbm.2024.106679_bib28) 2014
Lee (10.1016/j.jmbbm.2024.106679_bib26) 2017; 65
Webster (10.1016/j.jmbbm.2024.106679_bib40) 2015; 48
Khor (10.1016/j.jmbbm.2024.106679_bib20) 2018; 87
Li (10.1016/j.jmbbm.2024.106679_bib27) 2018
Lacroix (10.1016/j.jmbbm.2024.106679_bib24) 2002; 40
Mullins (10.1016/j.jmbbm.2024.106679_bib30) 2009; 2
Hu (10.1016/j.jmbbm.2024.106679_bib12) 2014; 276
Xiao (10.1016/j.jmbbm.2024.106679_bib42) 2017; 75
10.1016/j.jmbbm.2024.106679_bib48
Gibson (10.1016/j.jmbbm.2024.106679_bib6) 1985; 18
Ochoa (10.1016/j.jmbbm.2024.106679_bib32) 1991; 113
Abaqus (10.1016/j.jmbbm.2024.106679_bib1) 2009
Deshpande (10.1016/j.jmbbm.2024.106679_bib5) 2000; 48
Szivek (10.1016/j.jmbbm.2024.106679_bib36) 1993; 4
Verbrugghe (10.1016/j.jmbbm.2024.106679_bib38) 2018; 138
Zhang (10.1016/j.jmbbm.2024.106679_bib45) 2018; 18
Krimi (10.1016/j.jmbbm.2024.106679_bib22) 2018; 358
Yao (10.1016/j.jmbbm.2024.106679_bib43) 2020; 45
Keyak (10.1016/j.jmbbm.2024.106679_bib18) 2001; 23
References_xml – volume: 50
  start-page: 299
  year: 2015
  end-page: 307
  ident: bib14
  article-title: Mechanics of intact bone marrow
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 38
  start-page: 377
  year: 2005
  end-page: 399
  ident: bib7
  article-title: Biomechanics of cellular solids
  publication-title: J. Biomech.
– volume: 6
  start-page: 2520
  year: 2006
  end-page: 2525
  ident: bib37
  article-title: Nanogranular origins of the strength of bone
  publication-title: Nano Lett.
– volume: 20
  start-page: 1055
  year: 1987
  end-page: 1061
  ident: bib8
  article-title: The mechanical properties of trabecular bone: dependence on anatomic location and function
  publication-title: J. Biomech.
– volume: 276
  start-page: 266
  year: 2014
  end-page: 286
  ident: bib12
  article-title: Fluid-structure interaction analysis by coupled FE-SPH model based on a novel searching algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 187
  year: 2018
  end-page: 201
  ident: bib27
  article-title: Numerical simulation of bone cutting: hybrid SPH-FE approach
  publication-title: Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes
– volume: 113
  start-page: 259
  year: 1991
  end-page: 262
  ident: bib32
  article-title: Stiffening of the femoral head due to intertrabecular fluid and intraosseous pressure
  publication-title: J. Biomech. Eng.
– volume: 23
  start-page: 165
  year: 2001
  end-page: 173
  ident: bib18
  article-title: Improved prediction of proximal femoral fracture load using nonlinear finite element models
  publication-title: Med. Eng. Phys.
– volume: 2
  start-page: 460
  year: 2009
  end-page: 470
  ident: bib30
  article-title: Calibration of a constitutive model for the post-yield behaviour of cortical bone
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 23
  ident: bib41
  article-title: Studying normal and oblique perforation of steel plates with SPH simulations
  publication-title: Int. J. Appl. Mech.
– volume: 26
  start-page: 136
  year: 2013
  end-page: 147
  ident: bib21
  article-title: Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 45
  start-page: 1279
  year: 2020
  end-page: 1285
  ident: bib43
  article-title: Risk factors of cage subsidence in patients received minimally invasive transforaminal lumbar interbody fusion
  publication-title: Spine
– reference: Guo, X.; Rogers, B.D.; Lind, S.; Stansby, P.K., New massively parallel scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for highly nonlinear and distorted flow. Comput Phys Commun 233 (Dec) 16–28.
– volume: 40
  start-page: 14
  year: 2002
  end-page: 21
  ident: bib24
  article-title: Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing
  publication-title: Med. Biol. Eng. Comput.
– volume: 18
  start-page: 317
  year: 1985
  end-page: 328
  ident: bib6
  article-title: The mechanical behaviour of cancellous bone
  publication-title: J. Biomech.
– volume: 18
  start-page: 77
  year: 2018
  end-page: 94
  ident: bib45
  article-title: A hybrid stabilization technique for simulating water wave – structure interaction by incompressible Smoothed Particle Hydrodynamics (ISPH) method
  publication-title: J. Hydro-Environ. Res.
– volume: 8
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib2
  article-title: A particle model for prediction of cement infiltration of cancellous bone in osteoporotic bone augmentation
  publication-title: PLoS One
– volume: 4
  start-page: 269
  year: 1993
  end-page: 272
  ident: bib36
  article-title: Characterization of a synthetic foam as a model for human cancellous bone
  publication-title: J. Appl. Biomater.
– year: 2009
  ident: bib1
  article-title: ABAQUS Analysis User's Manual: 18.3.5 Crushable Foam Plasticity Models
– volume: 151
  year: 2024
  ident: bib31
  article-title: Smoothed particle hydrodynamics implementation to enhance vertebral fracture finite element model in a cervical spine segment under compression
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 83
  start-page: 141
  year: 2017
  end-page: 157
  ident: bib44
  article-title: Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two- and three-dimensional spaces
  publication-title: Eng. Anal. Bound. Elem.
– volume: 252
  start-page: 230
  year: 2008
  end-page: 246
  ident: bib13
  article-title: A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity
  publication-title: J. Theor. Biol.
– volume: 37
  start-page: 1268
  year: 2012
  end-page: 1273
  ident: bib25
  article-title: Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion
  publication-title: Spine
– year: 2014
  ident: bib28
  article-title: A simulation study of marrow fat effect on bone biomechanics
  publication-title: 36th Annual International Conference of the
– volume: 138
  start-page: 184
  year: 2018
  end-page: 198
  ident: bib38
  article-title: Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions
  publication-title: Coast. Eng.
– volume: 49
  start-page: 1
  year: 2020
  end-page: 6
  ident: bib33
  article-title: Lumbar disc height and vertebral Hounsfield units: association with interbody cage subsidence
  publication-title: Neurosurg. Focus
– volume: 96
  start-page: 53
  year: 2021
  end-page: 63
  ident: bib35
  article-title: Development of a crushable foam model for human trabecular bone
  publication-title: Med. Eng. Phys.
– volume: 5
  start-page: 231
  year: 2012
  end-page: 237
  ident: bib9
  article-title: On the effect of marrow in the mechanical behavior and crush response of trabecular bone
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 65
  start-page: 213
  year: 2017
  end-page: 223
  ident: bib26
  article-title: A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 48
  start-page: 866
  year: 2015
  end-page: 874
  ident: bib40
  article-title: Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study
  publication-title: J. Biomech.
– volume: 10
  start-page: 537
  year: 1976
  end-page: 544
  ident: bib10
  article-title: Postyield behavior of subchondral trabecular bone
  publication-title: J. Biomed. Mater. Res.
– volume: 36
  start-page: 1114
  year: 2018
  end-page: 1123
  ident: bib23
  article-title: Development and initial validation of a novel smoothed-particle hydrodynamics-based simulation model of trabecular bone penetration by metallic implants
  publication-title: J. Orthop. Res.
– volume: 9
  start-page: 184
  year: 2012
  end-page: 197
  ident: bib16
  article-title: Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 201
  start-page: 43
  year: Apr 2016
  end-page: 62
  ident: bib47
  article-title: An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids
  publication-title: Comput. Phys. Commun.
– volume: 98
  start-page: 110
  year: 2019
  end-page: 125
  ident: bib46
  article-title: Predicting the damage on a target plate produced by hypervelocity impact using a decoupled finite particle method
  publication-title: Eng. Anal. Bound. Elem.
– volume: 2
  start-page: 59
  year: 2006
  end-page: 68
  ident: bib29
  article-title: Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone
  publication-title: Acta Biomater.
– volume: 43
  start-page: 775
  year: 2008
  end-page: 780
  ident: bib39
  article-title: Identification of material parameters based on Mohr-Coulomb failure criterion for bisphosphonate treated canine vertebral cancellous bone
  publication-title: Bone
– volume: 101
  start-page: 558
  year: 1997
  end-page: 562
  ident: bib11
  article-title: Ultrasonic wave propagation in bovine cancellous bone
  publication-title: J. Acoust. Soc. Am.
– volume: 358
  start-page: 53
  year: 2018
  end-page: 87
  ident: bib22
  article-title: Smoothed Particle Hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations
  publication-title: J. Comput. Phys.
– start-page: 1
  year: 2023
  end-page: 32
  ident: bib19
  article-title: An improved updated Lagrangian SPH method for structural modelling
  publication-title: Comput. Times Part Mech
– volume: 12
  start-page: 685
  year: 2013
  end-page: 703
  ident: bib17
  article-title: An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence
  publication-title: Biomech. Model. Mechanobiol.
– volume: 22
  start-page: 25
  year: 2019
  end-page: 37
  ident: bib34
  article-title: Calibration of crushable foam plasticity models for synthetic bone material for use in finite element analysis of acetabular cup deformation and primary stability
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 5
  year: 2019
  ident: bib3
  article-title: The effect of bone marrow on the mechanical behavior of porcine trabecular bone
  publication-title: Biomed. Phys. Eng. Exp.
– volume: 61
  start-page: 721
  year: 2023
  end-page: 737
  ident: bib4
  article-title: Micro-mechanism study on tissue removal behavior under medical waterjet impact using coupled SPH-FEM
  publication-title: Med. Biol. Eng. Comput.
– volume: 87
  start-page: 213
  year: 2018
  end-page: 229
  ident: bib20
  article-title: Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 48
  start-page: 1253
  year: 2000
  end-page: 1283
  ident: bib5
  article-title: Isotropic constitutive models for metallic foams
  publication-title: J. Mech. Phys. Solid.
– volume: 75
  start-page: 12
  year: 2017
  end-page: 20
  ident: bib42
  article-title: Studying normal perforation of monolithic and layered steel targets by conical projectiles with SPH simulation and analytical method
  publication-title: Eng. Anal. Bound. Elem.
– volume: 151
  year: 2024
  ident: 10.1016/j.jmbbm.2024.106679_bib31
  article-title: Smoothed particle hydrodynamics implementation to enhance vertebral fracture finite element model in a cervical spine segment under compression
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2024.106412
– year: 2009
  ident: 10.1016/j.jmbbm.2024.106679_bib1
– volume: 61
  start-page: 721
  year: 2023
  ident: 10.1016/j.jmbbm.2024.106679_bib4
  article-title: Micro-mechanism study on tissue removal behavior under medical waterjet impact using coupled SPH-FEM
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02732-8
– volume: 23
  start-page: 165
  year: 2001
  ident: 10.1016/j.jmbbm.2024.106679_bib18
  article-title: Improved prediction of proximal femoral fracture load using nonlinear finite element models
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(01)00045-5
– volume: 18
  start-page: 77
  year: 2018
  ident: 10.1016/j.jmbbm.2024.106679_bib45
  article-title: A hybrid stabilization technique for simulating water wave – structure interaction by incompressible Smoothed Particle Hydrodynamics (ISPH) method
  publication-title: J. Hydro-Environ. Res.
  doi: 10.1016/j.jher.2017.11.003
– volume: 138
  start-page: 184
  year: 2018
  ident: 10.1016/j.jmbbm.2024.106679_bib38
  article-title: Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2018.04.021
– volume: 113
  start-page: 259
  year: 1991
  ident: 10.1016/j.jmbbm.2024.106679_bib32
  article-title: Stiffening of the femoral head due to intertrabecular fluid and intraosseous pressure
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2894882
– volume: 48
  start-page: 1253
  issue: 6–7
  year: 2000
  ident: 10.1016/j.jmbbm.2024.106679_bib5
  article-title: Isotropic constitutive models for metallic foams
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/S0022-5096(99)00082-4
– volume: 20
  start-page: 1055
  issue: 11
  year: 1987
  ident: 10.1016/j.jmbbm.2024.106679_bib8
  article-title: The mechanical properties of trabecular bone: dependence on anatomic location and function
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90023-6
– volume: 48
  start-page: 866
  issue: 5
  year: 2015
  ident: 10.1016/j.jmbbm.2024.106679_bib40
  article-title: Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.12.009
– volume: 75
  start-page: 12
  year: 2017
  ident: 10.1016/j.jmbbm.2024.106679_bib42
  article-title: Studying normal perforation of monolithic and layered steel targets by conical projectiles with SPH simulation and analytical method
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2016.11.004
– volume: 101
  start-page: 558
  issue: 1
  year: 1997
  ident: 10.1016/j.jmbbm.2024.106679_bib11
  article-title: Ultrasonic wave propagation in bovine cancellous bone
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.418118
– volume: 50
  start-page: 299
  year: 2015
  ident: 10.1016/j.jmbbm.2024.106679_bib14
  article-title: Mechanics of intact bone marrow
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.06.023
– volume: 12
  start-page: 685
  issue: 4
  year: 2013
  ident: 10.1016/j.jmbbm.2024.106679_bib17
  article-title: An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-012-0434-3
– volume: 201
  start-page: 43
  year: 2016
  ident: 10.1016/j.jmbbm.2024.106679_bib47
  article-title: An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.12.016
– volume: 98
  start-page: 110
  year: 2019
  ident: 10.1016/j.jmbbm.2024.106679_bib46
  article-title: Predicting the damage on a target plate produced by hypervelocity impact using a decoupled finite particle method
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2018.10.012
– volume: 96
  start-page: 53
  year: 2021
  ident: 10.1016/j.jmbbm.2024.106679_bib35
  article-title: Development of a crushable foam model for human trabecular bone
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2021.08.009
– volume: 5
  start-page: 231
  issue: 1
  year: 2012
  ident: 10.1016/j.jmbbm.2024.106679_bib9
  article-title: On the effect of marrow in the mechanical behavior and crush response of trabecular bone
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.09.003
– start-page: 187
  year: 2018
  ident: 10.1016/j.jmbbm.2024.106679_bib27
  article-title: Numerical simulation of bone cutting: hybrid SPH-FE approach
– volume: 26
  start-page: 136
  year: 2013
  ident: 10.1016/j.jmbbm.2024.106679_bib21
  article-title: Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2013.04.026
– volume: 45
  start-page: 1279
  issue: 19
  year: 2020
  ident: 10.1016/j.jmbbm.2024.106679_bib43
  article-title: Risk factors of cage subsidence in patients received minimally invasive transforaminal lumbar interbody fusion
  publication-title: Spine
  doi: 10.1097/BRS.0000000000003557
– volume: 83
  start-page: 141
  year: 2017
  ident: 10.1016/j.jmbbm.2024.106679_bib44
  article-title: Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two- and three-dimensional spaces
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2017.07.015
– volume: 18
  start-page: 317
  issue: 5
  year: 1985
  ident: 10.1016/j.jmbbm.2024.106679_bib6
  article-title: The mechanical behaviour of cancellous bone
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(85)90287-8
– volume: 8
  start-page: 1
  issue: 6
  year: 2013
  ident: 10.1016/j.jmbbm.2024.106679_bib2
  article-title: A particle model for prediction of cement infiltration of cancellous bone in osteoporotic bone augmentation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0067958
– volume: 22
  start-page: 25
  issue: 1
  year: 2019
  ident: 10.1016/j.jmbbm.2024.106679_bib34
  article-title: Calibration of crushable foam plasticity models for synthetic bone material for use in finite element analysis of acetabular cup deformation and primary stability
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2018.1524884
– volume: 36
  start-page: 1114
  issue: 4
  year: 2018
  ident: 10.1016/j.jmbbm.2024.106679_bib23
  article-title: Development and initial validation of a novel smoothed-particle hydrodynamics-based simulation model of trabecular bone penetration by metallic implants
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.23734
– volume: 9
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.jmbbm.2024.106679_bib41
  article-title: Studying normal and oblique perforation of steel plates with SPH simulations
  publication-title: Int. J. Appl. Mech.
  doi: 10.1142/S1758825117500910
– volume: 2
  start-page: 460
  issue: 5
  year: 2009
  ident: 10.1016/j.jmbbm.2024.106679_bib30
  article-title: Calibration of a constitutive model for the post-yield behaviour of cortical bone
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2008.11.003
– volume: 87
  start-page: 213
  year: 2018
  ident: 10.1016/j.jmbbm.2024.106679_bib20
  article-title: Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.07.033
– year: 2014
  ident: 10.1016/j.jmbbm.2024.106679_bib28
  article-title: A simulation study of marrow fat effect on bone biomechanics
– volume: 10
  start-page: 537
  issue: 4
  year: 1976
  ident: 10.1016/j.jmbbm.2024.106679_bib10
  article-title: Postyield behavior of subchondral trabecular bone
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820100409
– volume: 276
  start-page: 266
  year: 2014
  ident: 10.1016/j.jmbbm.2024.106679_bib12
  article-title: Fluid-structure interaction analysis by coupled FE-SPH model based on a novel searching algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.04.001
– volume: 4
  start-page: 269
  issue: 3
  year: 1993
  ident: 10.1016/j.jmbbm.2024.106679_bib36
  article-title: Characterization of a synthetic foam as a model for human cancellous bone
  publication-title: J. Appl. Biomater.
  doi: 10.1002/jab.770040309
– volume: 6
  start-page: 2520
  issue: 11
  year: 2006
  ident: 10.1016/j.jmbbm.2024.106679_bib37
  article-title: Nanogranular origins of the strength of bone
  publication-title: Nano Lett.
  doi: 10.1021/nl061877k
– volume: 40
  start-page: 14
  year: 2002
  ident: 10.1016/j.jmbbm.2024.106679_bib24
  article-title: Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02347690
– volume: 38
  start-page: 377
  issue: 3
  year: 2005
  ident: 10.1016/j.jmbbm.2024.106679_bib7
  article-title: Biomechanics of cellular solids
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.09.027
– volume: 9
  start-page: 184
  year: 2012
  ident: 10.1016/j.jmbbm.2024.106679_bib16
  article-title: Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.11.013
– start-page: 1
  year: 2023
  ident: 10.1016/j.jmbbm.2024.106679_bib19
  article-title: An improved updated Lagrangian SPH method for structural modelling
  publication-title: Comput. Times Part Mech
– volume: 37
  start-page: 1268
  issue: 14
  year: 2012
  ident: 10.1016/j.jmbbm.2024.106679_bib25
  article-title: Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3182458b2f
– volume: 2
  start-page: 59
  issue: 1
  year: 2006
  ident: 10.1016/j.jmbbm.2024.106679_bib29
  article-title: Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2005.08.004
– volume: 65
  start-page: 213
  year: 2017
  ident: 10.1016/j.jmbbm.2024.106679_bib26
  article-title: A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.08.028
– volume: 5
  issue: 6
  year: 2019
  ident: 10.1016/j.jmbbm.2024.106679_bib3
  article-title: The effect of bone marrow on the mechanical behavior of porcine trabecular bone
  publication-title: Biomed. Phys. Eng. Exp.
– ident: 10.1016/j.jmbbm.2024.106679_bib48
  doi: 10.1016/j.cpc.2018.06.006
– volume: 252
  start-page: 230
  issue: 2
  year: 2008
  ident: 10.1016/j.jmbbm.2024.106679_bib13
  article-title: A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2008.01.030
– volume: 43
  start-page: 775
  issue: 4
  year: 2008
  ident: 10.1016/j.jmbbm.2024.106679_bib39
  article-title: Identification of material parameters based on Mohr-Coulomb failure criterion for bisphosphonate treated canine vertebral cancellous bone
  publication-title: Bone
  doi: 10.1016/j.bone.2008.05.023
– volume: 49
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.jmbbm.2024.106679_bib33
  article-title: Lumbar disc height and vertebral Hounsfield units: association with interbody cage subsidence
  publication-title: Neurosurg. Focus
  doi: 10.3171/2020.4.FOCUS20286
– volume: 358
  start-page: 53
  year: 2018
  ident: 10.1016/j.jmbbm.2024.106679_bib22
  article-title: Smoothed Particle Hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.12.006
SSID ssj0060088
Score 2.3871853
Snippet Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 106679
SubjectTerms Aged
Biomechanical Phenomena
Bone Density
Cancellous Bone - diagnostic imaging
Cancellous Bone - physiology
Continuum-based modeling
Crushable foam
Female
Finite Element Analysis
Finite element model
Humans
Male
Marrow
Materials Testing
Mechanical Phenomena
Mechanical Tests
Smoothed particle hydrodynamics
Trabecular bone indentation
Title Development of a continuum-based, meshless, finite element modeling approach for representation of trabecular bone indentation
URI https://dx.doi.org/10.1016/j.jmbbm.2024.106679
https://www.ncbi.nlm.nih.gov/pubmed/39180890
https://www.proquest.com/docview/3097147079
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-0180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060088
  issn: 1751-6161
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier E-journals (Freedom Collection)
  customDbUrl:
  eissn: 1878-0180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060088
  issn: 1751-6161
  databaseCode: ACRLP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-0180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060088
  issn: 1751-6161
  databaseCode: .~1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1878-0180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060088
  issn: 1751-6161
  databaseCode: AIKHN
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-0180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060088
  issn: 1751-6161
  databaseCode: AKRWK
  dateStart: 20080101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXvRg_BY_SE08Mhlrt65HQiSokYuScGvarYsQGUbgyt_ue91GMFEPHtd2bdPXvvfr9t7vEXLbiYywlglPhFno8U7CPS3gPMo4k2kqE6ET_N7xPIwGI_44Dsc10qtiYdCtstT9hU532rosaZer2f6YTNovYPgAroCF5rgzXTJrZP-CPX233rh5gD13uSexsYetK-Yh5-M1nRmD4egBh5IoQn-un63Tb-jTWaH-Adkv4SPtFjM8JDWbH5G9LVLBY7Le8gOi84xqiu7ok3y1mnlos9IWndnF2zuouBbNJog5qS2cyKnLiwO90IpqnAKmpY74sgpSyrHP5ac2RVZdaua5pci5WFafkFH__rU38MosC17CfLn00iDtGBkaCYbKZoDgDFyZkUWfp9LXgB7S0NcAG0Prs1BkcCOEG0ggfSO0jixj7JTUcxjqnNAgtiJgVmINT1kcSwAHWloeCgAWiWyQVrW66qMg01CVl9lUOWEoFIYqhNEgUSUB9W1PKFD3f794U8lLwWnBXyA6t_PVQjGkzOLICtggZ4UgNzNhshP7sfQv_jvsJdnFpyJS8YrUl58rew2QZWmabk82yU734Wkw_AL1zeqE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6h5AA9VKXQNm2hRuKYVTZre70-RlFRII8LIHGz7F2vGkQ2CJJrf3tndtcVSMCBq71-yGPPfPbOfANwOkyd8p6rSMlSRmKYi8gqPI86K3VR6FzZnN475ot0ci0ubuTNDoxDLAy5Vba6v9HptbZuSwbtag7ul8vBJRo-hCtooQXtTEpm3RUSdXIHuqPz6WQRFDKa9Dr9JH0fUYNAPlS7ed2unKOI9ERgSZqSS9fLBuo1AFoborNP8LFFkGzUTHIfdnz1GT484RU8gL9PXIHYumSWkUf6stpuVxGZraLPVv7xzx1quT4rlwQ7mW_8yFmdGgd7YYFtnCGsZTX3ZYhTqqjPzYN1TWJd5taVZ0S72FYfwvXZ76vxJGoTLUQ5j_UmKpJi6LR0Gm2VLxHEObw1E5G-KHRsEUAUMraIHKWPuVQlXgrxEpLo2ClrU885_wKdCof6BizJvEq411QjCp5lGvGB1V5Ihdgi1z3oh9U19w2fhgmOZremFoYhYZhGGD1IgwTMs21hUOO_3fAkyMvggaG_ILby6-2j4cSaJYgYsAdfG0H-nwnXwyzOdPz9vcP-gt3J1XxmZueL6Q_Yo5omcPEndDYPW3-ECGbjjtsd-g_1rO0v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+continuum-based%2C+meshless%2C+finite+element+modeling+approach+for+representation+of+trabecular+bone+indentation&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Benais%2C+R%C3%A9my&rft.au=Rycman%2C+Aleksander&rft.au=McLachlin%2C+Stewart+D.&rft.date=2024-11-01&rft.issn=1751-6161&rft.volume=159&rft.spage=106679&rft_id=info:doi/10.1016%2Fj.jmbbm.2024.106679&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmbbm_2024_106679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon